Homework 3

Exercise 1. (Black-Scholes equation)

Let $\mu \in \mathbb{R}$, $\sigma > 0$ be fixed and $(B_t, t \in \mathbb{R}_+)$ be a standard Brownian motion. One considers the following stochastic differential equation (SDE):

$$dX_t = \mu X_t dt + \sigma X_t dB_t, \quad t > 0, \qquad X_0 = x_0 > 0.$$

Find the solution $(X_t, t \in \mathbb{R}_+)$ of this equation.

Hint: Set first $X_t = \Phi_t Z_t$, where Φ_t is solution of $d\Phi_t = \mu \Phi_t dt$, $\Phi_0 = 1$; compute then the SDE satisfied by (Z_t) , using the integration by parts formula. Set next $Y_t = \log(Z_t)$ and search for the SDE satisfied by (Y_t) , using Ito-Doeblin's formula (and without worrying about the fact that $\log(x)$ is not defined for $x \leq 0$: we are looking for a solution here, whatever it takes; formal verifications come after).

Exercise 2. (Brownian bridge)

Let $(B_t, t \in \mathbb{R}_+)$ be a standard Brownian motion. One considers the following linear SDE:

$$dX_t = -\frac{X_t}{1-t} dt + dB_t, \quad 0 < t < 1, \qquad X_0 = 0.$$

a) Find the solution $(X_t, t \in [0, 1])$ of this equation. Notice that $X_1 = 0$.

b) Since the above equation is linear, (X_t) is a Gaussian process. Compute its mean and covariance.

Exercise 3. (Brownian motion on the circle) Let $(B_t, t \in \mathbb{R}_+)$ be a standard Brownian motion. Consider the following two-dimensional SDE:

$$\begin{cases} dX_t = -\frac{1}{2} X_t dt - Y_t dB_t, \quad t > 0, \qquad X_0 = 1, \\ dY_t = -\frac{1}{2} Y_t dt + X_t dB_t, \quad t > 0, \qquad Y_0 = 0. \end{cases}$$

a) Using (the generalized version of) Ito-Doeblin's formula, show that $X_t^2 + Y_t^2 = 1$ for all $t \in \mathbb{R}_+$. b) Let

$$Z_t = \int_0^t X_s \, dY_s - \int_0^t Y_s \, dX_s, \quad t \in \mathbb{R}_+.$$

Compute Z_t .

c) By a), there exists a process $(\Theta_t, t \in \mathbb{R}_+)$ such that $X_t = \cos(\Theta_t)$ and $Y_t = \sin(\Theta_t)$. Using again Ito-Doeblin's formula, express (Z_t) in terms of (Θ_t) . What can you deduce on the process (Θ_t) ?