Solutions 8

1. a) Since W_{t} is a sum of stochastic integrals, it is a (continuous) martingale. Its quadratic variation is given by

$$
\langle W\rangle_{t}=\sum_{i, k=1}^{n} \int_{0}^{t} \frac{B_{s}^{(i)} B_{s}^{(k)}}{\left\|\underline{\mathrm{B}}_{s}\right\|^{2}} d\left\langle B^{(i)}, B^{(k)}\right\rangle_{s}=\sum_{i=1}^{n} \int_{0}^{t} \frac{\left(B_{s}^{(i)}\right)^{2}}{\left\|\underline{\mathrm{~B}}_{s}\right\|^{2}} d s=\int_{0}^{t} 1 d s=t
$$

Therefore, by Lévy's theorem, W_{t} is a standard Brownian motion.
b) For $\underline{x} \neq 0$, we have

$$
f_{x_{i}}^{\prime}(\underline{\mathrm{x}})=\frac{x_{i}}{\|\underline{\mathrm{x}}\|} \quad \text { and } \quad f_{x_{i}, x_{k}}^{\prime \prime}(\underline{\mathrm{x}})=\frac{\delta_{i k}}{\|\underline{\mathrm{x}}\|}-\frac{x_{i} x_{k}}{\|\underline{\mathrm{x}}\|^{3}}
$$

so $\Delta f(\underline{\mathrm{x}})=\frac{n-1}{\|\underline{\mathrm{x}}\|}$ and

$$
\left\|\underline{\mathrm{B}}_{t}\right\|=\sum_{i=1}^{n} \int_{0}^{t} \frac{B_{s}^{(i)}}{\left\|\underline{\mathrm{B}}_{s}\right\|} d B_{s}^{(i)}+\frac{1}{2} \int_{0}^{t} \frac{n-1}{\left\|\underline{\mathrm{~B}}_{s}\right\|} d s
$$

By using the result in part a), we therefore obtain that $R_{t}=\left\|\underline{\mathrm{B}}_{t}\right\|$ satisfies the equation

$$
R_{t}=W_{t}+\int_{0}^{t} \frac{n-1}{2 R_{s}} d s
$$

2. a) $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \Sigma=\binom{0}{\sigma}$ and $\underline{\mathrm{z}}_{0}=\binom{x_{0}}{0}$.
b) By the class, we know that $\Phi_{t}=\exp (t A)$, where

$$
\exp (t A)=\sum_{n=0}^{\infty} \frac{t^{n} A^{n}}{n!}
$$

As $A^{2}=-I$, we obtain that $A^{2 k}=(-1)^{k} I, A^{2 k+1}=(-1)^{k} A$ and

$$
\exp (t A)=\sum_{k=0}^{\infty}(-1)^{k} \frac{t^{2 k}}{(2 k)!} I+\sum_{k=0}^{\infty}(-1)^{k} \frac{t^{2 k+1}}{(2 k+1)!} A=\cos (t) I+\sin (t) A=\left(\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right) .
$$

c) These formulas are easily proved using trigonometric relations such as $\cos (-t)=\cos (t)$ and $\cos (t+s)=\cos (t) \cos (s)-\sin (t) \sin (s)$.
d) By the class, we know that

$$
\underline{\mathrm{Z}}_{t}=\int_{0}^{t} \Phi_{t-s} \Sigma d \underline{\mathrm{~B}}_{s}+\Phi_{t} \underline{\mathrm{Z}}_{0}
$$

Therefore,

$$
X_{t}=\sigma \int_{0}^{t} \sin (t-s) d B_{s}+\cos (t) x_{0} \quad \text { and } \quad Y_{t}=\sigma \int_{0}^{t} \cos (t-s) d B_{s}-\sin (t) x_{0}
$$

e) $\frac{d X_{t}}{d t}=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(X_{t+\varepsilon}-X_{t}\right)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{t}^{t+\varepsilon} \sin (t+\varepsilon-s) d B_{s}+Y_{t}=Y_{t}$,
as $\mathbb{E}\left(\left(\frac{1}{\varepsilon} \int_{t}^{t+\varepsilon} \sin (t+\varepsilon-s) d B_{s}\right)^{2}\right)=\frac{1}{\varepsilon^{2}} \int_{t}^{t+\varepsilon} \sin (t+\varepsilon-s)^{2} d s=\frac{1}{2 \varepsilon^{2}}(\varepsilon-\sin (2 \varepsilon) / 2)=O(\varepsilon)$.

