Solutions 4

1. a) Use part (ii) of the definition with $Y \equiv 1$ (Y is \mathcal{G}-measurable and bounded).
b) (i) $\mathbb{E}(X)$ is constant and therefore \mathcal{G}-measurable; (ii) Let Y be \mathcal{G}-measurable and bounded: $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)=\mathbb{E}(\mathbb{E}(X) Y)$ (using the independence of X and Y and the linearity of expectation).
c) (i) X is \mathcal{G}-measurable by assumption; (ii) Let Y be \mathcal{G}-measurable and bounded: $\mathbb{E}(X Y)=$ $\mathbb{E}(X Y)$!
d) (i) $\mathbb{E}(X \mid \mathcal{G}) Y$ is \mathcal{G}-measurable; (ii) Let Z be \mathcal{G}-measurable and bounded: $\mathbb{E}(X Y Z)=\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) Y Z)$.
e) Let us first check the left-hand side equality: $\mathbb{E}(X \mid \mathcal{H})$ is \mathcal{H}-measurable, therefore \mathcal{G}-measurable, so one can apply property c).

For the right-hand side equality, one has: (i) $\mathbb{E}(X \mid \mathcal{H})$ is \mathcal{H}-measurable; (ii) Let Y be \mathcal{H}-measurable and bounded: $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) Y)=\mathbb{E}(\mathbb{E}(X Y \mid \mathcal{G}))=\mathbb{E}(X Y)=\mathbb{E}(\mathbb{E}(X \mid \mathcal{H}) Y)$ using d), a) and the definition of $\mathbb{E}(X \mid \mathcal{H})$.
2. a) One must check that $\mathbb{E}(\psi(Y) g(Y))=\mathbb{E}(X g(Y))$ for any Borel-measurable and bounded function g. The computation gives

$$
\mathbb{E}(\psi(Y) g(Y))=\sum_{y \in C} \psi(y) g(y) \mathbb{P}(\{Y=y\})=\sum_{x, y \in C} x g(y) \mathbb{P}(\{X=x, Y=y\})=\mathbb{E}(X g(Y)) .
$$

b) Let Y and Z be the two independent dice rolls: $\mathbb{P}(\{Y=i\})=\mathbb{P}(\{Z=j\})=0.25$ and $\mathbb{P}(\{Y=i, Z=j\})=\mathbb{P}(\{Y=i\}) \mathbb{P}(\{Z=j\})$. We therefore have $\mathbb{E}(\max (Y, Z) \mid Y)=\psi(Y)$, where

$$
\begin{aligned}
\psi(i) & =\sum_{j=i}^{4} \max (i, j) \mathbb{P}(\{\max (Y, Z)=j\} \mid\{Y=i\})=\sum_{j=i}^{4} \max (i, j) \frac{\mathbb{P}(\{\max (Y, Z)=j, Y=i\})}{\mathbb{P}(\{Y=i\})} \\
& =i \frac{\mathbb{P}(\{Z \leq i, Y=i\})}{\mathbb{P}(\{Y=i\})}+\sum_{j=i+1}^{4} j \frac{\mathbb{P}(\{Z=j, Y=i\})}{\mathbb{P}(\{Y=i\})}=i \mathbb{P}(\{Z \leq i\})+\sum_{j=i+1}^{4} j \mathbb{P}(\{Z=j\}) .
\end{aligned}
$$

So $\psi(1)=2.5, \psi(2)=2.75, \psi(3)=3.25$ and $\psi(4)=4$.
3. a) Two possibilities for solving this question: either observe that for any Borel-measurable and bounded function g :
$\mathbb{E}(\psi(Y) g(Y))=\sum_{y \in C} \psi(y) g(y) \mathbb{P}(\{Y=y\})=\sum_{x, y \in D} \varphi(x, y) g(y) \mathbb{P}(\{X=x, Y=y\})=\mathbb{E}(\varphi(X, Y) g(Y))$.
where the independence of X and Y has been used, or apply directly the formula of Exercise 2.
b) $\mathbb{E}(\max (Y, Z))=\psi(Y)$, where $\psi(i)=\mathbb{E}(\max (i, Z))=\sum_{j=1}^{4} \max (i, j) \mathbb{P}(\{Z=j\})$, which gives back the result of Exercise 2 in a simplified manner.
4. a) One has

$$
\begin{aligned}
\mathbb{P}(\{0<X \leq t\} \mid\{X \geq 0,-\varepsilon<Y<\varepsilon\}) & =\frac{\mathbb{P}(\{0<X \leq t,-\varepsilon<Y<\varepsilon\})}{\mathbb{P}(\{X \geq 0,-\varepsilon<Y<\varepsilon\})} \\
& =\frac{\int_{-\varepsilon}^{\varepsilon} d y \frac{1}{\pi} \min \left(t, \sqrt{1-y^{2}}\right)}{\int_{-\varepsilon}^{\varepsilon} d y \frac{1}{\pi} \sqrt{1-y^{2}}} \underset{\varepsilon \rightarrow 0}{\sim} \frac{2 \varepsilon t}{2 \varepsilon}=t .
\end{aligned}
$$

b) As R and Θ are indenpendent, one has

$$
\mathbb{P}(\{0<R \leq t\} \mid\{-\varepsilon<\Theta<\varepsilon\})=\mathbb{P}(\{0<R \leq t\})=2 \pi \int_{0}^{t} d r \frac{1}{\pi} r=\left.r^{2}\right|_{0} ^{t}=t^{2} .
$$

which does not depend on ε (so remains the same in the limit $\varepsilon \rightarrow 0$).
c) The paradox is that from the above computations, one would be tempted to write:

$$
\mathbb{P}(\{0<X \leq t\} \mid\{X \geq 0, Y=0\})=\lim _{\varepsilon \rightarrow 0} \mathbb{P}(\{0<X \leq t\} \mid\{X \geq 0,-\varepsilon<Y<\varepsilon\})=t .
$$

and

$$
\mathbb{P}(\{0<R \leq t\} \mid\{\Theta=0\})=\lim _{\varepsilon \rightarrow 0} \mathbb{P}(\{0<R \leq t\} \mid\{-\varepsilon<\Theta<\varepsilon\})=t^{2} .
$$

Intuitively, the above two conditional probabilities should be the same. But conditioning on events of zero probability is forbidden. Actually, for any fixed $\varepsilon>0$, the two events $\{-\varepsilon<Y<\varepsilon\}$ and $\{-\varepsilon<\Theta<\varepsilon\}$ are quite different: this explains why taking limits is dangerous while conditioning.

