Solutions 12

1. a) $M_{t}^{2}=\left(B_{t}^{2}-t\right)^{2}=f\left(t, B_{t}\right)$, where $f(t, x)=\left(x^{2}-t\right)^{2}$. Notice that

$$
f_{t}^{\prime}(t, x)=-2\left(x^{2}-t\right), \quad f_{x}^{\prime}(t, x)=4 x\left(x^{2}-t\right), \quad \text { and } \quad f_{x x}^{\prime \prime}(t, x)=4\left(x^{2}-t\right)+8 x^{2} .
$$

So by Ito-Doeblin's formula, we have

$$
\begin{aligned}
M_{t}^{2}-0 & =-2 \int_{0}^{t}\left(B_{s}^{2}-s\right) d s+4 \int_{0}^{t} B_{s}\left(B_{s}^{2}-s\right) d B_{s}+\frac{1}{2}\left(4 \int_{0}^{t}\left(B_{s}^{2}-s\right) d s+8 \int_{0}^{t} B_{s}^{2} d s\right) \\
& =4 \int_{0}^{t} B_{s}\left(B_{s}^{2}-s\right) d B_{s}+4 \int_{0}^{t} B_{s}^{2} d s
\end{aligned}
$$

and therefore $\langle M\rangle_{t}=4 \int_{0}^{t} B_{s}^{2} d s$, since the first term is a martingale. Likewise, $N_{t}^{2}=e^{2 B_{t}-t}=$ $g\left(t, B_{t}\right)$, where $g(t, x)=e^{2 x-t}$ and

$$
g_{t}^{\prime}(t, x)=-e^{2 x-t}, \quad g_{x}^{\prime}(t, x)=2 e^{2 x-t}, \quad \text { and } \quad g_{x x}^{\prime \prime}(t, x)=4 e^{2 x-t} .
$$

So

$$
N_{t}^{2}-1=-\int_{0}^{t} e^{2 B_{s}-s} d s+2 \int_{0}^{t} e^{2 B_{s}-s} d B_{s}+2 \int_{0}^{t} e^{2 B_{s}-s} d s=2 \int_{0}^{t} e^{2 B_{s}-s} d B_{s}+\int_{0}^{t} e^{2 B_{s}-s} d s
$$

and therefore $\langle N\rangle_{t}=\int_{0}^{t} e^{2 B_{s}-s} d s$ since the first term is a martingale (recall that by convention, $\left.\langle N\rangle_{0}=0\right)$.
Remark: we could have computed $\langle M\rangle_{t}$ and $\langle N\rangle_{t}$ directly by writing M_{t} and N_{t} as stochastic integrals (using again Ito-Doeblin's formula) and using the fact that

$$
\langle(H \cdot B)\rangle_{t}=\int_{0}^{t} H_{s}^{2} d s
$$

2. a) $\mathbb{E}\left(X_{t}\right)=0$ and for $t \geq s$, we have

$$
\begin{aligned}
\operatorname{Cov}\left(X_{t}, X_{s}\right) & =\mathbb{E}\left(X_{t} X_{s}\right)=\int_{0}^{s} e^{-a(t-r)} e^{-a(s-r)} d r=e^{-a(t+s)} \int_{0}^{s} e^{2 a r} d r \\
& =e^{-a(t+s)} \frac{e^{2 a s}-1}{2 a}=\frac{e^{-a(t-s)}-e^{-a(t+s)}}{2 a},
\end{aligned}
$$

so for any $t, s \geq 0$, we obtain

$$
\operatorname{Cov}\left(X_{t}, X_{s}\right)=\frac{e^{-a|t-s|}-e^{-a(t+s)}}{2 a} \text { et } \quad \operatorname{Var}\left(X_{t}\right)=\frac{1-e^{-2 a t}}{2 a} .
$$

b) The integrand $e^{-a(t-s)}$ depends both on t and s, so the process $\left(X_{t}\right)$ is not a martingale and does not have independent increments.
c) Following the hint, we have $X_{t}=f\left(V_{t}, M_{t}\right)$, where $V_{t}=e^{-a t}=\int_{0}^{t}\left(-a e^{-a s}\right) d s, M_{t}=\int_{0}^{t} e^{a s} d B_{s}$ and $f(t, x)=t x$. Noticing that

$$
f_{t}^{\prime}(t, x)=x, \quad f_{x}^{\prime}(t, x)=t \quad \text { and } \quad f_{x x}^{\prime \prime}(t, x)=0
$$

we obtain

$$
\begin{aligned}
X_{t} & =f\left(V_{t}, M_{t}\right)=0+\int_{0}^{t} M_{s}\left(-a e^{-a s}\right) d s+\int_{0}^{t} V_{s} e^{-a s} d B_{s}+0 \\
& =-a \int_{0}^{t} M_{s} V_{s} d s+\int_{0}^{t} 1 d B_{s}=-a \int_{0}^{t} X_{s} d s+B_{t}
\end{aligned}
$$

3. a) By the optional stopping theorem, we know that $\mathbb{E}\left(B_{T}\right)=\mathbb{E}\left(B_{0}\right)=0$, so

$$
0=\mathbb{E}\left(B_{T}\right)=b p_{b}+c p_{c}=b p_{b}+c\left(1-p_{b}\right) \quad \text { and } \quad p_{b}=\frac{c}{c-b} .
$$

Notice that $\left.p_{b} \in\right] 0,1\left[\right.$, since $b<0$ and $c>0$. Numerical example: $p_{b}=\frac{1}{3}$.
b) Let us first check the hint: $f\left(X_{t}\right)=g\left(V_{t}, M_{t}\right)$, where $g(t, x)=f(t x)$, so

$$
g_{t}^{\prime}(t, x)=f^{\prime}(t x) x \quad g_{x}^{\prime}(t, x)=f^{\prime}(t x) t \quad \text { and } \quad g_{x x}^{\prime \prime}(t, x)=f^{\prime \prime}(t x) t^{2}
$$

Therefore,

$$
\begin{aligned}
f\left(X_{t}\right)-f\left(X_{0}\right) & =g\left(V_{t}, M_{t}\right)-g\left(V_{0}, M_{0}\right) \\
& =\int_{0}^{t} f^{\prime}\left(V_{s} M_{s}\right) M_{s}\left(-a e^{-a s}\right) d s+\int_{0}^{t} f^{\prime}\left(V_{s} M_{s}\right) V_{s} e^{a s} d B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(V_{s} M_{s}\right) V_{s}^{2} d s \\
& =\int_{0}^{t}\left(-a X_{s} f^{\prime}\left(X_{s}\right)+\frac{1}{2} f^{\prime \prime}\left(X_{s}\right)\right) d s+\int_{0}^{t} f^{\prime}\left(X_{s}\right) d B_{s}=\int_{0}^{t} f^{\prime}\left(X_{s}\right) d B_{s},
\end{aligned}
$$

since f satisfies the equation of the problem set, by assumption. The process $\left(f\left(X_{t}\right)\right)$ is therefore a martingale, so

$$
f(0)=\mathbb{E}\left(f\left(X_{T}\right)\right)=f(b) p_{b}+f(c) p_{c}=f(b) p_{b}+f(c)\left(1-p_{b}\right), \quad \text { so } \quad p_{b}=\frac{f(c)-f(0)}{f(c)-f(b)} .
$$

Let us now compute the function $f ; u(x)=f^{\prime}(x)$ satisfies the equation:

$$
-a x u(x)+\frac{1}{2} u^{\prime}(x)=0, \quad u(0)=1 .
$$

Therefore, $\frac{u^{\prime}(x)}{u(x)}=2 a x, \log (u(x))=a x^{2}+C, u(x)=\exp \left(a x^{2}+C\right)$ and $C=0$, since $u(0)=1$. Finally, we obtain

$$
f(x)=\int_{0}^{x} u(y) d y+D=\int_{0}^{x} \exp \left(a y^{2}\right) d y+D, \quad \text { and } D=0 \text { since } f(0)=0 .
$$

Numerical example: by a simple drawing, we see that $p_{b}<\frac{1}{3}$ if $a>0$ and $p_{b}>\frac{1}{3}$ if $a<0$.

