Solutions 4

1. a) Use part (ii) of the definition with $Y \equiv 1$ (Y is *G*-measurable and bounded).

b) (i) $\mathbb{E}(X)$ is constant and therefore \mathcal{G} -measurable; (ii) Let Y be \mathcal{G} -measurable and bounded: $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(X)Y)$ (using the independence of X and Y and the linearity of expectation).

c) (i) X is \mathcal{G} -measurable by assumption; (ii) Let Y be \mathcal{G} -measurable and bounded: $\mathbb{E}(XY) = \mathbb{E}(XY)!$

d) (i) $\mathbb{E}(X|\mathcal{G})$ Y is \mathcal{G} -measurable; (ii) Let Z be \mathcal{G} -measurable and bounded: $\mathbb{E}(XYZ) = \mathbb{E}(\mathbb{E}(X|\mathcal{G})YZ)$.

e) Let us first check the left-hand side equality: $\mathbb{E}(X|\mathcal{H})$ is \mathcal{H} -measurable, therefore \mathcal{G} -measurable, so one can apply property c).

For the right-hand side equality, one has: (i) $\mathbb{E}(X|\mathcal{H})$ is \mathcal{H} -measurable; (ii) Let Y be \mathcal{H} -measurable and bounded: $\mathbb{E}(\mathbb{E}(X|\mathcal{G})Y) = \mathbb{E}(\mathbb{E}(XY|\mathcal{G})) = \mathbb{E}(XY) = \mathbb{E}(\mathbb{E}(X|\mathcal{H})Y)$ using d), a) and the definition of $\mathbb{E}(X|\mathcal{H})$.

2. a) One must check that $\mathbb{E}(\psi(Y)g(Y)) = \mathbb{E}(Xg(Y))$ for any Borel-measurable and bounded function g. The computation gives

$$\mathbb{E}(\psi(Y)\,g(Y)) = \sum_{y \in C} \psi(y)\;g(y)\;\mathbb{P}(\{Y = y\}) = \sum_{x,y \in C} x\;g(y)\;\mathbb{P}(\{X = x, Y = y\}) = \mathbb{E}(X\,g(Y)).$$

b) Let Y and Z be the two independent dice rolls: $\mathbb{P}(\{Y = i\}) = \mathbb{P}(\{Z = j\}) = 0.25$ and $\mathbb{P}(\{Y = i, Z = j\}) = \mathbb{P}(\{Y = i\}) \mathbb{P}(\{Z = j\})$. We therefore have $\mathbb{E}(\max(Y, Z)|Y) = \psi(Y)$, where

$$\begin{split} \psi(i) &= \sum_{j=i}^{4} \max(i,j) \, \mathbb{P}(\{\max(Y,Z)=j\} | \{Y=i\}) = \sum_{j=i}^{4} \max(i,j) \, \frac{\mathbb{P}(\{\max(Y,Z)=j,Y=i\})}{\mathbb{P}(\{Y=i\})} \\ &= i \, \frac{\mathbb{P}(\{Z \le i,Y=i\})}{\mathbb{P}(\{Y=i\})} + \sum_{j=i+1}^{4} j \, \frac{\mathbb{P}(\{Z=j,Y=i\})}{\mathbb{P}(\{Y=i\})} = i \, \mathbb{P}(\{Z \le i\}) + \sum_{j=i+1}^{4} j \, \mathbb{P}(\{Z=j\}). \end{split}$$

So $\psi(1) = 2.5$, $\psi(2) = 2.75$, $\psi(3) = 3.25$ and $\psi(4) = 4$.

3. a) Two possibilities for solving this question: either observe that for any Borel-measurable and bounded function g:

$$\mathbb{E}(\psi(Y)\,g(Y)) = \sum_{y \in C} \psi(y)\;g(y)\;\mathbb{P}(\{Y = y\}) = \sum_{x,y \in D} \varphi(x,y)\;g(y)\;\mathbb{P}(\{X = x, Y = y\}) = \mathbb{E}(\varphi(X,Y)g(Y)).$$

where the independence of X and Y has been used, or apply directly the formula of Exercise 2.

b) $\mathbb{E}(\max(Y,Z)) = \psi(Y)$, where $\psi(i) = \mathbb{E}(\max(i,Z)) = \sum_{j=1}^{4} \max(i,j) \mathbb{P}(\{Z = j\})$, which gives back the result of Exercise 2 in a simplified manner.

4. a) One has

$$\begin{split} \mathbb{P}(\{0 < X \le t\} | \{X \ge 0, \, -\varepsilon < Y < \varepsilon\}) &= \frac{\mathbb{P}(\{0 < X \le t, \, -\varepsilon < Y < \varepsilon\})}{\mathbb{P}(\{X \ge 0, \, -\varepsilon < Y < \varepsilon\})} \\ &= \frac{\int_{-\varepsilon}^{\varepsilon} dy \, \frac{1}{\pi} \, \min(t, \sqrt{1 - y^2})}{\int_{-\varepsilon}^{\varepsilon} dy \, \frac{1}{\pi} \sqrt{1 - y^2}} \underset{\varepsilon \to 0}{\sim} \frac{2\varepsilon \, t}{2\varepsilon} = t. \end{split}$$

b) As R and Θ are independent, one has

$$\mathbb{P}(\{0 < R \le t\} | \{-\varepsilon < \Theta < \varepsilon\}) = \mathbb{P}(\{0 < R \le t\}) = 2\pi \int_0^t dr \, \frac{1}{\pi} \, r = r^2 \Big|_0^t = t^2.$$

which does not depend on ε (so remains the same in the limit $\varepsilon \to 0).$

c) The paradox is that from the above computations, one would be tempted to write:

$$\mathbb{P}(\{0 < X \le t\} | \{X \ge 0, Y = 0\}) = \lim_{\varepsilon \to 0} \mathbb{P}(\{0 < X \le t\} | \{X \ge 0, -\varepsilon < Y < \varepsilon\}) = t.$$

and

$$\mathbb{P}(\{0 < R \le t\} | \{\Theta = 0\}) = \lim_{\varepsilon \to 0} \mathbb{P}(\{0 < R \le t\} | \{-\varepsilon < \Theta < \varepsilon\}) = t^2.$$

Intuitively, the above two conditional probabilities should be the same. But conditioning on events of zero probability is forbidden. Actually, for any fixed $\varepsilon > 0$, the two events $\{-\varepsilon < Y < \varepsilon\}$ and $\{-\varepsilon < \Theta < \varepsilon\}$ are quite different: this explains why taking limits is dangerous while conditioning.