## Quiz

1. Let $X, Y$ be two random variables and

$$
\mathcal{F}=\sigma(X, Y) \quad \mathcal{G}=\sigma(X+Y) \quad \mathcal{H}=\sigma(X, X+Y)
$$

For each assertion a) to d) below, say whether it is true or not.
a) $\mathcal{F} \subset \mathcal{G}$
b) $\mathcal{G} \subset \mathcal{F}$
c) $\mathcal{F} \subset \mathcal{H}$
d) $\mathcal{H} \subset \mathcal{F}$
e) Does any of the above answers change if we moreover assume that $X$ and $Y$ are independent?
2. Let $X$ and $Y$ be two independent random variables.
a) Compute $\mathbb{E}\left((X+Y)^{2} \mid Y\right)$ (there should not remain any conditional expectation in the answer). Let us now moreover assume that $X, Y$ are i.i.d. and such that $\mathbb{P}(X= \pm 1)=\mathbb{P}(Y= \pm 1)=\frac{1}{2}$.
b) Compute $\mathbb{E}\left((X+Y)^{2} \mid Y\right)$ in this particular case.
c) Compute also $\mathbb{E}(X \mid X+Y)$ in this particular case.
3. Let $\left(\xi_{n}, n \in \mathbb{N}\right)$ be a sequence of i.i.d. $\sim \mathbb{N}(0,1)$ random variables. Let $M_{0}=\xi_{0}$ and $M_{n}=\xi_{n}+\xi_{n-1}$ for $n \geq 1$. Let also ( $\mathcal{F}_{n}, n \in \mathbb{N}$ ) be the natural filtration of ( $M_{n}, n \in \mathbb{N}$ ).
a) Is $\left(M_{n}, n \in \mathbb{N}\right)$ a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ ?
b) Is $\left(M_{n}, n \in \mathbb{N}\right)$ a Markov process with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ ?
c) Is $\left(M_{n}, n \in \mathbb{N}\right)$ a Gaussian process?
d) Compute the mean and the covariance of $\left(M_{n}, n \in \mathbb{N}\right)$.
4. Let $\left(S_{n}, n \in \mathbb{N}\right)$ be the simple symmetric random walk on $\mathbb{Z}$ and $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ be its natural filtration.
a) Is the process $\left(S_{n}^{4}, n \in \mathbb{N}\right)$ a submartingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ ?
b) Is the process $\left(S_{n}^{4}-n, n \in \mathbb{N}\right)$ a submartingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ ?

Hint: Recall that $(x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$.
c) Show that $\mathbb{E}\left(S_{n+1}^{4}\right)=\mathbb{E}\left(S_{n}^{4}\right)+6 n+1$ and deduce the value of $\mathbb{E}\left(S_{n}^{4}\right)$ by induction on $n$.

Hint: Recall also that $\sum_{i=1}^{n-1} i=\frac{n(n-1)}{2}$.
d) Compute $\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left(S_{n}^{4}\right)}{n^{2}}$. Can you make a parallel with something you already know?
5. Let $\left(X_{t}, t \in \mathbb{R}_{+}\right)$be a continuous-time process and $\left(\mathcal{F}_{t}, t \in \mathbb{R}_{+}\right)$be its natural filtration. Let also $t>s \geq 0$.
a) Does $\mathbb{E}\left(X_{t} \mid \mathcal{F}_{s}\right) \geq X_{s}$ a.s. imply that $X_{t} \geq X_{s}$ a.s.?
b) Does $\mathbb{E}\left(X_{t} \mid \mathcal{F}_{s}\right) \geq X_{s}$ a.s. imply that $\mathbb{E}\left(X_{t}\right) \geq \mathbb{E}\left(X_{s}\right)$ ?
c) Does $\mathbb{E}\left(X_{t} \mid \mathcal{F}_{s}\right)=0$ a.s. imply that $X_{t}=0$ a.s.?
d) Does $\mathbb{E}\left(X_{s} \mid \mathcal{F}_{s}\right)=0$ a.s. imply that $X_{s}=0$ a.s.?
e) Does the property " $\mathbb{E}\left(X_{t}-X_{s} \mid \mathcal{F}_{s}\right)=0$ a.s. for all $t>s \geq 0$ " imply that the process $X$ has independent increments?
6. Let $\left(B_{t}, t \in \mathbb{R}_{+}\right)$be a standard Brownian motion.
a) What is the distribution of $2 B_{t}-B_{s}$, for $t>s \geq 0$ ?
b) Is it true that $\frac{B_{t}^{2}}{t}$ has the same distribution as $B_{1}^{2}$, for all $t>0$ ?

Among the following processes, which are submartingales?
c) $\left(\exp \left(B_{t}\right), t \in \mathbb{R}_{+}\right)$
d) $\left(\exp \left(-B_{t}\right), t \in \mathbb{R}_{+}\right)$
e) $\left(\exp \left(\left|B_{t}\right|\right), t \in \mathbb{R}_{+}\right)$
f) $\left(\exp \left(-\left|B_{t}\right|\right), t \in \mathbb{R}_{+}\right)$
7. Let $\left(M_{t}, t \in \mathbb{R}_{+}\right)$be a continuous square-integrable martingale and ( $\mathcal{F}_{t}, t \in \mathbb{R}_{+}$) be its natural filtration. Let us moreover assume that $M_{0}=0$ a.s. and that $\langle M\rangle_{t}=t^{2}$ a.s., for all $t \in \mathbb{R}_{+}$. For each assertion a) to d) below, say whether it is true or not.
a) $\mathbb{E}\left(M_{t}^{2}\right)=t^{2}$, for all $t \geq 0$.
b) $M_{t}=t$ a.s., for all $t \geq 0$.
c) The trajectories of $\left(M_{t}, t \in \mathbb{R}_{+}\right)$have bounded variation, a.s.
d) $\mathbb{E}\left(M_{t}^{2}-M_{s}^{2} \mid \mathcal{F}_{s}\right)=t^{2}-s^{2}$, for all $t>s \geq 0$.
e) Finally, compute the variance of $M_{t}-M_{s}$, for $t>s \geq 0$.
8. Let ( $B_{t}, t \in \mathbb{R}_{+}$) be a standard Brownian motion and ( $X_{t}, t \in \mathbb{R}_{+}$) be the process defined as $X_{t}=\exp \left(a B_{t}+b t\right)$ for $t \geq 0$, where $a, b \in \mathbb{R}$ are fixed.
a) Use Ito-Doeblin's formula to decompose the process $\left(X_{t}, t \in \mathbb{R}_{+}\right)$into the sum of a martingale and a process with bounded variation.
b) Under which condition on the coefficients $a$ and $b$ is the process ( $X_{t}, t \in \mathbb{R}_{+}$) a submartingale?
c) Under which condition on the coefficients $a$ and $b$ is the process ( $X_{t}, t \in \mathbb{R}_{+}$) a martingale?
d) In the case where $\left(X_{t}, t \in \mathbb{R}_{+}\right)$is a martingale, compute its quadratic variation.

