Solutions 9

1. a) One checks that $\mathbb{E}\left(B_{t}^{2}-t \mid \mathcal{F}_{s}^{B}\right)=B_{s}^{2}-s$:

$$
\mathbb{E}\left(B_{t}^{2}-B_{s}^{2} \mid \mathcal{F}_{s}^{B}\right)=\mathbb{E}\left(\left(B_{t}-B_{s}\right)^{2}+2\left(B_{t}-B_{s}\right) B_{s} \mid \mathcal{F}_{s}^{B}\right)=\mathbb{E}\left(\left(B_{t}-B_{s}\right)^{2}\right)+2 \mathbb{E}\left(B_{t}-B_{s}\right) B_{s}=t-s
$$

b) One checks that $\mathbb{E}\left(\left.\exp \left(B_{t}-\frac{t}{2}\right) \right\rvert\, \mathcal{F}_{s}^{B}\right)=\exp \left(B_{s}-\frac{s}{2}\right)$:
$\mathbb{E}\left(\exp \left(B_{t}-B_{s}\right) \mid \mathcal{F}_{s}^{B}\right)=\mathbb{E}\left(\exp \left(B_{t}-B_{s}\right)\right)=\exp \left(\frac{t-s}{2}\right)$, since $B_{t}-B_{s} \sim \mathcal{N}(0, t-s)$ (see Ex. 4, Hw. 2).
2. $\left(M_{t}\right)$ is clearly adapted to $\left(\mathcal{F}_{t}\right)$ and
(i) $\mathbb{E}\left(\left|M_{t}\right|\right)=\mathbb{E}\left(\left|\mathbb{E}\left(X \mid \mathcal{F}_{t}\right)\right|\right) \leq \mathbb{E}\left(\mathbb{E}\left(|X| \mid \mathcal{F}_{t}\right)\right)=\mathbb{E}(|X|)<\infty$,
(ii) $\mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{t}\right) \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(X \mid \mathcal{F}_{s}\right)=M_{s}$,
so $\left(M_{t}\right)$ is a martingale with respect to $\left(\mathcal{F}_{t}\right)$.
If moreover X is \mathcal{F}_{T}-measurable for a given $T \in \mathbb{R}_{+}$, then $\left(M_{t}\right)$ is constant for $t \geq T$.
3. a) For $t>s \geq 0$, we have $\mathbb{E}\left(\left(M_{t}-M_{s}\right) M_{s}\right)=\mathbb{E}\left(\mathbb{E}\left(M_{t}-M_{s} \mid \mathcal{F}_{s}\right) M_{s}\right)=\mathbb{E}\left(0 M_{s}\right)=0$.
b) For $t>s \geq 0$, we have $\operatorname{Cov}\left(M_{t}, M_{s}\right)=\mathbb{E}\left(M_{t} M_{s}\right)-\mathbb{E}\left(M_{t}\right) \mathbb{E}\left(M_{s}\right)=\mathbb{E}\left(M_{s}^{2}\right)-\mathbb{E}\left(M_{0}\right)^{2}$ is only function of s, therefore of $t \wedge s$.
c) In order to determine c and d, we use part (ii) of the definition of conditional expectation with $g(y)=1$ and $g(y)=y$, respectively:
$\mathbb{E}(X 1)=\mathbb{E}((c Y+d) 1)=c \mathbb{E}(Y)+d$, therefore $d=0$ (since X and Y are centered).
$\mathbb{E}(X Y)=\mathbb{E}((c Y) Y)=c \mathbb{E}\left(Y^{2}\right)$, so $c=\frac{\mathbb{E}(X Y)}{\mathbb{E}\left(Y^{2}\right)}$.
d) $\left(X_{t}\right)$ is by definition adapted to its natural filtration and
(i) For $t \geq 0, \mathbb{E}\left(\left|X_{t}\right|\right)<\infty$, since $\mathbb{E}\left(X_{t}^{2}\right)<\infty$.
(ii) For $t>s \geq 0: \mathbb{E}\left(X_{t} \mid \mathcal{F}_{s}^{X}\right)=\mathbb{E}\left(X_{t} \mid X_{s}\right)=\frac{\mathbb{E}\left(X_{t} X_{s}\right)}{\mathbb{E}\left(X_{s}^{2}\right)} X_{s}=X_{s}$ (where we have used the Markov property, part c) and the assumption).

