Homework 6

Exercise 1. (the "true" Feynman-Kac formula)
In this exercise, we are looking for a probabilistic representation of the solution of the following PDE:

$$
\begin{cases}u_{t}^{\prime}(t, x)+\frac{1}{2} u_{x x}^{\prime \prime}(t, x)+c(t, x) u(t, x)=0, & (t, x) \in[0, T] \times \mathbb{R} \\ u(T, x)=h(x), & x \in \mathbb{R},\end{cases}
$$

where $T>0, h \in C(\mathbb{R})$ and $c:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function.
a) Let u be the solution of the above equation and $\left(B_{t}^{t_{0}, x_{0}}, t \geq t_{0}\right)$ be a Brownian motion starting from $x_{0} \in \mathbb{R}$ at time $t_{0} \in[0, T[$. We define the processes

$$
C_{t}=\exp \left(\int_{t_{0}}^{t} c\left(s, B_{s}^{t_{0}, x_{0}}\right) d s\right) \quad \text { and } \quad M_{t}=C_{t} u\left(t, B_{t}^{t_{0}, x_{0}}\right), \quad \text { for } t \in\left[t_{0}, T\right] .
$$

Using successively the integration by parts and Ito-Doeblin's formulas, show that the process ($M_{t}, t \in\left[t_{0}, T\right]$) is a martingale.
b) Deduce an expression for $u\left(t_{0}, x_{0}\right)$.

Exercise 2. Let us consider the following PDE:

$$
\begin{cases}u_{t}^{\prime}(t, x)=-a x u_{x}^{\prime}(t, x)+\frac{1}{2} u_{x x}^{\prime \prime}(t, x), & (t, x) \in \mathbb{R}_{+} \times \mathbb{R} \\ u(0, x)=u_{0}(x), & x \in \mathbb{R}\end{cases}
$$

where $u_{0} \in C(\mathbb{R})$.
a) For a given $T>0$ and $x \in \mathbb{R}$, find the process $\left(X_{t}^{x}, t \in[0, T]\right)$ associated to the above equation and deduce a probabilistic representation for the solution $u(T, x)$ of the equation.
b) Given what you already know on the distribution of the process X^{x}, deduce an expression as explicit as possible for $u(T, x)$. Consider the particular case

$$
u_{0}(y)=\max (y, 0)
$$

Exercise 3. Let us consider the following PDE:

$$
\begin{cases}u_{t}^{\prime}(t, x)=-\frac{x}{t} u_{x}^{\prime}(t, x)+\frac{1}{2} u_{x x}^{\prime \prime}(t, x), & (t, x) \in \mathbb{R}_{+} \times \mathbb{R}, \\ u(0, x)=u_{0}(x), & x \in \mathbb{R},\end{cases}
$$

where $u_{0} \in C(\mathbb{R})$.
a) For a given $T>0$ and $x \in \mathbb{R}$, find the process $\left(X_{t}^{x}, t \in[0, T]\right)$ associated to the above equation and deduce a probabilistic representation for the solution $u(T, x)$ of the equation.
b) What's wrong here?

