Homework 9

Exercise 1. Let us consider the two-dimensional Black-Scholes equation

$$
\begin{cases}d X_{t}^{(1)}=X_{t}^{(1)}\left(\mu_{1} d t+\sigma_{11} d B_{t}^{(1)}+\sigma_{12} d B_{t}^{(2)}\right), & X_{0}^{(1)}=x_{0}^{(1)} \\ d X_{t}^{(2)}=X_{t}^{(2)}\left(\mu_{2} d t+\sigma_{21} d B_{t}^{(1)}+\sigma_{22} d B_{t}^{(2)}\right), & X_{0}^{(2)}=x_{0}^{(2)}\end{cases}
$$

where $x_{0}^{(1)}, x_{0}^{(2)}>0, \underline{\mathrm{~B}}=\left(B^{(1)}, B^{(2)}\right)$ is a standard two-dimensional Brownian motion, $\mu_{1}, \mu_{2} \in \mathbb{R}$ and $\sigma_{11}, \sigma_{12}, \sigma_{21}, \sigma_{22}>0$.
a) Give a necessary and sufficient condition on $\sigma_{11}, \sigma_{12}, \sigma_{21}, \sigma_{22}$ so that the diffusion $\underline{X}=\left(X^{(1)}, X^{(2)}\right)$ is non-degenerate on the set $D=\left\{\underline{\mathrm{x}} \in \mathbb{R}^{2}: x_{1} \neq 0\right.$ and $\left.x_{2} \neq 0\right\}$.
b) When this condition is satisfied, compute the martingale M which serves as a basis for the definition of the probability measure $\widetilde{\mathbb{P}}_{T}$ under which the processes $X^{(1)}, X^{(2)}$ are martingales (up to time T).

Exercise 2. (Poisson's equation)
Let D be an open and bounded domain in \mathbb{R}^{n} and ∂D be its (smooth) boundary. We assume that the following result is known: given $g \in C(D)$, there exists a unique $u \in C^{2}(D)$ satisfying

$$
\begin{cases}\frac{1}{2} \Delta u(\underline{\mathrm{x}})=-g(\underline{\mathrm{x}}), & \underline{\mathrm{x}} \in D, \\ u(\underline{\mathrm{x}})=0, & \underline{\mathrm{x}} \in \partial D .\end{cases}
$$

Let now ($\underline{\mathrm{B}}_{t}^{\mathrm{X}}, t \in \mathbb{R}_{+}$) be an n-dimensional Brownian motion starting at point $\underline{\mathrm{x}} \in D$ at time $t=0$ and let

$$
\tau=\inf \left\{t>0: \underline{\mathrm{B}}_{t}^{\mathrm{X}} \notin D\right\}
$$

be the first exit time of $\underline{\mathrm{B}}^{\underline{\mathrm{X}}}$ from D (notice that τ depends on the starting point $\underline{\mathrm{x}}$).
a) Show that

$$
u(\underline{\mathrm{x}})=\mathbb{E}\left(\int_{0}^{\tau} g(\underline{(\underline{\mathrm{X}}}) d s\right), \quad \underline{\mathrm{x}} \in D .
$$

b) Let now $D=B(0,1)$ be the unit ball in \mathbb{R}^{n} and let us define

$$
u(\underline{\mathrm{x}})=\frac{1-\|\underline{\mathrm{x}}\|^{2}}{n} .
$$

Obviously, $u(\underline{\mathrm{x}})=0$ on $\partial D=\left\{\underline{\mathrm{x}} \in \mathbb{R}^{n}:\|\underline{\mathrm{x}}\|=1\right\}$. Find the function g such that u satisfies the above PDE.
c) Application: deduce the value of $\mathbb{E}(\tau)$ as a function of \underline{x}.
d) In the special case where $\underline{x}=0$, how does this value behave as the dimension n increases?
e) Can you find an intuitive explanation for this last observation?

