Solutions 5

1. a) comes from the fact that $\mathbb{E}(\mathbb{E}(X \mid \mathcal{F}))=\mathbb{E}(X)$.
b) comes from the fact that M_{n} is \mathcal{F}_{n}-measurable.
c) Let us show this by induction. We know that $\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=M_{n}$. Suppose now that $\mathbb{E}\left(M_{n+m} \mid \mathcal{F}_{n}\right)=$ M_{n} for some $m \geq 1$. Since $\mathcal{F}_{n} \subset \mathcal{F}_{n+m}$, we have

$$
\mathbb{E}\left(M_{n+m+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\mathbb{E}\left(M_{n+m+1} \mid \mathcal{F}_{n+m}\right) \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(M_{n+m} \mid \mathcal{F}_{n}\right)=M_{n},
$$

by the martingale property and the induction hypothesis. The conclusion therefore holds.
2. a) By Jensen's inequality, we know that

$$
\mathbb{E}\left(\varphi\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right) \geq \varphi\left(\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)\right)
$$

We also know that $\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right) \geq X_{n}$, since $\left(X_{n}\right)$ is a submartingale. The function φ needs therefore to be also increasing in order to ensure that

$$
\mathbb{E}\left(\varphi\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right) \geq \varphi\left(X_{n}\right)
$$

b) In particular, $\left(X_{n}^{2}\right)$ need not necessarily be a submartingale, whereas $\left(\exp \left(X_{n}\right)\right)$ is.
3. a) Clearly, since $S_{0}=0, S_{1}=\xi_{1}, \ldots, S_{n}=\xi_{1}+\ldots+\xi_{n},\left(S_{0}, S_{1}, \ldots, S_{n}\right)$ is a function of $\left(\xi_{1}, \ldots, \xi_{n}\right)$, so the natural filtration

$$
\mathcal{F}_{n}^{S}=\sigma\left(S_{0}, \ldots, S_{n}\right) \subset \sigma\left(\xi_{1}, \ldots, \xi_{n}\right),
$$

On the other hand, $\xi_{n}=S_{n}-S_{n-1}$ for all $n \geq 1$, so $\left(\xi_{1}, \ldots, \xi_{n}\right)$ is also a function of ($S_{0}, S_{1}, \ldots, S_{n}$) and therefore,

$$
\sigma\left(\xi_{1}, \ldots, \xi_{n}\right) \subset \sigma\left(S_{0}, \ldots, S_{n}\right)=\mathcal{F}_{n}^{S}
$$

b) For all $n, S_{n}^{2}-n$ is clearly integrable and also \mathcal{F}_{n}-measurable. There remains therefore to prove that

$$
\mathbb{E}\left(S_{n+1}^{2}-(n+1) \mid \mathcal{F}_{n}\right)=S_{n}^{2}-n, \quad \forall n \in \mathbb{N}
$$

i.e.

$$
\mathbb{E}\left(S_{n+1}^{2} \mid \mathcal{F}_{n}\right)=S_{n}^{2}+1, \quad \forall n \in \mathbb{N}
$$

This holds true, since

$$
\begin{aligned}
\mathbb{E}\left(S_{n+1}^{2} \mid \mathcal{F}_{n}\right) & =\mathbb{E}\left(\left(S_{n}+\xi_{n+1}\right)^{2} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(S_{n}^{2}+2 S_{n} \xi_{n+1}+\xi_{n+1}^{2} \mid \mathcal{F}_{n}\right) \\
& =S_{n}^{2}+2 S_{n} \mathbb{E}\left(\xi_{n+1} \mid \mathcal{F}_{m}\right)+\mathbb{E}\left(\xi_{n+1}^{2} \mid \mathcal{F}_{n}\right)=S_{n}^{2}+2 S_{n} \mathbb{E}\left(\xi_{n+1}\right)+\mathbb{E}\left(\xi_{n+1}^{2}\right)=S_{n}^{2}+1
\end{aligned}
$$

4. a) Yes. Let us denote by $\left(\xi_{n}, n \geq 1\right)$ the process defined as $\xi_{n}=+1$ if the $n^{t h}$ coin toss falls on "heads" and $\xi_{n}=-1$ if the $n^{t h}$ coin toss falls on "tails". The bet H_{n} at time n is given by

$$
H_{1}=1, \quad H_{n+1}= \begin{cases}0, & \text { if } \xi_{n}=+1 \\ 2 H_{n}, & \text { if } \xi_{n}=-1\end{cases}
$$

and the gain of the player at time n is given by

$$
G_{n}=\sum_{i=1}^{n} H_{i} \xi_{i}
$$

This process can indeed be shown to be a martingale. Let $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{n}=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$. Then following the same procedure as in exercise 3 .a), it can be shown that $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ is the natural filtration of the process $\left(G_{n}, n \in \mathbb{N}\right)$. So G_{n} is \mathcal{F}_{n}-measurable, $\mathbb{E}\left(\left|G_{n}\right|\right)<\infty$ for all n (this requires a small check) and

$$
\begin{aligned}
\mathbb{E}\left(G_{n+1} \mid \mathcal{F}_{n}\right) & =\mathbb{E}\left(G_{n}+H_{n+1} \xi_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(G_{n} \mid \mathcal{F}_{n}\right)+\mathbb{E}\left(H_{n+1} \xi_{n+1} \mid \mathcal{F}_{n}\right) \\
& \stackrel{(*)}{=} G_{n}+H_{n+1} \mathbb{E}\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)=G_{n}+H_{n+1} \mathbb{E}\left(\xi_{n+1}\right)=G_{n}+0=G_{n}
\end{aligned}
$$

where $(*)$ comes from the fact that both G_{n} and H_{n+1} are \mathcal{F}_{n}-measurable.
b) Suppose that the first "heads" comes out at time $T=n \geq 1$. Then the gain of the player is

$$
-1-2-4-\ldots-2^{n-1}+2^{n}=1
$$

which does not depend on n. So whatever the time T, the gain of the player at this time is 1 franc.
c) There is a seeming contradiction, as $G_{0}=0$ and $G_{T}=1$, so $\mathbb{E}\left(G_{T}\right)=1 \neq 0=\mathbb{E}\left(G_{0}\right)$. But as we will see, stopping a martingale at a random unbounded time is not innocent...

