Introductory Quiz: Solutions

1. Let P be a probability and A, B be two events. Among the following identities, which are always true?
a) $P(A \cup B)=P(A)+P(B)$.
■ b) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
c) $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, if $P(B) \neq 0$.
d) $P(A \cap B)=P(A) \cdot P(B)$.
2. Gaussian random variables
a) Let X be a random variable such that $P(X \geq 0)=1$. Can X be a Gaussian random variable? NO, a Gaussian random variables always takes positive and negative values.
b) Let Y be a Gaussian random variable with mean μ. Is it true that $P(Y \geq \mu)=1 / 2$? YES.
c) Let Z be a random variable such that $P(Z=1)=1 / 2$. Can Z be a Gaussian random variable? NO, a Gaussian random variable is continuous and cannot therefore take a given value with positive probability.
3. You throw a (fair) coin 1000 times. What is the probability that you end up with exactly 500 tails and 500 heads?
a) $1 / 2$
b) 0
■ c) approximately 0.025
4. Name three scientists whose names are associated to distributions of random variables.
a) Gauss
b) Poisson
c) Bernoulli ...
5. Let X be a random variable such that $P(X=1)=P(X=0)=1 / 2$.
a) What is the mean of X ? $1 / 2$
b) What is variance of X ? $1 / 4$

Let now Y be the random variable defined as $Y=2 X-1$.
c) What is the mean of Y ? 0
d) What is variance of Y ? 1
6. Which of the following statements is true?
a) If $\operatorname{Cov}(X, Y)=0$, then X and Y are independent.

- b) If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.c) X and Y are independent if and only if $\operatorname{Cov}(X, Y)=0$.

7. Subsidiary question: give the definition of convergence in probability:
$X_{n} \xrightarrow{P} X$ means $\forall \varepsilon>0, \lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|>\varepsilon\right)=0$.
