Homework 11

Exercise 1. Let B be a standard (one-dimensional) Brownian motion and M be the martingale defined as

$$
M_{t}=\int_{0}^{t} s d B_{s}, \quad t \in \mathbb{R}_{+}
$$

a) Compute the quadratic variation of M.

For $s \in \mathbb{R}_{+}$, let us define

$$
\tau(s)=\inf \left\{t \geq 0:\langle M\rangle_{t} \geq s\right\} .
$$

b) Compute explicitly $\tau(s)$.

Let W be the process defined as

$$
W_{s}=M(\tau(s)), \quad s \in \mathbb{R}_{+} .
$$

c) Let $s_{2} \geq s_{1} \geq 0$. Compute $\mathbb{E}\left(W_{s_{2}}-W_{s_{1}}\right)$ and $\mathbb{E}\left(\left(W_{s_{2}}-W_{s_{1}}\right)^{2}\right)$.
d) Do you have an idea of what type of process W could be?

Exercise 2. Let B be a standard (one-dimensional) Brownian motion and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as $f(x)=|x|, x \in \mathbb{R}$. Applying formally Ito-Doeblin's formula to $f\left(B_{t}\right)$, neglecting the fact that f is not twice continuously differentiable at $x=0$ (not even once, actually), gives

$$
\begin{equation*}
\left|B_{t}\right|=\int_{0}^{t} \operatorname{sgn}\left(B_{s}\right) d B_{s}+0 \quad \text { a.s., } \quad \forall t \in \mathbb{R}_{+}, \tag{1}
\end{equation*}
$$

as

$$
f^{\prime}(x)=\operatorname{sgn}(x)= \begin{cases}+1, & \text { if } x>0, \\ -1, & \text { if } x<0,\end{cases}
$$

and $f^{\prime \prime}(x)=0$, for all $x \neq 0$.
a) Question: can the above formula possibly hold? Justify your answer.

Let us now define

$$
L_{t}=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \int_{0}^{t} 1_{\left\{\left|B_{s}\right|<\varepsilon\right\}} d s
$$

L_{t} can be thought of as the "time spent in $x=0$ by the Brownian motion over the period $[0, t]$ ".
b) Fact: L_{t} is typically non-zero. Is this fact surprising to you? Justify your opinion.

It turns out that L_{t} is the missing term in (1), that is, we actually have

$$
\left|B_{t}\right|=\int_{0}^{t} \operatorname{sgn}\left(B_{s}\right) d B_{s}+L_{t} \quad \text { a.s., } \quad \forall t \in \mathbb{R}_{+}
$$

c) Show that

$$
\mathbb{E}\left(\left|B_{t}\right|\right)=\mathbb{E}\left(\int_{0}^{t} \operatorname{sgn}\left(B_{s}\right) d B_{s}+L_{t}\right), \quad \forall t \in \mathbb{R}_{+} .
$$

For the computation of $\mathbb{E}\left(L_{t}\right)$, you are allowed to permute limits and integrals without asking too many questions!

