Solutions 5

1. a) Given the assumnptions made, we obtain that both $f(t, x)=\mu(t) x$ and $g(t, x)=\sigma(t) x$ are jointly continuous in (t, x) and also Lipshitz in x. Indeed, we have e.g. for f :

$$
|f(t, x)-f(t, y)| \leq|\mu(t)||x-y| \leq K_{1}|x-y|, \quad \forall t, x, y .
$$

By the theorem seen in class, we therefore know that there exists a unique strong solution to the SDE. Let now $Y_{t}=\log \left(X_{t}\right)$. By Ito-Doeblin's formula,

$$
d Y_{t}=\frac{1}{X_{t}} d X_{t}-\frac{1}{2} \frac{1}{X_{t}^{2}} d\langle X\rangle_{t} .
$$

As $d\langle X\rangle_{t}=\sigma(t)^{2} X_{t}^{2} d t$, we obtain that

$$
d Y_{t}=\mu(t) d t+\sigma(t) d B_{t}-\frac{1}{2} \sigma(t)^{2} d t
$$

i.e.

$$
Y_{t}=y_{0}+\int_{0}^{t}\left(\mu(s)-\frac{\sigma(s)^{2}}{2}\right) d s+\int_{0}^{t} \sigma(s) d B_{s}
$$

Therefore,

$$
X(t)=x_{0} \exp \left(\int_{0}^{t}\left(\mu(s)-\frac{\sigma(s)^{2}}{2}\right) d s+\int_{0}^{t} \sigma(s) d B_{s}\right) .
$$

b) Let $M_{t}=-\int_{0}^{t} \frac{f\left(s, X_{s}\right)}{g\left(s, X_{s}\right)} d B_{s}=-\int_{0}^{t} \frac{\mu(s)}{\sigma(s)} d B_{s}$. We check that

$$
\langle M\rangle_{t}=\int_{0}^{t} \frac{\mu(s)^{2}}{\sigma(s)^{2}} d s \leq \frac{K_{1}^{2}}{K_{2}^{2}} t
$$

The process $Y_{t}=\exp \left(M_{t}-\langle M\rangle_{t} / 2\right)$ is therefore a martingale and $\widetilde{\mathbb{P}}_{T}(A)=\mathbb{E}\left(1_{A} Y_{T}\right)$ is a probability measure. By Girsanov's theorem, we know that $\left(X_{t}, t \in[0, T]\right)$ is a martingale under $\widetilde{\mathbb{P}}_{T}$. In addition, the process defined as

$$
\widetilde{B}_{t}=B_{t}-\langle M, B\rangle_{t}=B_{t}+\int_{0}^{t} \frac{\mu(s)}{\sigma(s)} d s
$$

is a standard Brownian motion under $\widetilde{\mathbb{P}}_{T}$, and

$$
d X_{t}=\sigma(t) X_{t} d \widetilde{B}_{t}, \quad X_{0}=0
$$

so

$$
X_{t}=x_{0} \exp \left(\int_{0}^{t} \sigma(s) d \widetilde{B}_{s}-\int_{0}^{t} \frac{\sigma(s)^{2}}{2} d s\right) .
$$

For ease of notation, let us write $\sigma_{t}^{2}=\int_{0}^{t} \sigma(s)^{2} d s$. Notice also that under $\widetilde{\mathbb{P}}_{T}, \int_{0}^{t} \sigma(s) d \widetilde{B}_{s}$ ia a Gaussian random variable with zero mean and variance σ_{t}^{2}.
c) Following what has been done in class, we obtain that the premium is

$$
\begin{aligned}
c_{0} & =\widetilde{\mathbb{E}}_{T}\left(\max \left(X_{T}-K, 0\right)\right)=\widetilde{\mathbb{E}}_{T}\left(\max \left(x_{0} \exp \left(\int_{0}^{T} \sigma(s) d \widetilde{B}_{s}-\frac{\sigma_{T}^{2}}{2}\right)-K, 0\right)\right) \\
& =\int_{\mathbb{R}} d y p_{T}(y) \max \left(x_{0} \exp \left(y-\frac{\sigma_{T}^{2}}{2}\right)-K, 0\right)
\end{aligned}
$$

where

$$
p_{T}(y)=\frac{1}{\sqrt{2 \pi \sigma_{T}^{2}}} \exp \left(-\frac{y^{2}}{2 \sigma_{T}^{2}}\right) .
$$

Let us push the computation further and define $y_{0}=\log \left(K / x_{0}\right)+\sigma_{T}^{2} / 2$. We obtain that

$$
\begin{aligned}
c_{0} & =x_{0} \int_{y_{0}}^{\infty} d y \frac{1}{\sqrt{2 \pi \sigma_{T}^{2}}} \exp \left(-\frac{\left(y-\sigma_{T}^{2}\right)^{2}}{2 \sigma_{T}^{2}}\right)-K \int_{y_{0}}^{\infty} d y \frac{1}{\sqrt{2 \pi \sigma_{T}^{2}}} \exp \left(-\frac{y^{2}}{2 \sigma_{T}^{2}}\right) \\
& =x_{0}\left(1-N\left(\frac{y_{0}-\sigma_{T}^{2}}{\sigma_{T}}\right)\right)-K\left(1-N\left(\frac{y_{0}}{\sigma_{T}}\right)\right)=x_{0} N\left(d_{1}\right)-K N\left(d_{2}\right),
\end{aligned}
$$

where

$$
d_{1}=\frac{\sigma_{T}^{2}-y_{0}}{\sigma_{T}}=\frac{1}{\sigma_{T}}\left(\log \left(\frac{x_{0}}{K}\right)+\frac{\sigma_{T}^{2}}{2}\right) \quad \text { and } \quad d_{2}=-\frac{y_{0}}{\sigma_{T}}=\frac{1}{\sigma_{T}}\left(\log \left(\frac{x_{0}}{K}\right)-\frac{\sigma_{T}^{2}}{2}\right) .
$$

2. The premium C_{t} at time t must allow the seller to hedge the option with a strategy ($\phi_{s}, s \in[t, T]$) so as to recover the wealth $C_{T}=\max \left(X_{T}-K, 0\right)$ at time T. Therefore,

$$
C_{T}=C_{t}+\int_{t}^{T} \phi_{s} d X_{s}=C_{t}+G_{T}-G_{t}
$$

where

$$
G_{t}=\int_{0}^{t} \phi_{s} d X_{s}
$$

We have seen in class that under the probability measure $\widetilde{\mathbb{P}}_{T}, X$ is a martingale, and so is the process G. Therefore,

$$
\widetilde{\mathbb{E}}_{T}\left(C_{T} \mid \mathcal{F}_{t}\right)=\widetilde{\mathbb{E}}_{T}\left(C_{t} \mid \mathcal{F}_{t}\right)+\widetilde{\mathbb{E}}_{T}\left(G_{T}-G_{t} \mid \mathcal{F}_{t}\right)=C_{t}+\widetilde{\mathbb{E}}_{T}\left(G_{T} \mid \mathcal{F}_{t}\right)-G_{t}=C_{t}
$$

i.e.

$$
C_{t}=\widetilde{\mathbb{E}}_{T}\left(C_{T} \mid \mathcal{F}_{t}\right)=\widetilde{\mathbb{E}}_{T}\left(\max \left(X_{T}-K, 0\right) \mid \mathcal{F}_{t}\right)
$$

Besides, $d X_{t}=\sigma X_{t} d \widetilde{B}_{t}$, so

$$
X_{t}=x_{0} e^{\sigma \widetilde{B}_{t}-\frac{\sigma^{2} t}{2}}, \quad X_{T}=x_{0} e^{\sigma \widetilde{B}_{T}-\frac{\sigma^{2} T}{2}} \quad \text { and } \quad X_{T}=X_{t} e^{\sigma\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)-\frac{\sigma^{2}(T-t)}{2}} .
$$

Given that X_{t} is \mathcal{F}_{t}-measurable and $\widetilde{B}_{T}-\widetilde{B_{t}}$ is independent of \mathcal{F}_{t}, we obtain that

$$
C_{t}=\widetilde{\mathbb{E}}_{T}\left(\max \left(X_{T}-K, 0\right) \mid \mathcal{F}_{t}\right)=c\left(T-t, X_{t}\right),
$$

where

$$
\begin{aligned}
c(T-t, x) & =\widetilde{\mathbb{E}}_{T}\left(\max \left(x \exp \left(\sigma\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)-\frac{\sigma^{2}}{2}(T-t)\right)-K, 0\right)\right) \\
& =\int_{\mathbb{R}} d y p_{T-t}(y) \max \left(x \exp \left(\sigma y-\frac{\sigma^{2}}{2}(T-t)\right)-K, 0\right)
\end{aligned}
$$

and

$$
p_{T-t}(y)=\frac{1}{\sqrt{2 \pi(T-t)}} \exp \left(-\frac{y^{2}}{2(T-t)}\right) .
$$

Defining now $y_{0}=\frac{1}{\sigma}\left(\log (K / x)+\sigma^{2}(T-t) / 2\right)$, we obtain that

$$
\begin{aligned}
c(T-t, x)= & x \int_{y_{0}}^{\infty} d y \frac{1}{\sqrt{2 \pi(T-t)}} \exp \left(-\frac{(y-\sigma(T-t))^{2}}{2(T-t)}\right) \\
& -K \int_{y_{0}}^{\infty} d y \frac{1}{\sqrt{2 \pi(T-t)}} \exp \left(-\frac{y^{2}}{2(T-t)}\right) \\
= & x\left(1-N\left(\frac{y_{0}-\sigma(T-t)}{\sqrt{T-t}}\right)\right)-K\left(1-N\left(\frac{y_{0}}{\sqrt{T-t}}\right)\right) \\
= & x N\left(d_{1}\right)-K N\left(d_{2}\right)
\end{aligned}
$$

where

$$
d_{1}=\frac{1}{\sigma \sqrt{T-t}}\left(\log \left(\frac{x}{K}\right)+\frac{\sigma^{2}(T-t)}{2}\right) \quad \text { and } \quad d_{2}=\frac{1}{\sigma \sqrt{T-t}}\left(\log \left(\frac{x}{K}\right)-\frac{\sigma^{2}(T-t)}{2}\right) .
$$

Notice that this formula is actually the same as the formula seen in class with x_{0} replaced by x, the value of the stock at time t, and T replaced by $T-t$, the time-to-maturity. We could therefore have guessed this formula for $c(T-t, x)$ from the start. Notice also that we now have a description of the option price as a process $C_{t}=c\left(T-t, X_{t}\right)$ evolving in time.
3. Following again what has been done in class, the premium c_{0} is given by

$$
c_{0}=\widetilde{\mathbb{E}}_{T}\left(1_{X_{T}>K}\right)=\widetilde{\mathbb{P}}_{T}\left(X_{T}>K\right) .
$$

As $X_{T}=x_{0} \exp \left(\sigma \widetilde{B}_{T}-\sigma^{2} T / 2\right)$ and $\widetilde{B}_{T} \sim \mathcal{N}(0, T)$ under $\widetilde{\mathbb{P}}_{T}$, we obtain that

$$
c_{0}=\widetilde{\mathbb{P}}_{T}\left(x_{0} \exp \left(\sigma \widetilde{B}_{T}-\frac{\sigma^{2} T}{2}\right)>K\right)=\int_{y_{0}}^{\infty} d y p_{T}(y),
$$

where

$$
y_{0}=\frac{1}{\sigma}\left(\log \left(\frac{K}{x_{0}}\right)+\frac{\sigma^{2} T}{2}\right) \quad \text { and } \quad p_{T}(y)=\frac{1}{\sqrt{2 \pi T}} \exp \left(-\frac{y^{2}}{2 T}\right) .
$$

So

$$
c_{0}=1-N\left(\frac{y_{0}}{\sqrt{T}}\right)=N\left(-\frac{y_{0}}{\sqrt{T}}\right)=N\left(d_{2}\right) \quad \text { where } \quad d_{2}=\frac{1}{\sigma \sqrt{T}}\left(\log \left(\frac{x_{0}}{K}\right)-\frac{\sigma^{2} T}{2}\right) .
$$

Notice that $c_{0}=N\left(d_{2}\right)$ is a probability between 0 and 1 (which is consistent with the fact that the option payoff takes values in $\{0,1\}$). However, it is not the true probability that $X_{T}>K$ given that $X_{0}=x_{0}$; it is actually this probability under the risk-neutral measure $\widetilde{\mathbb{P}}_{T}$, as the first line shows.

