Solutions 1

1. a) $\mathcal{F}=\{\emptyset,\{2\},\{5\},\{1,3\},\{2,5\},\{4,6\},\{1,2,3\},\{1,3,5\},\{2,4,6\},\{4,5,6\}$, $\{1,2,3,5\},\{1,3,4,6\},\{2,4,5,6\},\{1,2,3,4,6\},\{1,3,4,5,6\},\{1,2,3,4,5,6\}\}\left(16=2^{4}\right.$ elements $)$ b) atoms of $\mathcal{F}:\{1,3\},\{2\},\{4,6\},\{5\}$. Notice that one also has $\mathcal{F}=\sigma(\{1,3\},\{2\},\{4,6\},\{5\})$, as already mentioned in the problem set.
2. The set Ω (representing the set of possible values of weights for the object) is $] 0,100]$. We describe below the σ-fields $\mathcal{F}_{A}, \mathcal{F}_{B}$ et \mathcal{F}_{C} using their respective atoms:

$$
\begin{aligned}
\mathcal{F}_{A} & =\sigma([0,20],] 20,40],] 40,50],] 50,60],] 60,70],] 70,80],] 80,90],] 90,100]) \\
\mathcal{F}_{B} & =\sigma([0,20],] 20,40],] 40,60],] 60,80],] 80,100]) \\
\mathcal{F}_{C} & =\sigma(] 0,10],] 10,20],] 20,30],] 30,40],] 40,50],] 50,60],] 60,70],] 70,80],] 80,90],] 90,100])
\end{aligned}
$$

We therefore have $\mathcal{F}_{B} \subset \mathcal{F}_{A} \subset \mathcal{F}_{C}$, that is, B has the least information on the weight, and C has the most. Only A and C are able to tell whether the weight is between 40 and 50 g .

Remark: $] 0,10] \subset] 0,20]$, but notice that $\mathcal{F}_{B} \subset \mathcal{F}_{C}$!
3. a) $\Omega=\emptyset^{c}$.
b) use de Morgan's formula: $\left(\cap_{n=1}^{\infty} A_{n}\right)^{c}=\left(\cup_{n=1}^{\infty} A_{n}^{c}\right)$.
c) $B \backslash A=B \cap A^{c}$.
4. atoms of $\mathcal{F}:\left[-1,-\frac{3}{4}\left[\cup\left[\frac{3}{4}, 1\left[,\left[-\frac{3}{4},-\frac{1}{2}\left[,\left[\frac{1}{2},-\frac{3}{4}\left[,\left[-\frac{1}{2},-\frac{1}{4}\left[\cup\left[\frac{1}{4}, \frac{1}{2}\left[,\left[-\frac{1}{4}, 0\left[,\left[0, \frac{1}{4}[\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$.

