Homework 4

Exercise 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X, Z be two random variables defined on this probability space, where Z is a $\mathcal{N}(0,1)$ random variable, independent of X.
a) Let $Y=\exp \left(-X Z-X^{2} / 2\right)$. Compute $\mathbb{E}(Y \mid X)$.
b) Let $\widetilde{\mathbb{P}}$ be a new probability measure on (Ω, \mathcal{F}) defined as

$$
\widetilde{\mathbb{P}}(A)=\mathbb{E}\left(1_{A} Y\right), \quad A \in \mathcal{F}
$$

Check that $\widetilde{\mathbb{P}}(\Omega)=1$ (the other properties of a probability measure can be checked similarly).
c) The expectation with respect to $\widetilde{\mathbb{P}}$ of a random variable U such that $\mathbb{E}(|U Y|)<\infty$ is given by $\widetilde{\mathbb{E}}(U)=\mathbb{E}(U Y)$. Show that for any continuous bounded function $g: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\widetilde{\mathbb{E}}(g(X+Z))=\int_{\mathbb{R}} d y g(y) \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2},
$$

which shows that under the probability measure $\widetilde{\mathbb{P}}$, the random variable $X+Z$ is a $\mathcal{N}(0,1)$ random variable.

Exercise 2. (A Brownian motion writes your name in finite time with positive probability!)
One can show (but this is not required here) the following reasonable statement: if ($B_{t}, t \in \mathbb{R}_{+}$) is a standard Brownian motion, then for any fixed $T>0$ and $\varepsilon>0$,

$$
\mathbb{P}\left(\sup _{0 \leq t \leq T}\left|B_{t}\right| \leq \varepsilon\right)>0 .
$$

What is more surprising is the following statement, which you are asked to prove (using the previous one). Let $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a deterministic and continuously differentiable function such that $g(0)=0$. Then for any $T>0$ and $\varepsilon>0$,

$$
\mathbb{P}\left(\sup _{0 \leq t \leq T}\left|B_{t}-g(t)\right| \leq \varepsilon\right)>0 .
$$

Remarks: - This property remains true for a Brownian motion in two dimensions (which we haven't seen yet). If you therefore think of the function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}^{2}$ as the one writing your name, you reach the conclusion mentioned at the beginning of this exercise.

- One can even show that the above probability can be made equal to one, provided one can choose the scale at which one observes the Brownian motion!

Exercise 3. Let $\left(X_{t}, t \in[0,1]\right)$ be the Brownian bridge considered in Homework 3, Exercise 2. Following what has been done in class, let $\left(M_{t}, t \in[0,1]\right)$ be the martingale used to define a new probability measure $\widetilde{\mathbb{P}}_{1}$ under which X should be a martingale. Show nevertheless that there does not exist a contant $K>0$ such that

$$
\langle M\rangle_{t} \leq K t, \quad \forall t \in[0,1] .
$$

This is an indication (not a proof) that it is actually impossible in this case to find a probability measure under which X is a martingale. Do you see another reason for this?

