Solutions 7

1. a) X is not a martingale $\left(\mathbb{E}\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\xi_{n+1}\right)=0 \neq \xi_{n}\right)$, but it is a Markov process.
b) X is a Markov process (as $X_{n+1}=f\left(X_{n}, \xi_{n+1}\right)$), but it is not a martingale (except in the case where $a=1$; notice however that it is neither a submartingale when $a>1$, nor is it a supermartingale when $a<1$, as X can take positive and negative values).
c) X is neither a Markov process nor a martingale $\left(\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)+\mathbb{E}\left(\xi_{n} \mid \mathcal{F}_{n}\right)=\xi_{n}\right.$ and $\mathbb{E}\left(X_{n+1} \mid X_{n}\right)=\mathbb{E}\left(\xi_{n+1} \mid X_{n}\right)+\mathbb{E}\left(\xi_{n} \mid X_{n}\right)=\mathbb{E}\left(\xi_{n} \mid X_{n}\right)$, so it does not hold that $\mathbb{E}\left(g\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right)=$ $\mathbb{E}\left(g\left(X_{n+1}\right) \mid X_{n}\right)$, nor does it hold that $\left.\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}\right)$.
d) $X_{n+1}=\max \left(X_{n}, \xi_{n+1}\right)$, so X is a Markov process, but it is not a martingale (actually, X is an increasing process, i.e. a very particular type of submartingale!).
e) $X_{n}=\sum_{i=1}^{n} H_{i} \xi_{i}$ where $H_{1}=1, H_{n+1}=\xi_{1}+\ldots+\xi_{n}$ is predictable and $\left|H_{n}\right| \leq n$ for all n, so X is a martingale. But it is not a Markov process: $X_{n+1}=X_{n}+\left(\xi_{1}+\ldots+\xi_{n}\right) \xi_{n+1}$, so the increment of the process between time n and time $n+1$ depends on the whole history of the process.
2. a) By assumption, $\mathbb{P}(\{X \in A, Y \in B\})=\mathbb{P}(\{X \in A\}) \mathbb{P}(\{Y \in B\})$

$$
\begin{aligned}
& =\left(\int_{A} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x\right) \cdot\left(\int_{B} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) d y\right) \\
& =\iint_{A \times B} \frac{1}{\sqrt{(2 \pi)^{2}}} \exp \left(-\frac{x^{2}+y^{2}}{2}\right) d x d y .
\end{aligned}
$$

(X, Y) is therefore a centered Gaussian random vector with covariance matrix $K=I d$. This implies that $X+Y$ is a centered Gaussian random variable with variance 2 .
b) Z is Gaussian (to show this, use the fact that the distribution of X is symmetric: $\mathbb{P}(\{X \in A\})=$ $\mathbb{P}(\{-X \in A\}))$, but $X+Z$ is not Gaussian, since

$$
\mathbb{P}(\{X+Z=0\})=\mathbb{P}(\{\mathcal{E}=-1\})=\frac{1}{2}>0
$$

which is impossible for a continuous random variable, therefore even more impossible for a Gaussian random variable!
c) $\operatorname{Cov}(X, Z)=\mathbb{E}(X Z)-\mathbb{E}(X) \mathbb{E}(Z)=\mathbb{E}\left(\mathcal{E} X^{2}\right)-0=\mathbb{E}(\mathcal{E}) \mathbb{E}\left(X^{2}\right)=0$. Nevertheless,

$$
\mathbb{P}(\{X>1, Z>1\})=\mathbb{P}(\{X>1, \mathcal{E}=+1\})=\mathbb{P}(\{X>1\}) \mathbb{P}(\{\mathcal{E}=+1\}),
$$

but $\mathbb{P}(\{\mathcal{E}=+1\})=\frac{1}{2} \neq \mathbb{P}(\{Z>1\})$, so X and Z are not independent.
3. The covariance matrix K of X is given by

$$
K=\left(\begin{array}{ccc}
1 & a & a \\
a & 1 & a \\
a & a & 1
\end{array}\right) .
$$

It is symmetric for all $a \in \mathbb{R}$, and positive semi-definite if and only if all its eigenvalues are nonnegative. Notice that λ is an eigenvalue of K if and only if $\lambda+a-1$ is an eigenvalue of

$$
A=\left(\begin{array}{ccc}
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right)
$$

and that the eigenvalues of A are $3 a, 0,0$. Indeed,

$$
0=\operatorname{det}(A-\lambda I)=(a-\lambda)^{3}+2 a^{3}-3(a-\lambda) a^{2}=(3 a-\lambda) \lambda^{2} .
$$

Another way to see this is to notice that A has only one non-zero eigenvalue $3 a$ corresponding to the eigenvector $(1,1,1)$.

The eigenvalues of K are therefore $1+2 a, 1-a, 1-a$. They are all non-negative if and only if $a \in\left[-\frac{1}{2}, 1\right]$. The answer to the question asked in the problem set is therefore: no.
4. a) X is degenerate if and only if $\operatorname{rank}(K)<3$ if and only if $\operatorname{det} K=0$ if and only if one of the eigenvalues of K is zero, that is, $a=1$ or $a=-\frac{1}{2}$.
If $a=1$, then $X \sim(U, U, U)$, where $U \sim \mathcal{N}(0,1)$.
If $a=-\frac{1}{2}$, then $X \sim\left(U,-\frac{1}{2} U+\frac{\sqrt{3}}{2} V,-\frac{1}{2} U-\frac{\sqrt{3}}{2} V\right)$ where $U, V \sim \mathcal{N}(0,1)$ are independent.
Notice that the number of independent random variables needed to build the vector X is equal to the number of non-zero eigenvalues (=rank) of K.
b) Y is degenerate if and only if

$$
0=\operatorname{det}(K)=1+2 b^{4}-b^{4}-2 b^{2}=\left(1-b^{2}\right)^{2}, \quad \text { i.e. if and only if } b= \pm 1 .
$$

If $b=1$, then $Y \sim(U, U, U)$, where $U \sim \mathcal{N}(0,1)$.
If $b=-1$, then $Y \sim(U,-U, U)$, where $U \sim \mathcal{N}(0,1)$.

