Solutions 11

1. a) We have

$$
\begin{aligned}
\operatorname{Var}(X+Y)-\operatorname{Var}(X-Y) & =\mathbb{E}\left((X+Y)^{2}\right)-\mathbb{E}\left((X-Y)^{2}\right)-(\mathbb{E}(X+Y))^{2}+(\mathbb{E}(X-Y))^{2} \\
& =4 \mathbb{E}(X Y)-4 \mathbb{E}(X) \mathbb{E}(Y)=4 \operatorname{Cov}(X, Y) .
\end{aligned}
$$

b) Using the fact that $X_{t} Y_{t}=\frac{1}{4}\left(\left(X_{t}+Y_{t}\right)^{2}-\left(X_{t}-Y_{t}\right)^{2}\right)$, we obtain that

$$
X_{t} Y_{t}-\langle X, Y\rangle_{t}=\frac{1}{4}\left(\left(\left(X_{t}+Y_{t}\right)^{2}-\langle X+Y\rangle_{t}\right)-\left(\left(X_{t}-Y_{t}\right)^{2}-\langle X-Y\rangle_{t}\right)\right),
$$

The process $\left(X_{t} Y_{t}-\langle X, Y\rangle_{t}\right)$ is therefore the difference of two martingales (by definition of the processes $\left(\langle X+Y\rangle_{t}\right)$ and $\left.\left(\langle X-Y\rangle_{t}\right)\right)$; it is therfore also a martingale.
c) From the alternate definition, we observe that the process $\left(\langle X, Y\rangle_{t}\right)$ is the difference of two increasing processes. It is therefore a process with bounded variation.
2. a) The function f is continuous on $[0, T]$, deterministic (therefore adapted) and $\int_{0}^{T} f(s)^{2} d s<\infty$ (as f is continuous), so the process $\left(f^{(n)} \cdot B\right)$ is well defined. Moreover,

$$
\mathbb{E}\left(\left(f^{(n)} \cdot B\right)_{t}^{2}\right)=\mathbb{E}\left(\int_{0}^{t}\left(f^{(n)}(s)\right)^{2} d s\right)=\int_{0}^{t}\left(f^{(n)}(s)\right)^{2} d s .
$$

b) For all $t \in[0, T],\left(f^{(n)} \cdot B\right)_{t}$ is a linear combination of independent Gaussian random variables; it is therefore also a Gaussian random variable. The same is true for any linear combination $c_{1}\left(f^{(n)} \cdot B\right)_{t_{1}}+\ldots+c_{m}\left(f^{(n)} \cdot B\right)_{t_{m}}$. The process $\left(\left(f^{(n)} \cdot B\right)_{t}, t \in[0, T]\right)$ is therefore a Gaussian process. Moreover,
$\mathbb{E}\left(\left(f^{(n)} \cdot B\right)_{t}\right)=0 \quad$ and $\quad \operatorname{Cov}\left(\left(f^{(n)} \cdot B\right)_{t},\left(f^{(n)} \cdot B\right)_{s}\right)=\mathbb{E}\left(\left(f^{(n)} \cdot B\right)_{t}\left(f^{(n)} \cdot B\right)_{s}\right)=\int_{0}^{t \wedge s}\left(f^{(n)}(r)\right)^{2} d r$
c) Since $\left(f^{(n)} \cdot B\right)$ is a martingale, we know by Exercise 3.a) in Homework 9, that it has orthogonal increments. Since $\left(f^{(n)} \cdot B\right)$ is moreover a Gaussian process, we deduce that the increments are not only orthogonal, but also independent.
3. Remark simply that

$$
\begin{aligned}
& \sum_{i=1}^{2^{n}}\left((1-\varepsilon) H_{t_{i-1}}+\varepsilon H_{t_{i}}\right)\left(B_{t_{i}}-B_{t_{i-1}}\right) \\
& \quad=\sum_{i=1}^{2^{n}} H_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right)+\varepsilon \sum_{i=1}^{n}\left(H_{t_{i}}-H_{t_{i-1}}\right)\left(B_{t_{i}}-B_{t_{i-1}}\right)
\end{aligned}
$$

