Homework 4

Exercise 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, X be an integrable random variable defined on this space and let \mathcal{G} be a sub- σ-field of \mathcal{F}. Relying only on the definition of conditional expectation, show the following properties:
a) $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))=\mathbb{E}(X)$.
b) If X is independent of \mathcal{G}, then $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E}(X)$ a.s.
c) If X is \mathcal{G}-measurable, then $\mathbb{E}(X \mid \mathcal{G})=X$ a.s.
d) If Y is \mathcal{G}-measurable et bounded, then $\mathbb{E}(X Y \mid \mathcal{G})=\mathbb{E}(X \mid \mathcal{G}) Y$ a.s.
e) If \mathcal{H} is a sub- σ-field of \mathcal{G}, then $\mathbb{E}(\mathbb{E}(X \mid \mathcal{H}) \mid \mathcal{G})=\mathbb{E}(X \mid \mathcal{H})=\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H})$ a.s.

Exercise 2. Let X, Y be two discrete random variables (with values in a countable set C). Let us moreover assume that X is integrable.
a) Show that the random variable $\psi(Y)$, where ψ is defined as

$$
\psi(y)=\sum_{x \in C} x \mathbb{P}(\{X=x\} \mid\{Y=y\})
$$

matches the theoretical definition of conditional expectation $\mathbb{E}(X \mid Y)$ given in class.
b) Application: One rolls two independent and balanced dice (say Y and Z), each with four faces. What is the conditional expectation of the maximum of the two, given the value of one of them?

Exercise 3. Let X, Y be two independent discrete random variables and $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a Borel-measurable function such that $\mathbb{E}(|\varphi(X, Y)|)<\infty$.
a) Show that

$$
\mathbb{E}(\varphi(X, Y) \mid Y)=\psi(Y), \quad \text { where } \quad \psi(y)=\mathbb{E}(\varphi(X, y)) .
$$

b) Reconsider the application of Exercise 2 with this formula.

Exercise 4. (Borel's paradox)
Let Z be a two-dimensional random variable uniformly distributed on the unit disc $B(0,1)$ in \mathbb{R}^{2}. Z has two possible representations:
(i) $Z=(X, Y)$, where $X \in[-1,1]$ and $Y \in[-1,1]$ are the horizontal and vertical coordinates of Z respectively, with joint pdf

$$
f_{X, Y}(x, y)=\frac{1}{\pi} 1_{x^{2}+y^{2} \leq 1} .
$$

(ii) $Z=(R, \Theta)$, where $R \in[0,1]$ is the radius of Z and $\Theta \in]-\pi, \pi]$ is its angle with respect to the horizontal axis. Their joint pdf is given by

$$
f_{R, \Theta}(r, \theta)=\frac{1}{\pi} r 1_{0 \leq r \leq 1} 1_{-\pi<\theta \leq \pi}
$$

where the factor r comes from the Jacobian of the change of coordinates.
a) For $t \in[0,1]$, compute $\lim _{\varepsilon \rightarrow 0} \mathbb{P}(\{0<X \leq t\} \mid\{X \geq 0,-\varepsilon<Y<\varepsilon\})$.
b) For $t \in[0,1]$, compute $\lim _{\varepsilon \rightarrow 0} \mathbb{P}(\{0<R \leq t\} \mid\{-\varepsilon<\Theta<\varepsilon\})$.
c) What is the paradox here? Can you resolve it?

