Solutions 3

1. a) Let Φ_{t} be the solution of $d \Phi_{t}=\mu \Phi_{t} d t, \Phi_{0}=1$: Φ_{t} is given by the expression $\Phi_{t}=\exp (\mu t)$. b) Set $X_{t}=\Phi_{t} Z_{t}$; we have

$$
\begin{aligned}
d X_{t} & =Z_{t} d \Phi_{t}+\Phi_{t} d Z_{t}+0=\mu \Phi_{t} Z_{t} d t+\Phi_{t} d Z_{t} \\
& =\mu X_{t} d t+\sigma X_{t} d B_{t},
\end{aligned}
$$

where the first line follows from the integration by parts formula and the second line is obtained by rewriting simply the equation for X_{t}. From the above equation, we obtain that $d Z_{t}=\sigma Z_{t} d B_{t}$. Moreover, $Z_{0}=x_{0}$ and

$$
\langle Z\rangle_{t}=\sigma^{2} \int_{0}^{t} Z_{s}^{2} d s
$$

c) Set $Y_{t}=\log \left(Z_{t}\right)$; by Ito-Doeblin's formula, we have (reminder: $\log (x)^{\prime}=\frac{1}{x}$ and $\log (x)^{\prime \prime}=-\frac{1}{x^{2}}$):

$$
Y_{t}-\log \left(x_{0}\right)=\int_{0}^{t} \frac{1}{Z_{s}} d Z_{s}-\frac{1}{2} \int_{0}^{t} \frac{1}{Z_{s}^{2}} d\langle Z\rangle_{s}=\sigma \int_{0}^{t} d B_{s}-\frac{\sigma^{2}}{2} \int_{0}^{t} d s=\sigma B_{t}-\frac{\sigma^{2}}{2} t
$$

therefore

$$
X_{t}=\Phi_{t} \exp \left(Y_{t}\right)=x_{0} \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma B_{t}\right)
$$

2. a) By the class, the solution of this SDE reads $X_{t}=\int_{0}^{t} \frac{\Phi_{t}}{\Phi_{s}} d B_{s}$, where $d \Phi_{t}=-\frac{\Phi_{t}}{1-t} d t, \Phi_{0}=1$. Solving this ODE gives

$$
\frac{\Phi_{t}^{\prime}}{\Phi_{t}}=-\frac{1}{1-t} \Rightarrow \log \left(\Phi_{t}\right)=\log (1-t)+C \quad \Rightarrow \quad \Phi_{t}=1-t \quad \text { since } \quad \Phi_{0}=1
$$

So $X_{t}=\int_{0}^{t} \frac{1-t}{1-s} d B_{s}$ and $X_{1}=\int_{0}^{1} 0 d B_{s}=0$.
b) $\mathbb{E}\left(X_{t}\right)=0$ and for $t \geq s$, we have
$\operatorname{Cov}\left(X_{t}, X_{s}\right)=\mathbb{E}\left(X_{t} X_{s}\right)=(1-t)(1-s) \int_{0}^{s} \frac{1}{(1-r)^{2}} d r=(1-t)(1-s)\left(\frac{1}{1-s}-1\right)=(1-t) s$,
thus, for general t, s, we have

$$
\operatorname{Cov}\left(X_{t}, X_{s}\right)=(1-(t \vee s))(t \wedge s) \quad \text { et } \quad \operatorname{Var}\left(X_{t}\right)=t(1-t)
$$

where $t \vee s:=\max (t, s)$. Notice that for t, s close to 0 , we have

- $\operatorname{Cov}\left(X_{t}, X_{s}\right) \simeq t \wedge s$ (that is, $\left(X_{t}\right)$ resembles to a Brownian motion, close to $t=0$);
- $\operatorname{Cov}\left(X_{1-t}, X_{1-s}\right) \simeq t \wedge s$ (that is, $\left(X_{1-t}\right)$ also resembles to a Brownian motion, close to $t=0$).

3. a) By Ito-Doeblin's formula, we have

$$
\begin{aligned}
X_{t}^{2} & =1+2 \int_{0}^{t} X_{s} d X_{s}+\langle X\rangle_{t}=1-\int_{0}^{t} X_{s}^{2} d s-2 \int_{0}^{t} X_{s} Y_{s} d B_{s}+\int_{0}^{t} Y_{s}^{2} d s \\
Y_{t}^{2} & =0+2 \int_{0}^{t} Y_{s} d Y_{s}+\langle Y\rangle_{t}=-\int_{0}^{t} Y_{s}^{2} d s+2 \int_{0}^{t} Y_{s} X_{s} d B_{s}+\int_{0}^{t} X_{s}^{2} d s
\end{aligned}
$$

so $X_{t}^{2}+Y_{t}^{2}=1$.
b) We have
$Z_{t}=-\frac{1}{2} \int_{0}^{t} X_{s} Y_{s} d s+\int_{0}^{t} X_{s}^{2} d B_{s}+\frac{1}{2} \int_{0}^{t} Y_{s} X_{s} d s+\int_{0}^{t} Y_{s}^{2} d B_{s}=0+\int_{0}^{t}\left(X_{s}^{2}+Y_{s}^{2}\right) d B_{S}=\int_{0}^{t} 1 d B_{s}=B_{t}$.
c) We have

$$
\begin{aligned}
d X_{t} & =d \cos \left(\Theta_{t}\right)=-\sin \left(\Theta_{t}\right) d \Theta_{t}-\frac{1}{2} \cos \left(\Theta_{t}\right) d\langle\Theta\rangle_{t} \\
d Y_{t} & =d \sin \left(\Theta_{t}\right)=+\cos \left(\Theta_{t}\right) d \Theta_{t}-\frac{1}{2} \sin \left(\Theta_{t}\right) d\langle\Theta\rangle_{t}
\end{aligned}
$$

Therefore, by a computation very close to the one above,
$Z_{t}=\int_{0}^{t} \cos \left(\Theta_{s}\right) d \sin \left(\Theta_{s}\right)-\int_{0}^{t} \sin \left(\Theta_{s}\right) d \cos \left(\Theta_{s}\right)=0+\int_{0}^{t}\left(\cos \left(\Theta_{s}\right)^{2}+\sin \left(\Theta_{s}\right)^{2}\right) d \Theta_{s}=\int_{0}^{t} 1 d \Theta_{s}=\Theta_{t}$,
so $\Theta_{t}=B_{t}$!

