Solutions 3

1. a) Using Cauchy-Schwarz's inequality with X and $Y=1_{\{X>t\}}$, we obtain

$$
\mathbb{E}\left(X 1_{\{X>t\}}\right)^{2} \leq \mathbb{E}\left(X^{2}\right) \mathbb{P}(\{X>t\}) .
$$

On the other hand, we have $\mathbb{E}\left(X 1_{\{X>t\}}\right)=\mathbb{E}(X)-\mathbb{E}\left(X 1_{\{X \leq t\}}\right) \geq \mathbb{E}(X)-t$, therefore the result.
b) We check that

$$
\mathbb{P}(\{X>0\})=1-e^{-\lambda} \geq \frac{\lambda}{1+\lambda}=\frac{\mathbb{E}(X)^{2}}{\mathbb{E}\left(X^{2}\right)}
$$

(The central inequality follows from $e^{\lambda} \geq 1+\lambda, \forall \lambda>0$.)
2. a) use $\psi(x)=x^{2}$ and $\psi(x)=x^{2}+\sigma^{2}$ respectively.
b) $\mathbb{P}(\{X \geq a\}) \leq \frac{\sigma^{2}+b^{2}}{(a+b)^{2}}=g(b) . g$ has a minimum in $b=\frac{\sigma^{2}}{a}$ and at this point, $g(b)=\frac{\sigma^{2}}{a^{2}+\sigma^{2}}$.
3. Using Chebychev's inequality with $\psi(x)=x^{2}$, we obtain for any $\varepsilon>0$:

$$
\mathbb{P}\left(\left\{\left|\frac{S_{n}}{n}-\mu\right|>\varepsilon\right\}\right)=\mathbb{P}\left(\left\{\left|S_{n}-n \mu\right|>n \varepsilon\right\}\right) \leq \frac{\operatorname{Var}\left(S_{n}\right)}{(n \varepsilon)^{2}}=\frac{\sigma^{2}}{n \varepsilon^{2}} \underset{n \rightarrow \infty}{\rightarrow} 0
$$

where we have used:

$$
\operatorname{Var}\left(S_{n}\right)=\sum_{i, j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \sigma^{2}
$$

4. The sequence of gains of the player is the i.i.d. sequence $\left(X_{1}, \ldots, X_{369}\right)$, with $\mathbb{P}\left(\left\{X_{1}=+1\right\}\right)=\frac{18}{38}$ and $\mathbb{P}\left(\left\{X_{1}=-1\right\}\right)=\frac{20}{38}$, so

$$
\mu=\mathbb{E}\left(X_{1}\right)=\frac{18-20}{38}=-\frac{1}{19}, \quad \text { and } \quad \sigma^{2}=\operatorname{Var}\left(X_{1}\right)=1-\frac{1}{361} \approx 1 .
$$

and the total gain after n games is $S_{n}=X_{1}+\ldots+X_{n}$. We therefore obtain:
a) $\mathbb{E}\left(S_{361}\right)=361 \mu=-19$ francs.
b) By the central limit theorem, we have
$\mathbb{P}\left(\left\{S_{361}>0\right\}\right)=\mathbb{P}\left(\left\{\frac{S_{361}-361 \mu}{\sqrt{361} \sigma}>-\frac{\sqrt{361} \mu}{\sigma}\right\}\right) \approx \mathbb{P}\left(\left\{Z>-\frac{\sqrt{361} \mu}{\sigma}\right\}\right) \approx \mathbb{P}(\{Z>1\}) \approx 0.15$,
where $Z \sim \mathcal{N}(0,1)$.

