Homework 12

Exercise 1. Let ($B_{t}, t \in \mathbb{R}_{+}$) be a standard Brownian motion with respect to ($\mathcal{F}_{t}, t \in \mathbb{R}_{+}$). Let also

$$
M_{t}=B_{t}^{2}-t \quad \text { and } \quad N_{t}=\exp \left(B_{t}-\frac{t}{2}\right)
$$

By Ex. 1 in Hw. 9, we already know that $\left(M_{t}\right)$ and $\left(N_{t}\right)$ are martingales with respect to $\left(\mathcal{F}_{t}\right)$. Write explicitly Doob's decomposition of the submartingales $\left(M_{t}^{2}\right)$ and (N_{t}^{2}), and deduce from that the values of $\langle M\rangle_{t}$ and $\langle N\rangle_{t}$.
Hint: Write M_{t}^{2} and N_{t}^{2} as functions of t and B_{t}, and use Ito-Doeblin's formula.

Exercise 2. (Ornstein-Uhlenbeck's process)
Let ($B_{t}, t \in \mathbb{R}_{+}$) be a standard Brownian motion and $a \in \mathbb{R}$ be fixed. Let also

$$
X_{t}=\int_{0}^{t} e^{-a(t-s)} d B_{s}, \quad t \in \mathbb{R}_{+}
$$

a) By Ex. 2 in Hw. 11, we know that $\left(X_{t}\right)$ is a Gaussian process. Compute its mean and covariance.
b) Is $\left(X_{t}\right)$ a process with independent increments? A martingale? Justify your answer.
c) Show that $\left(X_{t}\right)$ satisfies the following stochastic differential equation:

$$
X_{t}=-a \int_{0}^{t} X_{s} d s+B_{t} \quad \text { and } \quad X_{0}=0
$$

Hint: Write X_{t} as the product $V_{t} M_{t}$, where $V_{t}=e^{-a t}=\int_{0}^{t}\left(-a e^{-a s}\right) d s$ and $M_{t}=\int_{0}^{t} e^{a s} d B_{s}$ and use the generalized Ito-Doeblin formula.

Exercise 3. a) Let $\left(B_{t}, t \in \mathbb{R}_{+}\right)$be a standard Brownian motion. Let also $b<0, c>0$ and $T=\inf \left\{t \in \mathbb{R}_{+}: B_{t} \notin\right] b, c[\}$ be the first time the process B exits from the interval $] b, c[$ (fact: T is a stopping time). Given that $\left(B_{t}\right)$ is continuous, B_{T} can only possibly take two values, b or c, with probabilities p_{b} and p_{c} respectively. Compute p_{b} (numerical example: $c=1$ and $b=-2$).

Hint: Use the optional stopping theorem (valid here even if T is not a bounded stopping time).
b) Redo the same exercise, replacing the standard Brownian motion $\left(B_{t}\right)$ by the Ornstein-Uhlenbeck process $\left(X_{t}\right)$ defined in Ex. 2.

Hint: Show first, using again the generalized Ito formula, that if $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following ordinary differential equation:

$$
-a x f^{\prime}(x)+\frac{1}{2} f^{\prime \prime}(x)=0, \quad f(0)=0, \quad f^{\prime}(0)=1
$$

then the process $\left(f\left(X_{t}\right)\right)$ is a (continuous) martingale.
Numerical example ($c=1$ and $b=-2$): give an explicit formula for the solution f of the above equation and determine for which values of $a \in \mathbb{R}^{*}$ is the probability p_{b} higher than in the Brownian case.

