Introductory Quiz

SURNAME:	FIRST NAME:	SECTION:	•••
1. Let P be a probability and A always true?	A, B be two events.	Among the following identities, which as	$^{\mathrm{re}}$
\Box a) $P(A \cup B) = P(A) + P(B)$.		b) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$?).
\Box c) $P(A B) = \frac{P(A \cap B)}{P(B)}$, if $P(B) = \frac{P(A \cap B)}{P(B)}$	≠ 0. □	d) $P(A \cap B) = P(A) \cdot P(B)$.	
2. Gaussian random variables			
a) Let X be a random variable such that $P(X \ge 0) = 1$. Can X be a Gaussian random variable?			
b) Let Y be a Gaussian random variable with mean μ . Is it true that $P(Y \ge \mu) = 1/2$?			
c) Let Z be a random variable such	th that $P(Z=1)=1$	1/2. Can Z be a Gaussian random variable	e?
3. You throw a (fair) coin 1000 times. What is the probability that you end up with exactly 500 tails and 500 heads?			
\square a) 1/2 \square b)	0	\Box c) approximately 0.025	
4. Name three scientists whose names are associated to distributions of random variables.			
a) b)	C)	
5. Let X be a random variable such that $P(X = 1) = P(X = 0) = 1/2$.			
a) What is the mean of X ? b) What is variance of X ?			
Let now Y be the random variable defined as $Y = 2X - 1$.			
c) What is the mean of Y ?			
6. Which of the following stateme	ents is true?		
\square a) If $Cov(X,Y) = 0$, then X and Y are independent.			
\Box b) If X and Y are independent	t, then $Cov(X, Y) =$	0.	
\Box c) X and Y are independent if and only if $Cov(X,Y)=0$.			
7. Subsidiary question: give the definition of convergence in probability:			
$X_n \xrightarrow{P} X$ means			