Solutions 9

1. a) One checks that $\mathbb{E}(B_t^2 - t|\mathcal{F}_s^B) = B_s^2 - s$:

$$\mathbb{E}(B_t^2 - B_s^2 | \mathcal{F}_s^B) = \mathbb{E}((B_t - B_s)^2 + 2(B_t - B_s)B_s | \mathcal{F}_s^B) = \mathbb{E}((B_t - B_s)^2) + 2\mathbb{E}(B_t - B_s)B_s = t - s$$

b) One checks that $\mathbb{E}(\exp(B_t - \frac{t}{2})|\mathcal{F}_s^B) = \exp(B_s - \frac{s}{2})$:

 $\mathbb{E}(\exp(B_t - B_s) | \mathcal{F}_s^B) = \mathbb{E}(\exp(B_t - B_s)) = \exp\left(\frac{t - s}{2}\right), \text{ since } B_t - B_s \sim \mathcal{N}(0, t - s) \text{ (see Ex. 4, Hw. 2)}.$

- **2.** (M_t) is clearly adapted to (\mathcal{F}_t) and
- (i) $\mathbb{E}(|M_t|) = \mathbb{E}(|\mathbb{E}(X|\mathcal{F}_t)|) \le \mathbb{E}(\mathbb{E}(|X||\mathcal{F}_t)) = \mathbb{E}(|X|) < \infty$,
- (ii) $\mathbb{E}(M_t|\mathcal{F}_s) = \mathbb{E}(\mathbb{E}(X|\mathcal{F}_t)|\mathcal{F}_s) = \mathbb{E}(X|\mathcal{F}_s) = M_s,$
- so (M_t) is a martingale with respect to (\mathcal{F}_t) .

If moreover X is \mathcal{F}_T -measurable for a given $T \in \mathbb{R}_+$, then (M_t) is constant for $t \geq T$.

3. a) For $t > s \ge 0$, we have $\mathbb{E}((M_t - M_s) M_s) = \mathbb{E}(\mathbb{E}(M_t - M_s | \mathcal{F}_s) M_s) = \mathbb{E}(0 M_s) = 0$.

b) For $t > s \ge 0$, we have $\operatorname{Cov}(M_t, M_s) = \mathbb{E}(M_t M_s) - \mathbb{E}(M_t)\mathbb{E}(M_s) = \mathbb{E}(M_s^2) - \mathbb{E}(M_0)^2$ is only function of s, therefore of $t \wedge s$.

c) In order to determine c and d, we use part (ii) of the definition of conditional expectation with g(y) = 1 and g(y) = y, respectively:

 $\mathbb{E}(X1) = \mathbb{E}((cY+d)1) = c\mathbb{E}(Y) + d$, therefore d = 0 (since X and Y are centered).

 $\mathbb{E}(XY) = \mathbb{E}((cY)Y) = c \mathbb{E}(Y^2), \text{ so } c = \frac{\mathbb{E}(XY)}{\mathbb{E}(Y^2)}.$

d) (X_t) is by definition adapted to its natural filtration and

(i) For $t \ge 0$, $\mathbb{E}(|X_t|) < \infty$, since $\mathbb{E}(X_t^2) < \infty$.

(ii) For $t > s \ge 0$: $\mathbb{E}(X_t | \mathcal{F}_s^X) = \mathbb{E}(X_t | X_s) = \frac{\mathbb{E}(X_t X_s)}{\mathbb{E}(X_s^2)} X_s = X_s$ (where we have used the Markov property, part c) and the assumption).