Solutions 11

1. a) $\langle M\rangle_{t}=\int_{0}^{t} s^{2} d s=t^{3} / 3$.
b) $\tau(s)=\inf \left\{t>0: t^{3} / 3 \geq s\right\}=\inf \left\{t>0: t \geq(3 s)^{1 / 3}\right\}=(3 s)^{1 / 3}$.
c) $\mathbb{E}\left(W_{s_{2}}-W_{s_{1}}\right)=\mathbb{E}\left(M\left(\left(3 s_{2}\right)^{1 / 3}\right)-M\left(\left(3 s_{1}\right)^{1 / 3}\right)\right)=0$, since M is a stochastic integral. Using now the isometry property, we have:

$$
\begin{aligned}
\mathbb{E}\left(\left(W_{s_{2}}-W_{s_{1}}\right)^{2}\right) & =\mathbb{E}\left(\left(M\left(\left(3 s_{2}\right)^{1 / 3}\right)-M\left(\left(3 s_{1}\right)^{1 / 3}\right)\right)^{2}\right)=\mathbb{E}\left(\left(\int_{\left(3 s_{1}\right)^{1 / 3}}^{\left(3 s_{2}\right)^{1 / 3}} s d B_{s}\right)^{2}\right) \\
& =\int_{\left(3 s_{1}\right)^{1 / 3}}^{\left(3 s_{2}\right)^{1 / 3}} s^{2} d s=s_{2}-s_{1} .
\end{aligned}
$$

d) Being a Wiener integral, M is a Gaussian process. As the time change $\tau(s)$ is deterministic, W is also Gaussian. One can check further that W is actually a standard Brownian motion.
2. a) No. We have already seen that the process

$$
M_{t}=\int_{0}^{t} \operatorname{sgn}\left(B_{s}\right) d B_{s}
$$

on the right hand-side is a standard Brownian motion, since it is a continuous local martingale with quadratic variation $\langle M\rangle_{t}=t$. The process on the left-hand side being non-negative, the equality cannot hold.
b) Remembering that B has either $+\infty$ or $-\infty$ slope, the fact that L_{t} is non-zero is surprising: a process that moves with infinite speed either up or down should not spend too much time in a given place (namely $x=0$ here). Nevertheless, the Brownian motion is full of surprises...
c) Let us first compute

$$
\begin{aligned}
\mathbb{E}\left(\left|B_{t}\right|\right) & =\int_{\mathbb{R}} d x|x| \frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{x^{2}}{2 t}\right)=\sqrt{\frac{2}{\pi t}} \int_{0}^{\infty} d r r \exp \left(-\frac{r^{2}}{2 t}\right) \\
& =\left.\sqrt{\frac{2}{\pi t}}\left(-t \exp \left(-\frac{r^{2}}{2 t}\right)\right)\right|_{r=0} ^{r=\infty}=\sqrt{\frac{2 t}{\pi}} .
\end{aligned}
$$

On the right-hand side, the first term has expectation zero. Let us then compute, permuting limit, integral and expectation:

$$
\mathbb{E}\left(L_{t}\right)=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \int_{0}^{t} d s \mathbb{E}\left(1_{\left\{\left|B_{s}\right|<\varepsilon\right\}}\right) d s=\int_{0}^{t} d s \lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \mathbb{P}\left(\left\{\left|B_{s}\right|<\varepsilon\right\}\right) d s .
$$

Notice that

$$
\mathbb{P}\left(\left\{\left|B_{s}\right|<\varepsilon\right\}\right)=\int_{-\varepsilon}^{\varepsilon} \frac{1}{\sqrt{2 \pi s}} \exp \left(-\frac{x^{2}}{2 s}\right) d x,
$$

so by the mean value theorem,

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \mathbb{P}\left(\left\{\left|B_{s}\right|<\varepsilon\right\}\right)=\frac{1}{\sqrt{2 \pi s}}, \quad \forall s>0 .
$$

Finally, we obtain that

$$
\mathbb{E}\left(L_{t}\right)=\int_{0}^{t} d s \frac{1}{\sqrt{2 \pi s}}=\sqrt{\frac{2 t}{\pi}},
$$

which coincides with $\mathbb{E}\left(\left|B_{t}\right|\right)$ computed above.
$N B$: You may have noticed that $\mathbb{E}\left(L_{t}\right)>t$ for t sufficiently small. This indicates that L_{t} is not exactly the time spent by B in $x=0$ on the interval $[0, t]$. Actually, L_{t} is only the density evaluated in $x=0$ of the occupation measure of the process B. As such, it may exceed t, exactly like the density $p(x)$ of a continuous random variable may exceed 1 in $x=0$ or elsewhere.

