Solutions 6

1. a) We have

$$
A_{n+1}-A_{n}=\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)-X_{n}=\mathbb{E}\left(X_{n}+\xi_{n+1} \mid \mathcal{F}_{n}\right)-X_{n}=X_{n}+\mathbb{E}\left(\xi_{n+1}\right)-X_{n}=2 p-1,
$$

that is, $A_{n}=n(2 p-1)$ and $M_{n}=X_{n}-A_{n}=X_{n}-n(2 p-1)$.
b) Here, we have

$$
\begin{aligned}
A_{n+1}-A_{n} & =\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)-X_{n}=\mathbb{E}\left(S_{n+1}^{2} \mid \mathcal{F}_{n}\right)-S_{n}^{2}=\mathbb{E}\left(S_{n}^{2}+2 S_{n} \xi_{n+1}+\xi_{n+1}^{2} \mid \mathcal{F}_{n}\right)-S_{n}^{2} \\
& =S_{n}^{2}+2 S_{n} \mathbb{E}\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)+\mathbb{E}\left(\xi_{n+1}^{2} \mid \mathcal{F}_{n}\right)-S_{n}^{2}=2 S_{n} \mathbb{E}\left(\xi_{n+1}\right)+\mathbb{E}\left(\xi_{n+1}^{2}\right)=1,
\end{aligned}
$$

so $A_{n}=n$ and $M_{n}=X_{n}-A_{n}=S_{n}^{2}-n$. Notice that we have already proven in Homework 5 , Exercise 3, that ($M_{n}=S_{n}^{2}-n, n \in \mathbb{N}$) is a martingale.
2. a) T is neither a stopping tiome, nor it is bounded.
b) T is an unbounded stopping time.
c) T is not a stopping time, but it is bounded.
d) T is a bounded stopping time.
3. a) We need to check that for all $n \in \mathbb{N},\{T=n\} \in \mathcal{F}_{n}$. Indeed,

$$
\{T=n\}=\left\{\left|S_{i}\right|<a, \forall 1 \leq i \leq n-1 \quad \text { and } \quad\left|S_{n}\right| \geq a\right\}=\cap_{i=1}^{n-1}\left\{\left|S_{i}\right|<a\right\} \cap\left\{\left|S_{n}\right| \geq a\right\} \in \mathcal{F}_{n},
$$

since each $\left\{\left|S_{i}\right|<a\right\} \in \mathcal{F}_{i} \subset \mathcal{F}_{n}$.
b) Applying Doob's optional stopping theorem, we have $\mathbb{E}\left(M_{T}\right)=\mathbb{E}\left(M_{0}\right)=0$, so $\mathbb{E}\left(S_{T}^{2}-T\right)=0$. This implies that $\mathbb{E}(T)=\mathbb{E}\left(S_{T}^{2}\right)=a^{2}$, since at time $T,\left|S_{T}\right|=a$ (by definition of what T is).
4. Let $m \in \mathbb{N}$ and U be an \mathcal{F}_{m}-measurable and bounded random variable. Let us also define

$$
H_{n}= \begin{cases}U, & \text { if } n=m+1 \\ 0, & \text { otherwise }\end{cases}
$$

Then $\left(H_{n}, n \in \mathbb{N}\right)$ is predictable and for $m<N$, we have by assumption taht M_{m} is \mathcal{F}_{m}-measurable and also that

$$
0=\mathbb{E}\left((H \cdot M)_{N}\right)=\mathbb{E}\left(U\left(M_{m+1}-M_{m}\right)\right) .
$$

Therefore, $M_{m}=\mathbb{E}\left(M_{m+1} \mid \mathcal{F}_{m}\right)$, so $\left(M_{n}, n \in \mathbb{N}\right)$ is a martingale.

