Homework 11

Exercise 1. a) Let X and Y be two square-integrable random variables. Verify that

$$
\operatorname{Cov}(X, Y)=\frac{1}{4}(\operatorname{Var}(X+Y)-\operatorname{Var}(X-Y))
$$

Remark: This identity is known as the polarization identity.
The quadratic covariation of two continuous square-integrable martingales ($M_{t}, t \in \mathbb{R}_{+}$) and $\left(N_{t}, t \in \mathbb{R}_{+}\right)$adapted to the same filtration $\left(\mathcal{F}_{t}, t \in \mathbb{R}_{+}\right)$has been defined in the class as the unique process $\left(\langle M, N\rangle_{t}, t \in \mathbb{R}_{+}\right)$which is adapted, continuous and with bounded variation, such that $\langle M, N\rangle_{0}=0$ a.s. and $\left(M_{t} N_{t}-\langle M, N\rangle_{t}, t \in \mathbb{R}_{+}\right)$is a martingale.

An alternate definition of quadratic covariation is the following:

$$
\langle M, N\rangle_{t}=\frac{1}{4}\left(\langle M+N\rangle_{t}-\langle M-N\rangle_{t}\right), \quad t \in \mathbb{R}_{+} .
$$

b) Using this definition, show that the process $\left(M_{t} N_{t}-\langle M, N\rangle_{t}, t \in \mathbb{R}_{+}\right)$is a martingale with respect to $\left(\mathcal{F}_{t}, t \in \mathbb{R}_{+}\right)$.
c) Using this definition again, show that the process $\left(\langle M, N\rangle_{t}, t \in \mathbb{R}_{+}\right)$has bounded variation.

Exercise 2. (Wiener's integral) Let ($B_{t}, t \in \mathbb{R}_{+}$) be a standard Brownian motion with respect to $\left(\mathcal{F}_{t}, t \in \mathbb{R}_{+}\right)$. Let also $T>0, f:[0, T] \rightarrow \mathbb{R}$ be a continuous function on $[0, T]$ and $t_{i}=\frac{i T}{2^{n}}$ for $i=1, \ldots, 2^{n}$. One defines

$$
f^{(n)}(t)=\sum_{i=1}^{2^{n}} f\left(t_{i-1}\right) 1_{\left.\mid t_{i-1}, t_{i}\right]}(t) \quad \text { and } \quad\left(f^{(n)} \cdot B\right)_{T} \equiv \int_{0}^{T} f^{(n)}(s) d B_{s}=\sum_{i=1}^{2^{n}} f\left(t_{i-1}\right)\left(B_{t_{i}}-B_{t_{i-1}}\right)
$$

Similarly, one defines

$$
\left(f^{(n)} \cdot B\right)_{t} \equiv \int_{0}^{t} f^{(n)}(s) d B_{s}=\sum_{i=1}^{k-1} f\left(t_{i-1}\right)\left(B_{t_{i}}-B_{t_{i-1}}\right)+f\left(t_{k-1}\right)\left(B_{t}-B_{t_{k-1}}\right)
$$

if $t \in[0, T]$ is such that $t_{k-1}<t \leq t_{k}$.
a) By the class, it is known that $\left(\left(f^{(n)} \cdot B\right)_{t}, t \in[0, T]\right)$ is a continuous square-integrable martingale (why exactly?). In this particular context, express the isometry relation.
b) Show that $\left(\left(f^{(n)} \cdot B\right)_{t}, t \in[0, T]\right)$ is a Gaussian process, and compute its mean and covariance.
c) Show that $\left(\left(f^{(n)} \cdot B\right)_{t}, t \in[0, T]\right)$ is a process with independent increments.

Important remark: It is a fact that there exists a process $(f \cdot B)$ such that for all $t \in[0, T]$, $\left(f^{(n)} \cdot B\right)_{t} \underset{n \rightarrow \infty}{\mathbb{P}}(f \cdot B)_{t}$ and that all the above properties remain valid for the limiting object $(f \cdot B)_{t}$.

Exercise 3. Let ($B_{t}, t \in \mathbb{R}_{+}$) be a standard Brownian motion with respect to ($\mathcal{F}_{t}, t \in \mathbb{R}_{+}$) and let $\left(H_{t}, t \in \mathbb{R}_{+}\right)$be a continuous process adapted to ($\left.\mathcal{F}_{t}, t \in \mathbb{R}_{+}\right)$. Let also $\varepsilon \in[0,1], T \in \mathbb{R}_{+}$and $t_{i}=\frac{i T}{2^{n}}$ for $i=1, \ldots, 2^{n}$. One further defines (assuming that the limit exists in probability):

$$
(H \cdot B)_{T}^{(\varepsilon)}=\lim _{n \rightarrow \infty} \sum_{i=1}^{2^{n}}\left((1-\varepsilon) H_{t_{i-1}}+\varepsilon H_{t_{i}}\right)\left(B_{t_{i}}-B_{t_{i-1}}\right),
$$

Show that

$$
(H \cdot B)_{T}^{(\varepsilon)}=(H \cdot B)_{T}^{(0)}+\varepsilon\langle H, B\rangle_{T},
$$

where

$$
\langle H, B\rangle_{T}=\lim _{n \rightarrow \infty} \sum_{i=1}^{2^{n}}\left(H_{t_{i}}-H_{t_{i-1}}\right)\left(B_{t_{i}}-B_{t_{i-1}}\right) .
$$

Remark: The above definition corresponds to Ito's integral when $\varepsilon=0$, and to Fisk-Stratonovic's integral when $\varepsilon=1 / 2$.

