Solutions 4

1. a) Since X and Z are independent, $\mathbb{E}(Y \mid X)=\varphi(X)$, where

$$
\varphi(x)=\mathbb{E}\left(\exp \left(-x Z-x^{2} / 2\right)\right)=\exp \left(x^{2} / 2-x^{2} / 2\right)=1 .
$$

So $\mathbb{E}(Y \mid X)=1$.
b) $\widetilde{\mathbb{P}}(\Omega)=\mathbb{E}(Y)=\mathbb{E}(\mathbb{E}(Y \mid X))=\mathbb{E}(1)=1$.
c) By definition, we have
$\widetilde{\mathbb{E}}(g(X+Z))=\mathbb{E}\left(g(X+Z) \exp \left(-X Z-X^{2} / 2\right)\right)=\mathbb{E}\left(\mathbb{E}\left(g(X+Z) \exp \left(-X Z-X^{2} / 2\right) \mid X\right)\right)=\mathbb{E}(\psi(X))$,
where

$$
\begin{aligned}
\psi(x) & =\mathbb{E}\left(g(x+Z) \exp \left(-x Z-x^{2} / 2\right)\right)=\int_{\mathbb{R}} d z g(x+z) \exp \left(-x z-x^{2} / 2\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-z^{2} / 2\right) \\
& =\int_{\mathbb{R}} d z g(x+z) \frac{1}{\sqrt{2 \pi}} \exp \left(-(x+z)^{2} / 2\right)=\int_{\mathbb{R}} d y g(y) \frac{1}{\sqrt{2 \pi}} \exp \left(-y^{2} / 2\right)
\end{aligned}
$$

by the change of variable $y=x+z$. This function does not actually depend on x, so

$$
\widetilde{\mathbb{E}}(g(X+Z))=\mathbb{E}(\psi(X))=\int_{\mathbb{R}} d y g(y) \frac{1}{\sqrt{2 \pi}} \exp \left(-y^{2} / 2\right),
$$

which concludes the proof.
2. By the class, we know that if M is a martingale under \mathbb{P} such that $\langle M\rangle_{t} \leq K t$ for all $t \in[0, T]$, then $\left(\widetilde{B}_{t}:=B_{t}-\langle M, B\rangle_{t}, t \in[0, T]\right)$ is a standard Brownian motion under $\widetilde{\mathbb{P}}_{T}$, where $\widetilde{\mathbb{P}}_{T}$ is defined as

$$
\widetilde{\mathbb{P}}_{T}(A)=\mathbb{E}\left(1_{A} Y_{T}\right) \quad \text { and } \quad Y_{t}=\exp \left(M_{t}-\langle M\rangle_{t} / 2\right)
$$

If we therefore set $M_{t}=\int_{0}^{t} g^{\prime}(s) d B_{s}$, then we indeed have

$$
\langle M\rangle_{t}=\int_{0}^{t} g^{\prime}(s)^{2} d s \leq\left(\sup _{s \in[0, T]} g^{\prime}(s)^{2}\right) t=K t
$$

where $K=\sup _{s \in[0, T]} g^{\prime}(s)^{2}<\infty$ by assumption, and

$$
\langle M, B\rangle_{t}=\int_{0}^{t} g^{\prime}(s) d s=g(t)-g(0)=g(t)
$$

so that $\left(\widetilde{B}_{t}=B_{t}-g(t)\right)$ is a standard Brownian motion under $\widetilde{\mathbb{P}}_{T}$. Therefore, for all $T>0$ and $\varepsilon>0$,

$$
\mathbb{P}\left(\sup _{0 \leq t \leq T}\left|B_{t}-g(t)\right| \leq \varepsilon\right)=\mathbb{P}\left(\sup _{0 \leq t \leq T}\left|\widetilde{B}_{t}\right| \leq \varepsilon\right)>0
$$

since we know that

$$
\widetilde{\mathbb{P}}_{T}\left(\sup _{0 \leq t \leq T}\left|\widetilde{B}_{t}\right| \leq \varepsilon\right)>0
$$

and we also know that the two probability measures \mathbb{P} and $\widetilde{\mathbb{P}}_{T}$ are equivalent, which means that $\mathbb{P}(A)>0$ whenever $\widetilde{\mathbb{P}}_{T}(A)>0$, for any $A \in \mathcal{F}$.
3. Following the class, the martingale M should be

$$
M_{t}=-\int_{0}^{t}\left(-\frac{X_{s}}{1-s}\right) d B_{s}=\int_{0}^{t} \frac{X_{s}}{1-s} d B_{s}
$$

If it was the case that for some constant $K>0,\langle M\rangle_{t} \leq K t$ for all $t \in[0,1]$, then this would imply that

$$
\mathbb{E}\left(\langle M\rangle_{t}\right) \leq K t, \quad \forall t \in[0,1] .
$$

We show below that such a constant does not exist. Indeed,

$$
\mathbb{E}\left(\langle M\rangle_{t}\right)=\mathbb{E}\left(M_{t}^{2}\right)=\mathbb{E}\left(\int_{0}^{t} \frac{X_{s}^{2}}{(1-s)^{2}} d s\right)=\int_{0}^{t} \frac{\mathbb{E}\left(X_{s}^{2}\right)}{(1-s)^{2}} d s
$$

where (see Homework 3, Exercise 2)

$$
X_{s}=\int_{0}^{s} \frac{1-s}{1-r} d B_{r} \quad \text { and } \quad \mathbb{E}\left(X_{s}^{2}\right)=\int_{0}^{s} \frac{(1-s)^{2}}{(1-r)^{2}} d r=s(1-s) .
$$

So

$$
\mathbb{E}\left(\langle M\rangle_{t}\right)=\int_{0}^{t} \frac{s}{1-s} d s=t-\int_{0}^{t} \frac{1}{1-s} d s=t-\log (1-t)=t+\log \left(\frac{1}{1-t}\right) .
$$

This function tends to infinity as t gets close to 1 , so there is indeed no constant $K>0$ such that $\mathbb{E}\left(\langle M\rangle_{t}\right) \leq K t$ for all $t \in[0,1]$.
The reason why there cannot be a probability measure $\widetilde{\mathbb{P}}_{1}$ under which X is a martingale is that the value of X at $t=1$ is deterministic, i.e. $\mathbb{P}\left(X_{1}=0\right)=1$. This implies that for any equivalent probability measure $\widetilde{\mathbb{P}}_{1}$, we will also have $\widetilde{\mathbb{P}}_{1}\left(X_{1}=0\right)=1$. But a process whose value at some time instant in the future is known with probability one cannot be a martingale, as this would imply that

$$
X_{t}=\widetilde{\mathbb{E}}_{1}\left(X_{1} \mid \mathcal{F}_{t}\right)=\widetilde{\mathbb{E}}_{1}\left(0 \mid \mathcal{F}_{t}\right)=0, \quad \forall t \in[0,1]
$$

which is obviously not the case here.

