Solutions 6

1. a) We have

$$A_{n+1} - A_n = \mathbb{E}(X_{n+1} | \mathcal{F}_n) - X_n = \mathbb{E}(X_n + \xi_{n+1} | \mathcal{F}_n) - X_n = X_n + \mathbb{E}(\xi_{n+1}) - X_n = 2p - 1,$$

that is, $A_n = n(2p - 1)$ and $M_n = X_n - A_n = X_n - n(2p - 1).$

b) Here, we have

$$A_{n+1} - A_n = \mathbb{E}(X_{n+1} | \mathcal{F}_n) - X_n = \mathbb{E}(S_{n+1}^2 | \mathcal{F}_n) - S_n^2 = \mathbb{E}(S_n^2 + 2S_n \xi_{n+1} + \xi_{n+1}^2 | \mathcal{F}_n) - S_n^2$$

= $S_n^2 + 2S_n \mathbb{E}(\xi_{n+1} | \mathcal{F}_n) + \mathbb{E}(\xi_{n+1}^2 | \mathcal{F}_n) - S_n^2 = 2S_n \mathbb{E}(\xi_{n+1}) + \mathbb{E}(\xi_{n+1}^2) = 1,$

so $A_n = n$ and $M_n = X_n - A_n = S_n^2 - n$. Notice that we have already proven in Homework 5, Exercise 3, that $(M_n = S_n^2 - n, n \in \mathbb{N})$ is a martingale.

- **2.** a) *T* is neither a stopping tiome, nor it is bounded.
- b) T is an unbounded stopping time.
- c) T is not a stopping time, but it is bounded.
- d) T is a bounded stopping time.

3. a) We need to check that for all $n \in \mathbb{N}$, $\{T = n\} \in \mathcal{F}_n$. Indeed,

$$\{T = n\} = \{|S_i| < a, \forall 1 \le i \le n-1 \text{ and } |S_n| \ge a\} = \bigcap_{i=1}^{n-1} \{|S_i| < a\} \cap \{|S_n| \ge a\} \in \mathcal{F}_n,$$

since each $\{|S_i| < a\} \in \mathcal{F}_i \subset \mathcal{F}_n.$

b) Applying Doob's optional stopping theorem, we have $\mathbb{E}(M_T) = \mathbb{E}(M_0) = 0$, so $\mathbb{E}(S_T^2 - T) = 0$. This implies that $\mathbb{E}(T) = \mathbb{E}(S_T^2) = a^2$, since at time T, $|S_T| = a$ (by definition of what T is).

4. Let $m \in \mathbb{N}$ and U be an \mathcal{F}_m -measurable and bounded random variable. Let us also define

$$H_n = \begin{cases} U, & \text{if } n = m + 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then $(H_n, n \in \mathbb{N})$ is predictable and for m < N, we have by assumption that M_m is \mathcal{F}_m -measurable and also that

$$0 = \mathbb{E}((H \cdot M)_N) = \mathbb{E}(U(M_{m+1} - M_m)).$$

Therefore, $M_m = \mathbb{E}(M_{m+1}|\mathcal{F}_m)$, so $(M_n, n \in \mathbb{N})$ is a martingale.