Quiz

1. Let $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, with $0<\sigma<1 / \sqrt{2}$.
a) Compute $\mathbb{E}(\exp (X))$ and $\mathbb{E}\left(\exp \left(X^{2}\right)\right)$.

Let X_{1}, X_{2} be independent and such that $X_{1} \sim \mathcal{N}\left(0, \sigma_{1}^{2}\right), X_{2} \sim \mathcal{N}\left(0, \sigma_{2}^{2}\right)$, with $0<\sigma_{1}, \sigma_{2}<1 / \sqrt{2}$.
b) What is the value of $\mathbb{E}\left(\exp \left(X_{1} X_{2}\right)\right)$?

$$
\begin{array}{llll}
\text { b1) } & \exp \left(\sigma_{1}^{2} \sigma_{2}^{2} / 2\right) & b 2) & \exp \left(\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) / 2\right) \\
\text { b3) } & \frac{1}{\sqrt{1-\sigma_{1}^{2} \sigma_{2}^{2}}} & \text { b4) } & \frac{1}{\sqrt{1-\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}}
\end{array}
$$

c) Consider now $\sigma_{1}=\sigma_{2}=\sigma$. Which of the following is the largest: $\mathbb{E}\left(\exp \left(X^{2}\right)\right)$ or $\mathbb{E}\left(\exp \left(X_{1} X_{2}\right)\right)$?
2. Let M be a process such that $M_{t}>0$ for all $t \in \mathbb{R}_{+}$and let A be a deterministic increasing process such that $A_{0}=0$. Let also $X_{t}=1 / M_{t}, Y_{t}=M_{t}+A_{t}$ and $Z_{t}=M_{t} A_{t}$. What can you say on the processes X, Y and Z if
a) M is a martingale?
b) M is a submartingale?
c) M is a supermartingale?
3. Let B be a standard Brownian motion and let

$$
\tau=\inf \left\{t>0: B_{t} \geq 1\right\} .
$$

a) Does there exist a constant $K>0$ such that $\tau \leq K$ a.s.? Is $\mathbb{P}(\tau<\infty)=1$?
b) Is it true that $\mathbb{E}\left(B_{\tau}\right)=\mathbb{E}\left(B_{0}\right)$?
c) Among the following inequalities, which are true?

$$
\begin{array}{llll}
c 1) & \mathbb{P}(\tau \geq t) \geq \mathbb{P}\left(B_{t} \geq 1\right) & c 2) & \mathbb{P}(\tau \geq t) \geq \mathbb{P}\left(B_{t} \leq 1\right) \\
c 3) & \mathbb{P}(\tau \geq t) \leq \mathbb{P}\left(B_{t} \geq 1\right) & c 4) & \mathbb{P}(\tau \geq t) \leq \mathbb{P}\left(B_{t} \leq 1\right) \\
c 5) & \mathbb{P}(\tau \leq t) \geq \mathbb{P}\left(B_{t} \geq 1\right) & c 6) & \mathbb{P}(\tau \leq t) \geq \mathbb{P}\left(B_{t} \leq 1\right) \\
c 7) & \mathbb{P}(\tau \leq t) \leq \mathbb{P}\left(B_{t} \geq 1\right) & c 8) & \mathbb{P}(\tau \leq t) \leq \mathbb{P}\left(B_{t} \leq 1\right)
\end{array}
$$

Let now

$$
\tau^{\prime}=\inf \left\{t>0: B_{t}^{2} \geq 1\right\}
$$

d) Does there exist a constant $K>0$ such that $\tau^{\prime} \leq K$ a.s.? Is $\mathbb{P}\left(\tau^{\prime}<\infty\right)=1$?
e) Is it true that $\mathbb{E}\left(B_{\tau^{\prime}}\right)=\mathbb{E}\left(B_{0}\right)$?

Let finally X be the process defined as $X_{t}=\exp \left(B_{t}-t / 2\right)$ and let

$$
\tau^{\prime \prime}=\inf \left\{t>0: X_{t} \geq 2\right\}
$$

$\left.\mathrm{f}^{*}\right)$ Does there exist a constant $K>0$ such that $\tau^{\prime \prime} \leq K$ a.s.? Is $\mathbb{P}\left(\tau^{\prime \prime}<\infty\right)=1$?
$\left.\mathrm{g}^{*}\right)$ Is it true that $\mathbb{E}\left(X_{\tau^{\prime \prime}}\right)=\mathbb{E}\left(X_{0}\right)$?
$\left.h^{*}\right)$ Compute $\mathbb{P}\left(\tau^{\prime \prime}<\infty\right)$. please turn the page.
4. Let B be a standard Brownian motion and let

$$
X_{t}=\int_{0}^{t} \sqrt{2 s} d B_{s}, \quad Y_{t}=\int_{0}^{t} X_{s} d B_{s}, \quad Z_{t}=\int_{0}^{t} s d B_{s}
$$

a) Which of the processes X, Y, Z are martingales?
b) Which of the processes X, Y, Z are Gaussian?
c) Compute $\mathbb{E}\left(X_{t}^{2}\right), \mathbb{E}\left(Y_{t}^{2}\right)$ and $\mathbb{E}\left(Z_{t}^{2}\right)$.
d) Is the process $\left(Y_{t}^{2}-\mathbb{E}\left(Y_{t}^{2}\right), t \in \mathbb{R}_{+}\right)$a martingale?
e) Is the process $\left(Z_{t}^{2}-\mathbb{E}\left(Z_{t}^{2}\right), t \in \mathbb{R}_{+}\right)$a martingale?
f) Is the process $\left(Y_{t}^{2}-Z_{t}^{2}, t \in \mathbb{R}_{+}\right)$a martingale?
5. Let $\left(B^{(1)}, B^{(2)}\right)$ be a standard two-dimensional Brownian motion. For which of the following twodimensional processes $\left(X^{(1)}, X^{(2)}\right)$ does there exist a probability measure under which $\left(X^{(1)}, X^{(2)}\right)$ is a two-dimensional martingale?
a) $d X_{t}^{(1)}=X_{t}^{(1)}\left(d B_{t}^{(1)}+d B_{t}^{(2)}\right), \quad d X_{t}^{(2)}=X_{t}^{(2)} d B_{t}^{(2)}$.
b) $d X_{t}^{(1)}=X_{t}^{(1)}\left(d B_{t}^{(1)}+d B_{t}^{(2)}\right), \quad d X_{t}^{(2)}=X_{t}^{(2)}\left(d B_{t}^{(1)}+d B_{t}^{(2)}\right)$.
c) $d X_{t}^{(1)}=X_{t}^{(1)} d B_{t}^{(1)}, \quad d X_{t}^{(2)}=X_{t}^{(2)} d B_{t}^{(1)}$.
d) $d X_{t}^{(1)}=X_{t}^{(1)} d B_{t}^{(2)}, \quad d X_{t}^{(2)}=X_{t}^{(2)} d B_{t}^{(1)}$.
6. Let B be a standard Brownian motion and M be the strong solution of the SDE

$$
d M_{t}=\exp \left(M_{t}\right) d B_{t}, \quad M_{0}=0
$$

Fact. Such a process exists up to a (possibly random and finite) explosion time τ.
a) For $n \geq 1$, let $\tau_{n}=\inf \left\{t>0:\left|M_{t}\right| \geq n\right\}$. What can you say on the process $\left(M_{t \wedge \tau_{n}}, t \in \mathbb{R}_{+}\right)$?
b) Compute the SDE satisfied by the process $X_{t}=\exp \left(M_{t}\right)$.
7. Let B be a standard Brownian motion. Among the following functions f, which are such that the process $f\left(t, B_{t}\right)$ is a (local) martingale?
a) $f(t, x)=x^{2}-t$
b) $f(t, x)=x-t / 2$
c) $f(t, x)=x^{2} / t$
d) $f(t, x)=x^{3}-3 t x$
e) $f(t, x)=x^{4}-6 t x^{2}+3 t^{2}$
f) $f(t, x)=x^{4}-4 t^{2} x^{2}+t^{4}$
g) $f(t, x)=\exp \left(x^{2}-t\right)$
h) $f(t, x)=\exp (x-t / 2)$
8. Who is going to win Roland-Garros' final?

Answers session on Monday, June 8, at 2:00 PM, in room INR 113.

Exam on Wednesday, June 17, at 2:00 PM, in room INM 200.
Authorized material: 4 handwritten one-sided A4 pages.
Exam duration: 4 hours.

