Homework 3

Exercise 1. (Black-Scholes equation)
Let $\mu \in \mathbb{R}, \sigma>0$ be fixed and ($B_{t}, t \in \mathbb{R}_{+}$) be a standard Brownian motion. One considers the following stochastic differential equation (SDE):

$$
d X_{t}=\mu X_{t} d t+\sigma X_{t} d B_{t}, \quad t>0, \quad X_{0}=x_{0}>0 .
$$

Find the solution ($X_{t}, t \in \mathbb{R}_{+}$) of this equation.
Hint: Set first $X_{t}=\Phi_{t} Z_{t}$, where Φ_{t} is solution of $d \Phi_{t}=\mu \Phi_{t} d t, \Phi_{0}=1$; compute then the SDE satisfied by $\left(Z_{t}\right)$, using the integration by parts formula. Set next $Y_{t}=\log \left(Z_{t}\right)$ and search for the SDE satisfied by $\left(Y_{t}\right)$, using Ito-Doeblin's formula (and without worrying about the fact that $\log (x)$ is not defined for $x \leq 0$: we are looking for a solution here, whatever it takes; formal verifications come after).

Exercise 2. (Brownian bridge)
Let ($B_{t}, t \in \mathbb{R}_{+}$) be a standard Brownian motion. One considers the following linear SDE:

$$
d X_{t}=-\frac{X_{t}}{1-t} d t+d B_{t}, \quad 0<t<1, \quad X_{0}=0
$$

a) Find the solution $\left(X_{t}, t \in[0,1]\right)$ of this equation. Notice that $X_{1}=0$.
b) Since the above equation is linear, $\left(X_{t}\right)$ is a Gaussian process. Compute its mean and covariance.

Exercise 3. (Brownian motion on the circle)
Let ($B_{t}, t \in \mathbb{R}_{+}$) be a standard Brownian motion. Consider the following two-dimensional SDE:

$$
\left\{\begin{aligned}
d X_{t} & =-\frac{1}{2} X_{t} d t-Y_{t} d B_{t}, & t>0, & X_{0}=1 \\
d Y_{t} & =-\frac{1}{2} Y_{t} d t+X_{t} d B_{t}, & t>0, & Y_{0}=0
\end{aligned}\right.
$$

a) Using (the generalized version of) Ito-Doeblin's formula, show that $X_{t}^{2}+Y_{t}^{2}=1$ for all $t \in \mathbb{R}_{+}$.
b) Let

$$
Z_{t}=\int_{0}^{t} X_{s} d Y_{s}-\int_{0}^{t} Y_{s} d X_{s}, \quad t \in \mathbb{R}_{+}
$$

Compute Z_{t}.
c) By a), there exists a process $\left(\Theta_{t}, t \in \mathbb{R}_{+}\right)$such that $X_{t}=\cos \left(\Theta_{t}\right)$ and $Y_{t}=\sin \left(\Theta_{t}\right)$. Using again Ito-Doeblin's formula, express $\left(Z_{t}\right)$ in terms of $\left(\Theta_{t}\right)$. What can you deduce on the process $\left(\Theta_{t}\right)$?

