Solutions 10

1. We have $\lim _{n \rightarrow \infty} \sum_{i=1}^{2^{n}}\left(B\left(\frac{i t}{2^{n}}\right)-B\left(\frac{(i-1) t}{2^{n}}\right)\right)^{4}$

$$
\leq\left(\lim _{n \rightarrow \infty} \sup _{1 \leq i \leq 2^{n}}\left(B\left(\frac{i t}{2^{n}}\right)-B\left(\frac{(i-1) t}{2^{n}}\right)\right)^{2}\right) \cdot\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{2^{n}}\left(B\left(\frac{i t}{2^{n}}\right)-B\left(\frac{(i-1) t}{2^{n}}\right)\right)^{2}\right) .
$$

The first term of the above product converges to zero a.s., since $\left(B_{t}\right)$ is continuous and therefore uniformly continuous on $[0, t]$. The second term converges to the quadratic variation of $\left(B_{t}\right)$ in $[0, t]$, which is a.s. finite, since it is equal to t a.s. Therefore, the product converges to zero a.s.
2. We show that $\left(M_{t}^{2}-\mathbb{E}\left(M_{t}^{2}\right)\right)$ is a martingale. Indeed, let $t>s \geq 0$:

$$
\begin{aligned}
\mathbb{E}\left(M_{t}^{2}-M_{s}^{2} \mid \mathcal{F}_{s}\right) & =\mathbb{E}\left(\left(M_{t}-M_{s}\right)^{2}+2\left(M_{t}-M_{s}\right) M_{s} \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(\left(M_{t}-M_{s}\right)^{2}\right) \\
& =\mathbb{E}\left(M_{t}^{2}\right)-\mathbb{E}\left(M_{s}^{2}\right)-2 \mathbb{E}\left(\left(M_{t}-M_{s}\right) M_{s}\right)=\mathbb{E}\left(M_{t}^{2}\right)-\mathbb{E}\left(M_{s}^{2}\right) .
\end{aligned}
$$

3. a) We know that $M_{t}-M_{s} \geq 0$ a.s., for all $t>s \geq 0$, and we also know that

$$
\mathbb{E}\left(M_{t}-M_{s}\right)=\mathbb{E}\left(\mathbb{E}\left(M_{t}-M_{s} \mid \mathcal{F}_{s}\right)\right)=\mathbb{E}\left(\mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right)-M_{s}\right)=\mathbb{E}\left(M_{s}-M_{s}\right)=0,
$$

so $M_{t}=M_{s}$ a.s. for all $t>s \geq 0$, i.e. $M_{t}=M_{0}$ a.s. for all $t \in \mathbb{R}_{+}$.
b) Let us compute, for $t>s$,

$$
\begin{aligned}
\mathbb{E}\left(\left(M_{t}-M_{s}\right)^{2}\right) & =\mathbb{E}\left(M_{t}^{2}-2 M_{t} M_{s}+M_{s}^{2}\right)=\mathbb{E}\left(\mathbb{E}\left(M_{t}^{2}-2 M_{t} M_{s}+M_{s}^{2} \mid \mathcal{F}_{s}\right)\right) \\
& =\mathbb{E}\left(\mathbb{E}\left(M_{t}^{2} \mid \mathcal{F}_{s}\right)-2 \mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right) M_{s}+M_{s}^{2}\right)=\mathbb{E}\left(M_{s}^{2}-2 M_{s}^{2}+M_{s}^{2}\right)=0 .
\end{aligned}
$$

where we have used the assumption that $\mathbb{E}\left(M_{t}^{2} \mid \mathcal{F}_{s}\right)=M_{s}^{2}$. Therefore, $M_{t}=M_{s}=M_{0}$ a.s. for all $t>s \geq 0$.

