Homework 6

Exercise 1. a) Let $(X_n, n \in \mathbb{N})$ be the simple asymmetric random walk, that is: $X_0 = 0$ and $X_n = \xi_1 + \ldots + \xi_n$, where ξ_1, \ldots, ξ_n are i.i.d. random variables such that $\mathbb{P}(\xi_1 = +1) = p = 1 - \mathbb{P}(\xi_1 = -1)$, with p > 1/2.

Find the Doob decomposition of the submartingale $(X_n, n \in \mathbb{N})$, i.e. find the processes $(M_n, n \in \mathbb{N})$ and $(A_n, n \in \mathbb{N})$ such that $(M_n, n \in \mathbb{N})$ is a martingale, $(A_n, n \in \mathbb{N})$ is an increasing and predictable process such that $A_0 = 0$ a.s. and $X_n = M_n + A_n$, for all $n \in \mathbb{N}$.

b) Let now $X_n = S_n^2$, where $(S_n, n \in \mathbb{N})$ is the simple symmetric random walk on \mathbb{Z} .

Find again the Doob decomposition of the submartingale $(X_n, n \in \mathbb{N})$.

Exercise 2. Let $(S_n, n \in \mathbb{N})$ be the simple symmetric random walk and $(\mathcal{F}_n, n \in \mathbb{N})$ be its natural filtration. Among the following random times, which are stopping times with respect to $(\mathcal{F}_n, n \in \mathbb{N})$? which are bounded? (no formal justification needed: the answer suffices)

- a) $T = \sup\{n \ge 0 : S_n \ge a\}$ (a > 0 is fixed)
- b) $T = \inf\{n \ge 1 : S_n = \max_{0 \le k \le n} S_k\}$
- c) $T = \inf\{n \ge 0 : S_n = \max_{0 \le m \le N} S_m\}$ $(N \ge 1 \text{ is fixed})$
- d) $T = \inf\{n \ge 0 : S_n \ge a \text{ or } n \ge N\}$ $(a > 0 \text{ and } N \ge 1 \text{ are fixed})$

Exercise 3. Let $(S_n, n \in \mathbb{N})$ be the simple symmetric simple random walk, $(\mathcal{F}_n, n \in \mathbb{N})$ be its natural filtration and

$$T = \inf\{n \ge 1 : |S_n| \ge a\}$$

where $a \ge 1$ is an integer number.

a) Show that T is a stopping time with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.

Let now $(M_n, n \in \mathbb{N})$ be defined as $M_n = S_n^2 - n$, for all $n \in \mathbb{N}$. The process $(M_n, n \in \mathbb{N})$ has been shown to be a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$ in Homework 5, Exercise 3.

b) Apply the optional stopping theorem to compute $\mathbb{E}(T)$.

Remark: Even though T is an unbounded stopping time, the optional stopping theorem applies here. Notice that the theorem would *not* apply if one would consider the following stopping time:

$$T' = \inf\{n \ge 1 : S_n \ge a\}.$$

We have seen a similar example of that in the class.

please turn the page %

Exercise 4. (If one cannot win on a game, then it is a martingale) Let $(\mathcal{F}_n, n \in \mathbb{N})$ be a filtration and $(M_n, n \in \mathbb{N})$ be a process adapted to $(\mathcal{F}_n, n \in \mathbb{N})$ such that $\mathbb{E}(|M_n|) < \infty$, for all $n \in \mathbb{N}$.

Show that if for any predictable process $(H_n, n \in \mathbb{N})$ such that H_n is a bounded random variable $\forall n \in \mathbb{N}$, we have

$$\mathbb{E}((H \cdot M)_N) = 0, \quad \forall N \in \mathbb{N}.$$

then $(M_n, n \in \mathbb{N})$ is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.