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TH�ESE No 2452 (2001)PR�ESENT�EE AU D�EPARTEMENT DE MATH�EMATIQUES�ECOLE POLYTECHNIQUE F�ED�ERALE DE LAUSANNEPOUR L'OBTENTION DU GRADE DE DOCTEUR �ES SCIENCESPAROlivier L�EVÊQUEIng�enieur-physiien diplôm�e de l'Eole Polytehnique F�ed�erale de Lausanneoriginaire de Collonge-Bellerive (GE)aept�ee sur proposition du jury:Prof. Peter Buser, pr�esident du juryProf. Robert C. Dalang, direteur de th�eseProf. Antoine Derighetti, rapporteurProf. Antonio Gualtierotti, rapporteurProf. Max-Olivier Hongler, rapporteurProf. Thomas S. Mountford, rapporteurProf. Marta Sanz-Sol�e, rapporteurLausanne, EPFL2001





AknowledgementsFirst of all, I would like to thank my advisor Robert C. Dalang for having given to me theopportunity to work on this PhD thesis, without undue pressure or time onstraints. I havegreatly appreiated the way he has onstantly followed my researh and guided me through along and winding road whih has led to very interesting questions. Last but not least, let methank him for the areful reading of this manusript.Let me also thank the members of the ommittee for having aepted to examine themanusript and for their interesting questions and omments during the oral exam. In parti-ular, I would like to thank Peter Buser for having presided over the thesis ommittee, AntoineDerighetti from whom I will always remember fasinating letures in measure theory and har-moni analysis, Antonio Gualtierotti for having opened new horizons on possible appliationsof the subjet, Max-Olivier Hongler whose suggestions and ideas helped me a lot during theseyears, Thomas S. Mountford and Marta Sanz-Sol�e for having both pointed out some mistakesin the manusript.For some years now, I have also met many people whose ommuniative enthusiasm for re-searh provided me with muh enouragement. Among them, let me thank in partiular ElisaAl�os, G�erard Ben Arous, Boris Bu�oni (to whom I am espeially grateful for the time he spenttalking about mathematis with me, and also for the interest he showed in my researh), PatrikCheridito, Kyung-Ha Cho, Rama Cont, Damir Filipovi, Martin Hairer, Davar Khoshnevisan(who suggested Proposition 4.4.6), Andreas Martin (who stayed one year in Lausanne and withwhom I had long and fruitful disussions about hyperboli SPDE's), Bohdan Maslowski, CarlMueller, David Nualart, Szimon Peszat, Roger Tribe (who made a lot of very interesting sug-gestions at the right time) and Jerzy Zabzyk.Let me also thank all my olleagues in probability from the Mathematis Department withwhom I had many interesting disussions, and not only about probability. A speial thanks toour seretary Erika Gindraux who is always so kind and helpful with everybody, and also toSimone Deparis and Yannik Zu�erey, who both helped me a lot with various questions aboutomputers. i



The Mathematis Department in Lausanne is built in suh a way that one regularly meetspeople from other areas of mathematis, who often beome lose friends, so that the list wouldbe too long to enumerate here. Let me simply thank all of them for the time spent togetherduring these years.What also makes life easier during a PhD is that one has sometimes to teah and forgetabout researh for short periods of time; let me therefore thank all the students I met over theyears, who were always pleasant and showed motivation to learn mathematis.I would like to mention that if I ever beame assistant in the Mathematis Department, thisis thanks to Jaques Rappaz and Maro Piasso, who �rst hired me in the hair of NumerialAnalysis and Simulation. Even if I later turned to probability theory, I would like to thank themfor having attrated me to mathematis.Finally, I am deeply grateful to my parents and to Marivi, my wife, for their love and theironstant enouragement during these years.

ii



AbstratThe framework of this dissertation is the study of wave propagation phenomena, where the wavesonsidered are generated by noise soures whih are random both in time and spae. More pre-isely, we are interested in �nding real-valued solutions of linear hyperboli partial di�erentialequations (typially the wave equation) driven by additive Gaussian noise soures whih arewhite in time and onentrated on surfaes in spae.It is a well known fat that when the spatial dimension is greater than one, the wave equa-tion driven by a spae-time Gaussian white noise admits a solution whih takes its values in adistribution spae. If we want the solution to be funtion-valued, it is natural to onsider noisewith some spatial orrelation.In this dissertation, we are going to see that this also happens for the wave equation drivenby a Gaussian noise onentrated on a surfae, in partiular the sphere or the plane. In bothases, we give minimal onditions on the spatial ovariane of the noise whih guarantee theexistene of a funtion-valued solution of the linear equation.For the ase of a noise onentrated on a d-dimensional sphere, we give two onditions, oneneessary and one suÆient, for the existene of a square-integrable solution of the linear waveequation in the ball delimited by the sphere. These onditions are expressed in terms of theFourier oeÆients of the spatial ovariane of the noise. In the ase of a noise onentrated ona irle, the neessary ondition an be reformulated into an expliit ondition on the ovariane.For the linear wave equation in a d-dimensional spae driven by noise onentrated on a k-plane (with 1 � k < d), we give optimal onditions for the existene of a solution with values insome frational Sobolev spae in the diretions perpendiular to the k-plane. These onditionsare expressed in terms of the spetral measure of the noise and an also be reformulated intoexpliit onditions on the ovariane.Moreover, for the partiular ase of a noise onentrated on a hyperplane, we give two opti-mal onditions on the spetral measure whih guarantee the existene of a real-valued solutionde�ned, respetively, only outside the hyperplane that supports the noise, or everywhere iniii



spae. In the latter ase, we establish the existene and uniqueness of a real-valued solution fora non-linear equation of the same type. Under stronger onditions on the spetral measure, wealso establish that the solution of the linear equation is H�older-ontinuous outside the hyper-plane.Finally, we onsider similar questions for the linear heat equation in a d-dimensional spaedriven by noise onentrated on a k-plane (with 1 � k < d) and we show that under a fairly mildassumption on the ovariane of the noise, there exists a real-valued solution whih is de�nedoutside the hyperplane, but the solution is never de�ned on the k-plane itself.
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Version abr�eg�eeLe adre de ette th�ese est l'�etude des ph�enom�enes de propagation d'ondes engendr�ees par dessoures de bruit al�eatoires en temps et en espae. Plus pr�eis�ement, nous nous int�eressons�a l'existene de solutions �a valeurs r�eelles d'�equations lin�eaires aux d�eriv�ees partielles hyper-boliques (du type de l'�equation des ondes) dirig�ees par des soures de bruit gaussiennes addi-tives, d�eorr�el�ees en temps et onentr�ees sur des surfaes en espae.Il est bien onnu que lorsque la dimension spatiale onsid�er�ee est sup�erieure �a un, l'�equationd'onde lin�eaire dirig�ee par un bruit gaussien blan en temps et en espae admet une solution quiprend ses valeurs dans un espae de distributions. Si l'on veut obtenir une solution �a valeurs dansun espae de fontions, il est naturel de onsid�erer que le bruit poss�ede une ertaine orr�elationspatiale.Dans ette th�ese, nous allons voir que ei se produit �egalement pour l'�equation d'ondelin�eaire dirig�ee par un bruit gaussien onentr�e sur une surfae, en partiulier la sph�ere ou leplan. Pour es deux as, nous donnons des onditions minimales sur la ovariane spatiale dubruit garantissant l'existene d'une solution �a valeurs dans un espae de fontions pour l'�equationlin�eaire.Pour le as d'un bruit onentr�e sur une sph�ere d-dimensionnelle, nous donnons deux on-ditions, une n�eessaire et une suÆsante, pour l'existene d'une solution de arr�e int�egrable del'�equation d'onde lin�eaire dans la boule d�elimit�ee par la sph�ere. Ces onditions sont exprim�eesen termes des oeÆients de Fourier de la ovariane spatiale du bruit. Dans le as d'un bruitonentr�e sur un erle, la ondition n�eessaire peut être reformul�ee en une ondition expliitesur la ovariane.Pour l'�equation d'onde lin�eaire dans l'espae de dimension d dirig�ee par un bruit onentr�esur un k-plan (ave 1 � k < d), nous donnons des onditions optimales pour l'existene d'unesolution �a valeurs dans un espae de Sobolev frationnaire dans les diretions perpendiulairesau k-plan. Ces onditions sont exprim�ees en termes de la mesure spetrale du bruit et peuventaussi être reformul�ees en des onditions expliites sur la ovariane.v



De plus, pour le as partiulier d'un bruit onentr�e sur un hyperplan, nous donnons deuxonditions sur la mesure spetrale garantissant l'existene d'une solution �a valeurs r�eelles d�e�nierespetivement seulement en dehors de l'hyperplan qui supporte le bruit, ou partout dansl'espae. Dans e dernier as, nous montrons l'existene et l'uniit�e d'une solution �a valeursr�eelles pour une �equation non-lin�eaire du même type. Sous des onditions plus fortes oner-nant la mesure spetrale, nous montrons �egalement que la solution de l'�equation lin�eaire esth�old�erienne en dehors de l'hyperplan.Finalement, nous onsid�erons des questions similaires pour l'�equation de la haleur lin�eairedans l'espae de dimension d dirig�ee par un bruit onentr�e sur un k-plan (ave 1 � k < d)et nous montrons que sous une hypoth�ese peu restritive onernant la ovariane du bruit, ilexiste une solution �a valeurs r�eelles d�e�nie en dehors du k-plan, mais ette solution n'est jamaisd�e�nie sur le k-plan lui-même.
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Chapter 1Introdution
Stohasti partial di�erential equations are of both mathematial and pratial interest. Themathematial aspets onern the extension of the now well developed theory of partial di�eren-tial equations to similar equations with random soure terms, whih are strongly irregular, bothin time and spae. On the other hand, the pratial interest of these equations omes from thefat that they provide models for physial phenomena with temporal and spatial variations thatare too rapid to be well desribed by deterministi models. Examples of suh phenomena are tobe found in various domains, suh as oeanography [3, 22℄, uid mehanis [10℄ or mathematial�nane [8℄.Many approahes have been developed in order to handle these new kinds of equations. Inthe present dissertation, we follow mainly the approah desribed by J. B. Walsh in [62℄, whihonsiders partial di�erential equations driven by additive noises (essentially white noise). Solu-tions of suh equations are desribed as random �elds indexed by the time and spae variables,and are expressed as generalized stohasti integrals with respet to a martingale measure on-struted from the noise under onsideration. For the same kind of equations, one ould alsouse the approah of G. Da Prato and J. Zabzyk desribed in [18, 19℄, whih onsider solutionsas proesses indexed by the time variable with values in some funtional spae of the spaevariable, namely Banah or Hilbert spaes. We will also use some aspets of this approah inthe present dissertation. For di�erent approahes to stohasti partial di�erential equations, see[10, 27, 31, 48℄, among many others. Let us also mention here that there is another \lass" ofstohasti partial di�erential equations with no additive noise but random oeÆients, whihhas lead to di�erent types of analysis and results (see for example [47, 60℄).The �rst kind of stohasti partial di�erential equations whih have been studied are thosedriven by additive spae-time Gaussian white noise. For the linear equation, viewing the noiseas a random distribution allows to apply deterministi methods; see [28, 37, 63℄. In the spei�ase where the spatial dimension is one, it an be shown that even though the noise is stronglyirregular, the solution of the equation is ontinuous; it is therefore possible to onsider non-linear1



2 Chapter 1. Introdutionequations of the same type: see for example [11, 12, 49, 50℄. On the other hand, the solution ofthe linear equation is no longer a funtion when the spae dimension is greater than one. Onepossible way of studying non-linear equations in higher spae dimension is then to de�ne thenon-linear transformation of a distribution (see [43, 44℄). Another way is to replae the whitenoise by a spatially homogeneous Gaussian noise whose ovariane satis�es a minimal onditionin order for the solution to be a funtion, and then to analyze non-linear equations of the sametype. This latter approah is reviewed in the next setion.The main purpose of the present dissertation is to study hyperboli partial di�erential equa-tions driven by Gaussian noises that are white in time and onentrated in spae on manifoldsof lower dimension than the spae variable under onsideration; typially a sphere or a plane. Itturns out that also in this ase, solutions are not funtion-valued when we onsider white noisesonentrated on surfaes and when the spae dimension is greater than one. Sine we do notwant to onsider non-linear transformations of distributions, we will follow the seond approahdesribed above, and therefore try to �nd minimal onditions on the ovariane of the noise inorder to obtain funtion-valued solutions. This allows us afterwards to study equations drivenby non-linear stohasti soure terms onentrated on these manifolds.A typial example of suh an equation is the equation desribing wave propagation in or-dinary three dimensional spae perturbed by a noise onentrated on a plane. This type ofsituation might for example arise in the study of the sound wave produed by the noise of therain falling on the surfae of a lake. This noise is omposed of a large number of small on-tributions (namely the droplets of rain); it is therefore natural to onsider that it is Gaussian.Moreover, it is onentrated on a surfae (namely the lake surfae), so the pressure wave emittedby this noise satis�es a wave equation driven by an additive noise soure onentrated on a plane.There have been many studies of equations driven by noises onentrated on manifolds (gen-erally onsidered as stohasti boundary onditions). Most of these studies however onern thease where the spatial dimension is one, so the boundary noise is therefore a pointwise noise (seefor example [4, 20, 33℄). Some reent results have been obtained for paraboli equations drivenby boundary noises in higher spae dimension: see [34, 61℄. Among these two papers, the mostlosely related to this dissertation is the paper [61℄. The methods for paraboli equations di�erfrom those studied here, sine these equations exhibit regularizing properties, whih is not thease of hyperboli equations. This has made it possible to analyse paraboli equations driven bynoises onentrated on fairly general manifolds. For the ase of hyperboli equations, the analy-sis is more intriate, beause we need Fourier analysis tehniques developed for equations drivenby spatially homogeneous noises. In the present dissertation, we therefore restrit ourselves toequations driven by noises onentrated on two anonial manifolds: the sphere and the plane.



1.1. Equations driven by spatially homogenous noises 31.1 Equations driven by spatially homogenous noisesEven though a noise onentrated on a manifold is not spatially homogeneous, the tehniquesthat we use in this dissertation are quite similar to those used for equations driven by spatiallyhomogeneous noises. The �rst ontributions to this subjet are to be found in [13, 17, 21, 26, 38,39, 40℄. Afterwards, there have been many papers on the subjet, some following the approahof J.B. Walsh (see [14, 15, 35, 36, 54, 55℄) and some the approah of G. Da Prato and J. Zabzyk(see [30, 51, 52, 53℄).In this setion, we desribe the reent results obtained independently by R. C. Dalang in [15℄and A. Karzewska and J. Zabzyk in [30℄ for the heat and the wave equation in Rd (d � 1) drivenby spatially homogeneous noise. The equation onsidered in these referenes is the following:Lu(t; x) = _F (t; x); (t; x) 2 R+ � Rd ;where L is either the heat or the wave operator (with vanishing initial onditions) and _F is ageneralized entered Gaussian proess with ovarianeE ( _F (t; x) _F (s; y)) = Æ0(t� s) �(x� y);where Æ0 is the usual Dira measure on R and � is a non-negative and non-negative de�nitetempered Borel measure on Rd . Let us also denote by � the spetral measure of the noise,de�ned as the inverse Fourier transform of �.Theorems 11 and 13 in [15℄, as Theorem 1 in [30℄, state that there exists a real-valued proesswhih is the solution (in a weak sense) of the above equation if and only if the following onditionon � is satis�ed: ZRd �(d�)1 + j�j2 <1:The reformulation of this ondition into a ondition on � yields (see Theorem 2 in [30℄):8>>>>>>>><>>>>>>>>:
no ondition on �; when d=1;ZB(0;1) �(dx) ln� 1jxj� <1; when d = 2;ZB(0;1) �(dx) 1jxjd�2 <1; when d � 3:When �(dx) = f(jxj) dx, with f a ontinuous funtion on ℄0;1[, this implies the following.- When d = 2, the above ondition is equivalent toZ 10 dr f(r) r ln�1r� <1:



4 Chapter 1. Introdution- When d � 3, the above ondition is equivalent toZ 10 dr f(r) r <1:Note that the ondition for d = 2 was previously obtained by R.C. Dalang and N. Frangos in [14℄.Moreover, Theorem 13 in [15℄ states that when d � 3, under the same assumption on � andfor globally Lipshitz funtions g and h, there exists a real-valued proess whih is the solutionof the following non-linear equation:Lu(t; x) = g(u(t; x)) + h(u(t; x)) _F (t; x):The study of the regularity of this real-valued solution has been performed by M. Sanz-Sol�e andM. Sarr�a in [54℄ for the semi-linear equation, that is, when h � 1, and the result is the following.If � 2 ℄0; 1[ and ZRd �(d�)(1 + j�j2)1�� <1;Theorems 4.1 and 4.2 in [54℄ then state that the solution of the equation is a.s. loally H�older-ontinuous with exponent  < � in x, and  < �=2 in t in the ase of the heat equation or < � ^ 12 in t in the ase of the wave equation. For other results on the regularity of thesolution of this kind of equations, see also [35, 36, 55℄.Finally, let us also mention that another approah to these non-linear equations an be foundin [51, 52, 53℄, where it is shown that the solution belongs to some weighted Sobolev spae onRd .1.2 Equations driven by boundary noisesIn this setion, we summarize briey the main results obtained in the present dissertation, fo-using on the results onerning hyperboli equations driven by boundary noises, whih is ourmain interest. We also desribe briey what are the main ideas of the proofs of these results,reviewing the hapters of the dissertation at the same time.Noise on a sphere (Chapters 2 and 3). Let d � 2 and onsider the equationLa;bu(t; x) = _F (t; x) Æ�B(0;1)(x); (t; x) 2 R+ �B(0; 1);where B(0; 1) is the unit ball in Rd and �B(0; 1) is the unit sphere in Rd , a; b 2 R and La;b isthe following linear partial di�erential operatorLa;b = �2�t2 + 2a ��t + b��;



1.2. Equations driven by boundary noises 5with homogeneous Neumann boundary onditions on �B(0; 1) (note that when a = b = 0, La;bis simply the wave operator). The noise _F onsidered here is a Gaussian entered noise withovariane E ( _F (t; x) _F (s; y)) = Æ0(t� s) Xl2N al Pl(x � y); x; y 2 �B(0; 1); (1.1)where the al are non-negative numbers and the Pl are the generalized Legendre polynomials.That is, _F is a boundary noise, white in time and rotationally invariant on the sphere.The result is then the following (see Theorem 3.3.3): a suÆient ondition for the existeneof an L2(B(0; 1))-valued proess fu(t); t 2 R+g whih is a solution (in a weak sense) of theabove equation is Xl2N al ln(1 + l)1 + l <1;and a neessary ondition is Xl2N al1 + l <1:In order to establish this result, we onsider in Chapter 2 the hyperboli equation in a boundeddomain driven by general noise. We �rst establish a weak formulation of the equation and proveby standard tehniques using the spetral deomposition of the Laplaian in a bounded domain,that under a spei� ondition on the ovariane of the noise, there exists a unique weak solutionwhih is a proess u = fu(t); t 2 R+g with values in L2(D).In Chapter 3, we onsider more spei�ally the ase where the domain is the unit ball B(0; 1)in Rd and the noise is onentrated on the sphere �B(0; 1), with ovariane of the form givenin (1.1), whih an be shown to be a fairly general form. We then partiularize the spei�ondition obtained in Chapter 2 to the present ase, whih brings us to the above mentionedresult. The proof relies mainly on estimates on the eigenvalues and eigenvetors of the Laplaianin the unit ball, whih are expressed in terms of spherial harmonis and Bessel funtions.Noise on a k-plane (Chapters 4, 5 and 6). Let d > k � 1 and for x 2 Rd , write x = (x1; x2),where x1 2 Rk and x2 2 Rd�k . Consider the equationLa;bu(t; x) = _F (t; x1) Æ0(x2); (t; x) 2 R+ � Rd ; (1.2)where a; b 2 R and La;b is the following linear partial di�erential operator on Rd :La;b = �2�t2 + 2a ��t + b��:The noise _F onsidered here is a Gaussian entered noise with ovarianeE ( _F (t; x1) _F (s; y1)) = Æ0(t� s) �(x1 � y1);



6 Chapter 1. Introdutionwhere � is a non-negative de�nite measure on Rk . That is, the noise _F is white in time, on-entrated on the k-plane x2 = 0, and spatially homogeneous on this k-plane.Let � be the spetral measure of the noise (de�ned as the inverse Fourier transform of � inthe oordinate x1), � < 1 � d�k2 and H�(Rd�k ) be the frational Sobolev spae of order � onRd�k . We then have the following result (see Theorem 6.4.3): the solution of the above equationis an H�(Rd�k )-valued proess fu(t; x1); (t; x1) 2 R+ � Rkg if and only ifZRk �(d�1)1 + j�1j2 <1; when � < �d� k2 ; (1.3)ZRk �(d�1) ln �1 + j�1j2�1 + j�1j2 <1; when � = �d� k2 ;ZRk �(d�1)(1 + j�1j2)1+ d�k2 �� <1; when � 2 ℄� d� k2 ; 1� d� k2 [:One an notie that � is possibly non-negative only when k = d� 1, that is, when the noise isonentrated on a hyperplane.In order to obtain this result, after some preliminaries in Chapter 4, we onsider in Chap-ter 5 the hyperboli equation in Rd driven by general noise and show that under a fairly mildassumption on the ovariane of the noise, there always exists a unique weak solution whih isa proess u = fu(t); t 2 R+g with values in some distribution spae. For this proof, we use theWalsh theory [62℄ of stohasti integrals with respet to martingale measures on Rd .In Chapter 6, we onsider the ase where the noise is onentrated on a k-plane, and �rstshow that the Fourier transform of the weak solution in x2 (that is, in the diretions perpendi-ular to the k-plane) is a real-valued proess (rather than a distribution-valued one) if and onlyif a spei� ondition on the spetral measure of the noise is satis�ed, namely ondition (1.3)(see Proposition 6.3.6). The sheme that we follow for this proof is similar to that used by R.Dalang for the equation driven by spatially homogeneous noise on Rd (see [15℄). We �rst extendthe Walsh stohasti integral to distribution-valued integrands and then show that under theabove mentioned ondition, it is possible to de�ne a real-valued proess whih is the stohastiintegral of a distribution-valued integrand (namely the Fourier transform in x2 of the Greenkernel of the equation) and whih is the Fourier transform of the weak solution in x2. We thenshow that if it is possible to de�ne suh a proess, then the above ondition is satis�ed, provingtherefore that this ondition is optimal.In order then to establish the above result, we use the lassial fat that a distribution be-longs to a frational Sobolev spae H� if and only if its Fourier transform belongs to a weightedL2-spae (the weight depending on �). We then study the integrability of the square of the



1.2. Equations driven by boundary noises 7Fourier transform of the solution in x2, whih we found to be a real-valued proess in the pre-eding analysis. Some tehnial estimates are needed here, whih lead to the above optimalonditions.Noise on a hyperplane (Chapters 7 and 8). Consider the same equation as above in thease where k = d � 1. Our �rst two results are the following: Theorem 7.2.5 states that thesolution of equation (1.2) is a real-valued proess fu(t; x1; x2); (t; x1; x2) 2 R+ � Rd�1 � R�gde�ned outside the hyperplane x2 = 0 if and only ifZRd�1 �(d�1)p1 + j�1j2 <1:Theorem 7.3.3 then states that the solution of the above equation is a real-valued proessfu(t; x); (t; x) 2 R+ � Rdg de�ned on the whole spae (inluding the hyperplane x2 = 0) if andonly if the following stronger ondition on � is satis�ed:ZRd�1 �(d�1) ln�p1 + j�1j2�p1 + j�1j2 <1: (1.4)The fat that this ondition is di�erent from the previous one shows that it is quite di�erent torequire that a proess solution be de�ned everywhere rather that just almost everywhere, suhas for x2 6= 0.In Chapter 7, we establish the �rst two mentioned results by tehniques similar to those ofChapter 6. We also establish some regularity properties of the solution, using tehniques similarto those used by M. Sanz-Sol�e and M. Sarr�a in [54℄ for spatially homogeneous noises. Namely,we show (see Theorem 7.4.3) that the solution is a.s. loally H�older-ontinuous with exponent < � 2 ℄0; 12 [ outside the hyperplane x2 = 0 ifZRd�1 �(d�1)(1 + j�1j2) 12�� <1:Furthermore, when d � 3 and a2 � b, we also onsider the following non-linear equationLu(t; x) = g(u(t; x1; 0)) Æ0(x2) + h(u(t; x1; 0)) _F (t; x1) Æ0(x2):Theorem 8.1.1 states that there exists a real-valued proess u whih is solution of this equationif g and h are globally Lipshitz funtions and ondition (1.4) is satis�ed.In Chapter 8, we follow the approah of R. Dalang developed in [15℄ for non-linear equationsdriven by spatially homogeneous noises. We �rst study a mild formulation of the non-linearequation desribed above, restrited to the hyperplane x2 = 0, and show that this equation ad-mits a unique solution by the standard Piard's iteration sheme used for spatially homogeneousnoises. We then extend the solution to the whole spae.



8 Chapter 1. IntrodutionLet us �nally mention the two following fats. At the end of Chapter 7, we establish thatwhen k = d � 2, there does not exist a real-valued proess de�ned outside the k-plane x2 = 0whih is the solution of the linear hyperboli equation driven by noise on the k-plane. On theother hand, we study in Chapter 9 the ase of the heat equation in Rd , whih is the simplestexample of a paraboli equation, driven by noise on a k-plane. The answers obtained for thisequation are rather di�erent than for the hyperboli one. The two main results (see Theorems9.2.5 and 9.2.7) state that under a fairly mild assumption on the ovariane, the solution isalways a real-valued proess de�ned outside the k-plane x2 = 0, but that on the other hand, itan never be de�ned on the k-plane itself. We then ompare these results with those obtainedby R. Sowers in [61℄.



Chapter 2Linear equation in a boundeddomainLet D be a bounded domain in Rd whose boundary �D is a C1 manifold and suh that D isloally on one side of �D. Let also a; b 2 R. We are interested in solving the following stohastilinear hyperboli equation:8>>>>>>>><>>>>>>>>:
�2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x)��u(t; x) = _FD(t; x); (t; x) 2 R+ �D;�u�� (t; x) = 0; (t; x) 2 R+ � �D;u(0; x) = u0(x); �u�t (0; x) = v0(x); x 2 D; (2.1)

where �u�� is the normal derivative of u at the boundary, u0, v0 are two given funtions on D, and_FD = f _FD(t; x); (t; x) 2 R+ �Dg is a generalized entered Gaussian proess whose ovarianeis formally given by E ( _FD (t; x) _FD(s; y)) = Æ0(t� s) �D(x; y);where Æ0 is the usual Dira measure on R and �D is a non-negative de�nite distribution onD �D, in a sense that will be preised below.2.1 Spetral theoremLet us onsider the following spaes:- S(D) = �' 2 C1(D) suh that �'�� ����D = 0�, the spae of test funtions.- L2(D), the usual spae of measurable and square integrable funtions on D, equipped with thesalar produt hu; vi0 = ZD dx u(x) v(x);9



10 Chapter 2. Linear equation in a bounded domainand the orresponding norm k � k0.- H1(D), the Sobolev spae of funtions in L2(D) whose �rst partial derivatives belong also toL2(D), equipped with the salar produthu; vi1 = hu; vi0 + hru;rvi0;and the orresponding norm k � k1 (note that S(D) � H1(D)).- H�1(D), the dual of H1(D), equipped with the normjjjujjj�1 = sup'2H1(D);'6=0 ju(')jk'k1Let us also denote by h�; �i�1;1 the duality produt between H�1(D) and H1(D), simply de�nedby hu; 'i�1;1 = u('):We will use the following theorem from lassial analysis (see [59, pp. 111-112℄), whih statesthe existene of a Hilbertian basis of L2(D) omposed by the eigenfuntions of the Laplaianoperator on D with Neumann boundary onditions. Before stating it, let us write an � bn whenthere exists C 2 ℄0;1[ suh that limn!1 anbn = C:Theorem 2.1.1. There exist two sequenes fen; n 2 Ng � S(D) and f�n; n 2 Ng � R+ suhthat �en + �nen = 0; 8n 2 N;fen; n 2 Ng is a Hilbertian basis of L2(D) and f�n; n 2 Ng is an inreasing sequene of non-negative numbers suh that �n � n2=d as n!1: (2.2)Note that �0 = 0 and e0(x) � 1pjDj , sine we onsider Neumann boundary onditions.Estimate (2.2) is known as Weyl's law. In the following, we will only use a onsequene ofthis estimate, namely that the eigenvalues of the Laplaian tend to in�nity as n!1.A diret onsequene of the above theorem is that� enp1 + �n ; n 2 N�is a Hilbertian basis of H1(D). Moreover, we have the following equalities:kuk20 = Xn2N jhu; eni0j2;kuk21 = Xn2N(1 + �n) jhu; eni0j2;



2.2. Gaussian noise 11and the norm jjj � jjj�1 on H�1(D) is equivalent tokuk2�1 =Xn2N jhu; eni�1;1j21 + �n :2.2 Gaussian noiseSine _FD(t; x) is not well de�ned for �xed (t; x) 2 R+ � D, we will rather onsider in thefollowing the proess FD = fFDt ('); t 2 R+ ; ' 2 S(D)g whih is related to _FD by the informalrelationship FDt (') = Z t0 dsZD dx _FD(s; x) '(x); t 2 R+ ; ' 2 S(D): (2.3)In order to de�ne FD rigorously, we assume that the ovariane �D is a bilinear, symmetri andnon-negative de�nite form on S(D), that is,mXi;j=1 i j �D('i; 'j) � 0; 8m � 1; 1; : : : ; m 2 R; '1; : : : ; 'm 2 S(D):By the Kolmogorov extension theorem, (see [42, prop. 3.4℄), there exist a probability spae(
;G;P) and a entered Gaussian proess FD = fFDt ('); t 2 R+ ; ' 2 S(D)g de�ned on thisspae, whose ovariane is given byE (FDt (') FDs ( )) = (t ^ s) �D('; ):Moreover, there exists a modi�ation ~FD = f ~FDt ('); t 2 R+g of FD suh that for all ' 2 S(D),the proess f ~FDt ('); t 2 R+g is a P�a:s: ontinuous Brownian motion with ovariane parameter�D(';'). In the following, we will onsider impliitely the modi�ation ~FD.2.3 Weak formulation of the equationNow that we have a preise de�nition of the Gaussian noise under onsideration, we also needto give a rigorous meaning to equation (2.1). Setting formally v(t; x) = �u�t (t; x), we obtain thefollowing two formal equations, after integration in t of equation (2.1):8>>>><>>>>: u(t; x) = u0(x) + Z t0 ds v(s; x);v(t; x) = v0(x) + Z t0 ds (�2a v(s; x) � b u(s; x) + �u(s; x) + _FD(s; x)):We now multiply both sides of these two equations by a test funtion ' 2 S(D) and integratethem in x on the domain D, with two more integrations by parts in x of the term with theLaplaian, taking into aount the fat that �'�� ���D = 0 and the Neumann boundary ondition�u�� ���D = 0. Assuming that (u0; uv0) 2 L2(D)�H�1(D), onsidering that (u; v) takes its valuesin L2(D) �H�1(D) and using the informal relationship (2.3) gives then the following rigorous



12 Chapter 2. Linear equation in a bounded domainformulation: a weak solution of equation (2.1) is a proess (u; v) = f(u(t); v(t)); t 2 R+g withvalues in L2(D)�H�1(D) suh that for all ' 2 S(D), the map t 7! (hu(t); 'i0; hv(t); 'i�1;1) isP� a:s: ontinuous on R+ and satis�es, for all t 2 R+ ,8>>>><>>>>: hu(t); 'i0 = hu0; 'i0 + Z t0 ds hv(s); 'i�1;1;hv(t); 'i�1;1 = hv0; 'i�1;1 + Z t0 ds (�2a hv(s); 'i�1;1 � b hu(s); 'i0 + hu(s);�'i0) + FDt ('):(2.4)Moreover, we say that the weak solution of equation (2.1) is unique if for any two solutions(u(1); v(1)) and (u(2); v(2)), u(1)(t) = u(2)(t) and v(1)(t) = v(2)(t);for all t 2 R+ , P� a:s:Remark 2.3.1. In the following, we will often be loosely speaking of u, instead of (u; v), forthe solution of equation (2.4).Remark 2.3.2. A solution u of (2.4) is termed a \weak" solution of equation (2.1), beause ittakes its values in L2(D), and therefore neither �u nor �u�� ���D are de�ned. A stronger way ofde�ning a solution (u; v) of equation (2.1) is to impose that it takes its values in H1(D)�L2(D).Nevertheless, we will see in the next hapter that there never exists suh a solution when thenoise is a boundary noise (see also Remark 2.5.6 in the present hapter). Furthermore, we willsee in Setion 3.2 that for this kind of noise, equation (2.4) an be reinterpreted as the weakformulation of an equation whih is di�erent from the original equation (2.1).2.4 Green kernel deomposed in eigenmodesLet n 2 N and Gn : R ! R be the funtion solution ofG00n(t) + 2a G0n(t) + (b+ �n) Gn(t) = 0; Gn(0) = 0; G0n(0) = 1: (2.5)Thus, Gn is given byGn(t) = 8>>>><>>>>: e�at sin �tp�n + b� a2�p�n + b� a2 ; if �n > a2 � b;e�at t; if a2 � b � 0 and �n = a2 � b;e�at sinh �tpa2 � b� �n�pa2 � b� �n ; if a2 � b > 0 and �n < a2 � b: (2.6)Note that the �rst of these three expressions ontains atually the other two, sine we havelimu!0 sin(u)u = 1 and sin(iu) = i sinh(u). The following estimates are easy to obtain: for allT > 0, there exists C(T ) > 0 suh thatjGn(t)j � C(T ); 8t 2 [0; T ℄; n 2 N; (2.7)



2.4. Green kernel deomposed in eigenmodes 13and jG0n(t)j � C(T ); 8t 2 [0; T ℄; n 2 N: (2.8)Moreover, we have the following lemma.Lemma 2.4.1. For all t > 0, there exist C�(t); C+(t) > 0 and n0(t) 2 N suh thatC�(t)1 + �n � Z t0 ds Gn(s)2 � C+(t)1 + �n ;for all n � n0(t).Proof. Let n0(t) 2 N be suh that �n0(t) � 2 (a2 � b) + (1 _ 1t2 ) and n � n0(t). ThenZ t0 ds Gn(s)2 = Z t0 ds e�2as sin2 �sp�n + b� a2��n + b� a2 : (2.9)Let us ompute the upper bound �rst. Using the fat that e�2as � e2a�t, where a� denotes thenegative part of a, we obtain Z t0 ds Gn(s)2 � t e2a�t�n + b� a2Sine �n � 2 (a2 � b) + 1, we also have�n + b� a2 � �n + 1� �n2 � 1 + �n2 ; (2.10)so we obtain Z t0 ds Gn(s)2 � t e2a�t2 (1 + �n) :The lower bound is obtained as follows. Denote by a+ the positive part of a. Formula (2.9) thenimplies Z t0 ds Gn(s)2 � e�2a+t�n + b� a2 t2  1� sin �2tp�n + b� a2�2tp�n + b� a2 ! :Sine tp�n + b� a2 � 1, we have 1� sin �2tp�n + b� a2�2tp�n + b� a2 ! � 12 ;and sine �n + b� a2 � � 1 + �n; if b� a2 � 1;(b� a2) (1 + �n); if b� a2 � 1;� (1 _ (b� a2)) (1 + �n); (2.11)we obtain Z t0 ds Gn(s)2 � t e�2a+t4 (1 _ (b� a2)) (1 + �n) :This ompletes the proof.



14 Chapter 2. Linear equation in a bounded domainLet us also de�ne, for n 2 N and t 2 R, Hn(t) = G0n(t) + 2a Gn(t). We easily see that Hnsatis�es H 00n(t) + 2a H 0n(t) + (b+ �n) Hn(t) = 0; Hn(0) = 1; H 0n(0) = 0: (2.12)The equation follows diretly from the de�nition of Hn and equation (2.5). In order to hekthe initial onditions, let us omputeHn(t) = e�at os�tp�n + b� a2�+ a e�at sin �tp�n + b� a2�p�n + b� a2 ; (2.13)therefore Hn(0) = 1, andH 0n(t) = �e�at p�n + b� a2 sin�tp�n + b� a2�� a2 e�at sin �tp�n + b� a2�p�n + b� a2 ;therefore H 0n(0) = 0. Moreover, the following estimates are easy to obtain: for all T > 0, thereexists C(T ) > 0 suh that jHn(t)j � C(T ); 8t 2 [0; T ℄; n 2 N; (2.14)and jH 0n(t)j � C(T )p1 + �n; 8t 2 [0; T ℄; n 2 N: (2.15)2.5 Existene and uniqueness of the solutionWhat we will show is that there exists a unique weak solution to equation (2.1) under the follow-ing assumption. Let us denote n;m = �D(en; em) for n;m 2 N, where the en are the elementsof the Hilbertian basis of Theorem 2.1.1, and n = n;n for n 2 N.Assumption H0.(i) �D is ontinuous with respet to the H1-norm, that is, there exists C > 0 suh that�D(';') � C k'k21; 8' 2 S(D):(ii) The following ondition is satis�ed:Xn2N n1 + �n <1:Remark 2.5.1. Part (i) of the above assumption implies that there exists QD 2 L(H1(D)), thespae of linear ontinuous operators on H1(D), suh that�D('; ) = h';QD i1; 8'; 2 S(D):Assuming that this is true, part (ii) of assumption H0 implies moreover that QD 2 L1(H1(D)),the spae of trae-lass linear operators on H1(D), that is,Xn2Nhfn; QDfni1 <1;where ffn; n 2 Ng is any Hilbertian basis of H1(D).



2.5. Existene and uniqueness of the solution 15Furthermore, note that by estimate (2.2), we ould make part (ii) of Assumption H0 morepreise, namely Xn2N n1 + n2=d <1;but this will not be needed in the study of the following hapter, sine we will onsider in therea di�erent way of ordering the eigenvalues �n.We will also need the following stohasti Fubini theorem.Theorem 2.5.2. If W = fWs; s 2 R+g is a standard Brownian motion, g : R+ � R+ ! C isontinuous and t 2 R+ , then P� a:s:,Z t0 ds Z s0 dWr g(r; s) = Z t0 dWr Z tr ds g(r; s):Proof. We use here the fat that the two square-integrable random variablesX1 = Z t0 ds Z s0 dWr g(r; s) and X2 = Z t0 dWr Z tr ds g(r; s)are equal P � a:s: if and only if E(X21 ) = E (X1X2) = E (X22 ) (that is, the varianes and theovariane of the two terms are all equal). Let us then omputeE (X21 ) = Z t0 dsZ t0 dp E �Z s0 dWr g(r; s) Z p0 dWq g(q; s)�= Z t0 dsZ t0 dr Z s^p0 dr g(r; s) g(r; p);E (X22 ) = E  �Z t0 dWr Z tr ds g(r; s)�2! = Z t0 dr �Z tr ds g(r; s)�2= Z t0 dr Z tr dsZ tr dp g(r; s) g(r; p);and �nally, E(X1X2) = Z t0 ds E �Z s0 dWr g(r; s)Z t0 dWr Z tr dp g(r; p)�= Z t0 dsZ s0 dr Z tr dp g(r; s) g(r; p):Sine these three integrals are integrals of the same funtion on the same domain:((s; r; p) 2 [0; t℄3 ����� r � s and r � p) ;we obtain the desired result.Let us now state the two main theorems of this setion.



16 Chapter 2. Linear equation in a bounded domainTheorem 2.5.3. Let (u0; v0) 2 L2(D)�H�1(D). Under Assumption H0, the proess (u; v) =f(u(t); v(t)); t 2 R+g with values in L2(D)�H�1(D) de�ned byu(t) =Xn2N(u0n(t) + pn(t)) en; and v(t) =Xn2N(v0n(t) + qn(t)) en; (2.16)where 8>>>><>>>>: u0n(t) = Hn(t) hu0; eni0 +Gn(t) hv0; eni�1;1; pn(t) = Z t0 dFDs (en) Gn(t� s);v0n(t) = H 0n(t) hu0; eni0 +G0n(t) hv0; eni�1;1; qn(t) = Z t0 dFDs (en) G0n(t� s);admits a modi�ation (~u; ~v) whih is the unique weak solution of equation (2.1). Moreover,E (k~u(t)k20) <1 and E (k~v(t)k2�1) <1, for all t 2 R+ .Theorem 2.5.4. Let (u0; v0) 2 L2(D) � H�1(D). If there exists a weak solution (u; v) toequation (2.1) suh that E (ku(t0)k20) <1, for some t0 > 0, then part (ii) of Assumption H0 issatis�ed.Remark 2.5.5. Note that these two results belong to the general theory developed by G. DaPrato and J. Zabzyk in [18℄, but sine the ase that we onsider here is a simple one, we rewritethe proofs in this simple ase for larity and ompleteness.Proof of Theorem 2.5.3. Let us �rst show existene. The deterministi proess (u0; v0) de�nedby u0(t) =Xn2N u0n(t) en and v0(t) =Xn2N v0n(t) en;takes its values in L2(D) � H�1(D) by estimates (2.7), (2.8), (2.14) and (2.15). By a diretalulation using equations (2.5) and (2.12), we see that (u0n; v0n) satis�es, for a �xed n 2 N,8>>>><>>>>: u0n(t) = hu0; eni0 + Z t0 ds v0n(s);v0n(t) = hv0; eni�1;1 � Z t0 ds (2a v0n(s) + (b+ �n) u0n(s)):Multiplying this equation by hen; 'i0 and summing over n 2 N gives then the following equationfor (u0; v0), after some permutations of sums and integrals:8>>>><>>>>: hu0(t); 'i0 = hu0; 'i0 + Z t0 ds hv0(s); 'i�1;1;hv0(t); 'i�1;1 = hv0; 'i�1;1 + Z t0 ds (�2a hv0(s); 'i�1;1 � b hu0(s); 'i0 + hu0(s);�'i0):(2.17)for all t 2 R+ and ' 2 S(D).



2.5. Existene and uniqueness of the solution 17On the other hand, integrating equation (2.5) in t, then with respet to the Brownian motionFD(en) gives8>>>><>>>>: Z t0 dFDs (en) Gn(t� s) = Z t0 dFDs (en)Z ts dr G0n(r � s);Z t0 dFDs (en) G0n(t� s) = FDt (en)� Z t0 dFDs (en)Z ts dr (2a G0n(r � s) + (b+ �n) Gn(r � s)):Applying the stohasti Fubini theorem 2.5.2 to the integral terms, we obtain that the proess(pn; qn) de�ned in the theorem satis�es8>>>><>>>>: pn(t) = Z t0 ds qn(s);qn(t) = FDt (en)� Z t0 ds (2a qn(s) + (b+ �n) pn(s)): (2.18)Let us now de�ne the proess (p; q) byp(t) =Xn2N pn(t) en and q(t) =Xn2N qn(t) en:We �rst hek that E (kp(t)k20 ) <1, for all t 2 R+ :E �kp(t)k20� =Xn2N E (pn(t)2) � Xn<n0(t) n Z t0 ds Gn(t� s)2 + C+(t) Xn�n0(t) n1 + �n <1;by the upper bound in Lemma 2.4.1 and part (ii) of Assumption H0. Moreover, let us hekthat E (kq(t)k2�1 ) <1, for all t 2 R+ :E �kq(t)k2�1� =Xn2N E(qn(t)2)1 + �n � C(t)Xn2N n1 + �n <1;by estimate (2.8) and part (ii) of AssumptionH0. We then have, using the fat that the Laplaianis symmetri on S(D),hp(t);�'i0 = Xn2N pn(t) hen;�'i0 =Xn2N pn(t) h�en; 'i0;= �Xn2N �n pn(t) hen; 'i0;by Theorem 2.1.1. Multiplying equation (2.18) by hen; 'i0 and summing over n 2 N gives thenthe following equation for (p; q), after some permutations of sums and integrals:8>>>><>>>>: hp(t); 'i0 = Z t0 ds hq(s); 'i�1;1;hq(t); 'i�1;1 = FDt (') + Z t0 ds (�2a hq(s); 'i�1;1 � b hp(s); 'i0 + hp(s);�'i0); (2.19)



18 Chapter 2. Linear equation in a bounded domainP� a:s, for all t 2 R+ and ' 2 S(D), where we have used the fat thatXn2N FDr (en) hen; 'i0 = FDr (') P� a:s; 8t 2 R+ ; ' 2 S(D);by part (i) of Assumption H0. Combining �nally equations (2.17) and (2.19), and using the Kol-mogorov ontinuity theorem (see [29, Thm 2.8℄) shows that the proess (u; v) = f(u(t); v(t)); t 2R+g de�ned by (2.16) admits a modi�ation (~u; ~v) suh that for all ' 2 S(D), the mapt 7! (h~u(t); 'i0; h~v(t); 'i�1;1) is P� a:s: ontinuous and solves equation (2.4).In order to prove uniqueness, let (u(1); v(1)) and (u(2); v(2)) be two solutions of equation (2.4)and de�ne (�u; �v) = (u(1) � u(2); v(1) � v(2)). For all ' 2 S(D), there exists a P-null set suh thatoutside this set, the following equation satis�ed for all t 2 R+ :8>>>><>>>>: h�u(t); 'i0 = Z t0 ds h�v(s); 'i�1;1;h�v(t); 'i�1;1 = Z t0 ds (�2a h�v(s); 'i�1;1)� b h�u(s); 'i0 + h�u(s);�'i0):Fix now n 2 N and de�ne �un(t) = h�u(t); eni0 and �vn(t) = h�v(t); eni�1;1, for t 2 R+ . Replaing 'by en in the preeding equation and using the symmetry of the Laplaian on S(D), we obtainthat for all n 2 N, (�un; �vn) satis�es, outside a P-null set and for all t 2 R+ ,8>>>><>>>>: �un(t) = Z t0 ds �vn(s);�vn(t) = �Z t0 ds (2a �vn(s) + (b+ �n) �un(s)):Therefore, for all n 2 N, we have that �un(t) = �vn(t) = 0 for all t 2 R+ , outside a P-null set.Sine N is ountable and �u; �v are entirely determined by their omponents �un; �vn, the onlusionfollows. �Proof of Theorem 2.5.4. Let (u; v) be a solution of equation (2.4) and let t0 > 0 be suh thatE (ku(t0)k20) < 1. Let us then replae ' by en in equation (2.4) and denote un(t) = hu(t); eni0and vn(t) = hv(t); eni�1;1. By alulations similar to those of the proof of the preeding theorem,we obtain that un(t) = u0n(t) + pn(t) and vn(t) = v0n(t) + qn(t);where 8>>>><>>>>: u0n(t) = Hn(t) hu0; eni0 +Gn(t) hv0; eni�1;1; pn(t) = Z t0 dFDs (en) Gn(t� s);v0n(t) = H 0n(t) hu0; eni0 +G0n(t) hv0; eni�1;1; qn(t) = Z t0 dFDs (en) G0n(t� s);



2.6. Heat equation 19Sine, for the same reasons as before, the proess (u0; v0) de�ned byu0(t) =Xn2N u0n(t) en and v0(t) =Xn2N v0n(t) en;belongs to L2(D) � H�1(D) for all t 2 R+ , the assumption made on u then implies that ifp(t) =Pn2N pn(t) en, then E(kp(t0 )k20) <1:But a diret alulation shows thatE(kp(t0 )k20) =Xn2N n Z t00 ds Gn(t� s)2 � C�(t0) Xn�n0(t0) n1 + �n ;by the lower bound in Lemma 2.4.1, so part (ii) of Assumption H0 must be satis�ed, and thisompletes the proof. �Remark 2.5.6. Performing the same kind of analysis as above, we ould see that if there existsa solution (u; v) to equation (2.4) with values in H1(D) � L2(D), then the following ondition(stronger than part (ii) of Assumption H0) must be satis�ed:Xn2N n <1: (2.20)Nevertheless, this latter ondition is never satis�ed in the ase of a boundary noise, as we willsee in the next hapter, so there does not exist a solution with values in H1(D)�L2(D) in thisase.2.6 Heat equationIf, instead of the hyperboli equation onsidered above, we rather onsider the following paraboliequation: 8>>>>>>><>>>>>>>:
�u�t (t; x)� 12 �u(t; x) = _FD(t; x); (t; x) 2 R+ �D;�u�� (t; x) = 0; (t; x) 2 R+ � �D;u(0; x) = u0(x); x 2 D; (2.21)we an then reprodue the entire analysis of the preeding setions. The only di�erene willonsist in the fat that the weak formulation is simpler to express (we only have one proess utaking its values in L2(D)) and that the Gn are solutions ofG0n(t) + �n2 Gn(t) = 0; Gn(0) = 1: (2.22)They are therefore given by Gn(t) = exp(��nt2 ): (2.23)



20 Chapter 2. Linear equation in a bounded domainThe analysis is similar to that of the hyperboli ase beause these Gn also satisfy Lemma 2.4.1,so Theorems 2.5.3 and 2.5.4 (adapted to the present situation) remain valid in the ase of theheat equation.Nevertheless, qualitative di�erenes appear between the behavior of the solution of the hy-perboli and the heat equation in the ase of a boundary noise. These will be explained in thenext hapter.



Chapter 3Noise on a sphereLet d be a natural number greater than one, B(0; 1) the entered unit ball in Rd and �B(0; 1) =Sd�1 the entered unit sphere embedded in Rd . In this hapter, we would like to study theexistene of a weak solution to the hyperboli equation (2.1) (in the sense de�ned in (2.4)), inthe spei� ase where the domain D = B(0; 1) and the noise onsidered is onentrated on thesphere Sd�1.3.1 Eigenvalues and eigenfuntions of the Laplaian in B(0; 1)Let us �rst de�ne the following Bessel funtions for l 2 N and d � 2:Jl(d; r) = ��d2� �r2� 2�d2 Jl+ d�22 (r); r > 0; (3.1)where � is the Euler Gamma funtion de�ned by�(�) = Z 10 dt t��1 e�t; � > 0; (3.2)and J� is the regular Bessel funtion of order � of the �rst kind (see Appendix B for a de�nition).In the following, we will also need the expression of the derivative of Jl(d; �) in r when d > 2:J 0l (d; r) = ��d2� �r2� 2�d2 �J 0l+ d�22 (r)� d� 22r Jl+ d�22 (r)� : (3.3)Let us now desribe preisely the solutions of the following eigenvalue problem:�'+ �' = 0 in B(0; 1) and �'�� ����B(0;1) = 0;whih exist by the spetral theorem 2.1.1. By standard theory (see [41, x22℄), they are of theform '(x) = f(r) Y (�), where r = jxj and � is a vetor of dimension d � 1 representing theangular part of x. Y is solution of the following eigenvalue problem:��Y (�) + � Y (�) = 0;where �� denotes the Laplae-Beltrami operator on Sd�1. The solutions of this problem arewell known and given by f�l; Y ml ; l 2 N; 1 �m � N(d; l)g;21



22 Chapter 3. Noise on a spherewhere �l = l(l+ d� 2), fY ml ; 1 � m � N(d; l)g is the list of generalized spherial harmonis oforder l on Sd�1 and N(d; l) is the number of these harmonis (see [41, x15℄). Note that whend = 2, N(2; l) = 2 and Y �l (�) = exp(�il�); when d = 3, N(3; l) = 2l + 1 and the Y ml are thestandard spherial harmonis on S2.For a �xed l 2 N, f is now solution of the following eigenvalue problemf 00(r) + d� 1r f 0(r) +��� l(l + d� 2)r2 � f(r) = 0; f 0(1) = 0;The solutions of this problem are also well known (see [41, x22℄) and given byf�kl; fkl; k 2 Ngwhere �kl = �2kl, with f�kl; k 2 Ng the asending list of zeros, for a �xed l 2 N, of the derivativeof the Bessel funtion Jl(d; �) de�ned by (3.1), and fkl is the funtion de�ned, for �xed k; l 2 N,by fkl(r) = Jl(d; �kl r)qR 10 dq qd�1 Jl(d; �kl q)2 :This gives �nally the following set of eigenvalues and eigenfuntions of the Laplaian in B(0; 1):f�kl; eklm = fkl 
 Y ml ; k; l 2 N; 1 � m � N(d; l)g;the above \tensor produt" being understood as eklm(x) = fkl(r) Y ml (�).Note that these eigenfuntions are normalized in L2(B(0; 1)), that is,ZB(0;1) dx jeklm(x)j2 = 1; 8k; l 2 N; 1 � m � N(d; l);and let us mention the two following fats, whih will be used in the next setion.Lemma 3.1.1. For all k; l 2 N, fkl(1)2 = 2 �kl�kl � l2 � l(d� 2) :Proof. Let us �rst ompute the normalizing fator in fkl(1)2, using formula (6.52) p.101 in [7℄:Z 10 dq q Jl(� q)2 = 12 �J 0l (�)2 +�1� l2�2� Jl(�)2� ; � > 0:When d = 2, we therefore haveZ 10 dq q Jl(�kl q)2 = 12 �1� l2�kl� Jl(�kl)2sine J 0l (�kl) = 0. From this, we see immediately thatfkl(1)2 = Jl(�kl)2R 10 dq qd�1 Jl(�kl q)2 = 2 �kl�kl � l2 :



3.1. Eigenvalues and eigenfuntions of the Laplaian in B(0; 1) 23When d > 2, we have, by de�nition of Jl(d; �) and the above formula,Z 10 dq qd�1 Jl(d; �kl q)2 = ��d2�2 ��kl2 �2�d Z 10 dq q Jl+ d�22 (�kl q)2= 12 ��d2�2 ��kl2 �2�d  J 0l+ d�22 (�kl)2 + 1� (l + d�22 )2�kl ! Jl+ d�22 (�kl)2! :But using (3.3) and the fat that J 0l (d; �kl) = 0, we haveJ 0l+ d�22 (�kl) = d� 22 �kl Jl+ d�22 (�kl);so Z 10 dq qd�1 Jl(d; �kl q)2 = 12 ��kl � l2 � l(d� 2)�kl � Jl(d; �kl)2;therefore, fkl(1)2 = 2 �kl�kl � l2 � l(d� 2) ;and this ompletes the proof.Lemma 3.1.2. For all k; l 2 N,l + d� 22 + �(k � 2) � �kl � �2 (l + d� 22 ) + �(k + 2):Proof. Let us denote by f�0k� ; k 2 Ng the list of zeros of the standard Bessel funtion J� (the�rst zero being therefore indexed by k = 0); by Theorem 1 and Lemma 2 in [9℄, we have� + �(k � 1) � �0k� � �2 � + �(k + 1):Sine Jl(d; �) is proportional to Jl+ d�22 (�) and by the interlaing property of the zeros of Besselfuntions and their derivatives (that is, if �kl are the zeros of Jl(d; �), then �k�1;l < �kl < �k+1;l),we have �0k�1;l+ d�22 � �kl � �0k+1;l+ d�22 ;so we obtain that l + d� 22 + �(k � 2) � �kl � �2 (l + d� 22 ) + �(k + 2);whih ompletes the proof.Let us end this setion with the following omment. The generalized spherial harmonisfY ml ; l 2 N; 1 � m � N(d; l)gform a Hilbertian basis of L2(Sd�1) and are the eigenfuntions of the Laplae-Beltrami operator�� on Sd�1, with orresponding eigenvalues l(l+d� 2), as mentioned before. Let us now de�neH 12 (Sd�1) as the Sobolev spae of order 12 on Sd�1 (that is, the domain of (I���) 14 in L2(Sd�1),



24 Chapter 3. Noise on a spheresee [59, p. 255℄). By the spetral deomposition of �� in the spherial harmonis, we thereforeobtain the following haraterization of H 12 (Sd�1):H 12 (Sd�1) = 8<:v =Xl2N N(d;l)Xm=1 lm Y ml ����� Xl2N N(d;l)Xm=1 (1 + l) jlmj2 <19=; ;and we equip this spae with the normkvk212 =Xl2N N(d;l)Xm=1 (1 + l) jlmj2:Interesting to us is the following relation between H1(B(0; 1)) andH 12 (Sd�1) (see [2, Thm 7.53℄):H 12 (Sd�1) = �v = 0u �� u 2 H1(B(0; 1))	 ;where 0 is the trae operator of H1(B(0; 1)) on H 12 (Sd�1), de�ned by0' = '��Sd�1 ; 8' 2 C1(B(0; 1));and further extended by ontinuity to H1(B(0; 1)). The operator 0 is ontinuous with respetto the norm k � k1 and there also exists an appliation R0 : H 12 (Sd�1) ! H1(B(0; 1)) whih isontinuous with respet to the norm k � k 12 and suh that0R0v = v; 8v 2 H 12 (Sd�1):3.2 Covariane of the noise and Sh�onberg's theoremIn order to obtain a general form for the ovariane of a Gaussian noise onentrated on thesphere Sd�1, let us �rst onsider the ase of a ontinuous ovariane. Let f : Sd�1 � Sd�1 ! Rbe a ontinuous funtion whih is assumed to be symmetri and non-negative de�nite on Sd�1,that is, mXi;j=1 i j f(x(i); x(j)) � 0; 8m � 1; 1; : : : ; m 2 R; x(1); : : : ; x(m) 2 Sd�1:This funtion f is then the ovariane of a entered Gaussian proess indexed by the elementsof Sd�1. Let us moreover assume that the noise is isotropi, that is, there exists a ontinuousfuntion g : [�1;+1℄! R suh thatmXi;j=1 i j g(x(i) � x(j)) � 0; 8m � 1; 1; : : : ; m 2 R; x(1); : : : ; x(m) 2 Sd�1; (3.4)and f(x; y) = g(x � y) for all x; y 2 Sd�1, where x � y is the Eulidean salar produt of x and yin Rd .



3.2. Covariane of the noise and Sh�onberg's theorem 25For d � 2, let us also de�ne the following generalized Legendre polynomials (see [41, x2,Lemma 4℄)Pl(d; t) = ��12�l �(d�12 )�(l + d�12 ) (1� t2) 3�d2 � ddt�l (1� t2)l+ d�32 ; l 2 N; t 2 [�1;+1℄;where � is the Gamma funtion de�ned in (3.2). Let us mention that these are simply theChebyhev polynomials when d = 2 and the standard Legendre polynomials when d = 3.Sh�onberg's theorem (see [56, Thm 1℄) states the following.Theorem 3.2.1. Let g : [�1;+1℄! R be a ontinuous funtion. Then g is non-negative de�niteon Sd�1 (in the sense of (3.4)) if and only if there exists a sequene fal; l 2 Ng of non-negativenumbers suh that Pl2N al <1 andg(t) =Xl2N al Pl(d; t); t 2 [�1;+1℄;where Pl(d; �) are the Legendre polynomials de�ned above.This theorem, similarly to the Bohner theorem onerning non-negative de�nite funtionson Rd , gives us a spetral haraterization of ontinuous non-negative de�nite funtions on thesphere Sd�1.To extend this to more general funtions f , let us mention that �S : C1(Sd�1)�C1(Sd�1)!R de�ned by�S('; ) = ZSd�1 d�(x)ZSd�1 d�(y) '(x) g(x � y)  (y); ';  2 C1(Sd�1);(where � is the uniform measure on the unit sphere Sd�1) is a semi-salar produt on C1(Sd�1)under assumption (3.4). Moreover, �S is isotropi, that is,�S(R';R ) = �S('; ); 8'; 2 C1(Sd�1);for any rotation R on the sphere Sd�1 (where R'(x) = '(R�1x) by de�nition).Considering �S instead of g allows us then to remove the ontinuity assumption on g. Inview of the preeding theorem, we will therefore onsider in the following that the ovariane ofthe noise onentrated on the sphere Sd�1 is given by�S('; ) =Xl2N al �l('; ); ';  2 C1(Sd�1);where �l('; ) = ZSd�1 d�(x)ZSd�1 d�(y) '(x) Pl(d; x � y)  (y);



26 Chapter 3. Noise on a sphereand al � 0, but the ondition Pl2N al <1 is replaed byXl2N al(1 + l)r0 <1;for some r0 > 0. Let us hek that �S('; ) < 1 for eah '; 2 C1(Sd�1). By the Cauhy-Shwarz inequality, it is suÆient to hek that �S(';') < 1 for eah ' 2 C1(Sd�1). Usingthe fat that C1(Sd�1) � \r>0Hr(Sd�1);we obtain that a funtion ' in C1(Sd�1) an be written as' =Xl2N N(d;l)Xm=1 lm Y ml ; with Xl2N (1 + l)2r N(d;l)Xm=1 jlmj2 <1; 8r > 0: (3.5)Using the following additivity property (see [41, x2, Thm 2℄):Pl(d; x � y) = jSd�1jN(d; l) N(d;l)Xm=1 Y ml (x) Y ml (y); (3.6)and the orthonormality of the spherial harmonis, we an ompute�l(';') = jSd�1jN(d; l) N(d;l)Xm=1 ����ZSd�1 d�(x) '(x) Y ml (x)����2 = jSd�1jN(d; l) N(d;l)Xm=1 jlmj2 (3.7)Sine (3.5) implies that for r0 > 0, there exists C > 0 suh that jlmj2 � C(1+l)r0 for all l;m, weobtain that �l(';') � C jSd�1j(1 + l)r0 ; 8l 2 N:This implies �nally that�S(';') =Xl2N al �l(';') � C jSd�1jXl2N al(1 + l)r0 <1;by the assumption made above, so �S is a well de�ned ovariane on C1(Sd�1).Remark 3.2.2. It would be a nie generalization of Sh�onberg's theorem to prove that everyisotropi semi-salar produt � on C1(Sd�1), with some additional ontinuity property, is ofthe form given above. In the ase of a ovariane on Rd , this extension (of the lassial Bohnertheorem) is the lassial theorem of L. Shwartz (see Theorem 4.3.1).In order to relate the partiular ovariane �S on Sd�1 de�ned above with the generalovariane �D whih was onsidered in Chapter 2 and de�ned on the entire domain D (hereequal to B(0; 1)), we de�ne �D by�D('; ) = �S �'��Sd�1 ;  ��Sd�1� ; ';  2 S(D);where S(D) is the spae of test funtions de�ned in the preeding hapter.



3.3. Expliit onditions 27Remark 3.2.3. Even if the partiular noise de�ned in the present setion satis�es all therequirements of the preeding hapter, it turns out, as already mentioned in Remark 2.3.2, thatin this ase, equation (2.4) an be reinterpreted as the weak formulation of another equationthan equation (2.1). This is beause the noise term FDt (') an be formally rewritten here asFDt (') = Z t0 dsZ�B(0;1) d�(x) _F S(s; x) '(x); ' 2 S(D);where _F S is a generalized entered Gaussian proess onentrated on the sphere �B(0; 1) = Sd�1with ovariane E ( _F S (t; x) _F S(s; y)) = Æ0(t� s) �S(x; y):Therefore, the noise term an be reinterpreted as a stohasti boundary ondition and the\lassial" equation orresponding to (2.4) would then be8>>>>>>>><>>>>>>>>:
�2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x)��u(t; x) = 0; (t; x) 2 R+ �D;�u�� (t; x) = _F S(t; x); (t; x) 2 R+ � �D;u(0; x) = u0(x); �u�t (0; x) = v0(x); x 2 D: (3.8)

This interpretation of the boundary term is the one onsidered by R. Sowers in [61℄, for the heatequation.Remark 3.2.4. Let us mention a qualitative di�erene between the behavior of the solution ofthe paraboli and the hyperboli equations, whih will be made more expliit in the followinghapters onerning the equation in Rd . For the heat equation, and beause of the regularizingproperty of the Green kernel of this equation, the solution is always regular inside the ball B(0; 1)and explodes near the boundary. On the ontrary, for the hyperboli equation, the explosion,if any, ours rather at the enter of the ball, where the inuene of the boundary noise ismaximum for one partiular time, beause of the �nite speed of propagation of the equation.3.3 Expliit onditionsIn the following, we give two expliit onditions on the oeÆients al, one neessary and onesuÆient, for the existene of a weak solution to equation (3.8).In the present setting, part (ii) of Assumption H0 of the preeding hapter an be rewrittenas Xk;l2N N(d;l)Xm=1 klm1 + �kl <1;



28 Chapter 3. Noise on a spherewhere klm = �D(eklm; eklm). The �rst step onsists therefore in rewriting the sum in the aboveexpression as Xk;l2N N(d;l)Xm=1 klm1 + �kl =Xl2N al bl;where bl depends on the eigenvalues and eigenfuntions of the Laplaian omputed in Setion3.1. This is done in the following lemma.Lemma 3.3.1. For all l 2 N, bl = jSd�1jXk2N fkl(1)21 + �kl :Proof. Let us omputeklm = �D(eklm; eklm) = �S(fkl(1) Y ml ; fkl(1) Y ml )= fkl(1)2Xn2N an �n(Y ml ; Y ml ):By de�nition of �n and the additivity property (3.6), we have�n(Y ml ; Y ml ) = jSd�1jN(d; n) N(d;n)Xp=1 ����ZSd�1 d�(x) Y ml (x) Y pn (x)����2 = jSd�1jN(d; n) Ænlsine the spherial harmonis Y ml are orthonormalized. This implies thatklm = fkl(1)2 al jSd�1jN(d; l) ;therefore, Xk;l2N N(d;l)Xm=1 klm1 + �kl = jSd�1jXl2N al  Xk2N fkl(1)21 + �kl! ;whih ends the proof.The seond step onsists in estimating the behavior of bl in l, with the help of Lemmas 3.1.1and 3.1.2.Lemma 3.3.2. There exist C1; C2 > 0 suh that for suÆiently large l,C1 al1 + l � bl � C2 al ln(1 + l)1 + l :Proof. Using Lemma 3.1.1, we obtain thatXk2N fkl(1)21 + �kl = 2Xk2N �kl1 + �kl 1�kl � l2 � l(d� 2) :Sine �kl1 + �kl 2 [12 ; 1℄



3.3. Expliit onditions 29for �kl � 1, we an remove this term from the preeding sum and study the behavior in l ofXk2N 1�kl � l2 � l(d� 2) :Let us �rst prove the lower bound. Using the right-hand side of Lemma 3.1.2, we then haveXk2N 1�kl � l2 � l(d� 2) � Xk2N 1(�2 (l + d�22 ) + �(k + 2))2= 1�2 Xk�2 1( l2 + d�24 + k)2 � 1�2 Z 12 dx 1( l2 + d�24 + x)2= 1�2 1l2 + d�24 + 2 � C1 11 + l :In order to prove the upper bound, we use the left-hand side of Lemma 3.1.2:Xk2N 1�kl � l2 � l(d� 2) � 4�20l � l2 � l(d� 2) +Xk�4 1(l + d�22 + �(k � 2))2 � l2 � l(d� 2)� 4�20l � l2 � l(d� 2) +Xk�2 1�2k2 + 2�kl� 4�20l � l2 � l(d� 2) + Z 11 dx 1�x (�x+ 2l) : (3.9)Let us onsider the �rst term of this expression; denoting by f�0k� ; k 2 Ng the list of zeros ofJ 0� and using (3.3), we obtain for d > 2:�0l �l!1 �00;l+ d�22 ;and �0l = �00l by de�nition when d = 2. By [1, 9.5.16℄), there exists now  �= 0:80861 > 0 suhthat �00� ��!1 � +  � 13 ;therefore, 1�20l � l2 � l(d� 2) �l!1 1(l + d�22 +  (l + d�22 ) 13 )2 � l2 � l(d� 2) �l!1 Cl 43 :Computing now the seond term in (3.9) by simple element deomposition givesZ 11 dx 1�x (�x+ 2l) = 12�l ln xx+ 2l� ! �����11 = ln(1 + 2l� )2�l � C2 ln(1 + l)1 + l ;whih dominates Cl 43 for suÆiently large l, so the onlusion follows.We an now state the following theorem, whih is a reformulation of Theorems 2.5.3 and2.5.4 in the present setting.



30 Chapter 3. Noise on a sphereTheorem 3.3.3. Let (u0; v0) 2 L2(B(0; 1)) �H�1(B(0; 1)). IfXl2N al ln(1 + l)1 + l <1; (3.10)then there exists a unique weak solution u of equation (3.8) suh that E (ku(t)k20 ) < 1, forall t 2 R+ . On the other hand, if there exists a weak solution u to equation (3.8) suh thatE (ku(t0)k20) <1, for some t0 > 0, thenXl2N al1 + l <1: (3.11)Proof. Let us �rst prove the suÆieny of (3.10). By Theorem 2.5.3, we simply have to hekthat this ondition implies parts (i) and (ii) of Assumption H0 of the preeding hapter. Bythe omment made at the end of Setion 3.1, we see that �D is ontinuous with respet to theH1-norm on B(0; 1) if and only if �S is ontinuous with respet to the H 12 -norm on Sd�1. Letus hek the latter. (3.10) ertainly implies that there exists C > 0 suh thatal � C (1 + l); 8l 2 N:Let then ' 2 C1(Sd�1); as already mentioned in this hapter, ' an be written as' =Xl2N N(d;l)Xm=1 lm Y ml ; where k'k212 =Xl2N (1 + l)N(d;l)Xm=1 jlmj2 <1:By (3.7), we have �S(';') = Xl2N al jSd�1jN(d; l) N(d;l)Xm=1 jlmj2� C jSd�1jXl2N (1 + l)N(d;l)Xm=1 jlmj2= C jSd�1j k'k212 ;where we have used the above estimate on al and the fat that N(d; l) � 1 for all l 2 N. Sopart (i) of assumption H0 is satis�ed. Part (ii) of this assumption is then a diret onsequeneof ondition (3.10), Lemmas 3.3.1 and the upper bound in Lemma 3.3.2.On the other hand, in order to show the neessity of ondition (3.11), we use Theorem 2.5.4,whih states the neessity of part (ii) of AssumptionH0. By Lemma 3.3.1 and the lower bound inLemma 3.3.2, we obtain diretly the neessity of ondition (3.11), so the theorem is proven.Remark 3.3.4. The di�erene between onditions (3.10) and (3.11) omes from the estimate onthe zeros of Bessel funtions of Lemma 3.1.2. Sine this estimate seems to be the best availableamong uniform estimates in k and l, it seems diÆult to �ll in the gap and deide whih of the two



3.3. Expliit onditions 31onditions (3.10) and (3.11) is optimal. Still, one an say something more about ondition (3.11).By the proof of the preeding theorem, we see that this ondition implies that �S is ontinuouswith respet to the H 12 -norm, and this in turn implies that there exists QS 2 L(H 12 (Sd�1)), thespae of linear ontinuous operators on H 12 (Sd�1), suh that�S('; ) = h';QS i 12 ; 8'; 2 C1(Sd�1):But ondition (3.11) then simply says that QS 2 L1(H 12 (Sd�1)), the spae of trae-lass linearoperators on H 12 (Sd�1), that is, Xn2Nhgn; QSgni 12 <1;where fgn; n 2 Ng is any Hilbertian basis of H 12 (Sd�1).Condition (3.11) an therefore be expressed in a general way whih ould be adapted to anoise onentrated on a boundary with a di�erent shape. It then seems to be more natural than(3.10) (and so the lower bound in Lemma 3.1.2 is perhaps not optimal). In Appendix C, we willsee that in the ase of a noise onentrated on one side of a hyperube, we obtain a neessaryand suÆient ondition whih an be expressed in the same general way as ondition (3.11).Remark 3.3.5. Following Remark 2.5.6 of the preeding hapter, we see that if the solution uof equation (2.4) would take its values in H1(B(0; 1)), then ondition (2.20) would be satis�ed,whih an be rewritten in the present ase asXk;l2N N(d;l)Xm=1 klm <1:By the preeding alulations, we haveXk;l2N N(d;l)Xm=1 klm = jSd�1jXl2N al  Xk2N fkl(1)2! ;and sine the term in parentheses is never �nite, this allows us to onlude that this ondition isnever satis�ed, so there also never exists a solution with values in H1(B(0; 1)), when the noiseunder onsideration is a boundary noise.Remark 3.3.6. Now that we have obtained an expliit ondition whih guarantees the existeneof a solution u with values in L2(B(0; 1)), we ould onsider non-linear equations of the sametype, following the general theory of G. Da Prato and J. Zabzyk. For the heat equation, thishas been already studied in [34℄. However, note that it is impossible to onsider non-linearterms of the form g(u(t; x)) _F S(t; x), sine the noise _F S is onentrated on the boundary butthe solution u is not well de�ned on that boundary.



32 Chapter 3. Noise on a sphere3.4 Reformulation of the neessary ondition in the ase d = 2We onsider here the ase d = 2, that is, the linear hyperboli equation with two spae dimensionsdriven by noise onentrated on the unit irle S1. Sine S1 is a group, this ase is speial andwe an therefore use Fourier analysis tehniques to reformulate ondition (3.11). In order to dothis, one needs a further assumption on the ovariane �S . Let us �rst reall that this ovarianeis given by �S('; ) = Xl2N al ZS1 d�(x)ZS1 d�(y) '(x) Pl(x � y)  (y)= Xl2N al Z ��� d�x Z ��� d�y '(�x) os(l(�x � �y))  (�y)= Xl2N al Z ��� d� os(l�)Z ��� d�x '(�x)  (�x � �);by the hange of variable � = �x � �y. This an be rewritten as�S('; ) =Xl2N al Z ��� d� os(l�) (' � ~ )(�);where (' �  )(�) = Z ��� d�0'(�0)  (� � �0);is the onvolution produt on S1 and ~ (�) =  (��). The map' 7!Xl2N al Z ��� d� os(l�) '(�); ' 2 C1(S1);de�nes a distribution on S1 (see [57, Chap. VII, xI℄). Let us now assume that this distributionis non-negative. By the fundamental theorem of Radon-Riesz (see for example [32, Chap. II,Thm 2.2℄), there exists therefore a non-negative Borel measure � on S1 suh thatZ ��� �(d�) '(�) =Xl2N al Z ��� d� os(l�) '(�); 8' 2 C1(S1):We now have the following reformulation of ondition (3.11) as a ondition on the measure �.Proposition 3.4.1. If ondition (3.11) is satis�ed, thenZ ��� �(d�) ln� 1j�j� <1: (3.12)This ondition is atually a ondition on the integrability of � near zero, as are the onditionsobtained for Gaussian noises on Rd in the following hapters. Note that sine we have proventhat (3.11) is a neessary ondition, but not that it is a suÆient one, there would be littleinterest in onsidering the onverse impliation.



3.4. Reformulation of the neessary ondition in the ase d = 2 33Moreover, note that if �(d�) = f(j�j) d�, with f a ontinuous funtion on ℄0; �℄, ondition(3.12) simply reads Z �0 d� f(�) ln�1�� <1:Proof. Set h(�) = ln� 1j�j� = 02 + Xl2N� l os(l�); � 2 [��; �℄nf0g:Note that sine h belongs to L2(��; �), the above Fourier series onverges also in L2(��; �).Moreover, omputing the oeÆient l gives, for l 2 N� ,l = 2� Z �0 d� ln�1�� os(l�)= 2� ln�1�� sin(l�)l ����0 + 2� Z �0 d� sin(l�)l�= 2�l Z l�0 du sin(u)u ;by integration by parts and hange of variable u = l�. SineZ l�0 du sin(u)u !l!1 �2 ;we obtain that l � 1l as l!1. We therefore haveXl2N al1 + l <1 if and only if Xl2N al l <1:But this last ondition implies, by the dominated onvergene theorem, thatlimt#0 Xl2N al l e�lt <1: (3.13)Let us now de�ne, for t > 0, t(�) = 1� + 2� Xl2N� e�lt os(l�)= 1� sinh(t)osh(t)� os(�) ; � 2 [��; �℄;by a diret alulation. It is a non-negative funtion on [��; �℄ and sine e�lt ! 1, limt#0  t = Æ0.Let us now de�ne 't(�) = (h �  t)(�); � 2 [��; �℄:By Parseval's identity, 't(�) = 0 + 2Xl2N� l e�lt os(l�); � 2 [��; �℄;



34 Chapter 3. Noise on a sphereand belongs to C1(S1), for all t > 0, sine the oeÆients l e�lt are rapidly dereasing in l.Moreover,Z �0 �(d�) 't(�) =Xl2N al Z ��� d� os(l�) 't(�) = �  a0 0 +Xl2N� al l e�lt! : (3.14)Using now (3.13), (3.14) and Fatou's lemma, we obtain that1 > limt#0 Z ��� �(d�) 't(�) � Z ��� �(d�) lim inft#0 't(�);and sine limt#0 't(�) = ln�1�� ; 8� 2 [��; �℄nf0g;this proves the result.3.5 Noise on a sphere of lower radiusLet us turn bak to the beginning of this hapter, but assume now that the noise is onentratedon a sphere of lower radius r0 2 ℄0; 1[, therefore interior to the domain B(0; 1). The preedinganalysis an also be applied to this ase and the hanges are the following. The general formfor the ovariane of the noise is �S('; ) =Xl2N al �l('; );where �l('; ) = ZS(r0) d�(x)ZS(r0) d�(y) '(x) Pl�d; x � yr20 �  (y);and the al and Pl are the same as before and S(r0) is the sphere of radius r0. The ovariane�D is related to �S by the following:�D('; ) = �S �'��S(r0);  ��S(r0)� ; ';  2 S(D):Performing the same alulations as before, we obtain thatklm = �D(eklm; eklm) = fkl(r0)2 al jSd�1jN(d; l) ;where (see Lemma 3.1.1)fkl(r0)2 = 2 �kl�kl � l2 � l(d� 2) �Jl(d; �kl r0)Jl(d; �kl) �2 :Therefore, the following ondition is satis�ed:Xk;l2N N(d;l)Xm=1 klm1 + �kl <1;



3.5. Noise on a sphere of lower radius 35if and only if Xl2N al Xk2N 1�kl � l2 � l(d� 2) �Jl(d; �kl r0)Jl(d; �kl) �2! <1:Sine Jl(d; r) �r!1 os(r � l�2 � �4 )pr ;(see formula 9.2.1 in [1℄), we obtain that the term�Jl(d; �kl r0)Jl(d; �kl) �2osillates between 0 and 1r0 as k !1. It is therefore diÆult to deide whether or not it hangesthe behavior in l of the sumXk2N 1�kl � l2 � l(d� 2) �Jl(d; �kl r0)Jl(d; �kl) �2 ;ompared to the ase where r0 = 1 studied before. Our guess is that the behavior in l does nothange, and therefore that the onlusion remains the same, but no expliit alulation has beenmade in order to hek this point.



36 Chapter 3. Noise on a sphere



Chapter 4Preliminaries for the study in R d
4.1 Tempered distributions and Fourier transformFix d a positive natural number and let us introdue the following notations.- Bb(Rd) denotes the set of bounded Borel subsets of Rd .- For r > 0 and a 2 Rd , B(a; r) denotes the ball of enter a and radius r in Rd .- C10 (Rd) denotes the spae of omplex-valued C1 funtions on Rd with ompat support.- S(Rd ) denotes the spae of omplex-valued C1 funtions on Rd with rapid derease.- OM (Rd) denotes the spae of omplex-valued C1 funtions on Rd with polynomial growth.- E 0(Rd) denotes the spae of distributions with ompat support on Rd .- S 0(Rd) denotes the spae of tempered distributions on Rd (whih is the dual of S(Rd)).- O0C(Rd) denotes the spae of distributions with rapid derease on Rd (whih is not the dual ofOM (Rd )).- F' denotes the Fourier transform of ' 2 S(Rd), whih is de�ned byF'(�) = ZRd dx '(x) ei��x; � 2 Rd ;and we have the following Fourier inversion formula (f. [57, formula (VII,2;3)℄):F�1'(�) = 1(2�)d F'(��); 8� 2 Rd : (4.1)- FT denotes the Fourier transform of T 2 S 0(Rd), whih is de�ned by hFT; 'i = hT;F'i for37



38 Chapter 4. Preliminaries for the study in Rd' 2 S(Rd ). By [57, Chap. VII, Thm XV℄, we haveT 2 O0C(Rd) if and only if FT 2 OM (Rd ): (4.2)- ' �  denotes the onvolution produt of '; 2 S(Rd ), whih is de�ned by(' �  )(x) = ZRd dy '(y)  (x� y); x 2 Rd :- S � T denotes the onvolution produt of S 2 O0C(Rd ) and T 2 S 0(Rd); it belongs in general toS 0(Rd ), and it belongs to S(Rd ) if T 2 S(Rd); moreover, by [57, Chap. VII, Thm XV℄, we havethe following property: F(S � T ) = FS � FT: (4.3)- For � 2 Rd , Æ� denotes the Dira measure at point � and �� the funtion de�ned by ��(x) = ei��x,x 2 Rd (note that FÆ� = ��, so F�� = (2�)d Æ�� by (4.1)).- Let  2 C10 (Rd) be suh that  is non-negative, supp  � B(0; 1), RRd dx  (x) = 1 and de�ne n(x) = nd  (nx), x 2 Rd ; then ( n) is a sequene of (non-negative and ompatly supported)approximations of the Dira measure Æ0 in the sense that  n !n!1 Æ0 in S 0(Rd ). Moreover, forall � 2 Rd , F n(�) !n!1 1 and jF n(�)j � 1 for all n.Let us also mention the two following fats.- If T 2 S 0(Rd) is non-negative (in the sense that T (') � 0 for all ' � 0), then it is also anon-negative measure on Rd (see [57, Chap. I, Thm V℄).- If � is a signed Borel measure on Rd with total variation measure j�j whih is moreover assumedto be tempered, that is, there exists r > 0 withZRd j�j(d�)(1 + j�j)r <1;then � 2 S 0(Rd ) (see [57, Chap. VII, Thm VII℄). By extension, we will all � itself a temperedmeasure.4.2 Sobolev spaesFor � 2 R, let us denote by H�(Rd ) the frational Sobolev spae of order � on Rd , whih is theset of u 2 S 0(Rd ) whose Fourier transform Fu belongs to L2(Rd ; (1 + j�j2)�d�) (see for example[59, p. 251℄ for an overview of the properties that follow). We de�ne the following salar produton H�(Rd ): hu; vi� = ZRd d� (1 + j�j2)� Fu(�) Fv(�); (4.4)



4.3. Gaussian noises on Rd and their spetral measure 39and denote its orresponding norm k�k� . Note that for � = 0, H�(Rd ) is the usual spae L2(Rd ),whih we identify to its dual.Let n 2 N. We have the following inlusions:S(Rd ) � : : : � Hn(Rd ) � : : : � L2(Rd) � : : : � H�n(Rd ) � : : : � S 0(Rd)and S(Rd ) = \n2NHn(Rd ); S 0(Rd ) = [n2NH�n(Rd ):For m > n + d2 , there is an Hilbert-Shmidt imbedding of Hm(Rd ) into Hn(Rd ), whih meansthat for any a Hilbertian basis f'k; k � 1g of Hm(Rd ), we haveXk�1 k'kk2n <1: (4.5)Moreover, note that the following norm on H�n(Rd):jjjujjj�n = sup'2Hn(Rd);'6=0 jhu; 'ijk'kn ; (4.6)is equivalent to k � k�n, so H�n(Rd) is the dual spae of Hn(Rd ).4.3 Gaussian noises on Rd and their spetral measureIn this setion, we present some general onsiderations on spatially homogeneous Gaussian noiseson Rd , whih will be used in Chapters 6 to 8. Formally, suh a noise is a generalized enteredGaussian proess _F = f _F (x); x 2 Rdg whose ovariane is given byE( _F (x) _F (y)) = �(x� y); x; y 2 Rd ;where � is a non-negative de�nite distribution on Rd . Sine _F (x) is not well de�ned for �xedx 2 Rd , we will rather onsider in the following the proess F = fF ('); ' 2 S(Rd )g whih isrelated to _F by the informal relationshipF (') = ZRd dx _F (x) '(x); ' 2 S(Rd ): (4.7)In order for F to be well de�ned, we need to assume that the ovariane � belongs to S 0(Rd)and that it is non-negative de�nite on Rd , that is,�(' � ~') � 0; 8' 2 S(Rd); (4.8)where ~'(x) = '(�x), x 2 Rd . By the Kolmogorov extension theorem (see [42, Prop. 3.4℄), thereexist a probability spae (
;G;P) and a entered Gaussian proess F = fF ('); ' 2 S(Rd )gde�ned on this spae, whose ovariane is given byE(F (') F ( )) = �(' � ~ ); ';  2 S(Rd):



40 Chapter 4. Preliminaries for the study in RdIf one wants to analyze the properties of the ovariane �, it is often useful to refer to its spetralmeasure �, whih is de�ned in the following generalization of the Bohner theorem due to L.Shwartz (see [57, Chap. VII, Thm XVIII℄):Theorem 4.3.1. Let � 2 S 0(Rd ). Then � is non-negative de�nite on Rd if and only if thereexists a non-negative tempered Borel measure � on Rd suh that � = F�.Note moreover that when the distribution � is real-valued (in the sense that �(') 2 R forall real-valued ' 2 S(Rd )), then � is symmetri on Rd , and reiproally.In the present work, we onsider partial di�erential equations driven by noises whose spatialomponent is a proess of the form mentioned above. Our study will lead to onditions on thespetral measure of the noise whih ensure some regularity of the solution of the equation. Atypial ondition will be ZRd �(d�)(1 + j�j2)� <1; (4.9)where � 2 [0; 1℄. We want here to make some omments on this ondition, in order to interpretit as ondition on the ovariane �.4.4 Reformulation of the onditions on the spetral measureNote that ondition (4.9) states that � needs to derease suÆiently rapidly at in�nity (that is,there are not too many high frequenies in the noise), whih an be reformulated into a onditionon the integrability of the ovariane � near 0 (whih in turn means that the noise has someregularity) in the ase where � is a non-negative distribution on Rd (whih implies that it is alsoa non-negative measure on Rd ).The �rst ase that we onsider is the ase � = 0. In this ase, ondition (4.9) says that � isa �nite measure, and therefore, by the lassial Bohner theorem, it is equivalent to say that �is a uniformly ontinuous and bounded funtion on Rd .The seond ase is the ase � = 1. As mentioned in the intodution, this ase has beenstudied in [30℄ and the onlusion is that when � is assumed to be a non-negative distributionon Rd , (4.9) is equivalent to8>>>>>>>><>>>>>>>>:
no ondition on �; when d=1;ZB(0;1) �(dx) ln� 1jxj� <1; when d = 2;ZB(0;1) �(dx) 1jxjd�2 <1; when d � 3: (4.10)



4.4. Reformulation of the onditions on the spetral measure 41Let us �nally onsider the ase � 2 ℄0; 1[ and assume that � is a non-negative distribution onRd . Let us then de�ne Gd;�(x) = F�1� 1(1 + j�j2)�� (x); x 2 Rd :Sine FGd;� depends only on j�j, we have, by [58, (V,3;22)℄,Gd;�(x) = 1(2�) d2 jxj d�12 Z 10 dr r d�12 1(1 + r2)� pjxj r J d�22 (jxj r);where J� is the regular Bessel funtion of the �rst kind and of order � (see Appendix B for ade�nition). Using [46, formula I.4.23℄, we obtain that there exists a onstant Cd;� > 0 suh thatGd;�(x) = Cd;� jxj�� d2 K d2��(jxj); (4.11)where K� is the modi�ed Bessel funtion of the seond kind and of order � (see also AppendixB for a de�nition). Let us moreover de�neFd;�(y) = ZRd �(dx) Gd;�(x� y); y 2 Rd :We an now formulate the following proposition.Proposition 4.4.1. Let us assume that � is a non-negative measure on Rd . If ondition (4.9)is satis�ed, then Fd;�(0) = ZRd �(dx) Gd;�(x) <1: (4.12)On the other hand, if Fd;� is a bounded funtion on Rd (whih implies that Fd;�(0) <1), thenondition (4.9) is satis�ed.Remark 4.4.2. Note that Fd;� is non-negative de�nite, sine its Fourier transformFFd;� = F (� �Gd;�) = � � FGd;� ;is non-negative. Therefore, the assumption that Fd;� is a bounded funtion is not a partiularlystrong assumption, sine every non-negative de�nite distribution whih is ontinuous at 0 is abounded funtion by [57, Chap. VII, p. 276℄.Proof of Proposition 4.4.1. Suppose �rst that ondition (4.9) is satis�ed. We then have by thedominated onvergene theorem,1 > ZRd �(d�) 1(1 + j�j2)� = limt#0 ZRd �(d�) 1(1 + j�j2)� e�t j�j2:Let us denote pt = F�1(e�t j�j2), the heat kernel in Rd . By standard properties of the Fouriertransform, we have ZRd �(d�) 1(1 + j�j2)� e�t j�j2 = ZRd �(dx) (Gd;� � pt)(x); (4.13)



42 Chapter 4. Preliminaries for the study in Rdand Fatou's lemma tells us thatlim inft#0 ZRd �(dx) (Gd;� � pt)(x) � ZRd �(dx) Gd;�(x);sine (Gd;� � pt)(x) !t#0 Gd;�(x); 8x 6= 0:This proves the �rst statement of the theorem. In order to prove the seond one, let us assumethat Fd;� is bounded, and note that sine pt is a probability measure on Rd for all t 2 R+ , wehave supt2R+ ZRd dy pt(y) Fd;�(y) � supy2Rd Fd;�(y) <1:But on the other hand, ZRd dy pt(y) Fd;�(y) = ZRd �(dx) (Gd;� � pt)(x);by de�nition of Fd;� and Fubini's theorem. By (4.13), this expression is still equal toZRd �(d�) 1(1 + j�j2)� e�t j�j2 !t#0 ZRd �(d�) 1(1 + j�j2)� ;by the monotone onvergene theorem, so the theorem is proven. �Remark 4.4.3. In [54, Prop. 5.3℄, (4.9) and (4.12) were announed to be equivalent. But atthe end of the proof of Lemma 5.1 in [54℄, the following equality:limt#0 ZRd �(dx) (Gd;� � pt)(x) = ZRd �(dx) Gd;�(x);was laimed to be true beause of the monotone onvergene theorem and the fat that the mapt 7! e�t (Gd;� � pt)(x) = C� Z 1t d� e�� (� � t)��1 p�(x)is monotone. If this map is indeed inreasing as t # 0 when � = 1 (whih yields the harater-ization (4.10)), this is no longer the ase for � 2 ℄0; 1[, so the proof of Proposition 5.3 in [54℄seems to be inomplete.Let us now make (4.12) more expliit. Sine � is a tempered measure on Rd and usingestimate (B.1), we see that the integral over B(0; 1) in (4.12) is always �nite, so we an omitthis part of the integral. On the other hand, using estimate (B.2), we obtain the followingequivalenes for ondition (4.12).- If � > d2 , then (4.12) imposes no partiular restrition on �.- If � = d2 , then (4.12) is equivalent toZB(0;1) �(dx) ln� 1jxj� <1:



4.4. Reformulation of the onditions on the spetral measure 43- If � < d2 , then (4.12) is equivalent toZB(0;1) �(dx) 1jxjd�2� <1:Remark 4.4.4. Note when � > d2 , Gd;� is ontinuous at 0 and rapidly dereasing on Rd , so itis dominated by a funtion ' 2 S(Rd ), and we therefore haveFd;�(y) � ZRd �(dx) '(x� y) = ZRd �(d�) F'(�) �y(�) � ZRd �(d�) F'(�); 8y 2 Rd ;whih in turn implies that Fd;� is bounded and therefore that (4.9) holds for all � by Proposition4.4.1.Remark 4.4.5. When � is the Lebesgue measure on Rd (whih is the spetral measure of whitenoise on Rd , that is, the noise with ovariane � = Æ0), the integral in ondition (4.9) is equal toZRd d�(1 + j�j2)� = C Z 10 dr rd�1(1 + r2)� ;whih is �nite if and only if � > d2 . From this and Remark 4.4.4, we see that if ondition (4.9)is satis�ed for white noise, then it is satis�ed for any noise with non-negative ovariane. Inthis sense, the white noise represents the most irregular noise among noises with non-negativeovariane.Note that when �(dx) = f(jxj) dx, with f a ontinuous funtion on ℄0;1[, we have thefollowing.- If � > d2 , then (4.12) imposes no partiular restrition on f .- If � = d2 , then (4.12) is equivalent toZ 10 dr f(r) rd�1 ln�1r� <1:- If � < d2 , then (4.12) is equivalent toZ 10 dr f(r) 1r1�2� <1:In order to be omplete, let us �nally give a stronger but more expliit suÆient onditionon � whih implies (4.9).Proposition 4.4.6. Let us assume that � is a non-negative measure on Rd and let � � d2 . Ifthere exists  > d� 2� and C > 0 suh that�(B(a; r)) � C r ; 8a 2 Rd ; r > 0; (4.14)then Fd;� is bounded and ondition (4.9) is therefore satis�ed by Proposition 4.4.1.



44 Chapter 4. Preliminaries for the study in RdProof. Let us deompose Fd;� in two parts:Fd;�(y) = ZB(y;1) �(dx) Gd;�(x� y) + ZB(y;1) �(dx) Gd;�(x� y); y 2 Rd :By (4.11) and (B.1), we haveZB(y;1) �(dx) Gd;�(x� y) � Xn�1Z2n�1�jx�yj�"2n �(dx) C e�jx�yj� C Xn�1�(B(y; 2n)) exp(�2n�1)� C Xn�1 2n exp(�2n�1) <1;and the bound does not depend on y. Let now � < d2 . Using (B.2), we obtainZB(y;1) �(dx) Gd;�(x� y) � Xn�1Z2�n�jx�yj�2�n+1 �(dx) Cjx� yjd�2�� C Xn�1�(B(y; 2�n+1)) 2n(d�2�)� C Xn�1 2(�n+1) 2n(d�2�) <1;by the assumption made, and the bound again does not depend on y. This estimate and theprevious one prove that Fd;� is bounded when � < d2 . When � = d2 , we have, using again (B.2),ZB(y;1) �(dx) Gd;�(x� y) � Xn�1Z2�n�jx�yj�2�n+1 �(dx) C ln� 1jx� yj�� C Xn�1�(B(y; 2�n+1)) ln(2n)� C Xn�1 2(�n+1) ln(2n) <1;by the assumption made, so Fd;� is bounded also in this ase, and this ompletes the proof.Let us now onsider a lass of ovarianes for whih ondition (4.9) gives an optimal riterion.Consider that � is of the form �(dx) = dxjxj� ;where 0 < � < d (in order for � to be a well de�ned ovariane). Let us �rst make expliit asuÆient ondition whih implies ondition (4.9) by means of Proposition 4.4.6. For all r > 0,we have �(B(0; r)) = C Z r0 du ud�1�� = Cd� � rd��:For a 2 Rd suh that jaj � 2r, we have by the triangle inequality,�(B(a; r)) � �(B(0; 3r)) = C 3d��d� � rd��:



4.4. Reformulation of the onditions on the spetral measure 45Finally, for a 2 Rd suh that jaj > 2r, we have�(B(a; r)) = ZB(a;r) dxjxj� � jB(a; r)j(jaj � r)� � ~C rdr� = ~C rd��:Therefore, if � < 2� (whih is a restrition only when � < d2), then (4.14) is satis�ed, hene(4.9) by Proposition 4.4.6. On the other hand, if � � 2�, then by estimate (B.2), we haveZRd �(dx) Gd;�(x) � C ZB(0;1) dxjxj� jxjd�2� � C Z 10 drr =1;so (4.12) is not satis�ed, and neither is (4.9) by Proposition 4.4.1. For this simple lass ofovarianes, we have therefore obtained a ondition (� < 2�) equivalent to ondition (4.9).



46 Chapter 4. Preliminaries for the study in Rd



Chapter 5Linear hyperboli equation in R d
Let a; b 2 R. We are interested in solving the following stohasti linear hyperboli equation:8>>><>>>: �2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x)��u(t; x) = _F 0(t; x); (t; x) 2 R+ � Rd ;u(0; x) = u0(x); �u�t (0; x) = v0(x); x 2 Rd ; (5.1)where u0, v0 are two given distributions on Rd and _F 0 = f _F 0(t; x); (t; x) 2 R+ � Rdg is ageneralized entered Gaussian proess whose ovariane is formally given byE ( _F 0(t; x) _F 0(s; y)) = Æ0(t� s) �0(x; y);where Æ0 is the usual Dira measure on R and �0 is a non-negative de�nite measure on Rd �Rd ,in a sense that will be preised below.Note that there are three interesting partiular ases of this general equation. When a = b =0, this is simply the wave equation. When a � 0 and b = 0, this equation is the wave equationwith attenuation, also alled the telegraph equation when d = 1. And �nally, when a = 0, thisis the Klein-Gordon equation. What will appear in the following is that the values of a and bhave no impat on the hyperboli nature of the equation (that is, the singularity of the Greenkernel and the �nite speed of propagation of the equation), therefore on the problems studiedin the following. On the other hand, Appendix D gives an example of a higher order equationwhose nature hanges depending on the oeÆients.For tehnial reasons (see Remark A.1.1), we will restrit ourselves to the two ases whereeither d � 3 and a, b are any real numbers, or d is any positive natural number and a = b = 0.5.1 Gaussian noiseSine _F 0(t; x) is not well de�ned for �xed (t; x) 2 R+ �Rd , we will proeed as in Setion 4.3 andrather onsider in the following the proess F 0 = fF 0t ('); t 2 R+ ; ' 2 S(Rd)g whih is related47



48 Chapter 5. Linear hyperboli equation in Rdto _F 0 by the informal relationshipF 0t (') = Z t0 dsZRd dx _F 0(s; x) '(x); t 2 R+ ; ' 2 S(Rd): (5.2)In order to de�ne F 0 rigorously, we need some preise assumptions on the ovariane �0: weassume that it is a signed Borel measure on Rd � Rd (with total variation measure j�0j) whihis also non-negative de�nite on Rd � Rd , that is,mXi;j=1 i j �0(Ai �Aj) � 0; 8m � 1; 1; : : : ; m 2 C ; A1; : : : ; Am 2 Bb(Rd);whih implies that �0(�; �) is hermitian (see [6, p. 68℄), hene symmetri, sine it is a real-valuedmeasure. Furthermore, we assume that there exists a non-negative Borel measure �0 on Rd�Rd ,whih is also non-negative de�nite, whih dominates j�0j, that is,j�0j(A�B) � �0(A�B); 8A;B 2 Bb(Rd );and whih is moreover tempered, that is, there exists r > 0 suh thatZRd�Rd �0(dx; dy)(1 + jxj+ jyj)r <1:Note that in general, j�0j is not non-negative de�nite, even if �0 is; that is why we need anon-negative de�nite dominating measure �0. These assumptions are used in the de�nition ofthe stohasti integral with respet to the noise F 0 (see Setion 5.3). In Chapter 6, we will seeexamples of ovarianes whih satisfy suh assumptions.By the Kolmogorov extension theorem (see [42, Prop. 3.4℄), there exist a probability spae(
;G;P) and a entered Gaussian proess F 0 = fF 0t ('); t 2 R+ ; ' 2 S(Rd )g de�ned on thisspae, whose ovariane is given byE (F 0t (') F 0s ( )) = (t ^ s)ZRd�Rd �0(dx; dy) '(x)  (y); 8t; s 2 R+ ; ';  2 S(Rd ): (5.3)We study now the joint regularity in time and spae of this proess. For this, we need thefollowing two lemmas.Lemma 5.1.1. For all t 2 R+ , F 0t (�) is a random linear funtional on S(Rd ), that is, for all� 2 R and '; 2 S(Rd ), we haveF 0t (�'+  ) = � F 0t (') + F 0t ( ); P� a:s: (5.4)and for all T > 0, there exists CT > 0 and n 2 N suh thatE(jF 0t (')� F 0s (')j2) � CT k'k2n jt� sj; 8s; t 2 [0; T ℄; ' 2 S(Rd); (5.5)where k � kn is the Sobolev norm de�ned by (4.4).



5.1. Gaussian noise 49Proof. The �rst statement follows from formula (5.3) and the fat that the two omplex-valuedsquare integrable random variables Z1 = F 0t (�' +  ) and Z2 = � F 0t (') + F 0t ( ) are equalP � a:s: if and only if E(jZ1 j2) = E(Z1Z2) = E (jZ2 j2). For the seond, note that sine �0 is asigned tempered Borel measure on Rd � Rd , it is in S 0(Rd � Rd) and sineS 0(Rd � Rd ) = [n2NH�n(Rd � Rd );there exist n 2 N and C > 0 suh thatZRd�Rd �0(dx; dy) '(x) '(y) � C k'
 'kn; 8' 2 S(Rd):Moreover, using de�nition (4.4), we see thatk'
 'k2n = ZRd�Rd d� d� (1 + j�j2 + j�j2)n jF'(�)j2 jF'(�)j2� ZRd d� (1 + j�j2)n jF'(�)j2 ZRd d� (1 + j�j2)n jF'(��)j2= k'k4n:Therefore, ZRd�Rd �0(dx; dy) '(x) '(y) � C k'k2n: (5.6)This implies thatE (jF 0t (') � F 0s (')j2) = jt� sj ZRd�Rd �0(dx; dy) '(x) '(y) � C k'k2n jt� sj;whih ompletes the proof.In partiular, the preeding lemma implies that for all T > 0, there exists CT > 0 and n 2 Nsuh that E (jF 0t (')j2) � CT k'k2n; 8t 2 [0; T ℄; ' 2 S(Rd ): (5.7)Remark 5.1.2. The onstant CT does atually not depend on T in the present ase. However,in the following, we will refer to properties (5.4) and (5.5) for more general proesses. That iswhy we keep the possibility for the onstant to depend on T .The following lemma is an adaptation of [62, Thm 4.1℄ in the present simple setting.Lemma 5.1.3. Let F 0 = fF 0t ('); t 2 R+ ; ' 2 S(Rd )g be a entered Gaussian proess satisfyingproperties (5.4) and (5.5) of Lemma 5.1.1. Then there exists m 2 N and a modi�ation ~F 0 ofF 0 suh that for all t 2 R+ , ~F 0t (�) 2 H�m(Rd).Proof. Fix t 2 R+ , m > n+ d2 and let f'k; k � 1g be a Hilbertian basis of Hm(Rd ). By (5.7)and (4.5), we obtain thatE 0�Xk�1 jF 0t ('k)j21A =Xk�1 E (jF 0t ('k)j2) � CtXk�1 k'kk2n <1;



50 Chapter 5. Linear hyperboli equation in Rdso the set 
1 de�ned by 
1 = 8<:! 2 
 :Xk�1 jF 0t ('k)j2 <19=;has probability one. Therefore, let us de�ne, for ' 2 S(Rd),~F 0t (') = 8>><>>: Xk�1F 0t ('k)h'k; 'im; on 
1;0; on 
1:This is well de�ned, sine by the Cauhy-Shwarz inequality, we have on 
1,������Xk�1F 0t ('k)h'k; 'im������2 �Xk�1 jF 0t ('k)j2 Xk�1 jh'k; 'imj2 =Xk�1 jF 0t ('k)j2 k'k2m <1: (5.8)It remains to show that ~F 0t satis�es the required properties. Let us therefore de�ne, for N � 1,'(N) = NXk=1'k h'k; 'im:By (5.4), we have F 0t ('(N)) = NXk=1F 0t ('k) h'k; 'im; P� a:s:;so we obtain thatE 0������F 0t (')� NXk=1F 0t ('k) h'k; 'im�����21A = E (jF 0t ('� '(N))j2)� Ct k'� '(N)k2n;by (5.7). Sine k'� '(N)k2n � k'� '(N)k2m !N!1 0;we have proven that F 0t (') =Xk�1F 0t ('k) h'k; 'im; P� a:s:This equality and the fat that P(
1) = 1 imply that ~F 0 is a modi�ation of F 0. Moreover, ~F 0takes its values in H�m(Rd) sine by (4.6) and (5.8), we havejjj ~F 0t jjj2�m = sup'2Hm(Rd);'6=0 j ~F 0t (')j2k'k2m �Xk�1 jF 0t ('k)j2 1
1 <1;whih ompletes the proof.This allows us to establish the following theorem.



5.1. Gaussian noise 51Proposition 5.1.4. Let F 0 = fF 0t ('); t 2 R+ ; ' 2 S(Rd )g be a entered Gausssian proesssatisfying properties (5.4) and (5.5) of Lemma 5.1.1. Then F 0 admits a modi�ation F̂ 0 suhthat F̂ 0t (�) 2 S 0(Rd ) for all t 2 R+ and P � a:s:, for all ' 2 S(Rd), the map t 7! F̂ 0t (') isontinuous from R+ to C .Proof. The �rst statement is a diret onsequene of the preeding lemma, sine H�m(Rd ) �S 0(Rd ). In order to prove the seond, let us onsider again f'k; k � 1g, the Hilbertian basis ofH�m(Rd ) used in the proof of the preeding lemma. What we will use here is the Kolmogorovtest for Gaussian proesses with values in a Hilbert spae (see [18, Prop. 3.15℄). First note that~F 0, being the modi�ation of a Gaussian proess, is itself a Gaussian proess. Moreover, it analso be seen as a Gaussian proess with values in H�m(Rd), with trae-lass ovariane operatorQ(t), sine the following ondition is satis�ed:Tr(Q(t)) =Xk�1 E(jF 0t ('k)j2) � CtXk�1 k'kk2n <1;by (5.7) and (4.5). Moreover, we have by (4.6) and a slight adaptation of (5.8),jjj ~F 0t � ~F 0s jjj2�m = sup'2Hm(Rd);'6=0 j ~F 0t (')� ~F 0s (')j2k'k2m� Xk�1 jF 0t ('k)� F 0s ('k)j2 1
1 :Therefore, for �xed T > 0 and s; t 2 [0; T ℄, we also haveE (jjj ~F 0t � ~F 0s jjj2�m) � Xk�1 E (jF 0t ('k)� F 0s ('k)j2)� CT Xk�1 k'kk2n jt� sj;by (5.5). Sine the above sum is �nite by (4.5), Proposition 3.15 of [18℄ states that there existsa modi�ation F̂ 0 of ~F 0 suh that for all  < 12 , there exists CT; > 0 whih satis�es P� a:s:jjjF̂ 0t � F̂ 0s jjj�m � CT; jt� sj ; 8s; t 2 [0; T ℄;so jF̂ 0t (')� F̂ 0s (')j � CT; k'km jt� sj ; 8s; t 2 [0; T ℄; ' 2 S(Rd ):In partiular, this implies that P � a:s:, for all ' 2 S(Rd), the map t 7! F̂ 0t (') is ontinuousfrom R+ to C , whih ends the proof.Remark 5.1.5. The preeding proposition has been expressed in a general way whih will beused later on. Note however that the proess F̂ 0 has the more spei� property that P�a:s:, forall ' 2 S(Rd ), the proess fF̂ 0t ('); t 2 R+g is a ontinuous Brownian motion with ovarianeparameter ZRd�Rd �0(dx; dy) '(x) '(y):In the following, we will onsider impliitely the modi�ation F̂ 0.



52 Chapter 5. Linear hyperboli equation in Rd5.2 Weak formulation of the equationNow that we have a preise de�nition of the Gaussian noise under onsideration, we also needto give a rigorous meaning to equation (5.1). We therefore proeed as in Setion 2.3. Settingformally v(t; x) = �u�t (t; x), we obtain the following two formal equations, after integration in tof equation (5.1):8>>>><>>>>: u(t; x) = u0(x) + Z t0 ds v(s; x);v(t; x) = v0(x) + Z t0 ds (�2a v(s; x)� b u(s; x) + �u(s; x) + _F 0(s; x)):We now multiply both sides of these two equations by a test funtion ' 2 S(Rd ) and integratethem in x, with two more integrations by parts in x of the term with the Laplaian. Assumingthat (u0; v0) 2 S 0(Rd) � S 0(Rd ), onsidering that (u; v) takes its values in S 0(Rd ) � S 0(Rd)and using the informal relationship (5.2) gives then the following rigorous formulation: a weaksolution of equation (5.1) is a proess (u; v) = f(u(t); v(t)); t 2 R+g with values in S 0(Rd) �S 0(Rd ) suh that P � a:s:, for all ' 2 S(Rd ), the map t 7! (hu(t); 'i; hv(t); 'i) is ontinuous onR+ and satis�es, for all t 2 R+ ,8>>>><>>>>: hu(t); 'i = hu0; 'i + Z t0 ds hv(s); 'i;hv(t); 'i = hv0; 'i+ Z t0 ds (�2a hv(s); 'i � b hu(s); 'i + hu(s);�'i) + F 0t ('): (5.9)Moreover, we say that the weak solution of equation (5.1) is unique if for any two solutions(u(1); v(1)) and (u(2); v(2)),hu(1)(t); 'i = hu(2)(t); 'i and hv(1)(t); 'i = hv(2)(t); 'i;for all t 2 R+ and ' 2 S(Rd), P� a:s:Remark 5.2.1. As for the solution of equation (2.4), we will often be loosely speaking of u,instead of (u; v), for the solution of equation (5.9).5.3 Stohasti integralIn order to obtain an expliit expression for the solution of (5.9), we shall de�ne a stohastiintegral with respet to the noise F 0. This setion refers diretly to [62, Chap. 2℄, so somedetails will be omitted. Consider the augmented natural �ltration of the noise, de�ned byG0t = �fF 0s ('); s 2 [0; t℄; ' 2 S(Rd )g _N ; t 2 R+ ;where N is the lass of P-null sets in 
. The noise F 0 extends to a worthy martingale measureM0 = fM0t (A); G0t ; t 2 R+ ; A 2 Bb(Rd )g (see [62, Chap. 2℄ for a preise de�nition; in short,M0



5.3. Stohasti integral 53is a martingale in t and a random measure in A) with ovariation measure Q0 and dominatingmeasure K0 given respetively byQ0([0; t℄ �A�B) = t �0(A�B) and K0([0; t℄ �A�B) = t �0(A�B);for t 2 R+ and A;B 2 Bb(Rd ). Note that the existene of the dominating measure K (\domi-nating" in the sense that jQ0([0; t℄ �A�B)j � K0([0; t℄ �A�B)) is a neessary ondition forthe stohasti integral to be well de�ned (and also the reason why we say that M0 is a \worthy"martingale measure).We an now de�ne the spae E0 of elementary integrands byE0 = (� : R+ � Rd � 
! C ����� �(t; x; !) = 1℄a; b℄(t) 1A(x) X(!); where 0 � a � b;A 2 Bb(Rd ) and X is a bounded G0a-measurable random variable):For an element of E0, its stohasti integral with respet to the martingale measureM0 is de�nedby (� �M0)t(B) = X (M0t^b(A \B)�M0t^a(A \B)); t 2 R+ ; B 2 B(Rd):We have the following isometry:E ((� �M0)t(B) ( �M0)t(C)) = h� 1B ;  1Cit;0; 8�;  2 E0; B;C 2 B(Rd); (5.10)where h� 1B ;  1Cit;0 = E �Z t0 dsZB�C �0(dx; dy) �(s; x)  (s; y)� : (5.11)Let us moreover denote by k � kt;0 the semi-norm indued by the semi-salar produt h�; �it;0.We extend now the stohasti integral (� �M0)t(B) to more general integrands. Let us �rstonsider linear ombinations of elementary integrands. For� = mXi=1 i �i; where n � 1; 1; : : : ; m 2 C ; �1; : : : ; �m 2 E0;we de�ne (� �M0)t(B) = mXi=1 i (�i �M0)t(B); t 2 R+ ; B 2 B(Rd):One an hek that this de�nition is orret, sine it does not depend on the deompositionhosen for �. Moreover, the stohasti integral is a random linear funtional in � (in the senseof (5.4)) and the isometry property (5.10) remains satis�ed. Let then P0 be the preditable�-�eld generated by the funtions of E0, and term preditable funtions the funtions whih are



54 Chapter 5. Linear hyperboli equation in RdP0-measurable (note that any Borel-measurable funtion � : R+ � Rd ! C is a deterministipreditable funtion). For t 2 R+ and preditable � : [0; t℄ � Rd � 
! C , let us de�nek�k2t;+;0 = E �Z t0 dsZRd�Rd �0(dx; dy) j�(s; x) �(s; y)j� :Moreover, setHt;+;0 = (� : [0; t℄ � Rd � 
! C ����� � is preditable and k�kt;+;0 <1):By lassial arguments (see [62, Chap. 2℄), the stohasti integral (� �M0)t(B) an be extendedto elements of Ht;+;0. Furthermore, both the a.s. linearity and the isometry property (5.10)remain satis�ed. In the following, we will adopt the notation (� �M0)t = (� �M0)t(Rd ).Note also that the stohasti integral (� �M0)t of a deterministi integrand, being the limitin L2(
) of Gaussian variables, is itself Gaussian, and that in a similar manner, the proess(� �M0) = f(� �M0)t; t 2 R+g is a Gaussian proess. Furthermore, we have the followingisometry for deterministi integrands � and  :E ((� �M0)t ( �M0)t) = Z t0 dsZRd�Rd �0(dx; dy) �(s; x)  (s; y): (5.12)The following stohasti Fubini theorem will be used to show the existene of a solution toequation (5.9); a similar theorem an be found in [62, Chap. 2℄. The present version is givenhere only for ontinuous deterministi integrands, sine this is all we need in the following. For� : R+ � R+ � Rd ! C and s 2 R+ , let us de�ne �s(r; x) = �(s; r; x), r 2 R+ , x 2 Rd .Theorem 5.3.1. If � : R+ � R+ � Rd ! C is ontinuous, t 2 R+ andZ t0 dsZ t0 dr ZRd�Rd �0(dx; dy) j�(s; r; x) �(s; r; y)j <1;then Z t0 ds (�s �M0)t = ( t �M0)t; P� a:s:; (5.13)where  (t; r; x) = Z t0 ds �(s; r; x).Proof. Let us introdue the following notation:h�1; �2it;+;0 = Z t0 dsZRd�Rd �0(dx; dy) �1(s; x) �2(s; y);Sine �0 is non-negative de�nite, this is a semi-salar produt and the following Cauhy-Shwarzinequality is satis�ed: h�1; �2it;+;0 � k�1kt;+;0 k�2kt;+;0: (5.14)



5.3. Stohasti integral 55Let us then show that  t belongs to Ht;+;0: it is learly ontinuous sine � is, andk tk2t;+;0 = Z t0 dsZRd�Rd �0(dx; dy) j t(s; x)j j t(s; y)j� Z t0 dsZRd�Rd �0(dx; dy)Z t0 dr Z t0 dq j�(r; s; x)j j�(q; s; y)j= Z t0 dr Z t0 dq hj�rj; j�qjit;+;0� �Z t0 dr k�rkt;+;0�2� t Z t0 dr k�rk2t;+;0= t Z t0 dr Z t0 dsZRd�Rd �0(dx; dy) j�(r; s; x)j j�(r; s; y)j <1:In order to show that both sides of (5.13) are equal P � a:s:, let us proeed as in the proof ofTheorem 2.5.2 and omputeE  ����Z t0 dr (�r �M0)t����2! = Z t0 dr Z t0 dq E �(�r �M0)t (�q �M0)t�= Z t0 dr Z t0 dq Z t0 dsZRd�Rd �0(dx; dy) �(r; s; x) �(q; s; y)= Z t0 dsZRd�Rd �0(dx; dy)  (t; s; x)  (t; s; y)= E ���( t �M0)t��2� :Furthermore,E �Z t0 dr (�r �M0)t ( t �M0)t� = Z t0 dr E �(�r �M0)t ( t �M0)t�= Z t0 dr Z t0 dsZRd�Rd �0(dx; dy)  (t; s; y) �(r; s; y)= Z t0 dsZRd�Rd �0(dx; dy)  (t; s; y)  (t; s; y)= E ���( t �M0)t��2� :Sine this ovariane is equal to the two varianes above, the proof is omplete.We will use the following speial ase of the preeding theorem.Corollary 5.3.2. Let D = f(s; r; x) 2 R+ � R+ � Rd : s � rg (for � : D ! C , s 2 R+ , notethat �s is de�ned on [0; s℄� Rd ). If � : D ! C is Borel-measurable, t 2 R+ andZ t0 dsZ s0 dr ZRd�Rd �0(dx; dy) j�(s; r; x) �(s; r; y)j <1;



56 Chapter 5. Linear hyperboli equation in Rdthen Z t0 ds (�s �M0)s = ( t �M0)t; P� a:s:;where  (t; r; x) = Z tr ds �(s; r; x).Proof. Replae �(s; r; x) by �(s; r; x) � 1s�r in Theorem 5.3.1.5.4 Properties of the Green kernelLet G be the solution of�2G�t2 + 2a �G�t + b G��G = 0; G(0) = 0; �G�t (0) = Æ0: (5.15)G is alled the Green kernel of equation (5.1). We need to study arefully its properties beforestudying equation (5.1). Note that in the following, the dependene on a or b of any funtion(like the Green kernel or a \onstant") will be omitted in order to simplify the notation.From the expliit expressions of G listed in Appendix A, we dedue that for d � 3 andarbitrary a, b, or arbitrary d � 1 and a = b = 0, G satis�es the following property: forall t 2 R+ , G(t; �) is a �nite order distribution with ompat support on Rd and there existK(t) > 0 and N 2 N suh thatsups2[0;t℄ jG(s; ')j � K(t) Xjnj�N supx2B(0;t) j�n'(x)j; 8' 2 S(Rd ); (5.16)where n = (n1; : : : ; nd) denotes a multi-index in Nd and jnj = n1 + � � �+ nd.On the other hand, we dedue easily from (5.15) that the Fourier transform of G in x satis�es8>>><>>>: �2FG�t2 (t; �) + 2a �FG�t (t; �) + (b+ j�j2) FG(t; �) = 0; t 2 R; � 2 Rd ;FG(0; �) = 0; �FG�t (0; �) = 1; � 2 Rd : (5.17)Solving this ordinary di�erential equation in t gives the following expression for FG, whih isvalid for every positive natural number d:FG(t; �) = 8>>>>>>><>>>>>>>: e�at sin�tpj�j2 + b� a2�pj�j2 + b� a2 ; if j�j2 > a2 � b;e�at t; if a2 � b � 0 and j�j2 = a2 � b;e�at sinh�tpa2 � b� j�j2�pa2 � b� j�j2 ; if a2 � b > 0 and j�j2 < a2 � b: (5.18)Note that, as for (2.6), the �rst of these three expressions ontains the other two. From these,we also dedue that FG is a real-valued and ontinuous funtion on R�Rd , whih is symmetri



5.4. Properties of the Green kernel 57and in�nitely di�erentiable in �, sine for all t 2 R, FG(t; �) is an analyti funtion on Rd , whoseTaylor series is given byFG(t; �) = e�at Xn2N (�1)n t2n+1(2n+ 1)! (j�j2 + b� a2)n; 8� 2 Rd ;and sine FG(t; �) and all its derivatives vanish at in�nity, FG(t; �) 2 OM (Rd ). Moreover, FGsatis�es the following properties: for all T > 0, there exits C0(T ) > 0 suh thatjFG(t; �)j � C0(T ); 8t 2 [0; T ℄; � 2 Rd ; (5.19)and jFG(t; �) �FG(s; �)j � C0(T ) jt� sj; 8s; t 2 [0; T ℄; � 2 Rd : (5.20)Furthermore, we have the following estimates, whih will be used in the next hapter.Lemma 5.4.1. For all t > 0, there exists C1(t) > 0 suh thatFG(s; �)2 � C1(t)1 + j�j2 ; 8s 2 [0; t℄; � 2 Rd :Proof. If j�j2 � 2(a2 � b) + 1, then (2.10) implies that we obtain thatj�j2 + b� a2 � 1 + j�j22 ; (5.21)so we have FG(s; �)2 = e�2as sin2 �spj�j2 + b� a2�j�j2 + b� a2 � e2a�t 21 + j�j2 :If 2(a2 � b) + 1 � 0 and a2 � b � j�j2 � 2(a2 � b) + 1, thenFG(s; �)2 = e�2as s2 sin2 �spj�j2 + b� a2�s2 (j�j2 + b� a2) � e2a�t t2;sine r�2 sin2(r) � 1 for all r � 0. Finally, if a2 � b � 0 and j�j2 � a2 � b, thenFG(s; �)2 = e�2as s2 sinh2 �spa2 � b� j�j2�s2 (a2 � b� j�j2) � e2a�t t2 osh(pa2 � b t)2;sine r�2 sinh2(r) � osh(r)2 for all r � 0 and osh is an inreasing funtion. Summing upthese estimates, we obtain �nally that there exist R;K1(t);K2(t) > 0 suh thatFG(s; �)2 � K1(t)1 + j�j2 ; 8s 2 [0; t℄; j�j � R;and FG(s; �)2 � K2(t) � K2(t) 1 +R21 + j�j2 ; 8s 2 [0; t℄; j�j � R:De�ning C1(t) = max(K1(t);K2(t) (1 +R2)) gives the desired result.



58 Chapter 5. Linear hyperboli equation in RdThe above lemma will be used for rather tehnial purposes; as a onsequene, we an diretlyobtain the following upper bound, whih we list separately for later referene, and whih is alsosatis�ed by the Green kernel of the heat equation, while Lemma 5.4.1 is not.Lemma 5.4.2. For all t > 0, there exists C2(t) > 0 suh thatZ t0 ds FG(s; �)2 � C2(t)1 + j�j2 ; 8� 2 Rd :Proof. We obtain this inequality by a simple integration in s of the result of Lemma 5.4.1.The following lemma gives a orresponding lower bound.Lemma 5.4.3. For all t > 0, there exists C3(t) > 0 suh thatZ t0 ds FG(s; �)2 � C3(t)1 + j�j2 ; 8� 2 Rd :Proof. If j�j2 � a2 � b+ 1t2 , then (2.11) implies thatj�j2 + b� a2 � (1 _ (b� a2)) (1 + j�j2); (5.22)so we obtain thatZ t0 ds FG(s; �)2 = Z t0 ds e�2as sin2 �spj�j2 + b� a2�j�j2 + b� a2� e�2a+t1 _ (b� a2) 11 + j�j2 Z t0 ds sin2 �spj�j2 + b� a2� :This implies thatZ t0 ds sin2 �spj�j2 + b� a2� = t2 0�1� sin�2tpj�j2 + b� a2�2tpj�j2 + b� a2 1A � t4 ;sine tpj�j2 + b� a2 � 1 and j sin(r)j � 1 for all r � 0. So we obtain �nally thatZ t0 ds FG(s; �)2 � e�2a+t(1 _ (b� a2)) t4 11 + j�j2If a2 � b+ 1t2 � 0 and a2 � b � j�j2 � a2 � b+ 1t2 , thenZ t0 ds FG(s; �)2 = Z t0 ds e�2as s2 sin2 �spj�j2 + b� a2�s2 (j�j2 + b� a2) � e�2a+t t33 sin2(1);sine spj�j2 + b� a2 � 1 for all s 2 [0; t℄ and r�2 sin2(r) � sin(1)2 > 0 for all r 2 [0; 1℄. Finally,if a2 � b � 0 and j�j2 � a2 � b, thenZ t0 ds FG(s; �)2 = Z t0 ds e�2as s2 sinh2 �spa2 � b� j�j2�s2 (a2 � b� j�j2) � e�2a+t t33 ;



5.5. Existene and uniqueness of the weak solution 59sine r�2 sinh2(r) � 1 for all r � 0. Summing up these estimates, we obtain �nally that thereexist R(t);K1(t);K2(t) > 0 suh thatZ t0 ds FG(s; �)2 � K1(t)1 + j�j2 ; 8j�j � R(t);and Z t0 ds FG(s; �)2 � K2(t) � K2(t)1 + j�j2 ; 8j�j � R(t):De�ning C3(t) = min(K1(t);K2(t)) gives the desired result.As for the linear hyperboli equation in a bounded domain, let us also de�ne H = �G�t +2a G.We easily see that H satis�es�2H�t2 + 2a �H�t + b H ��H = 0; H(0) = Æ0; �H�t (0) = 0: (5.23)The equation follows diretly from the de�nition of H and equation (5.15). In order to hekthe initial onditions, let us omputeFH(t; �) = e�at os�tpj�j2 + b� a2�+ a e�at sin�tpj�j2 + b� a2�pj�j2 + b� a2 ; (5.24)therefore FH(0; �) = 1, and�FH�t (t; �) = �e�at pj�j2 + b� a2 sin�tpj�j2 + b� a2�� a2 e�at sin�tpj�j2 + b� a2�pj�j2 + b� a2 ;therefore �FH�t (0; �) = 0.5.5 Existene and uniqueness of the weak solutionTo show the existene of a solution to equation (5.9), we will need the following three lemmas.Lemma 5.5.1. For t 2 R+ and ' 2 S(Rd), the funtions �t;';  t;' : [0; t℄! S(Rd) de�ned by�t;'(s; x) = (G(t � s) � ')(x) and  t;'(s; x) = ��G�t (t� s) � '� (x); s 2 [0; t℄; x 2 Rd ;belong to Ht;+;0.Proof. The argument is the same for �t;' and  t;'. Let us then onsider only �t;'. We �rstshow that the map (s; x) 7! (G(t � s) � ')(x) is ontinuous, therefore Borel-measurable. Theontinuity in x is a onsequene of the fat that for �xed s 2 [0; t℄, the map x 7! (G(t�s)�')(x)belongs to S(Rd); it remains then to show that the map s 7! (G(t� s) � ')(x) is ontinuous on[0; t℄, uniformly in x 2 Rd . Using the identity F�1 Æ F = Id, we obtain by (4.1) and (4.3) thatj(G(t � (s+ h)) � ')(x)� (G(t� s) � ')(x)j= ���� 1(2�)d ZRd d� (FG(t � s� h; �)�FG(t� s; �)) F'(�) ��x(�)����� 1(2�)d ZRd d� jFG(t � s� h; �) �FG(t � s; �)j jF'(�)j:



60 Chapter 5. Linear hyperboli equation in RdSine FG is ontinuous by (5.18), F' 2 S(Rd) and using (5.20), we an apply the dominatedonvergene theorem to onlude that the above expression, whih does not depend on x, tendsto 0 as h! 0, so the ontinuity in s is proven and it is uniform in x.Seondly, for all s 2 [0; t℄, we haveZRd�Rd �0(dx; dy) j�t;'(s; x) �t;'(s; y)j <1;sine �t;'(s; �) = G(t� s) � ' 2 S(Rd ) and �0 is a tempered measure on Rd � Rd . To show thatk�t;'kt;+;0 <1, it suÆes then to show that for all r > 0, there exists C > 0 suh thatsups2[0;t℄ j�t;'(s; x)j � C(1 + jxj)r ; 8x 2 Rd : (5.25)By (5.16), we obtain thatsups2[0;t℄ j�t;'(s; x)j = sups2[0;t℄ jG(t� s; '(x� �))j � K(t) Xjnj�N supz2B(0;t) j�n'(x� z)j:But sine ' 2 S(Rd), for all r > 0, there exists K > 0 suh thatsupjnj�N j�n'(x)j � K(1 + jxj)r :Using the fat that jx� zj � jxj � t for all z 2 B(0; t), we obtainsups2[0;t℄ j�t;'(s; x)j � K(t) (N + 1)d K � 1(1 + jxj � t)r ^ 1� ;so (5.25) is satis�ed with C = K(t) (N + 1)d K 2r. This ompletes the proof.Let us now de�ne the proess P = fPt('); t 2 R+ ; ' 2 S(Rd )g byPt(') = ((G(t � �) � ') �M0)t:By the preeding lemma, this proess is well de�ned. Moreover, it will turn out to be the �rstomponent u of the solution of equation (5.9), with vanishing initial onditions. It is a enteredGaussian proess with the following ovariane, whih an be easily dedued from (5.12):E(Pt (') Ps( )) = Z t^s0 dr ZRd�Rd �0(dx; dy) (G(t � r) � ')(x) (G(s� r) �  )(y): (5.26)Furthermore, it satis�es the following properties.Lemma 5.5.2. For all t 2 R+ , � 2 R and '; 2 S(Rd ), we havePt(�'+  ) = � Pt(') + Pt( ); P� a:s:and there exists n 2 N suh that for all T > 0, there exists CT > 0 suh thatE(jPt (')� Ps(')j2) � CT k'k2n jt� sj; 8s; t 2 [0; T ℄; ' 2 S(Rd);where k � kn is the Sobolev norm de�ned by (4.4).



5.5. Existene and uniqueness of the weak solution 61Proof. The �rst statement follows from the a.s. linearity of the stohasti integral. In order toprove the seond one, we use (5.6), whih states that there exist n 2 N and C > 0 suh thatZRd�Rd �0(dx; dy) '(x) '(y) � C k'k2n:Fix now T > 0. By formula (5.26), we have for all s; t 2 [0; T ℄,E(jPt (')� Ps(')j2)= Z s0 dr ZRd�Rd �0(dx; dy) ((G(t � r)�G(s� r)) � ')(x) ((G(t � r)�G(s� r)) � ')(y)+Z ts dr ZRd�Rd �0(dx; dy) (G(t� r) � ')(x) (G(t� r) � ')(y)� C �Z s0 dr k(G(t � r)�G(s� r)) � 'k2n + Z ts dr kG(t� r) � 'k2n� :Using now (4.4) and properties (5.19) and (5.20), we obtain thatk(G(t� r)�G(s� r)) � 'k2n = ZRd d� (1 + j�j2)n jFG(t � r; �)�FG(t� s; �)j2 jF'(�)j2� C0(T )2 k'k2n jt� sj2and kG(t � r) � 'k2n = ZRd d� (1 + j�j2)n jFG(t � r; �)j2 jF'(�)j2 � C0(T ) k'k2n:This implies �nally thatE (jPt (')� Ps(')j2) � C T C0(T )2 k'k2n jt� sj2 +C0(T ) k'k2n jt� sj � CT k'k2n jt� sj;where CT = 2 C T 2 C0(T )2 + C0(T ). This ompletes the proof.A diret onsequene of this lemma ombined with Proposition 5.1.4 is that the proess Padmits a modi�ation P̂ suh that P̂t(�) 2 S 0(Rd ) for all t 2 R+ and P� a:s:, for all ' 2 S(Rd ),the map t 7! P̂t(') is ontinuous from R+ to C . We will impliitely onsider this modi�ationin the following.Note that the entire preeding analysis gives rise to the same onlusions for the proessQ = fQt('); t 2 R+ ; ' 2 S(Rd)g de�ned byQt(') = ���G�t (t� �) � '� �M0�t ;whih will turn out to be the seond omponent v of the solution of equation (5.9) with vanishinginitial onditions.The last lemma is a lassial one onerning the determisti equation.



62 Chapter 5. Linear hyperboli equation in RdLemma 5.5.3. For �;  2 S(Rd), t0 2 R, the funtions p; q : R � Rd ! R de�ned byp(t; x) = (H(t� t0) � �)(x) + (G(t � t0) �  )(x)and q(t; x) = ��H�t (t� t0) � �� (x) +��G�t (t� t0) �  � (x)for (t; x) 2 R � Rd , satisfy the following two equations:8>>>><>>>>: p(t; x) = �(x) + Z tt0 dr q(r; x);q(t; x) =  (x) + Z tt0 dr (�2a q(r; x)� b p(r; x) + �p(r; x)); (5.27)Moreover, p(t; �) and q(t; �) belong to S(Rd ), for all t 2 R.Proof. These equations simply follow from the de�nition of p and q and equations (5.15) and(5.23).We an now state the existene and uniqueness theorem.Theorem 5.5.4. Let (u0; u1) 2 S 0(Rd ) � S 0(Rd) and de�ne v0 = u1 + 2a u0. The proess(u; v) = f(u(t); v(t)); t 2 R+g with values in S 0(Rd)� S 0(Rd ) de�ned byu(t) = u0(t) + Pt and v(t) = v0(t) +Qt; (5.28)where 8>><>>: u0(t) = H(t) � u0 +G(t) � v0; Pt(') = ((G(t � �) � ') �M0)t;v0(t) = �H�t (t) � u0 + �G�t (t) � v0; Qt(') = ���G�t (t� �) � '� �M0�t ;admits a modi�ation (û; v̂) whih is the unique weak solution of equation (5.1).Proof. Let us �rst show existene. Using Lemma 5.5.3, we see that for a �xed ' 2 S(Rd), thefuntions p and q de�ned byp(t; x) = (u0(t) � ~')(x) and q(t; x) = (v0(t) � ~')(x);where ~'(x) = '(�x), satisfy equation (5.27) with t0 = 0 and initial onditions �(x) = (u0� ~')(x)and  (x) = (v0 � ~')(x). Evaluating this equation in x = 0 gives8>>>><>>>>: hu0(t); 'i = hu0; 'i+ Z t0 ds hv0(s); 'i;hv0(t); 'i = hv0; 'i + Z t0 ds (�2a hv0(s); 'i � b hu0(s); 'i + hu0(s);�'i): (5.29)



5.5. Existene and uniqueness of the weak solution 63for all t 2 R+ and ' 2 S(Rd).On the other hand, �x now t 2 R+ , ' 2 S(Rd ), and de�ne8>>>>>>>>>>>><>>>>>>>>>>>>:
�t;'(s; x) = (G(t� s) � ')(x) � Z ts dr ��G�t (r � s) � '� (x);�t;'(s; x) = ��G�t (r � s) � '� (x)� Z ts dr  � 2a ��G�t (r � s) � '� (x)�b (G(r � s) � ')(x) + (G(r � s) ��')(x)!+ '(x);Using the fat that for �xed s 2 R+ and ' 2 S(Rd ), the funtions p and q de�ned byp(t; x) = (G(t� s) � ')(x) and q(t; x) = ��G�t (t� s) � '� (x); t � s; x 2 Rd ;satisfy equation (5.27) with t0 = s, � � 0, and  = ', we obtain that �t;' � �t;' � 0. Moreover,by Lemma 5.5.1 (slightly adapted for the integral terms), all the omponents of �t;' and �t;'belong to Ht;+;0. So we an write that (�t;' �M0)t = 0 and (�t;' �M0)t = 0, whih gives, by thelinearity of the stohasti integral,8>>>>>>>>>><>>>>>>>>>>:

((G(t� �) � ') �M0)t = ��Z t� dr �G�t (r � �) � '� �M0�t ;���G�t (t� �) � '� �M0�t = �2a ��Z t� dr �G�t (r � �) � '� �M0�t�b ��Z t� dr G(r � �) � '� �M0�t + ��Z t� dr G(r � �) ��'� �M0�t + F 0t ('):Applying then Corollary 5.3.2 to eah integral term leads to the onlusion that the proessesP and Q de�ned in the theorem satisfy the following equation:8>>>><>>>>: Pt(') = Z t0 ds Qs(');Qt(') = Z t0 ds (�2a Qs(')� b Ps(') + Ps(�')) + F 0t ('); (5.30)P�a:s, for all t 2 R+ and ' 2 S(Rd). Using now Proposition 5.1.4 for all the terms of the aboveequation (whih are shown to satisfy (5.4) and (5.5) by the same arguments as those in Lemma5.5.2), we obtain that there exist modi�ations P̂ and Q̂ of P and Q whih satisfy the aboveequation for all t 2 R+ and ' 2 S(Rd ), P � a:s: Combining �nally equations (5.29) and (5.30)shows that the proess (u; v) = f(u(t); v(t)); t 2 R+g de�ned by (5.28) admits a modi�ation(û; v̂) suh that P � a:s:, for all ' 2 S(Rd ), the map t 7! (hû(t); 'i; hv̂(t); 'i) is ontinuous and



64 Chapter 5. Linear hyperboli equation in Rdsolves equation (5.9).In order to prove uniqueness, we follow a lassial deterministi argument. Let (u(1); v(1))and (u(2); v(2)) be two solutions of equation (5.9) and de�ne (�u; �v) = (u(1) � u(2); v(1) � v(2)).The proess (�u; �v) then satis�es the following equation:8>>>><>>>>: h�u(t); 'i = Z t0 ds h�v(s); 'i;h�v(t); 'i = Z t0 ds (�2a h�v(s); 'i � b h�u(s); 'i + h�u(s);�'i): (5.31)for all t 2 R+ and ' 2 S(Rd ), P�a:s: Let now p and q satisfy equation (5.27) with t0 = T 2 R+and �,  arbitrary. Set moreoverA(t) = h�u(t); q(t)i � h�v(t); p(t)i:Combining equations (5.27) and (5.31) gives for t1; t2 2 R+ ,A(t2)�A(t1) = Z t2t1 ds (h�u(s);�2a q(s)� b p(s) + �p(s)i+ h�v(s); q(s)i)�Z t2t1 ds (h�v(s); q(s)i � 2a h�v(s); p(s)i � b h�u(s); p(s)i + h�u(s);�p(s)i)= �2aZ t2t1 ds (h�u(s); q(s)i � h�v(s); p(s)i)= �2aZ t2t1 ds A(s):Therefore, A(T ) = e�2aT A(0) = e�2aT (h�u(0); q(0)i � h�v(0); p(0)i = 0;sine �u(0) = �v(0) = 0. Using now the terminal onditions p(T ) = � and q(T ) =  andonsidering suessively the ases (�;  ) = ('; 0) and (�;  ) = (0; '), we obtain thath�u(T ); 'i = h�v(T ); 'i = 0;for arbitrary T 2 R+ and ' 2 S(Rd ), P� a:s:, so the onlusion follows.



Chapter 6Noise on a k-planeLet d be a natural number greater than 1 and �x k 2 f1; :::; d � 1g. Let us also introdue thefollowing notations.- For x 2 Rd �= Rk � Rd�k , write x = (x1; x2) where x1 2 Rk and x2 2 Rd�k .- For r > 0 and a 2 Rk , let B1(a; r) denote the ball of enter a and radius r in Rk .- For ' 2 S(Rd ), let F1' (resp. F2') denote the Fourier transform of ' in the oordinatesparallel to the k-plane Rk � f0g (resp. in the perpendiular ones): these are de�ned byF1'(�1; x2) = ZRk dx1 '(x1; x2) ��1(x1)and F2'(x1; �2) = ZRd�k dx2 '(x1; x2) ��2(x2);where we reall that ��i(xi) = ei�i�xi . These Fourier transforms extend to T 2 S 0(Rd ) and notethat F = F1 Æ F2 = F2 Æ F1.The aim of this hapter and the next one is to study the regularity of the weak solution ofequation (5.1) when the measure �0 is formally given by�0(x; y) = �(x1 � y1) Æ0(x2) Æ0(y2);whih an be rigorously written asZRd�Rd �0(dx; dy) �(x)  (y) = ZRk �(dz1) (�(�; 0) �1 ~ (�; 0))(z1); 8�;  2 S(Rd); (6.1)where �1 denotes the onvolution produt in Rk and ~'(x1) = '(�x1) for x1 2 Rk . This situationorresponds to a noise onentrated on the k-plane Rk �f0g and spatially homogeneous on this65



66 Chapter 6. Noise on a k-planek-plane. The \lassial" equation orresponding to equation (5.9) is then8>>><>>>: �2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x)��u(t; x) = _F (t; x1) Æ0(x2); (t; x) 2 R+ � Rd ;u(0; x) = u0(x); �u�t (0; x) = v0(x); x 2 Rd : (6.2)Our aim here is to relate the regularity of the weak solution u of this equation to expliitonditions on the ovariane of the noise de�ned above. By the nature of the noise itself, the be-havior of the solution will ertainly be di�erent along the diretions parallel to the k-plane (x1)and along the perpendiular ones (x2). Sine the noise is spatially homogenous in the oordinatex1, one should not expet a solution with an L2-type behavior in x1 (unless we onsider someweighted L2-spae as in [51℄). On the ontrary, this seems quite plausible for the oordinate x2.To be preise, what we are going to show in this hapter is that for � < 1� d�k2 and undersome optimal ondition B� on the the spetral measure of the noise (whih an be reformulatedafterwards into a ondition on the ovariane: see setion 6.6), the weak solution of (6.2) is aproess U = fU(t; x1); (t; x1) 2 R+ � Rkg indexed by the time variable and the oordinatesof the k-plane, with values in some frational Sobolev spae H�(Rd�k ) (see Setion 4.2 for ade�nition of this spae).This analysis prepares for the study of the following question: when is the weak solutionu of equation (6.2) a real-valued proess, and not a distribution-valued one? We will see inChapter 7 that in the ase of a noise onentrated on a hyperplane (that is, when k = d � 1),the optimal ondition B0 obtained here for the proess U to be L2(R)-valued is also the optimalondition for the weak solution u of (6.2) to be a real-valued proess outside the hyperplanex2 = 0. What we shall also observe in that hapter is that the solution of equation (5.9) annotbe a real-valued proess in the ase where k = d � 2, in onordane with the result obtainedhere that in this ase, the proess U , if it exists, has to take its values in some frational Sobolevspae H�(Rd�k ) with � stritly negative.6.1 Chapter 5 revisitedThough the general results of the preeding hapter apply diretly to the partiular noise on-sidered here, we prefer to rephrase them somewhat, in order to simplify the analysis later on.Let us �rst make preise the assumptions made on the ovariane �: � is assumed to be asigned Borel measure on Rk , whih is non-negative de�nite on Rk in the sense of (4.8), that is,ZRk �(dz1) (' �1 ~')(z1) � 0; 8' 2 S(Rk ): (6.3)



6.1. Chapter 5 revisited 67This implies that � is hermitian (f. [57, Chap. VII, Thm XVII℄), hene symmetri, sine it isa real-valued measure. Moreover, we assume that there exists a tempered non-negative Borelmeasure � on Rk whih is non-negative de�nite and whih dominates j�j, that is,j�j(A) � �(A); 8A 2 Bb(Rk ):We give here some examples of ovarianes that satisfy these onditions. Clearly, when � isa non-negative, tempered and non-negative de�nite Borel measure on Rd , then � = � satis�esthe required assumptions. This non-negativity assumption was taken as a basi assumption in[15, 54℄ (in the ase of a spatially homogeneous noise on Rd) and will be needed in our ase forthe analysis of non-linear equations (see Chapter 8). Among this lass of ovarianes, we anonsider ovarianes of the form �(dx1) = f(jx1j) dx1, where f is a non-negative ontinuousfuntion on ℄0;1[, and examples of suh f aref(r) = 1r ; where  2 ℄0; k[:We an also show the following. Let � be the Lebesgue measure on Rk ; if � is a non-negativede�nite tempered Borel measure on Rd suh that there exists C > 0 where� + C� is a non-negative measure on Rk ; (6.4)then � = �+2C� satis�es the required assumptions: � is non-negative de�nite, being the onvexombination of two non-negative de�nite measures, andj�j = j� + C�� C�j � j� + C�j+ jC�j = �+ 2C� = �:Note that (6.4) was taken as a basi assumption in [51, 52, 53℄ (in the ase of a spatially homo-geneous noise on Rd).Let us now onsider the entered Gaussian proess F = fFt('); t 2 R+ ; ' 2 S(Rk )g whoseovariane is given byE (Ft (') Fs( )) = (t ^ s)ZRk �(dz1) (' �1 ~ )(z1); 8t; s 2 R+ ; ';  2 S(Rk ):This proess is well de�ned (see Setion 4.3), and (6.1) implies thatF 0t (�) d= Ft(�(�; 0)); 8t 2 R+ ; � 2 S(Rd);where d= stands for equality in distribution. This gives an expression for the last term of equation(5.9). Moreover, sine we would like to study the regularity of the solution in relation to theregularity of the noise, we restrit ourselves here to the ase where u0 = v0 = 0, and so equation(5.9) beomes8>>>><>>>>: hu(t); 'i = Z t0 ds hv(s); 'i;hv(t); 'i = Z t0 ds (�2a hv(s); 'i � b hu(s); 'i + hu(s);�'i) + Ft('(�; 0); (6.5)



68 Chapter 6. Noise on a k-planefor all t > 0 and ' 2 S(Rd ), P� a:s:Remark 6.1.1. When k = d � 1 (that is, when the noise is onentrated on a hyperplane),and as mentioned in Remark 3.2.3 for the ase of a noise on a sphere, we ould intepret thenoise term as a boundary term, and therefore onsider that (6.5) is the weak formulation of thefollowing lassial equation in the upper half spae:�2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x) ��u(t; x) = 0; (t; x) 2 R+ � Rd�1 � R+ ;with the stohasti boundary ondition�u�x2 (t; x1; 0) = _F (t; x1):Let us now follow the analysis of Chapter 5 and denote by fGtg the natural augmented�ltration of the noise, E the spae of elementary integrands and P the preditable �-�eld; thenoise F extends naturally to a worthy martingale measureM and we an de�ne a orrespondingstohasti integral (� �M)t for integrands belonging toHt;+ = (� : [0; t℄ � Rk � 
! C preditable suh thatk�k2t;+ = E �Z t0 dsZRk �(dz1) (j�(s; �)j �1 j~�(s; �)j)(z1)� <1);using the isometryE ((� �M)t ( �M)t) = h�;  it = E �Z t0 dsZRk �(dz1) (�(s; �) �1 ~ (s; �))(z1)� : (6.6)Let us also denote by k�kt the semi-norm indued by the semi-salar produt h�; �it. The stohas-ti Fubini Theorem 5.3.1 an be adapted to the present situation, and the rest of the analysis isidential to the one of the preeding hapter.For larity, we will adopt the following notation for the stohasti integral of a preditableintegrand � : [0; t℄� Rk � Rd�k � 
! C restrited to the k-plane x2 = 0:(�(�; �; 0) �M)t = Z[0;t℄�Rk M(ds; dx1) �(s; x1; 0):In partiular, the unique solution u of equation (6.5) will be given byhu(t); 'i = Z[0;t℄�Rk M(ds; dx1) (G(t � s) � ')(x1; 0); t 2 R+ ; ' 2 S(Rd); (6.7)where G is the solution of equation (5.15), whose properties are listed in Setion 5.4.With these modi�ations in hand, we an proeed further.



6.2. Extension of the stohasti integral 696.2 Extension of the stohasti integralThe �rst tehnial step towards the study of the regularity of the solution onsists in extendingthe stohasti integral to distribution-valued integrands, sine the proesses that will appear inthe following will be expressed as stohasti integrals of suh integrands.Following [15℄, we �rst onsider a more general lass of martingale measures, in order to in-lude diretly the treatment of non-linear equations in our analysis. Let Z = fZ(t; x1); (t; x1) 2R+ � Rkg be a real-valued preditable proess suh that for all T > 0,sup(t;x1)2[0;T ℄�Rk E(Z(t; x1)2) <1: (6.8)By [62, Chap. 2℄, MZ = f(Z � M)t(B); Gt; t 2 R+ ; B 2 Bb(Rk )g de�nes also a worthymartingale measure with ovariation measureQZ([0; t℄ �A�B) = E �Z t0 dsZRk �(dz1) ((Z(s; �) 1A) �1 ( ~Z(s; �) ~1B))(z1)�and dominating measureKZ([0; t℄ �A�B) = E �Z t0 dsZRk �(dz1) ((jZ(s; �)j 1A) �1 (j ~Z(s; �)j ~1B))(z1)� :This implies that we an de�ne the stohasti integral (� �MZ)t of a Borel-measurable funtion� : [0; t℄� Rk ! C suh thatk�k2t;+;Z = E �Z t0 dsZRk �(dz1) (j�(s; �) Z(s; �)j �1 j~�(s; �) ~Z(s; �)j)(z1)� <1;and let us denote by Ht;+;Z the spae of suh (deterministi) integrands. Note that if � 2 Ht;+and � is deterministi, thenk�k2t;+;Z � sup(s;x1)2[0;t℄�Rk E(Z(s; x1)2) k�k2t;+ <1;so � 2 Ht;+;Z . Moreover, the following isometry property holds:E ((� �MZ)t ( �MZ)t) = h�;  it;Z ;where h�;  it;Z = E �Z t0 dsZRk �(dz1) ((�(s; �) Z(s; �)) �1 ( ~ (s; �) ~Z(s; �)))(z1)� : (6.9)Let us also denote by k � kt;Z the semi-norm indued by the semi-salar produt h�; �it;Z .We an now proeed to the extension of the stohasti integral. If we assume that Z satis�esE (Z(t; x1 ) Z(t; y1)) = E(Z(t; 0) Z(t; x1 � y1)); 8t 2 R+ ; x1; y1 2 Rk ; (6.10)



70 Chapter 6. Noise on a k-planethen the funtion  : R+ � Rk ! R de�ned by(t; z1) = E(Z(t; 0) Z(t; z1)); (t; z1) 2 R+ � Rk ;is symmetri in z1 and for �;  2 Ht;+;Z , (6.9) an be rewritten ash�;  it;Z = Z t0 dsZRk �(dz1) (s; z1) (�(s; �) �1 ~ (s; �))(z1): (6.11)Therefore, for s 2 [0; t℄, the measure �Zs de�ned by�Zs (dz1) = �(dz1) (s; z1)is a non-negative de�nite measure on Rk , sineZRk �Zs (dz1) (' �1 ~')(z1) = E �ZRk �(dz1) (' Z(s; �) �1 ~' ~Z(s; �))(z1)� � 0; 8' 2 S(Rk );by (6.3). Moreover, sine for all s 2 [0; t℄, �Zs is a signed tempered Borel measure on Rk , itbelongs to S 0(Rk ). The Bohner-Shwartz theorem 4.3.1 then implies that there exists a non-negative tempered Borel measure �Zs on Rk suh that �Zs = F1�Zs . Moreover, �Zs is symmetrion Rk sine �Zs is real-valued. Let us now onsider the following subspae of Ht;+, omposed byregular deterministi integrands:Ht;0 = (� : [0; t℄� Rk ! C Borel-measurable suh thatk�kt;+ <1 and �(s; �) 2 S(Rk ); 8s 2 [0; t℄):If �;  2 Ht;0, then F1�, F1 are Borel-measurable funtions and we obtain the followingexpression for (6.11), using basi properties of the Fourier transform:h�;  it;Z = Z t0 dsZRk �Zs (d�1) F1�(s; �1) F1 (s; �1): (6.12)With this expression in hand, we an �nally de�ne a larger spae, whih ontains (deterministi)distribution-valued integrands:Ht;Z = (� : [0; t℄! O0C(Rk ) ����� (s; �1) 7! F1�(s; �1) is Borel-measurable,k�kt;Z <1 and 9(�n) � Ht;0 suh that k�� �nkt;Z !n!1 0);where k�kt;Z is de�ned here byk�k2t;Z = Z t0 dsZRk �Zs (d�1) jF1�(s; �1)j2:



6.3. Fourier transform of the solution in oordinates perpendiular to the k-plane 71The stohasti integral (� �MZ)t extends then by isometry to elements of Ht;Z . Note that asbefore, the linearity and the isometry property remain satis�ed. We will one again adopt thefollowing notation for the stohasti integral of � : [0; t℄ � Rk � Rd�k ! C restrited to thek-plane x2 = 0: (�(�; �; 0) �MZ)t = Z[0;t℄�Rk M(ds; dx1) Z(s; x1) �(s; x1; 0);even in the ase where �(s; �; 0) is a distribution in x1.Note that for the linear equation, we will only need the de�nition of the stohasti integralwhen Z � 1, in whih ase we denote the spae of integrands by Ht and the isometry (6.6)beomes E ((� �M)t ( �M)t) = h�;  it = Z t0 dsZRk �(d�1) F1�(s; �1) F1 (s; �1): (6.13)Moreover, one an notie that sine the integrand onsidered here is deterministi, the proess(� �M) = f(� �M)t; t 2 R+g is a Gaussian proess.The following theorems will also be useful (f. [15, Thms 2 and 3℄ and [16℄ for proofs).Before stating them, let us denote by O0C(Rk )+ the spae of non-negative distributions withrapid derease on Rk .Theorem 6.2.1. Let Z be a proess satisfying (6.8) and (6.10). If � is a non-negative measureon Rk , � : [0; t℄ ! O0C(Rk )+ is suh that F1� is a Borel-measurable funtion and k�kt < 1,then � 2 Ht;Z andE (j(� �MZ)tj2) = Z t0 ds ZRk �Zs (d�1) jF1�(s; �1)j2� Z t0 ds supx12Rk E (Z(s; x1 )2)ZRk �(d�1) jF1�(s; �1)j2:Theorem 6.2.2. If � : [0; t℄! O0C(Rk ) is suh that F1� is a Borel-measurable funtion, k�kt <1 and limh#0 Z t0 dsZRk �(d�1) sups<r<s+h jF1�(r; �1)�F1�(s; �1)j2 = 0; (6.14)then � 2 Ht.6.3 Fourier transform of the solution in oordinates perpendi-ular to the k-planeLet u be the solution of equation (6.5), for whih we have an expliit formula given by (6.7). Inorder to study when this solution is a proess U = fU(t; x1); (t; x1) 2 R+ �Rkg indexed by thetime variable and the oordinates of the k-plane, with values in some frational Sobolev spae



72 Chapter 6. Noise on a k-planeH�(Rd�k ), we �rst need to onsider the Fourier transform of the solution in the oordinate x2perpendiular to the k-plane and see when it is a real-valued proess. The reason for this omesfrom the de�nition of H�(Rd�k ), whih states (see Setion 4.2) thatv 2 H�(Rd�k ) if and only if F2v 2 L2(Rd�k ; (1 + j�2j2)� d�2):Therefore, F2U(t; x1; �) needs at least to be funtion-valued if one wants U(t; x1; �) to belong toH�(Rd�k ).We will see here that under an expliit ondition on the spetral measure �, whih will beshown to be optimal, there exists a real-valued proess Y whih is the Fourier transform in x2of the distribution-valued solution u of equation (6.5), that is,hu(t);F2'i = ZRk dx1 ZRd�k d�2 Y (t; x1; �2) '(x1; �2); P� a:s:; 8t 2 R+ ; ' 2 S(Rd ):(Note that by de�nition, hu(t);F2'i = hF2u(t); 'i for all ' 2 S(Rd )). The ondition is thefollowing.Assumption A0. ZRk �(d�1)1 + j�1j2 <1:Remark 6.3.1. This ondition is the same as that obtained for the existene of a real-valuedproess whih is the solution of a hyperboli equation in Rk driven by spatially homogeneousnoise with spetral measure � (see [15, 30℄). It an be reformulated into an expliit onditionon the ovariane �: see Setion 6.6.In order to show the suÆieny of Assumption A0, we begin by establishing the followingthree lemmas.Lemma 6.3.2. Under Assumption A0 and for (t; x1; �2) 2 R+�Rk�Rd�k , the funtion �t;x1;�2 :[0; t℄! O0C(Rk ) de�ned by�t;x1;�2(s; �) = F2G(t� s; x1 � �; �2); s 2 [0; t℄;belongs to Ht.Before proving this lemma, let us note that the above de�nition means thath�t;x1;�2(s); 'i = hF2G(t� s; �; �2); '(x1 � �)i; s 2 [0; t℄; ' 2 S(Rk ):Proof. Fix (t; x1; �2) 2 R+�Rk�Rd�k . It is suÆient to prove that �t;x1;�2 satis�es the onditionsof Theorem 6.2.2. First note that for all s 2 [0; t℄, �1 2 Rk ,F1�t;x1;�2(s; �1) = FG(t � s;��1; �2) �x1(�1);



6.3. Fourier transform of the solution in oordinates perpendiular to the k-plane 73so F1�t;x1;�2(s; �) 2 OM (Rk ) (see Setion 5.4) and this implies by (4.2) that �t;x1;�2(s; �) 2O0C(Rk ). Moreover, F1�t;x1;�2 is a ontinuous and therefore Borel-measurable funtion, andformula (6.13) gives k�t;x1;�2k2t = Z t0 dsZRk �(d�1) FG(t� s;��1; �2)2� ZRk �(d�1) C2(t)1 + j�1j2 + j�2j2� C2(t)ZRk �(d�1)1 + j�1j2< 1;by Lemma 5.4.2 and Assumption A0. We now hek ondition (6.14), that is,limh#0 Z t0 dsZRk �(d�1) sups<r<s+h jF1�t;x1;�2(r; �1)�F1�t;x1;�2(s; �1)j2 = 0:Sine FG(�; �1; �2) is a ontinuous funtion, it is uniformly ontinuous in s on [0; t℄, so we obtainthat for all (s; �1) 2 [0; t℄ � Rk ,limh#0 sups<r<s+h jFG(t� r;��1; �2) �x1(�1)�FG(t� s;��1; �2) �x1(�1)j2 = 0:Moreover, by Lemma 5.4.1,sups<r<s+h jFG(t� r;��1; �2) �x1(�1)�FG(t � s;��1; �2) �x1(�1)j2� 4 C1(t)1 + j�1j2 + j�2j2 � 4 C1(t)1 + j�1j2 ; (6.15)so we obtain that ondition (6.14) is ful�lled, using again Assumption A0 and the dominatedonvergene theorem.Lemma 6.3.3. Let M be the worthy martingale measure de�ned in Setion 6.1. Under As-sumption A0, the real-valued proess Y = fY (t; x1; �2); (t; x1; �2) 2 R+ � Rk � Rd�kg de�nedbyY (t; x1; �2) = Z[0;t℄�Rk M(ds; dy1) F2G(t� s; x1 � y1; �2); (t; x1; �2) 2 R+ � Rk � Rd�k ;is a entered Gaussian proess whose ovariane is given byE (Y (t; x1; �2) Y (s; y1; �2))= ZRk �(d�1)Z t^s0 dr FG(t� r;��1; �2) FG(s� r;��1; �2) �x1�y1(�1); (6.16)and is suh that the map (t; x1; �2) 7! Y (t; x1; �2) is ontinuous from R+ �Rk �Rd�k to L2(
).Remark 6.3.4. By [42, Prop. 3.6 and Cor. 3.8℄, this result implies that the proess Y admitsa modi�ation ~Y suh that the map (t; x1; �2; !) 7! ~Y (t; x1; �2; !) is jointly measurable. We willimpliitely onsider this modi�ation in the following.



74 Chapter 6. Noise on a k-planeProof of Lemma 6.3.3. By Lemma 6.3.2, the proess Y is well de�ned. The fat that it is aentered Gaussian proess with the ovariane given above follows easily from (6.13) and theremark following it. Moreover, sine � and FG are symmetri in �1, (6.16) is equal toZRk �(d�1)Z t^s0 dr FG(t� r;��1; �2) FG(s� r;��1; �2) os(�1 � (x1 � y1));and this implies that Y is real-valued.In order to show that the map (t; x1; �2) 7! Y (t; x1; �2) is ontinuous from R+ � Rk � Rd�kto L2(
), we will show that for all T > 0, it is ontinuous from [0; T ℄ � Rk � Rd�k to L2(
).We do this in three steps, showing �rst that the map �2 7! Y (t; x1; �2) is ontinuous in L2(
)uniformly in (t; x1) 2 [0; T ℄ � Rk , then that for �xed �2 2 Rd�k , the map x1 7! Y (t; x1; �2) isontinuous in L2(
) uniformly in t 2 [0; T ℄ and �nally that for �xed (x1; �2) 2 Rd , the mapt 7! Y (t; x1; �2) is ontinuous in L2(
). These three properties learly imply joint L2-ontinuityof the map (t; x1; �2) 7! Y (t; x1; �2) on [0; T ℄� Rk � Rd�k .Let �2, �2 2 Rd�k . Using (6.16), we obtain thatsup(t;x1)2[0;T ℄�Rk E ((Y (t; x1; �2)� Y (t; x1; �2))2)= sup(t;x1)2[0;T ℄�Rk ZRk �(d�1)Z t0 ds (FG(t� s;��1; �2)�FG(t� s;��1; �2))2 j�x1(�1)j2= supt2[0;T ℄ZRk �(d�1)Z t0 dr (FG(r;��1; �2)�FG(r;��1; �2))2;where we have used the hange of variable r = t � s and the fat that j�x1(�1)j2 = 1, so theintegrand does not depend on x1 and the supremum over x1 disappears. Sine the integrand isalso non-negative, the supremum is attained at t = T , so we obtain thatsup(t;x1)2[0;T ℄�Rk E((Y (t; x1; �2)� Y (t; x1; �2))2)= ZRk �(d�1)Z T0 dr (FG(r;��1; �2)�FG(r;��1; �2))2: (6.17)Sine FG is ontinuous, the integrand in (6.17) onverges to 0 as �2 ! �2. Moreover, by Lemma5.4.1, we obtain, as in (6.15), that for all (r; �1) 2 [0; T ℄ � Rk ,(FG(r;��1; �2)�FG(r;��1; �2))2 � 4 C1(T )1 + j�1j2 ;so by Assumption A0 and the dominated onvergene theorem, (6.17) onverges to 0 as �2 ! �2.



6.3. Fourier transform of the solution in oordinates perpendiular to the k-plane 75Now, let x1, y1 2 Rk and �2 2 Rd�k . Using (6.16), we �nd thatsupt2[0;T ℄ E((Y (t; y1; �2)� Y (t; x1; �2))2)= supt2[0;T ℄ 2ZRk �(d�1)Z t0 ds FG(t� s;��1; �2)2 (1� os(�1 � (y1 � x1)))= 2ZRk �(d�1)Z T0 dr FG(r;��1; �2)2 (1� os(�1 � (y1 � x1))); (6.18)where we have used the hange of variable r = t� s and the fat that 1 � os(�1 � (y1 � x1)) isnon-negative to remove the supremum in t. By ontinuity of the osine funtion, the integrandin (6.18) onverges to 0 as y1 ! x1, and by Lemma 5.4.1,FG(r;��1; �2)2 (1� os(�1 � (y1 � x1)) � 2 C1(T )1 + j�1j2 :Therefore, Assumption A0 and the dominated onvergene theorem imply, as before, that ex-pression (6.18) onverges to 0 as y1 ! x1.Finally, let t; h 2 R+ , x1 2 Rk and �2 2 Rd�k . By (6.16),E ((Y (t+ h; x1; �2)� Y (t; x1; �2))2)= ZRk �(d�1)Z t0 ds (FG(t+ h� s;��1; �2)�FG(t� s;��1; �2))2+ZRk �(d�1)Z t+ht ds FG(t+ h� s;��1; �2)2= ZRk �(d�1)Z t0 dr (FG(r + h;��1; �2)�FG(r;��1; �2))2 (6.19)+ZRk �(d�1)Z h0 dq FG(q;��1; �2)2: (6.20)In the above, we have used the hanges of variable r = t� s and q = t+ h� s. Sine(FG(r + h;��1; �2)�FG(r;��1; �2))2 !h!0 0and, by Lemma 5.4.1 and as in (6.15),(FG(r + h;��1; �2)�FG(r;��1; �2))2 � 4 C1(T + h0)1 + j�1j2for all h � h0, we obtain that the term in (6.19) onverges to 0 as h! 0 by Assumption A0 andthe dominated onvergene theorem. Moreover, by Lemma 5.4.1, for all h � h0,ZRk �(d�1)Z h0 dq FG(q;��1; �2)2 � ZRk �(d�1)Z h0 dq C1(h0)1 + j�1j2 + j�2j2� h C1(h0)ZRk �(d�1)1 + j�1j2 ;



76 Chapter 6. Noise on a k-planeso by Assumption A0, (6.20) also onverges to 0 as h ! 0, and this establishes the right-ontinuity in t of the proess Y (in L2(
)).To show the left-ontinuity, let us omputeE ((Y (t� h; x1; �2)� Y (t; x1; �2))2)= ZRk �(d�1)Z t�h0 ds (FG(t � h� s;��1; �2)�FG(t � s;��1; �2))2+ZRk �(d�1)Z tt�h ds FG(t� s;��1; �2)2= ZRk �(d�1)Z t�h0 dr (FG(r;��1; �2)�FG(r + h;��1; �2))2+ZRk �(d�1)Z h0 dq FG(q;��1; �2)2:In the above, we have again used the hanges of variable r = t� h� s and q = t� s. But thislast expression is less than or equal toZRk �(d�1)�Z t0 dr (FG(r + h;��1; �2)�FG(r;��1; �2))2 + Z h0 dq FG(q;��1; �2)2� ;whih onverges to 0 as h! 0 by same arguments as above. This ompletes the proof. �Lemma 6.3.5. Let us make Assumption A0, let Y be the proess de�ned in Lemma 6.3.3 andlet u be the solution of equation (6.5). Then for all t 2 R+ and ' 2 S(Rd ),hu(t);F2'i = ZRk dx1 ZRd�k d�2 Y (t; x1; �2) '(x1; �2); P� a:s:Proof. By Lemma 6.3.3 and Remark 6.3.4, the integral on the right-hand side of the aboveequation is well de�ned. We show that both sides of the above equation are equal P-a.s. byomputing their varianes and ovariane, as in the proof of Theorem 5.3.1. By (6.7) and (6.13),we obtain thatE(jhu(t);F2'ij2) = E 0������Z[0;t℄�Rk M(ds; dx1) (G(t� s) � F2')(x1; 0)�����21A= ZRk �(d�1)Z t0 ds jF1(G(t� s) � F2'))(�1; 0)j2Sine F1 = F�12 F and F(G �H) = FG � FH, we an write thatF1(G(t� s) � F2')(�1; 0) = F�12 (FG(t � s) � FF2')(�1; 0):Now, sine by (4.1), F�12  (�1; 0) = 1(2�)d�k ZRd�k d�2  (�1; �2)and FF2'(�1; �2) = F1F22'(�1; �2) = (2�)d�k F1'(�1;��2);



6.3. Fourier transform of the solution in oordinates perpendiular to the k-plane 77we obtain thatF1(G(t � s) � F2')(�1; 0) = ZRd�k d�2 FG(t� s; �1; �2) F1'(�1;��2); (6.21)so E (jhu(t);F2'ij2) = ZRk �(d�1)Z t0 ds ����ZRd�k d�2 FG(t� s; �1; �2) F1'(�1;��2)����2 : (6.22)On the other hand, by Fubini's theorem and (6.16),E  ����ZRk dx1 ZRd�k d�2 Y (t; x1; �2) '(x1; �2)����2!= ZRk dx1 ZRd�k d�2 ZRk dy1 ZRd�k d�2 E(Y (t; x1; �2) Y (t; y1; �2)) '(x1; �2) '(y1; �2)= ZRk �(d�1)Z t0 ds ����ZRk dx1 ZRd�k d�2 FG(t� s;��1; �2) �x1(�1) '(x1; �2)����2= ZRk �(d�1)Z t0 ds ����ZRd�k d�2 FG(t� s;��1; �2) F1'(�1; �2)����2 : (6.23)Using the hange of variables �2 ! ��2, we see that (6.22) and (6.23) are equal, sine FG issymmetri in �.Let us now ompute, using Fubini's theorem and (6.13),E �hu(t);F2'i � ZRk dx1 ZRd�k d�2 Y (t; x1; �2) '(x1; �2)�= ZRk dx1 ZRd�k d�2 E Z[0;t℄�Rk M(ds; dy1) (G(t� s) � F2')(y1; 0)�Z[0;t℄�Rk M(ds; dy1) F2G(t� s; x1 � y1; �2)! '(x1; �2)= ZRk dx1 ZRd�k d�2 ZRk �(d�1)Z t0 ds F1(G(t� s) � F2')(�1; 0)�FG(t � s;��1; �2) �x1(�1) '(x1; �2):By (6.21) and Fubini's theorem, this last expression is equal toZRk �(d�1)Z t0 ds  ZRd�k d�2 FG(t� s; �1; �2) F1'(�1;��2)�ZRd�k d�2 FG(t� s;��1; �2) F1'(�1; �2)!;whih is also equal to (6.22) and (6.23). This ompletes the proof.With these three lemmas in hand, we now prove the following proposition, whih tells usthat Assumption A0 is a neessary and suÆient ondition for the existene of the proess Y .



78 Chapter 6. Noise on a k-planeProposition 6.3.6. Let u be the solution of equation (6.5). There exists a square integrable real-valued proess Y = f Y (t; x1; �2); (t; x1; �2) 2 R+ � Rk � Rd�kg suh that the map (t; x1; �2) 7!Y (t; x1; �2) is ontinuous from R+ � Rk � Rd�k to L2(
) andhu(t);F2'i = ZRk dx1 ZRd�k d�2 Y (t; x1; �2) '(x1; �2); P� a:s:;for all t 2 R+ and ' 2 S(Rd ) if and only if Assumption A0 is satis�ed. Moreover, when Yexists, it is a entered Gaussian proess whose ovariane is given by formula (6.16).Proof. The suÆieny of Assumption A0 is a diret onsequene of the three preeding lemmas.To show the neessity, �x (t; x1; �2) 2 R+ � Rk � Rd�k and let '(n)x1;�2 = Æ(x1;�2) �  n, where( n) is a sequene of non-negative and ompatly supported approximations of Æ0 in Rd , so'(n)x1;�2 2 S(Rd ) for eah n. The assumptions made on Y and Fubini's theorem imply thatE (jhu(t);F2'(n)x1;�2ij2) = E  ����ZRk dy1 ZRd�k d�2 Y (t; y1; �2) '(n)x1;�2(y1; �2)����2!= ZRk dy1 ZRd�k d�2 ZRk dz1 ZRd�k d�2 E (Y (t; y1; �2) Y (t; z1; �2)) '(n)x1;�2(y1; �2) '(n)x1;�2(z1; �2)!n!1 E (Y (t; x1; �2)2) <1: (6.24)On the other hand, replaing ' by '(n)x1;�2 in (6.22) givesE(jhu(t);F2'ij2) = ZRk �(d�1)Z t0 ds ����ZRd�k d�2 FG(t � s; �1; �2) F1'(n)x1;�2(�1;��2)����2 :Sine ZRd�k d�2 FG(t� s; �1; �2) F1'(n)x1;�2(�1;��2)= ZRk dy1 ZRd�k d�2 FG(t� s; �1; �2) ��1(y1) '(n)x1;�2(y1;��2)!n!1 FG(t� s; �1;��2) ��1(x1);for all (s; �1) 2 [0; t℄ � Rk , Fatou's lemma and Lemma 5.4.3 imply thatlimn!1 E(jhu(t);F2'(n)x1;�2ij2) � ZRk �(d�1)Z t0 ds FG(t � s; �1;��2)2� C3(t)ZRk �(d�1)1 + j�1j2 + j�2j2 :Sine the above limit exists and is �nite for all �2 2 Rd�k by (6.24), it holds in partiular for�2 = 0, so Assumption A0 is satis�ed and this ompletes the proof.6.4 Regularity of the solution in the oordinates perpendiularto the k-planeBy the omment made at the beginning of Setion 6.3, Assumption A0 is the minimal onditionfor the solution of equation (6.5) to be a proess U with values in some Sobolev spae H�(Rd�k )



6.4. Regularity of the solution in the oordinates perpendiular to the k-plane 79in the oordinate x2. We study thereafter more preisely this regularity, whih is linked to theintegrability in x2 of the square of the proess Y , namely the Fourier transform of the solutionin x2.To this end, let us �rst de�ne, for � < 1� d�k2 and z � 1,
��(z) = 8>>>>>>>>><>>>>>>>>>:

1z2 ; if � < �d�k2 ;ln(z2)z2 ; if � = �d�k2 ;1z2(1� d�k2 ��) ; if � 2 ℄� d�k2 ; 1� d�k2 [:Let us then �x � < 1� d�k2 and make the following assumption on �.Assumption B�. ZRk �(d�1) �� �p1 + j�1j2� <1:For larity, we an rewrite this assumption in the separate three ases onsidered in the de�ni-tion of the funtion ��.1) When � < �d�k2 , Assumption B� is equivalent to Assumption A0, namelyZRk �(d�1)1 + j�1j2 <1:2) When � = �d�k2 , Assumption B� is equivalent to what we will term Assumption A00:ZRk �(d�1) ln �1 + j�1j2�1 + j�1j2 <1:3) When � 2 ℄� d�k2 ; 1� d�k2 [, Assumption B� is equivalent to what we will term AssumptionA�, where � = � + d�k2 2 ℄0; 1[: ZRk �(d�1)(1 + j�1j2)1�� <1:Note that, as for A0, these assumptions an be reformulated into onditions on the ovariane �when the latter is non-negative (see Setion 6.6). One an already notie that when � tends to1, Assumption A� looks more and more like \� is a �nite measure", whih says, by the lassialBohner theorem, that the measure � admits a density whih is a uniformly ontinuous andbounded funtion.



80 Chapter 6. Noise on a k-planeBefore stating the main result, we establish a tehnial lemma; for � < 1 � d�k2 and z � 1,let us de�ne L�(z) = ZRd�k d�2 (1 + j�2j2)� 1z2 + j�2j2= !d�k�1 Z 10 dr rd�k�1 (1 + r2)� 1z2 + r2 ;where !n denotes the area of the unit sphere Sn. Note that L�(�) is a well de�ned and ontinuousfuntion sine � < 1� d�k2 . The following lemma tells us that L�(z) behaves like ��(z) as z !1.Lemma 6.4.1. Let � < 1� d�k2 . There exists R � 1 and 0 < K1 < K2 <1 suh thatK1 ��(z) � L�(z) � K2 ��(z) 8z � R:Proof. We onsider separately the three ases: � < �d�k2 , � = �d�k2 and � 2 ℄� d�k2 ; 1� d�k2 [.1) � < �d�k2 :L�(z)��(z) = !d�k�1 Z 10 dr f�(r; z); where f�(r; z) = rd�k�1 (1 + r2)� z2z2 + r2 :Sine limz!1 f�(r; z) = rd�k�1 (1 + r2)�, jf�(r; z)j � rd�k�1 (1 + r2)� andZ 10 dr rd�k�1 (1 + r2)� � Z 10 dr rd�k�1 + Z 11 dr (2r)2�+d�k�1 <1;(beause 2� + d� k � 1 < �1), we onlude by the dominated onvergene theorem thatlimz!1 L�(z)��(z) = !d�k�1 Z 10 dr rd�k�1 (1 + r2)� = K 2 (0;1);and this implies the result.2) � = �d�k2 :L�(z)��(z) = !d�k�1 Z 10 dr g�(r; z); where g�(r; z) = rd�k�1 (1 + r2)� z2z2 + r2 1ln(z2) :Here we have 0 � Z 10 dr g�(r; z) � Z 10 dr rd�k�1 1ln(z2) !z!1 0:Let now ~K(z) = Z 11 drr z2z2 + r2 1ln(z2) = ln �1 + z2�2 ln(z2)(for this last alulation, write 1r z2z2 + r2 = 1r � rr2 + z2 and integrate). Then2� ~K(z) � Z 11 dr g�(r; z) � ~K(z):



6.4. Regularity of the solution in the oordinates perpendiular to the k-plane 81So the result follows, sineln(z2) � ln �1 + z2� � 2 ln(z2); 8z � p2:3) � 2 ℄� d�k2 ; 1 � d�k2 [ :L�(z)��(z) = !d�k�1 Z 10 dr rd�k�1 (1 + r2)� z2�(d�k)�2�z2 + r2 = !d�k�1 Z 10 du h�(u; z);where we have used the hange of variable r = zu andh�(u; z) = ud�k�1 ( 1z2 + u2)� 11 + u2 :We see that limz!1h�(u; z) = ud�k�1+2�1 + u2 . In order to apply the dominated onvergene theorem,we need to onsider two sub-ases:3a) � < 0: jh�(u; z)j � ud�k�1+2�1 + u2 andZ 10 du ud�k�1+2�1 + u2 � Z 10 du ud�k�1+2� + Z 11 du ud�k�3+2� <1;sine d� k � 1 + 2� > �1 and d� k � 3 + 2� < �1, by the assumptions made on �.3b) � � 0: jh�(u; z)j � ud�k�1 (1 + u2)��1 andZ 10 du ud�k�1 (1 + u2)��1 � Z 10 du ud�k�1 + Z 11 du (2u)d�k�3+2� <1:Thanks to these etimates, we an apply the dominated onvergene theorem in both ases toonlude that limz!1 L�(z)��(z) = !d�k�1 Z 10 du ud�k�1+2�1 + u2 = K̂ 2 (0;1);and this ompletes the proof.We are now able to study the link between the regularity of the noise and the integrabilityin x2 of the square of the proess Y de�ned in Proposition 6.3.6, whih in turn will give us anindiation on the regularity of the solution in the same oordinate x2.Lemma 6.4.2. Let � < 1 � d�k2 . Under Assumption B�, the proess Y de�ned in Proposition6.3.6 satis�esE �ZRd�k d�2 (1 + j�2j2)� Y (t; x1; �2)2� <1; 8(t; x1) 2 R+ � Rk :



82 Chapter 6. Noise on a k-planeProof. First note that if Assumption B� is satis�ed for � < 1� d�k2 , then Assumption A0 is, sothe proess Y is well de�ned by Proposition 6.3.6. Using Fubini's theorem and (6.16) givesE �ZRd�k d�2 (1 + j�2j2)� Y (t; x1; �2)2�= ZRd�k d�2 (1 + j�2j2)� ZRk �(d�1)Z t0 ds FG(t� s;��1; �2)2� C2(t)ZRk �(d�1)ZRd�k d�2 (1 + j�2j2)�1 + j�1j2 + j�2j2= C2(t)ZRk �(d�1) L� �p1 + j�1j2� ;by Lemma 5.4.2 and the de�nition of L�. We now use Lemma 6.4.1 and Assumption B� toonlude thatE �ZRd�k d�2 (1 + j�2j2)� Y (t; x1; �2)2�� C2(t) �(B1(0; R)) L�(1) +K2 ZB1(0;R) �(d�1) �� �p1 + j�1j2�! <1;whih ompletes the proof.This allows us to establish the following result, whih states the suÆieny and the neessityof Assumption B� for the existene of a proess with values in H�(Rd�k ) in the oordinate x2,whih is the solution of equation (6.5).Theorem 6.4.3. Let u be the solution of equation (6.5) and let � < 1 � d�k2 . There exists asquare integrable proess U = fU(t; x1); (t; x1) 2 R+ � Rkg with values in H�(Rd�k ) suh thatthe map (t; x1; �2) 7! F2U(t; x1; �2) is ontinuous from R+ � Rk � Rd�k to L2(
) andhu(t); 'i = ZRk dx1 ZRd�k d�2 F2U(t; x1; �2) F�12 '(x1; �2); P� a:s:; 8t 2 R+ ; ' 2 S(Rd);if and only if Assumption B� is satis�ed.Remark 6.4.4. When � � 0, U(t; x1; �) 2 L2(R), so the above equality an be rewritten in amore natural way: hu(t); 'i = ZRd�1 dx1 ZR dx2 U(t; x1; x2) '(x1; x2):Note that we still do not know if U(t; x1; x2) is a well de�ned random variable for every x2 2 R,sine we only know that U(t; x1; �) takes its values in L2(R). This point will be lari�ed in thenext hapter where we will see that the only problemati point is the point x2 = 0.Proof of Theorem 6.4.3. Let us �rst prove the suÆieny of Assumption B� ; sine it impliesAssumption A0, let Y be the proess whose existene is aÆrmed by Proposition 6.3.6. De�nethe proess U = fU(t; x1); (t; x1) 2 R+ � Rkg byU(t; x1; �) = F�12 Y (t; x1; �); (t; x1) 2 R+ � Rk :



6.5. Summary 83By Lemma 6.4.2, this is a square integrable proess whih takes its values inH�(Rd�k ) and satis-�es all the desired properties, by Proposition 6.3.6 and the fat that F2U(t; x1; �2) = Y (t; x1; �2).In order to prove now the neessity of Assumption B�, note that by Proposition 6.3.6, theexistene of a proess F2U whih satis�es the above properties implies that Assumption A0 issatis�ed, so the proess Y de�ned in the same theorem is well de�ned and the above assumptionstell us thatY (t; x1; �2) = F2U(t; x1; �2); P� a:s:; 8(t; x1; �2) 2 R+ � Rk � Rd�k ;and that E �ZRd�k d�2 (1 + j�2j2)� Y (t; x1; �2)2� = E �kU(t; x1)k2�� <1:But on the other hand, by (6.16), Lemmas 5.4.3 and 6.4.1,E �ZRd�k d�2 (1 + j�2j2)� Y (t; x1; �2)2�= ZRd�k d�2 (1 + j�2j2)� ZRk �(d�1)Z t0 ds FG(t� s;��1; �2)2� ZRd�k d�2 (1 + j�2j2)� C3(t)ZRk �(d�1)1 + j�1j2 + j�2j2= C3(t)ZRk �(d�1) L� �p1 + j�1j2�� C3(t) K1 ZB1(0;R) �(d�1) �� �p1 + j�1j2� ;so Assumption B� is satis�ed and this ompletes the proof. �Remark 6.4.5. We need here to make lear in what sense Assumption B� is optimal. In thepreeding theorem, we have shown that Assumption B� is neessary under the assumption thatthere exists a real-valued proess whih is the Fourier transform of the solution in x2. But thislatter assumption is quite strong, sine it implies that the solution has some L2-type behaviorin x2 (that is, belongs to some H�(Rd�k )), whih is a priori not satis�ed by any real-valuedfuntion. Nevertheless, the results of the next hapter will on�rm that this assumption is nota restrition and that Assumption B� is optimal in the ase of the hyperboli equation. On theontrary, Assumption B� is not optimal in the ase of the heat equation, sine in this ase, evenfor rough noises (like white noise) on a k-plane, there exists a real-valued proess whih is thesolution of the equation and whih has a strongly singular behavior near the k-plane x2 = 0 (seeChapter 9).6.5 SummaryUsing the above rewriting of Assumption B� into three separate ases, we an make Theorem6.4.3 more expliit.



84 Chapter 6. Noise on a k-plane1) The solution of equation (6.5) is a proess U = fU(t; x1); (t; x1) 2 R+ � Rkg with values inH� d�k2 �"(Rd�k ), for some " > 0, if and only if Assumption A0 is satis�ed.Remark 6.5.1. As mentioned in Remark 6.3.1, Assumption A0 is also the neessary and suf-�ient ondition for the existene of a real-valued proess whih is the solution of a hyperboliequation in Rk driven by spatially homogeneous noise with spetral measure �. In the presentase, the equation is the hyperboli equation in Rd driven by the noise term _F (t; x1) Æ0(x2).Noting that Æ0 2 H� d�k2 �"(Rd�k ), for any " > 0, allows us to see the lear onnetion betweenthese two reults.2) The solution is a proess U = fU(t; x1); (t; x1) 2 R+ � Rkg with values in H� d�k2 (Rd�k ) ifand only if Assumption A00 is satis�ed.3) For � 2 ℄0; 1[, the solution is a proess U = fU(t; x1); (t; x1) 2 R+ � Rkg with values inH�� d�k2 (Rd�k ) if and only if Assumption A� is satis�ed.Remark 6.5.2. The exponent � = �� d�k2 of the Sobolev spae in whih the proess U takesits values an be non-negative (that is, the solution an be a funtion-valued proess) only whenk = d�1 (that is, in the ase of a noise onentrated on a hyperplane), in whih ase AssumptionB� beomes ZRd�1 �(d�1)(1 + j�1j2) 12�� <1;for � 2 [0; 12 [. In the next hapter, we will see that this assumption implies another kind ofregularity of the solution.6.6 Reformulation of the onditions on the spetral measureLet us now assume that � is a non-negative measure on Rk . We will give here onditions on theovariane � whih are (almost) equivalent to ondition A� for � 2 [0; 1[, using the results ofSetion 4.4.First note that Assumption A� is ondition (4.9) with d replaed by k and � replaed by1� �. Using then (4.10) and Proposition 4.4.1, we obtain that Assumption A� is equivalent toZRk �(dx1) Gk;1��(x1) <1; (6.25)modulo the boundedness assumption of Proposition 4.4.1 for the ase � 6= 0. Following theargument of Setion 4.4, let us now make this last ondition more expliit.- If k = 1 and � < 12 , then (6.25) imposes no restrition on the ovariane �.



6.6. Reformulation of the onditions on the spetral measure 85- If k = 1 and � = 12 , or k = 2 and � = 0, then (6.25) is satis�ed if and only ifZB1(0;1) �(dx1) ln� 1jx1j� <1:- Otherwise, (6.25) is satis�ed if and only ifZB1(0;1) �(dx1) 1jx1j2�+k�2 <1:In the ase where �(dx1) = f(jx1j) dx1, with f a ontinuous funtion on ℄0;1[, this impliesthe following.- If k = 1 and � < 12 , then (6.25) imposes no restrition on f .- If k = 1 and � = 12 , then (6.25) is satis�ed if and only ifZ 10 dr f(r) ln�1r� <1:- If k = 2 and � = 0, then (6.25) is satis�ed if and only ifZ 10 dr f(r) r ln�1r� <1:- Otherwise, (6.25) is satis�ed if and only ifZ 10 dr f(r) 1r2��1 <1:Finally, the reformulation of ondition A00, though not established beause of tehnial diÆ-ulties, is onjetured to give the following.- If k = 1, then Assumption A00 imposes no restrition on the ovariane � (this is lear beauseassumption A00 implies Assumption A0 and is implied by Assumption A 14 , for example).- If k = 2, we expet that Assumption A00 is satis�ed (perhaps modulo a boundedness assump-tion) if and only if ZB1(0;1) �(dx1) ln� 1jx1j�2 <1:- If k > 2, we expet that Assumption A00 is satis�ed (perhaps modulo a boundedness assump-tion) if and only if ZB1(0;1) �(dx1) 1jx1jk�2 ln� 1jx1j� <1:



86 Chapter 6. Noise on a k-plane



Chapter 7Existene of a real-valued solutionA �rst remark onerns the expression: \real-valued solution". It is intended here to be opposedto \distribution-valued solution" (not to \omplex-valued solution"). To be preise, a real-valued solution is a real-valued proess X whih represents the weak solution u of equation (6.2)in the sense thathu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:; 8t 2 R+ ; ' 2 S(Rd):In this hapter, we answer two questions: when is the weak solution of equation (6.2) a real-valued proess? How regular then is this proess? In the ase of a noise on a hyperplane (thatis, when k = d�1), we will see that the answer to the �rst question is positive when AssumptionB� of Setion 6.4 is satis�ed for � 2 [0; 12 [ and that the regularity of the solution depends on �,whereas in the ase of a noise on a lower dimensional plane (that is, when k < d�1), there doesnot exist a real-valued proess whih is the weak solution of equation (6.2).We begin with the ase of a noise on a hyperplane (that is, when k = d� 1). The tehniquesthat we use are similar to those of Setion 6.3. However, we �rst need to establish some proper-ties of F1G, the Fourier transform in the �rst d� 1 oordinates of x of the solution of equation(5.15), sine this term will appear in the expetation of the square of the real-valued proesswhih is the weak solution of equation (6.2).For the same kind of tehnial reasons as in Chapter 5, we now restrit ourselves to the asewhere either d 2 f2; 3g and a, b are any real numbers, or d 2 f4; 5g and a = b = 0 (see RemarkA.2.1).7.1 Fourier transform of the Green kernel in x1Using (4.1), (5.18) and [45, formulas I.5.83 and I.7.61℄, we obtain the Fourier transform of G inthe �rst d� 1 oordinates of x: for (t; �1; x2) 2 R+ � Rd�1 � R, we have87



88 Chapter 7. Existene of a real-valued solutionF1G(t; �1; x2) = F�12 (FG(t; �1; �))(x2) = 12� ZR d�2 FG(t; �1; �2) ��x2(�2)= 8>>><>>>: e�at2 J0 �p(j�1j2 + b� a2) (t2 � x22)� 1fjx2j < tg; if j�1j2 � a2 � b;e�at2 I0 �p(a2 � b� j�1j2) (t2 � x22)� 1fjx2j < tg; if a2 � b > 0 and j�1j2 < a2 � b;(7.1)where J0 and I0 are the zero order regular and modi�ed Bessel funtions of the �rst kind (seeAppendix B for an overview of their basi properties whih will be used below).F1G is a real-valued and Borel-measurable funtion, whih is bounded on [0; T ℄� Rd�1 � Rfor all T > 0, and it is symmetri and in�nitely di�erentiable in �1, sine for all t 2 R+ andx2 2 R, F1G(t; �; x2) is an analyti funtion on Rd�1 , whose Taylor series is given byF1G(t; �1; x2) = 12 Xn2N (�1)n (t2 � x22)n22n (n!)2 (j�1j2 + b� a2)n 1fjx2j < tg; 8�1 2 Rd�1 :Moreover, sine F1G(t; �; x2) and all its derivatives in �1 vanish at in�nity, F1G(t; �; x2) 2OM (Rd�1), so G(t; �; x2) 2 O0C(Rd�1) by (4.2).From the expliit expressions of G listed in Appendix A, we also dedue that for all t 2 R+and x2 2 R, G(t; �; x2) is a �nite order distribution with ompat support on Rd�1 ; furthermore,for all t 2 R+ , there exist K1(t) > 0 and N1 2 N suh thatsups2[0;t℄; x22R jG(s; '; x2)j � K1(t) Xjn1j�N1 supx12B1(0;t) j�n1'(x1)j; 8' 2 S(Rd�1 ); (7.2)where n1 denotes a multi-index in Nd�1 .F1G has also the following properties, whih will be used in the next setion.Lemma 7.1.1. For all t > 0, there exists C4(t) > 0 suh thatF1G(s; �1; x2)2 � C4(t)p1 + j�1j2 1ps2 � x22 1fjx2j < sg; 8s 2 [0; t℄; �1 2 Rd�1 ; x2 2 R:Proof. If j�1j2 � 2(a2 � b) + 1, then sine J0(r)2 � Cr for all r > 0 and (5.21) implies thatpj�1j2 + b� a2 �r1 + j�1j22 ; (7.3)we obtain thatF1G(s; �1; x2)2 = e�2as4 J20 �q(j�1j2 + b� a2) (s2 � x22)� 1fjx2j < sg� e2a�t4 C p2p1 + j�1j2 1ps2 � x22 1fjx2j < sg:



7.1. Fourier transform of the Green kernel in x1 89If 2(a2 � b) + 1 � 0 and a2 � b � j�1j2 � 2(a2 � b) + 1, then sine J0(r)2 � 1 for all r � 0, weobtain F1G(s; �1; x2)2 = e�2as4 J20 �q(j�1j2 + b� a2) (s2 � x22)� 1fjx2j < sg� e2a�t4 1fjx2j < sg� e2a�t4 tps2 � x22 1fjx2j < sg;sine ps2 � x22 � s � t. Finally, if a2 � b � 0 and j�1j2 � a2 � b, then sine I0(r)2 � C e2r forall r � 0, we haveF1G(s; �1; x2)2 = e�2as4 I20 �q(a2 � b� j�1j2) (s2 � x22)� 1fjx2j < sg� e2a�t4 C e2pa2�b t 1fjx2j < sg� e2a�t4 C e2pa2�b t tps2 � x22 1fjx2j < sg;sine ps2 � x22 � s � t as before. The proof now ends as the proof of Lemma 5.4.1.The preeding lemma, as Lemma 5.4.1, will be used for rather tehnial purposes. A diretonsequene is the following upper bound.Lemma 7.1.2. For all t > 0, there exists C5(t) > 0 suh thatZ t0 ds F1G(s; �1; x2)2 � C5(t)p1 + j�1j2 arosh� tjx2j� 1fjx2j < tg; 8�1 2 Rd�1 ; x2 2 R� :Proof. We obtain this inequality by a simple integration in s of the result of Lemma 7.1.1.As Lemma 5.4.3, the following lemma gives a orresponding lower bound.Lemma 7.1.3. For all t > 0 and x2 2 R suh that 0 < jx2j < t, there exists C6(t; x2) > 0 suhthat Z t0 ds F1G(s; �1; x2)2 � C6(t; x2)p1 + j�1j2 ; 8�1 2 Rd�1 :Proof. If j�1j2 � a2 � b+ 1t2�x22 (reall that 0 < jx2j < t by assumption), thenZ t0 ds F1G(s; �1; x2)2 = Z t0 ds e�2as4 J20 �q(j�1j2 + b� a2) (s2 � x22)� 1fjx2j < sg� e�2a+t4 Z tjx2j ds J20 �q(j�1j2 + b� a2) (s2 � x22)� :Use the hange of variables r =p(j�1j2 + b� a2) (s2 � x22), so thatds = r drs (j�1j2 + b� a2) � r drt (j�1j2 + b� a2) ;



90 Chapter 7. Existene of a real-valued solutionand set R =p(j�1j2 + b� a2) (t2 � x22) to see thatZ t0 ds F1G(s; �1; x2)2 � e�2a+t4t 1j�1j2 + b� a2 Z R0 dr r J0(r)2:Sine R � 1 and using Lemma B.2.1, we obtain thatZ t0 ds F1G(s; �1; x2)2 � C e�2a+t4t p(j�1j2 + b� a2) (t2 � x22)j�1j2 + b� a2 :Moreover, by (5.22), pj�1j2 + b� a2 � (1 _pb� a2)p1 + j�1j2; (7.4)so Z t0 ds F1G(s; �1; x2)2 � C e�2a+t pt2 � x224t 11 _pb� a2 1p1 + j�1j2 :If a2 � b+ 1t2�x22 � 0 and a2 � b � j�1j2 � a2 � b+ 1t2�x22 , thenZ t0 ds F1G(s; �1; x2)2 = Z tjx2j ds e�2as4 J0�q(j�1j2 + b� a2) (s2 � x22)�2� e�2a+t (t� jx2j) J0(1)2;sine p(s2 � x22) (j�1j2 + b� a2) � 1 for all s 2 [0; t℄ and J0(r)2 � J0(1)2 > 0 for all r 2 [0; 1℄.Finally, if a2 � b � 0 and j�1j2 � a2 � b, thenZ t0 ds F1G(s; �1; x2)2 = Z tjx2j ds e�2as4 I0�q(a2 � b� j�1j2) (s2 � x22)�2� e�2a+t (t� jx2j)sine I0(r)2 � 1 for all r � 0, and the proof ends as the proof of Lemma 5.4.3.7.2 Optimal ondition on the spetral measureSimilarly to Setion 6.3, we will see here that there exists a real-valued proess de�ned outsidethe hyperplane x2 = 0 whih is the weak solution of equation (6.2) if and only if AssumptionB0 of the preeding hapter is satis�ed, namelyZRd�1 �(d�1)p1 + j�1j2 <1:Note that beause of the square root, this ondition is stronger than the one obtained for theequation driven by spatially homogeneous noise (see [15, 30℄), but this is quite normal sine thenoise onsidered here, being onentrated on a hyperplane, is by nature more singular than aspatially homogeneous one.In Setion 7.5, we give a reformulation of Assumption B0 into a ondition on the ovariane�, when the latter is non-negative. One an already notie that the Lebesgue measure on Rd�1



7.2. Optimal ondition on the spetral measure 91(whih is the spetral measure of white noise on Rd�1) does not satisfy this ondition for anydimension d greater than 1. This result is then ompletely di�erent from the one obtained forthe heat equation, for whih there always exists a real-valued solution outside the hyperplanex2 = 0 (see Chapter 9).We now prove the suÆieny of Assumption B0 through the following three lemmas.Lemma 7.2.1. Under Assumption B0 and for (t; x1; x2) 2 R+�Rd�1�R� , the funtion �t;x1;x2 :[0; t℄! O0C(Rd�1 ) de�ned by�t;x1;x2(s; �) = G(t� s; x1 � �; x2); s 2 [0; t℄;belongs to Ht.Proof. Theorem 6.2.2 does not apply here (ondition (6.14) is not satis�ed, mainly beause F1Gis not ontinuous in s), so we need to show diretly that �t;x1;x2 2 Ht, using the de�nition of thisspae (see Setion 6.2). Fix therefore (t; x1; x2) 2 R+ � Rd�1 � R� . Note that for all s 2 [0; t℄,�1 2 Rd�1 , F1�t;x1;x2(s; �1) = F1G(t� s;��1; x2) �x1(�1):Thus, for all s 2 [0; t℄, F1�t;x1;x2(s; �) 2 OM (Rd�1) (see Setion 7.1) and this implies that�t;x1;x2(s; �) 2 O0C(Rd�1), by (4.2). Moreover, F1�t;x1;x2 is a Borel-measurable funtion andusing Lemma 7.1.2 and Assumption B0, we obtain thatk�t;x1;x2k2t = ZRd�1 �(d�1)Z t0 ds F1G(t� s;��1; x2)2� C5(t) ZRd�1 �(d�1)p1 + j�1j2 arosh� tjx2j� 1fjx2j < tg <1; (7.5)sine x2 6= 0 by the assumption made above. Let us now de�ne�(n)t;x1;x2(s; y1) = (�t;x1;x2(s) �1  n) (y1); s 2 [0; t℄; y1 2 Rd�1 ; (7.6)where ( n) is a sequene of non-negative and ompatly supported approximations of Æ0 in Rd�1 ,whih satis�es ZRd�1 dx1  n(x1) = 1; so jF1 n(�1)j � 1; 8�1 2 Rd�1 :For eah n, we have F1�(n)t;x1;x2(s; �1) = F1�t;x1;x2(s; �1) F1 n(�1);whih implies thatk�t;x1;x2 � �(n)t;x1;x2k2t = Z t0 dsZRd�1 �(d�1) jF1�t;x1;x2(s; �1)j2 j1�F1 n(�1)j2:Using the dominated onvergene theorem together with the following fats:F1 n(�1) !n!1 1; j1�F1 n(�1)j � 2 and k�t;x1;x2kt <1;



92 Chapter 7. Existene of a real-valued solutionwe onlude that k�t;x1;x2 � �(n)t;x1;x2kt !n!1 0:It remains to hek that �(n)t;x1;x2 2 Ht;0 for eah n. By (7.6) and de�nition of �(n)t;x1;x2 , �(n)t;x1;x2is a Borel-measurable funtion and for all s 2 [0; t℄, �(n)t;x1;x2(s; �) 2 S(Rd�1 ), sine �t;x1;x2(s; �) 2O0C(Rd�1). The last ondition to verify is that k�(n)t;x1 ;x2kt;+ <1.We also dedue from the de�nition of �(n)t;x1;x2 that for all s 2 [0; t℄, �(n)t;x1;x2(s; �) is ompatlysupported, and therefore belongs to C10 (Rd�1 ) and so does �(n)t;x1;x2(s; �)�1�(n)t;x1;x2(s; �). Moreover,by estimate (7.2), there exists R1 > 0 suh thatsups2[0;t℄(j�(n)t;x1;x2(s; �)j �1 j�(n)t;x1;x2(s; �)j)(z1) = 0; 8z1 2 Rd�1 with jz1j > R1:This implies thatk�(n)t;x1;x2k2t;+ = Z t0 dsZRd�1 �(dz1) (j�(n)t;x1;x2(s; �)j �1 j�(n)t;x1;x2(s; �))j(z1) <1;whih ompletes the proof.Lemma 7.2.2. Let M be the worthy martingale measure de�ned in Setion 6.1 in the asek = d � 1. Under Assumption B0, the real-valued proess X = fX(t; x1; x2); (t; x1; x2) 2R+ � Rd�1 � R�g de�ned byX(t; x1; x2) = Z[0;t℄�Rd�1 M(ds; dy1) G(t� s; x1 � y1; x2); (t; x1; x2) 2 R+ � Rd�1 � R� ;is a entered Gaussian proess whose ovariane is given byE(X(t; x1 ; x2) X(s; y1; y2))= ZRd�1 �(d�1)Z t^s0 dr F1G(t� r;��1; x2) F1G(s� r;��1; y2) �x1�y1(�1); (7.7)and suh that the map (t; x1; x2) 7! X(t; x1; x2) is ontinuous from R+ � Rd�1 � R� to L2(
).Remark 7.2.3. This result and [42, Prop. 3.6 and Cor. 3.8℄ imply that the proess X admits amodi�ation ~X suh that the map (t; x1; x2; !) 7! ~X(t; x1; x2; !) is jointly measurable. We willimpliitely onsider this modi�ation in the following.Proof of Lemma 7.2.2. First note that the proof follows exatly the same sheme as the proofof Lemma 6.3.3, but the estimates are quite di�erent.By Lemma 7.2.1, the proess X is well de�ned. The fat that X is a entered Gaussianproess with the ovariane given above follows easily from the isometry (6.13), and sine � andF1G are symmetri in �1, (7.7) is equal toZRd�1 �(d�1)Z t^s0 dr F1G(t� r;��1; x2) F1G(s� r;��1; y2) os(�1 � (x1 � y1));



7.2. Optimal ondition on the spetral measure 93so X is real-valued.In order to show that the map (t; x1; x2) 7! X(t; x1; x2) is ontinuous from R+ � Rd�1 � R�to L2(
), we show that for all T > 0, it is ontinuous from [0; T ℄�Rd�1 �R� to L2(
), showing�rst that the map x2 7! X(t; x1; x2) is ontinuous in L2(
) uniformly in (t; x1) 2 [0; T ℄� Rd�1 ,then that for �xed x2 2 R� , the map x1 7! X(t; x1; x2) is ontinuous in L2(
) uniformly int 2 [0; T ℄ and �nally that for �xed (x1; x2) 2 Rd�1 � R� , the map t 7! X(t; x1; x2) is ontinuousin L2(
).Therefore, let x2, y2 2 R� . Using (7.7) and arguments similar to those that led to (6.17), weobtain that sup(t;x1)2[0;T ℄�Rd�1 E((X(t; x1 ; y2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z T0 dr (F1G(r;��1; y2)�F1G(r;��1; x2))2: (7.8)We will show in two steps that this expression onverges to 0 as y2 ! x2. First note that foreah �1 2 Rd�1 and r 6= jx2j,(F1G(r;��1; y2)�F1G(r;��1; x2))2 !y2!x2 0:Moreover, sine F1G is bounded on [0; T ℄�Rd�1�R, we obtain from the dominated onvergenetheorem that Z T0 dr (F1G(r;��1; y2)�F1G(r;��1; x2))2 !y2!x2 0:But for " 2 ℄0; jx2j[ and jy2 � x2j < ", we obtain by Lemma 7.1.2 thatZ T0 dr (F1G(r;��1; y2)�F1G(r;��1; x2))2� 2 C5(T )p1 + j�1j2 �arosh� Tjy2j� 1fjy2j < Tg + arosh� Tjx2j� 1fjx2j < Tg�� 2 C5(T )p1 + j�1j2 �arosh� Tjx2j � "� 1fjx2j � " < Tg + arosh� Tjx2j� 1fjx2j < Tg� ;sine jy2j > jx2j � �. So by Assumption B0 and the dominated onvergene theorem, (7.8)onverges to 0 as y2 ! x2.Now, let x1, y1 2 Rd�1 and x2 2 R� . As in the proof of (6.18), (7.7) leads tosupt2[0;T ℄ E((X(t; y1 ; x2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z T0 dr F1G(r;��1; x2)2 2 (1� os(�1 � (y1 � x1))): (7.9)



94 Chapter 7. Existene of a real-valued solutionBy ontinuity of the osine funtion, the integrand in (7.9) onverges to 0 as y1 ! x1 and byLemma 7.1.1,F1G(r;��1; x2)2 2 (1� os(�1 � (y1 � x1)) � 4 C4(T )p1 + j�1j2 1pr2 � x22 1fjx2j < rg;so using again Assumption B0, the fat that, sine x2 6= 0,Z T0 dr 1pr2 � x22 1fjx2j < rg = arosh� Tjx2j� 1fjx2j < Tg <1;and the dominated onvergene theorem, we obtain that the expresssion in (7.9) onverges to 0as y1 ! x1.Finally, let t; h 2 R+ , x1 2 Rd�1 and x2 2 R� . As in (6.19) and (6.20), (7.7) leads toE ((X(t + h; x1; x2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z t0 dr (F1G(r + h;��1; x2)�F1G(r;��1; x2))2 (7.10)+ZRd�1 �(d�1)Z h0 dq F1G(q;��1; x2)2: (7.11)Using the same tehnique as above for the ontinuity in x2, we show that (7.10) onverges to 0as h ! 0. First, note that the integrand onverges to 0 for all r in [0; t℄ suh that r 6= t� jx2j,and that it is bounded on [0; t℄� Rd�1 � R, so by the dominated onvergene theorem,Z t0 dr (F1G(r + h;��1; x2)�F1G(r;��1; x2))2 !h!0 0:But sine for all h � h0,Z t0 dr (F1G(r + h;��1; x2)�F1G(r;��1; x2))2� 2�Z t0 dr F1G(r + h;��1; x2)2 + Z t0 dr F1G(r;��1; x2))2�� 4Z t+h00 dr F1G(r;��1; x2)2� 4 C5(t+ h0)p1 + j�1j2 arosh� t+ h0jx2j � 1fjx2j < t+ h0g;by Lemma 7.1.2, we obtain that the expression (7.10) onverges to 0 as h ! 0 by AssumptionB0 and the dominated onvergene theorem. On the other hand, Lemma 7.1.1 implies that forall h � h0, ZRd�1 �(d�1)Z h0 dq F1G(q;��1; x2)2� ZRd�1 �(d�1)Z h0 dq C4(h0)p1 + j�1j2 1pq2 � x22 1fjx2j < qg� C4(h0)ZRd�1 �(d�1)p1 + j�1j2 arosh� hjx2j� 1fjx2j < hg;



7.2. Optimal ondition on the spetral measure 95so by Assumption B0, the integral in (7.11) onverges also to 0 as h ! 0, and this shows theright-ontinuity in t of the proess X (in L2(
)). The left-ontinuity follows in the same way asin the proof of Lemma 6.3.3, and this ompletes the proof. �Lemma 7.2.4. Let u be the solution of equation (6.5) (with k = d� 1). Under Assumption B0,the proess X de�ned in Lemma 7.2.2 satis�eshu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:;for all t 2 R+ and ' 2 S(Rd ) suh that supp ' � Rd�1 � R� .Proof. By Lemma 7.2.2 and Remark 7.2.3, the integral on the right-hand side of the aboveequation is well de�ned, sine supp ' � Rd�1 � R� . To show that both sides are equal P-a.s.,we proeed as in the proof of Lemma 6.3.5. By (6.7) and (6.13), we obtain thatE (jhu(t); 'ij2) = E 0������Z[0;t℄�Rd�1 M(ds; dx1) (G(t� s) � ')(x1; 0)�����21A= ZRd�1 �(d�1)Z t0 ds jF1(G(t� s) � ')(�1; 0)j2:Sine F1 = F�12 F and F(G �H) = FG � FH, we an write thatF1(G(t� s) � ')(�1; 0) = F�12 (FG(t� s) � F')(�1; 0)= 12� ZR d�2 FG(t � s; �1; �2) F'(�1; �2); (7.12)where we have used (4.1), soE (jhu(t); 'ij2) = ZRd�1 �(d�1)Z t0 ds ���� 12� ZR d�2 FG(t� s; �1; �2) F'(�1; �2)����2 : (7.13)On the other hand, by Fubini's theorem and (7.7),E  ����ZRd dx X(t; x) '(x)����2!= ZRd dxZRd dy E (X(t; x) X(t; y)) '(x) '(y)= ZRd�1 �(d�1)Z t0 ds ����ZRk dx1 ZRd�k dx2 F1G(t� s;��1; x2) ��1(x1) '(x1; x2)����2 :(7.14)Using now the de�nitions of F1 and F2, we obtain thatZRk dx1 ZRd�k dx2 F1G(t� s;��1; x2) ��1(x1) '(x1; x2)= ZR dx2 F1G(t� s;��1; x2) F1'(�1; x2)= 12� ZR d�2 FG(t� s;��1;��2) F'(�1; �2); (7.15)



96 Chapter 7. Existene of a real-valued solutionwhih is equal to (7.12), by symmetry of FG in �, so (7.13) and (7.14) are equal. Following theproof of Lemma 6.3.5, it remains to ompute, using Fubini's theorem and (6.13),E �hu(t); 'i � ZRd dx X(t; x) '(x)�= ZRd�1 �(d�1)Z t0 ds  F1(G(t� s) � ')(�1; 0)�ZRd dx F1G(t� s;��1; x2) ��1(x1) '(x)!:Using alulations (7.12) and (7.15), we obtain that this last expression is equal toZRd�1 �(d�1)Z t0 ds  12� ZR d�2 FG(t� s; �1; �2) F'(�1; �2)� 12� ZR d�2 FG(t� s;��1;��2) F'(�1; �2)!:whih is also equal to (7.13) and (7.14). This ompletes the proof.With these three lemmas in hand, we an now prove the following theorem, whih showsmoreover that Assumption B0 is optimal, as already mentioned in Remark 6.4.5 in the preedinghapter.Theorem 7.2.5. Let u be the solution of equation (6.5)(with k = d� 1). There exists a squareintegrable real-valued proess X = f X(t; x1; x2); (t; x1; x2) 2 R+ � Rd�1 � R�g suh that themap (t; x1; x2) 7! X(t; x1; x2) is ontinuous from R+ � Rd�1 � R� to L2(
) andhu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:;for all t 2 R+ and ' 2 S(Rd ) suh that supp ' � Rd�1�R� if only if Assumption B0 is satis�ed.Moreover, when X exists, it is a entered Gaussian proess whose ovariane is given by formula(7.7).Proof. This proof follows the same sheme as the proof of Proposition 6.3.6 in Setion 6.3.The suÆieny of ondition B0 follows diretly from the three preeding lemmas, so let usnow are about the neessity: �x (t; x1; x2) 2 R+ � Rd�1 � R suh that 0 < jx2j < t andlet '(n)x1;x2 = Æ(x1;x2) �  n 2 S(Rd), where ( n) is a sequene of non-negative and ompatlysupported approximations of Æ0 in Rd . Sine supp '(n)x1;x2 � Rd�1 � R� for n suÆiently large,the assumptions made on X and Fubini's theorem imply thatE(jhu(t); '(n)x1 ;x2ij2) = E  ����ZRd dy1 dy2 X(t; y1; y2) '(n)x1;x2(y1; y2)����2!= ZRd dy1 dy2 ZRd dz1 dz2 E (X(t; y1 ; y2) X(t; z1; z2)) '(n)x1;x2(y1; y2) '(n)x1;x2(z1; z2)!n!1 E(X(t; x1 ; x2)2) <1: (7.16)



7.3. A stronger ondition 97On the other hand, replaing ' by '(n)x1;x2 in (7.13) givesE (jhu(t); '(n)x1 ;x2ij2) = ZRd�1 �(d�1)Z t0 ds ���� 12� ZR d�2 FG(t� s; �1; �2) F'(n)x1;x2(�1; �2)����2 :Let us then ompute12� ZR d�2 FG(t � s; �1; �2) F'(n)x1;x2(�1; �2)= ZR dy2 F1G(t� s; �1;�y2) F1'(n)x1;x2(�1; y2)= ZRd dy1 ZR dy2 F1G(t� s; �1;�y2) ��1(y1) '(n)x1;x2(y1; y2)!n!1 F1G(t� s; �1;�x2) �x1(�1);for all (s; �1) 2 [0; t℄� Rd�1 suh that s 6= t� jx2j. Fatou's lemma and Lemma 7.1.3 then implythat limn!1 E (jhu(t); '(n)x1 ;x2ij2) � ZRd�1 �(d�1)Z t0 ds F1G(t� s; �1;�x2)2� C6(t; x2)ZRd�1 �(d�1)p1 + j�1j2 :Sine the above limit exists and is �nite by (7.16), Assumption B0 is satis�ed and this ompletesthe proof.Remark 7.2.6. From estimate (7.5) in the proof of Lemma 7.2.1, one sees that under Assump-tion B0 and for �xed t 2 R+ , there exists C(t) > 0 suh thatE (X(t; x1 ; x2)2) � C(t) arosh� tjx2j� 1fjx2j < tg �x2!0 ln� 1jx2j� :This estimate implies that ZR dx2 E(X(t; x1 ; x2)2) <1;so by Fubini's theorem, the map x2 7! X(t; x1; x2) belongs P � a:s: to L2(R), in onordanewith Theorem 6.4.3 of the preeding hapter (in the ase k = d � 1 and � = 0). On the otherhand, the behavior in ln( 1jx2j) is the reason why the proess X is not de�ned on the hyperplanex2 = 0. In the following setion, we shall see that under a stronger assumption on the spetralmeasure �, the proess X an be de�ned also on the hyperplane x2 = 0.7.3 A stronger onditionBy Theorem 7.2.5, Assumption B0 only guarantees that the solution of equation (6.5) is a real-valued proess X de�ned outside the hyperplane x2 = 0. We are going to show here that theproess X is de�ned on the whole spae under the following slightly stronger ondition on �(whih does not belong to the set of assumptions of the preeding hapter).



98 Chapter 7. Existene of a real-valued solutionAssumption B00. ZRd�1 �(d�1) ln�p1 + j�1j2�p1 + j�1j2 <1:Note that there is only an extra logarithmi fator in this assumption ompared to AssumptionB0. At the end of this setion, we give an example of a spetral measure � whih does notsatisfy Assumption B00 but satis�es Assumption B0.One an also notie that the situation is one again ompletely di�erent in the ase of theheat equation, sine there never exists a real-valued solution de�ned on the whole spae for thisequation; see Chapter 9.We will now prove the optimality of the above ondition through the following two estimates,whih are slightly more deliate to establish than Lemmas 7.1.2 and Lemmas 7.1.3, but givebounds valid for x2 = 0.Lemma 7.3.1. For all t > 0, there exists C7(t) > 0 suh thatZ t0 ds F1G(s; �1; x2)2 � C7(t) 1 + ln�p1 + j�1j2�p1 + j�1j2 ; 8�1 2 Rd�1 ; x2 2 R:Proof. If j�1j2 � 2(a2 � b) + 1, then sineJ0(r)2 � Cp1 + r2 ; 8r � 0;we obtain thatZ t0 ds F1G(s; �1; x2)2 = Z t0 ds e�2as4 J0�q(j�1j2 + b� a2) (s2 � x22)�2 1fjx2j < sg� C e2a�t4 Z tjx2j ds 1p1 + (j�1j2 + b� a2) (s2 � x22) 1fjx2j < tg:Computing the integral givesC e2a�t4pj�1j2 + b� a2 ln s+s 1j�1j2 + b� a2 + s2 � x22!�����s=ts=jx2j 1fjx2j < tg� p2 C e2a�t4p1 + j�1j2 ln0�t+q 1j�1j2+b�a2 + t2 � x22jx2j+ 1pj�1j2+b�a2 1A 1fjx2j < tg;using (7.3). This last expression is maximum when x2 = 0, in whih ase it is equal top2 C e2a�t4p1 + j�1j2  ln�pj�1j2 + b� a2�+ ln t+s 1j�1j2 + b� a2 + t2!! :



7.3. A stronger ondition 99Morevoer, using (7.4) and the fat that 1j�1j2+b�a2 � 2, we obtain thatZ t0 ds F1G(s; �1; x2)2� p2 C e2a�t4p1 + j�1j2 �ln�p1 + j�1j2�+ ln�p1 _ (b� a2)�+ ln�t+p2 + t2�� :If 2(a2 � b) + 1 � 0 and a2 � b � j�1j2 � 2(a2 � b) + 1, then sine J0(r)2 � 1 for all r � 0, weget thatZ t0 ds F1G(s; �1; x2)2 = Z t0 ds e�2as4 J0�q(j�1j2 + b� a2) (s2 � x22)�2 1fjx2j < sg� e2a�t4 t:Finally, if a2 � b � 0 and j�1j2 � a2 � b, then sine I0(r)2 � C e2r for all r � 0, we get thatZ t0 ds F1G(s; �1; x2)2 = Z t0 ds e�2as4 I0�q(a2 � b� j�1j2) (s2 � x22)�2 1fjx2j < sg� e2a�t4 C e2pa2�b t t;and the proof ends as the proof of Lemma 5.4.1.Lemma 7.3.2. For all t > 0, there exist C8(t), C 08(t) and R(t) > 0 suh thatZ t0 ds F1G(s; �1; 0)2 � C8(t) ln�p1 + j�1j2��C 08(t)p1 + j�1j2 ; 8�1 2 Rd�1 with j�1j � R(t):Proof. Let R(t)2 = 2(a2 � b) + (�2t2 _ 1) and j�1j � R(t). We then omputeZ t0 ds F1G(s; �1; 0)2 = Z t0 ds e�2as4 J0 �spj�1j2 + b� a2�2� e�2a+t4 Z t0 ds J0 �spj�1j2 + b� a2�2= e�2a+t4pj�1j2 + b� a2 Z tpj�1j2+b�a20 dr J0(r)2;by the hange of variable r = spj�1j2 + b� a2. Using now (7.4), we obtain thatZ t0 ds F1G(s; �1; 0)2 � e�2a+t4p1 _ (b� a2)p1 + j�1j2 Z tpj�1j2+b�a21 dr J0(r)2� e�2a+t4p1 _ (b� a2)p1 + j�1j2 0� ln�tpj�1j2 + b� a2�� � C1A ;by Lemma B.2.2. Using (7.3), we moreover haveln�tpj�1j2 + b� a2� � ln�p1 + j�1j2�+ ln� tp2� ;so the onlusion follows.



100 Chapter 7. Existene of a real-valued solutionWe an now state the theorem.Theorem 7.3.3. Let u be the solution of equation (6.5) (with k = d� 1). There exists a squareintegrable real-valued proess X = fX(t; x); (t; x) 2 R+�Rdg suh that the map (t; x) 7! X(t; x)is ontinuous from R+ � Rd to L2(
) andhu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:; 8t 2 R+ ; ' 2 S(Rd);if and only if Assumption B00 is satis�ed. Moreover, when X exists, it is a entered Gaussianproess whose ovariane is given by formula (7.7).Proof. The proof is similar to that of Theorem 7.2.5. Let us �rst show the suÆieny of As-sumption B00, onsidering what needs to be modi�ed in Lemmas 7.2.1, 7.2.2 and 7.2.4.In Lemma 7.2.1, we simply use Lemma 7.3.1 and Assumption B00 instead of Lemma 7.1.2 andAssumption B0 in order to estimate k�t;x1;x2kt, whih gives us the �niteness of this expressionfor all (t; x1; x2) 2 R+ � Rd�1 � R.For Lemma 7.2.2, we need some slightly di�erent estimates of the L2-inrements of theproess. Let us �rst onsider x2, y2 2 R. We have, following the proof of this lemma,sup(t;x1)2[0;T ℄�Rd�1 E((X(t; x1 ; y2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z T0 dr (F1G(r;��1; y2)�F1G(r;��1; x2))2:Using twie the dominated onvergene theorem as in the proof of Lemma 7.2.2, jointly withLemma 7.3.1 and AssumptionB00, we obtain that the above expression onverges to 0 as y2 ! x2.Now, let x1, y1 2 Rd�1 and x2 2 R. As above, we havesupt2[0;T ℄ E((X(t; y1 ; x2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z T0 dr F1G(r;��1; x2)2 2 (1� os(�1 � (y1 � x1))):One again, using twie the dominated onvergene theorem joinlty with Lemma 7.3.1 and As-sumption B00, we obtain that the above expression onverges to 0 as y1 ! x1.Finally, let t; h 2 R+ , x1 2 Rd�1 and x2 2 R. ThenE ((X(t + h; x1; x2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z t0 dr (F1G(r + h;��1; x2)�F1G(r;��1; x2))2 (7.17)+ZRd�1 �(d�1)Z h0 dq F1G(q;��1; x2)2: (7.18)



7.3. A stronger ondition 101Using the same arguments as above, we obtain that (7.17) onverges to 0 as h ! 0. For theseond term, note that as F1G is bounded on [0; h℄ � Rd�1 � R,Z h0 dq F1G(q;��1; x2)2 !h!0 0; 8�1 2 Rd�1 :Moreover, by Lemma 7.3.1,Z h0 dq F1G(q;��1; x2)2 � C7(h0) 1 + ln�p1 + j�1j2�p1 + j�1j2 ;for all h � h0. So the dominated onvergene theorem allows us to onlude that the proess Xis L2-right-ontinous in t, and an argument similar to that of the proof of Lemma 6.3.3 allowsus to to prove the left-ontinuity. Summing up these results gives us the L2-ontinuity of theproess X on R+ � Rd , then the existene of a jointly measurable modi�ation.The proof of Lemma 7.2.4 remains unhanged, exept that the ondition supp ' � Rd�1�R�disappears. This ompletes the proof of the suÆieny.In order to prove the neessity, let us also follow the proof of Theorem 7.2.5. Assuming thatthe proess X exists, we therefore have1 > E (X(t; x1 ; 0)2) = limn!1 E(jhu(t); '(n)x1 ;0ij2; (7.19)where '(n)x1;0 !n!1 Æx1;0 in S 0(Rd ). Using (7.13), we obtainE (jhu(t); '(n)x1 ;0ij2) = ZRd�1 �(d�1)Z t0 ds ���� 12� ZR d�2 FG(t� s; �1; �2) F'(n)x1;0(�1; �2)����2 :So by the same alulations as in the proof of Theorem 7.2.5 and Fatou's lemma, we havelimn!1 E (jhu(t); '(n)x1 ;0ij2 � ZRd�1 �(d�1)Z t0 ds F1G(t� s; �1; 0)2:But sine by Lemma 7.3.2,ZRd�1 �(d�1)Z t0 ds F1G(t� s; �1; 0)2 � ZB1(0;R(t)) �(d�1)Z t0 ds F1G(t� s; �1; 0)2� ZB1(0;R(t)) �(d�1) C8(t) ln�p1 + j�1j2�� C 08(t)p1 + j�1j2 ;we obtain, using (7.19) and the fat that �(B1(0; R(t))) <1,ZRd�1 �(d�1) C8(t) ln�p1 + j�1j2�� C 08(t)p1 + j�1j2 <1:



102 Chapter 7. Existene of a real-valued solutionNow we use Theorem 7.2.5 whih tells us that under the assumptions made in the presenttheorem, Assumption B0 is satis�ed, therefore,C8(t)ZRd�1 �(d�1) ln�p1 + j�1j2�p1 + j�1j2 = ZRd�1 �(d�1) C8(t) ln�p1 + j�1j2�� C 08(t)p1 + j�1j2+ C 08(t)ZRd�1 �(d�1)p1 + j�1j2 <1;so Assumption B00 is satis�ed, and this ompletes the proof.This proves that under ondition B00, the weak solution u of equation (6.2) does not explodenear x2 = 0. Let us now give an example of a spetral measure � whih satis�es B0 but not B00,and for whih there is therefore an explosion near x2 = 0, by the neessity of ondition B00. Weonsider the ase d = 2 (that is, the ase where � is a measure on the real line) and desribe �by its density � given by �(r) = 8>>><>>>: 3� 2re ; if r 2 [0; e[;1ln(r)2 if r 2 [e;1[;and �(r) = �(�r) for r < 0. One an easily hek that�(r)p1 + r2 �r!1 1ln(r)2 r ; so ZR dr �(r)p1 + r2 <1:On the other hand,�(r) ln(p1 + r2)p1 + r2 �r!1 1ln(r) r ; so ZR dr �(r) ln(p1 + r2)p1 + r2 =1:Let us now hek that the orresponding ovariane � = F1� satis�es all the required as-sumptions. Clearly, � is a non-negative tempered Borel measure on R, so � is a temperednon-negative de�nite distribution by the Bohner-Shwartz theorem 4.3.1. It remains to showthat � is a measure on R. For this, let us note that � is dereasing and onvex on [0;1[, so byPolya's riterion (see for example [23, x2.3.d℄), � is a (symmetri) non-negative de�nite funtionon R. By the lassial Bohner theorem, this implies that � is a non-negative �nite measure onR. We therefore have onstruted a relevant example.7.4 H�older-ontinuity of the solutionIn this setion, we show that when � is positive, Assumption B� of the preeding hapter impliesa stronger regularity of the solution than the one obtained in that hapter. Namely, we an showhere H�older-regularity of the solution. The tehniques that we use are similar to those used in[54℄ for the solution of the hyperboli equation driven by spatially homogeneous noise.



7.4. H�older-ontinuity of the solution 103For the larity of the alulations, we assume in this setion that the oeÆients a and b ofequation (6.5) are both equal to 0 and that the spae dimension d belongs to f2; :::; 5g (beauseof the preeding restrition). Let then � 2 ℄0; 12 [ and suppose that Assumption B� of thepreeding hapter is satis�ed, whih an be written when k = d� 1 asZRd�1 �(d�1)(1 + j�1j2) 12�� <1:Note that this ondition is always stronger than B0 and B00, and that when � tends to 12 , itlooks more and more like \� is a �nite measure", as it was the ase for the ondition A� of thepreeding hapter, with � tending to 1.We will now prove that under this assumption, the proess X admits a modi�ation whihis P � a:s: loally H�older-ontinuous outside the hyperplane x2 = 0, with exponent  < � ^ 14 .For this, we need the following two lemmas.Lemma 7.4.1. Fix � 2 ℄0; 12 [. For all T > 0 and R > " > 0, there exists C9(T;R; ") > 0 suhthat Z t0 ds (F1G(s; �1; y2)�F1G(s; �1; x2))2 � C9(T;R; ") jy2 � x2j2�^ 12(1 + j�1j2) 12�� ;for all t 2 [0; T ℄, �1 2 Rd�1 and " � jx2j; jy2j � R.Proof. Let us �rst reall that we have assumed that a = b = 0, so the Fourier transform of G inthe oordinate x1 simply reads (see (7.1))F1G(t; �1; x2) = 12 J0�j�1jqt2 � x22� 1fjx2j < tg; 8(t; �1; x2) 2 R+ � Rd�1� 2 R:Let us �x t 2 [0; T ℄, �1 2 Rd�1 , " � jx2j; jy2j � R and assume, without loss of generality, that" � x2 � y2 � R. Let us then omputeZ t0 ds (F1G(s; �1; y2)�F1G(s; �1; x2))2= 14 Z t0 ds �J0�j�1jqs2 � y22� 1fy2 < sg � J0�j�1jqs2 � x22� 1fx2 < sg�2 :(7.20)Adding and substrating the term J0 �j�1jps2 � x22� 1fy2 < sg inside the parentheses, weobtain that (7.20) is less than or equal to12 1fy2 < tg Z ty2 ds �J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2 (7.21)+ 12 Z y2x2 ds J0�j�1jqs2 � x22�2 : (7.22)



104 Chapter 7. Existene of a real-valued solutionWe now need to bound these two terms. We begin with (7.22). Sine J0(r)2 � Cr for all r > 0,we obtain that when j�1j � 1,Z y2x2 ds J0�j�1jqs2 � x22�2� Cj�1j Z y2x2 ds 1ps2 � x22 = Cj�1j Z y2x2 ds 1p(s+ x2) (s� x2)� Cj�1j p2x2 Z y2x2 ds 1p(s� x2) � 2Cp2" py2 � x2j�1j ;sine s+ x2 � 2x2 � 2". On the other hand, when j�1j � 1,Z y2x2 ds J0�j�1jqs2 � x22�2 � y2 � x2 � p2R py2 � x2;sine J0(r)2 � 1 for all r � 0 and 0 � x2 � y2 � R. So there exists C(R; �) > 0 suh that (7.22)is less than or equal to C(R; ") py2 � x2p1 + j�1j2 :We now turn to (7.21). If j�1j � 1, then sine J 00(r) = �J1(r) for all r � 0, where J1 is the �rstorder regular Bessel funtion of the �rst kind (see Appendix B), we have�J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2=  Z j�1jps2�x22j�1jps2�y22 dr J1(r)!2� �J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2(1��) :Using the fat that jJ1(r)j � Cpr for all r > 0, we obtain Z j�1jps2�x22j�1jps2�y22 dr J1(r)!2� � (2C)2� j�1j� �(s2 � x22) 14 � (s2 � y22) 14�2� :Sine x2 � y2 and for all v � u � 0,v 14 � u 14 = pv �puv 14 + u 14 � v � u2u 14 (pv +pu) � v � u4u 34 ;we get that  Z j�1jps2�x22j�1jps2�y22 dr J1(r)!2� � (2C)2� j�1j� (y22 � x22)2�4(s2 � y22) 3�2� (2CR)2� j�1j� (y2 � x2)2�(s2 � y22) 3�2 ;



7.4. H�older-ontinuity of the solution 105where we have used the fat that y22 � x22 = (y2 + x2) (y2 � x2) � 2R (y2 � x2). On the otherhand, sine J0(r)2 � Cr for all r > 0 and y2 � x2,�J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2(1��)�  2 J0�j�1jqs2 � y22�2 + 2 J0�j�1jqs2 � x22�2!1��� (4C)1��j�1j1�� (s2 � y22) 1��2 :Combining the above estimates gives1fy2 < tg Z ty2 ds �J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2� C R2� 1fy2 < tg Z ty2 ds 1(s2 � y22) 12+� (y2 � x2)2�j�1j1�2� :Sine � 2 ℄0; 12 [, supt2[0;T ℄;y22[";R℄ 1fy2 < tg Z ty2 ds 1(s2 � y22) 12+� <1; (7.23)so we have obtained the desired bound for (7.21) when j�1j � 1. On the other hand, whenj�1j � 1, �J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2=  Z j�1jps2�x22j�1jps2�y22 dr J1(r)!2 � �qs2 � x22 �qs2 � y22�2 ;sine J1(r)2 � 1 for all r � 0 and j�1j � 1. Moreover,qs2 � x22 �qs2 � y22 � y22 � x222ps2 � y22 � R y2 � x2ps2 � y22� R (2R)1�2� (y2 � x2)2�ps2 � y22 ;so we obtain that 1fy2 < tg Z ty2 ds �J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2� R (2R)1�2� 1fy2 < tg Z ty2 ds 1ps2 � y22 (y2 � x2)2�:Sine supt2[0;T ℄;y22[";R℄ 1fy2 < tg Z ty2 ds 1ps2 � y22 <1; (7.24)



106 Chapter 7. Existene of a real-valued solutionwe onlude that there exists C(T;R; ") > 0 suh that (7.21) is less than or equal toC(T;R; ") (y2 � x2)2�(1 + j�1j2) 12�� :Combining the two bounds obtained for (7.21) and (7.22) gives the desired result.Lemma 7.4.2. Fix � 2 ℄0; 12 [. For all T > 0 and R > " > 0, there exists C10(T;R; ") > 0 suhthat Z t0 ds (F1G(s+ h; �1; x2)�F1G(s; �1; x2))2 � C10(T;R; ") h2�^ 12(1 + j�1j2) 12�� ;for all t 2 [0; T ℄, h 2 [0; T � t℄, �1 2 Rd�1 and " � jx2j � R.Proof. The proof is quite similar to the preeding one. Fix t 2 [0; T ℄, h 2 [0; T � t℄, �1 2 Rd�1 ," � x2 � R and omputeZ t0 ds (F1G(s+ h; �1; x2)�F1G(s; �1; x2))2= 14 Z t0 ds �J0�j�1jq(s+ h)2 � x22� 1fx2<s+hg � J0�j�1jqs2 � x22� 1fx2<sg�2� 12 1fx2 < tg Z tx2 ds �J0�j�1jq(s+ h)2 � x22�� J0�j�1jqs2 � x22��2 (7.25)+12 Z x2x2�h ds J0�j�1jq(s+ h)2 � x22�2 : (7.26)Let us �rst bound the term in (7.26), using arguments similar to those used to bound (7.22).When j�1j � 1,Z x2x2�h ds J0�j�1jq(s+ h)2 � x22�2 � Cj�1j Z x2x2�h ds 1p(s+ h+ x2) (s+ h� x2)� 2Cp2" phj�1j ;sine s+ h+ x2 � 2x2 � 2". On the other hand, when j�1j � 1,Z x2x2�h ds J0�j�1jqs2 � x22�2 � h � pT ph;so there exists C(T; ") > 0 suh that (7.26) is less than or equal toC(T; ") php1 + j�1j2 :For the term (7.25), an argument analogous to that used for (7.21) gives, when j�1j � 1,1fx2 < tg Z tx2 ds �J0�j�1jq(s+ h)2 � x22�� J0�j�1jqs2 � x22��2� C T 2� 1fx2 � tg Z tx2 ds 1(s2 � x22) 12+� h2�j�1j1�2� ;



7.4. H�older-ontinuity of the solution 107and when j�1j � 1,1fx2 < tg Z tx2 ds �J0�j�1jq(s+ h)2 � x22�� J0�j�1jqs2 � x22��2� T (2T )1�2� 1fx2 � tg Z tx2 ds 1ps2 � x22 h2� :(7.23) and (7.24) then allow us to onlude that there exists C(T;R; ") > 0 suh that (7.25) isless than or equal to C(T;R; ") h2�(1 + j�1j2) 12�� ;and ombining the two bounds obtained for (7.25) and (7.26) gives the result.Let us now state the theorem.Theorem 7.4.3. Let � 2 ℄0; 12 [, let us make Assumption B� and let X be the proess de�nedin Theorem 7.3.3. There exists then a modi�ation ~X of the proess X suh that the map(t; x1; x2) 7! ~X(t; x1; x2) is P-a.s. loally H�older-ontinuous on R+ � Rd�1 � R� with exponent < � ^ 14 , that is, for all T > 0 and R > " > 0, there exists a P� a:s: positive random variableÆ(!) and a onstant K(T;R; ") > 0 suh thatP supju�vj<Æ; u;v2B(T;R;"); j ~X(u)� ~X(v)jju� vj � K(T;R; ")! = 1;where B(T;R; ") = [0; T ℄ � Rd�1 � ([�R;�"℄ [ [";R℄)and juj =qt2 + jx1j2 + x22 for u = (t; x1; x2) 2 B(T;R; "):Note that this theorem implies that if Assumption B� is satis�ed for any � 2 ℄0; 12 [, then themodi�ation ~X of the proess X is ontinuous outside the hyperplane x2 = 0, and in partiularon the set jx2j = t, whih was not lear a priori.We point out that in the study of the heat equation, this question of regularity of the solutionoutside the hyperplane x2 = 0 is answered in a simple manner through the regularizing propertyof the Green kernel: see Chapter 9.Proof. We want to apply here the Kolmogorov ontinuity theorem, so we need �rst to studyarefully the ontinuity in L2(
) of the proess X. Therefore, let T > 0 and R > " > 0. Wewould like to estimate the L2-inrementE((X(t + h; y1; y2)�X(t; x1; x2))2)



108 Chapter 7. Existene of a real-valued solutionwhen t 2 [0; T ℄, h 2 [0; T � t℄, x1; y1 2 Rd�1 and " � jx2j; jy2j � R. To this end, note that thisinrement is less than or equal to3 (E ((X(t + h; y1; y2)�X(t; y1; y2))2)+E((X(t; y1 ; y2)�X(t; x1; y2))2) (7.27)+E((X(t; x1 ; y2)�X(t; x1; x2))2)):Let us onsider the three terms separately, beginning by the last one. Using (7.7) and Lemma7.4.1, we obtain thatE((X(t; x1 ; y2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z t0 ds (F1G(t� s;��1; y2)�F1G(t� s;��1; x2))2� C9(T;R; ")ZRd�1 �(d�1)(1 + j�1j2) 12�� jy2 � x2j2�^ 12 ;the integral in �1 being �nite by Assumption B�. For the seond term in (7.27), we have by(7.7), E((X(t; y1 ; y2)�X(t; x1; y2))2)= ZRd�1 �(d�1)Z t0 ds F1G(t� s;��1; y2)2 j�y1(�1)� �x1(�1)j2:Sine j�x1(�1)� �y1(�1)j2 � 4 j�x1(�1)� �y1(�1)j2� = 4 ����Z y1��1x1��1 dr eir����2�� 4 j�1j2� jy1 � x1j2� ;we obtain by Lemma 7.1.2 thatE ((X(t; y1 ; y2)�X(t; x1; y2))2)� 4 C5(T ) arosh� tjy2j� 1fjy2j < tg ZRd�1 �(d�1)(1 + j�1j2) 12�� jx1 � y1j2�� 4 C5(T ) arosh�T" � 1f" < Tg ZRd�1 �(d�1)(1 + j�1j2) 12�� jx1 � y1j2�:Finally, let us onsider the �rst term in (7.27), whih is equal toE((X(t + h; y1; y2)�X(t; y1; y2))2)= ZRd�1 �(d�1)Z t0 dr (F1G(r + h;��1; y2)�F1G(r;��1; y2))2 (7.28)+ZRd�1 �(d�1)Z h0 dq F1G(q;��1; y2)2; (7.29)by (7.10) and (7.11) in the proof of Lemma 7.2.2. By Lemma 7.4.2, (7.28) is now less than orequal to C10(T;R; ")ZRd�1 �(d�1)(1 + j�1j2) 12�� h2�^ 12 :



7.5. Reformulation of the onditions on the spetral measure 109Moreover, F1G(q; �1;�y2) = 0 when q � jy2j, so (7.29) is equal to 0 when h � ", and by Lemma7.1.2, it is also bounded byC(T; ") = C5(T ) arosh�T" � 1f" < Tg ZRd�1 �(d�1)p1 + j�1j2 ;so (7.29) is less than or equal to C(T; ") h" . Summing up all these bounds gives the followingresult: there exists C(T;R; ") > 0 suh thatE ((X(t + h; y1; y2)�X(t; x1; x2))2)� C(T;R; ") �h2�^ 12 + jy1 � x1j2� + jy2 � x2j2�^ 12�� 3 C(T;R; ") (h2 + jy1 � x1j2 + (y2 � x2)2)�^ 14 :Sine X is a Gaussian proess, this implies that for all m � 1, there exists C(m)(T;R; ") > 0suh thatE ((X(t + h; y1; y2)�X(t; x1; x2))2m) � C(m)(T;R; ") (h2 + jy1 � x1j2 + (y2 � x2)2)(�^ 14 )m:By the Kolmogorov ontinuity theorem (see for example [29, Problem 2.2.9℄), we obtain thatthere exists a modi�ation ~X of X suh that the map (t; x1; x2) 7! ~X(t; x1; x2) is P-a.s. loallyH�older-ontinuous on R+ � Rd�1 � R� with exponent  < � ^ 14 .Moreover, one an notie that by the proof of the preeding theorem and under AssumptionB�, the proess X admits a modi�ation whih is P � a:s: loally H�older in x1 with exponent < �, whih is an improvement when � > 14 .7.5 Reformulation of the onditions on the spetral measureFollowing the sheme of Setion 6.6, let us assume that the ovariane � is non-negative andnote that Assumption B� is ondition (4.9) with d replaed by d � 1 and � replaed by 12 � �.Using then (4.10) and Proposition 4.4.1, we obtain that Assumption B� is equivalent toZRd�1 �(dx1) Gd�1; 12��(x1) <1; (7.30)modulo the boundedness assumption of Proposition 4.4.1. As before, let us now make this lastondition more expliit.- If d = 2 and � = 0, then (7.30) is satis�ed if and only ifZB1(0;1) �(dx1) ln� 1jx1j� <1:- If d > 2 or � 2 ℄0; 12 [, then (7.30) is satis�ed if and only ifZB1(0;1) �(dx1) 1jx1j2�+d�2 <1:



110 Chapter 7. Existene of a real-valued solutionIn the ase where �(dx1) = f(jx1j) dx1, with f a ontinuous funtion on ℄0;1[, this impliesthat:- If d = 2 and � = 0, then (7.30) is satis�ed if and only ifZ 10 dr f(r) ln�1r� <1:-Iif d > 2 or � 2 ℄0; 12 [, then (7.30) is satis�ed if and only ifZ 10 dr f(r) 1r2� <1:Finally, the reformulation of ondition B00, though not established beause of tehnial diÆ-ulties, is onjetured to give the following.- If d = 2, we expet that Assumption B00 is satis�ed (perhaps modulo a boundedness assump-tion) if and only if ZB1(0;1) �(dx1) ln� 1jx1j�2 <1:- If d > 2, we expet that Assumption B00 is satis�ed (perhaps modulo a boundedness assump-tion) if and only if ZB1(0;1) �(dx1) 1jx1jd�2 ln� 1jx1j� <1:7.6 Noise on a lower dimensional planeLet us �rst onsider the ase where the noise is onentrated on a k-plane, with k = d�2. Using(4.1), (7.1) and [45, formulas I.14.16, I.14.55 and I.18.31℄, we an ompute the Fourier transformof G in the �rst d� 2 oordinates of x. For (t; �1; x2) 2 R+ � Rd�2 � R2 ,F1G(t; �1; x2)= 8>>>>>>><>>>>>>>: e�at2� os�p(j�1j2 + b� a2) (t2 � jx2j2)�pt2 � jx2j2 1fjx2j < tg; if j�1j2 � a2 � b;e�at2� osh�p(a2 � b� j�1j2) (t2 � jx2j2)�pt2 � jx2j2 1fjx2j < tg; if � a2 � b > 0 andj�1j2 < a2 � b: (7.31)The next theorem shows that when k = d� 2, the distribution-valued solution u of equation(6.5) annot be a real-valued proess, even outside the k-plane x2 = 0.Theorem 7.6.1. Let u be the solution of equation (6.5) with k = d � 2. Then there does notexist a real-valued square integrable proess X = fX(t; x1; x2); (t; x1; x2) 2 R+�Rk�Rd�knf0gg



7.6. Noise on a lower dimensional plane 111suh that the map (t; x1; x2) 7! X(t; x1; x2) is ontinuous from R+ � Rk � Rd�knf0g to L2(
)and hu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:;for all t 2 R+ and ' 2 S(Rd ) suh that supp ' � Rk � Rd�knf0g.Proof. Suppose that there exists a proess X satisfying the above onditions. As in the proof ofTheorem 7.2.5, �x (t; x1; x2) 2 R+ �Rd�2 �R2 suh that 0 < jx2j < t and let '(n)x1;x2 = Æ(x1;x2) � n 2 S(Rd ), where ( n) is a sequene of non-negative and ompatly supported approximationsof Æ0 in Rd . By the assumptions made on X, we obtain thatlimn!1 E (jhu(t); '(n)x1 ;x2ij2) = E (X(t; x1 ; x2)2) <1; (7.32)and also thatE (jhu(t); '(n)x1 ;x2ij2) = ZRd�2 �(d�1)Z t0 ds ���F1(G(t � s) � '(n)x1;x2)(�1; 0)���2= ZRd�2 �(d�1)Z t0 ds ���F1(G(s) � '(n)x1;x2)(�1; 0)���2 :Moreover, by arguments similar to those used in the proof of Theorem 7.2.5, we obtain that forall s 6= jx2j and �1 2 Rd�2 ,F1(G(s) � '(n)x1;x2)(�1; 0) !n!1 F1G(s; �1;�x2) �x1(�1);where F1G is given by (7.31). So Fatou's lemma tells us thatlimn!1 E(jhu(t); '(n)x1 ;x2ij2) � ZRd�2 �(d�1)Z tjx2j ds F1G(s; �1;�x2)2: (7.33)For a �xed �1 2 Rd�2 suh that j�1j2 � a2 � b:Z tjx2j ds F1G(s; �1;�x2)2 � e�2at4�2 Z tjx2j ds os�p(s2 � jx2j2) (j�1j2 + b� a2)�2s2 � jx2j2 =1;beause for " 2 ℄0; 1[ �xed, there exists Æ > 0 suh thatos2 �p(s2 � jx2j2) (j�1j2 + b� a2)� � 1� "; 8s 2 [jx2j; jx2j+ Æ℄;and Z jx2j+Æjx2j ds 1� "s2 � jx2j2 =1:The right-hand side of (7.33) is therefore in�nite, but this is a ontradition sine the limit onthe left-hand side of (7.33) exists and is �nite by (7.32). We thus have proven that a proess Xsatisfying all the onditions of the theorem annot exist.



112 Chapter 7. Existene of a real-valued solutionWhen k < d� 2, F1G is no longer a funtion, but a distribution in �1. We therefore expetthat the following limitlimn!1 E (jhu(t); '(n)x1 ;x2ij2) = ZRd�k �(d�1)Z t0 ds ���F1(G(t� s) � '(n)x1;x2)(�1; 0)���2is also in�nite in this ase, independently of any ondition on �, so that there never exists areal-valued solution. Nevertheless, this fat has not been proven analytially.We will show in Chapter 9 that the situation is one again ompletely di�erent in the aseof the heat equation, for whih there always exists a real-valued solution outside the k-planex2 = 0 for any k 2 f1; :::; d � 1g.



Chapter 8Non-linear hyperboli equation in R ddriven by noise on a hyperplaneIn the preeding hapter, we have obtained preise onditions whih guarantee the existeneof a real-valued weak solution u of the linear hyperboli equation (6.2) in the ase of a noiseonentrated on the hyperplane x2 = 0, and also some regularity of this solution. With theseresults in hand, we are now able to treat non-linear equations of the same type.For tehnial reasons, we make the following assumption.Assumption C0.(i) The ovariane � of the noise is a non-negative measure on Rd�1 .(ii) d 2 f2; 3g (so the \hyperplane" x2 = 0 beomes either a straight line or a plane) and a2 � b.From the expressions of G listed in Appendix A, we see that part (ii) of this assumptionimplies that for all t 2 R+ and x2 2 R, the Green kernel G(t; �; x2) is a non-negative measureon Rd�1 . These non-negativity assumptions are neessary in Theorem 6.2.1, whih we shall userepeatedly in the following.8.1 Non-linear term restrited to the hyperplaneLet us onsider the following formal non-linear equation:8>>>>>>><>>>>>>>:
�2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x) ��u(t; x)= g(u(t; x1; 0)) Æ0(x2) + h(u(t; x1; 0)) _F (t; x1) Æ0(x2); t 2 R+ ; x 2 Rd ;u(0; x) = �u�t (0; x) = 0; x 2 Rd ; (8.1)where g and h are real-valued funtions and _F is the noise onentrated on the hyperplanex2 = 0 onsidered in Chapter 6 (with k = d� 1). Note that we onsider null initial onditions,113



114 Chapter 8. Non-linear hyperboli equation in Rd driven by noise on a hyperplanebut this ould be improved; see Remark 8.1.3.The non-linear term in this equation is restrited to the hyperplane x2 = 0 and omposed bya deterministi part g(u) and a stohasti one h(u) _F . If we onsider that it is a given funtionof (t; x), we an then write formally what should be the solution of this \linear" equation, usingthe extended de�nition of the stohasti integral of Setion 6.2:u(t; x1; x2) = Z t0 dsZRd�1 G(s; dz1; x2) g(u(t� s; x1 � z1; 0))+Z[0;t℄�Rd�1 M(ds; dz1) h(u(s; z1; 0)) G(t� s; x1 � z1; x2); (8.2)P-a.s., for all (t; x1; x2) 2 R+�Rd�1�R, where G is the solution of equation (5.15) andM is theworthy martingale measure de�ned in Setion 6.1. Atually, sine the non-linear term ontainsthe unknown u, what we have obtained here is a rigorous formulation of equation (8.1); a mildsolution of equation (8.1) is a preditable proess u = fu(t; x); (t; x) 2 R+ �Rdg whih satis�esthe above equation.Note that when g � 0 and h � 1, the solution of the above \equation" is preisely thereal-valued solution of equation (6.5), whih is well de�ned on the whole spae (see Theorem7.3.3) when Assumption B00 is satis�ed, namely whenZRd�1 �(d�1) ln�p1 + j�1j2�p1 + j�1j2 <1:The following theorem states that under this assumption, there still exists a real-valued solutionto equation (8.2) when g and h are globally Lipshitz funtions.Theorem 8.1.1. Under Assumptions B00 and C0, and if g and h are globally Lipshitz funtions,then there exists a unique mild solution u = fu(t; x); (t; x) 2 R+ � Rdg to equation (8.1).Moreover, the map (t; x) 7! u(t; x) is ontinuous from R+ � Rd to L2(
) and for all T > 0,sup(t;x)2[0;T ℄�Rd E(u(t; x)2) <1: (8.3)Before proving this theorem, let us mention that the Green kernel restrited to the hyperplanex2 = 0 plays a ruial role here; in partiular, we will need the following lemma on the behaviorof F1G evaluated in x2 = 0.Lemma 8.1.2. For all t > 0, there exists C11(t) > 0 suh thatjF1G(s; �1; 0)j � C11(t)(1 + (j�1js)2) 14 ; 8(s; �1) 2 [0; t℄ � Rd�1 :Proof of Lemma 8.1.2. If j�1j2 � 2 (a2 � b), then sinejJ0(r)j � C(1 + r2) 14 ; 8r � 0;



8.1. Non-linear term restrited to the hyperplane 115we obtain by (7.1) thatjF1G(s; �1; 0)j = e�as2 ���J0 �p(j�1j2 + b� a2) s���� � ea�t2 C(1 + (j�1j2 + b� a2) s2) 14 :But j�1j2 + b� a2 � j�1j22 , sojF1G(s; �1; 0)j � C ea�t2 �1 + (j�1js)22 �� 14 � C ea�t 1(1 + (j�1js)2) 14 :If now a2 � b � j�1j2 � 2 (a2 � b), then sine jJ0(r)j � 1 for all r � 0,jF1G(s; �1; 0)j = e�as2 ���J0 �p(j�1j2 + b� a2) s���� � ea�t2 :Finally, if j�1j2 � a2 � b, then sine jI0(r)j � C er for all r � 0,jF1G(s; �1; 0)j = e�as2 ���I0 �p(a2 � b� j�1j2) s����� ea�t2 C epa2�b�j�1j2 s � ea�t2 C epa2�b t;and the proof ends as the proof of Lemma 5.4.1. �With this tool in hand, we an now prove the theorem.Proof of Theorem 8.1.1. Let us onsider v(t; x1) = u(t; x1; 0), (t; x1) 2 R+ � Rd�1 . Equation(8.2) evaluated in x2 = 0 gives the following (losed) equation for v:v(t; x1) = Z t0 dsZRd�1 G(s; dz1; 0) g(v(t� s; x1 � z1))+Z[0;t℄�Rd�1 M(ds; dz1) v(s; z1) G(t� s; x1 � z1; 0): (8.4)Although G(�; �; 0) is not the Green kernel of any \standard" equation in R+ � Rd�1 , the aboveequation is of the type of the ones studied in [15℄. We an therefore apply Theorem 13 of thatpaper; in order to do this, we need to verify (see [16℄) that for all t 2 R+ , G(t; �; 0) 2 O0C(Rd�1)+(whih is lear from the de�nition of G and the assumptions made on d, a and b), that for all�1 2 Rd�1 , the map t 7! F1G(t; �1; 0) is ontinuous (whih is also lear from the expression ofF1G(t; �1; 0) in (7.1)) and �nally that for all t > 0, there exists h0 > 0 and k : [0; t℄! O0C(Rd�1)+suh that for all s 2 [0; t℄, h 2 [0; h0℄ and �1 2 Rd�1 ,jF1G(s+ h; �1; 0)�F1G(s; �1; 0)j � F1k(s; �1); (8.5)and Z t0 dsZRd�1 �(d�1) F1k(s; �1)2 <1: (8.6)By Lemma 8.1.2, the distribution-valued funtion k whose Fourier transform is de�ned byF1k(s; �1) = 2 C11(t)(1 + (j�1js)2) 14 ;



116 Chapter 8. Non-linear hyperboli equation in Rd driven by noise on a hyperplanesati�es (8.5). Note also that for all s 2 [0; t℄, F1k(s; �) 2 OM (Rd�1), so k(s; �) 2 O0C(Rd�1)by (4.2); moreover, k(s; �) is a non-negative distribution on Rd�1 sine when s = 0, k(s; �) =2 C11(t) Æ0(�) whih is non-negative, and when s > 0, we have by [45, formulas I.2.7 and I.18.29℄:k(s; x1) = ~C C11(t)ps jx1j 14 K 14 � jx1js � ; when d = 2;and k(s; x1) = Ĉ C11(t)s jx1j 34 K 34 � jx1js � ; when d = 3;where K� is the modi�ed Bessel funtion of order � of the seond kind, whih is non-negativeon R+ (see Appendix B). By estimates analogous to those in the proof of Lemma 7.3.1, we alsoobtain thatZ t0 dsZRd�1 �(d�1) F1k(s; �1)2 = Z t0 dsZRd�1 �(d�1) 4 C11(t)2p1 + (j�1js)2� 4 C11(t)2 C7(t)ZRd�1 �(d�1) 1 + ln�p1 + j�1j2�p1 + j�1j2 ;whih is �nite by Assumption B00, so (8.6) is proven. Theorem 13 of [15℄ then states that thereexists a unique preditable proess v whih satis�es (8.4). Moreover, the distribution of v(t; x1)is stationnary in x1, the map (t; x1) 7! v(t; x1) is ontinuous from R+ � Rd�1 to L2(
) (notethat the ontinuity in t is uniform in x1 2 Rd�1) and for all T > 0,sup(t;x1)2[0;T ℄�Rd�1 E(v(t; x1)2) <1: (8.7)So u(t; x1; 0) = v(t; x1) gives the solution of equation (8.2) on the hyperplane x2 = 0. Forx2 6= 0, let us now de�ne u(t; x1; x2) byu(t; x1; x2) = Z t0 dsZRd�1 G(s; dz1; x2) g(v(t� s; x1 � z1)) + (G(t � �; x1 � �; x2) �Mh(v))t;whih is not anymore an equation, sine v is now a given proess (note that sineG(t��; x1��; x2)is non-negative, kG(t � �; x1 � �; x2)kt < 1 and Z = h(v) satis�es onditions (6:8) and (6:10),the stohasti integral is well de�ned by Theorem 6.2.1). This shows diretly that u satis�esequation (8.2) and moreover that it is the unique proess to do so. Moreover, it admits a jointlymeasurable modi�ation sine it is ontinuous in L2(
), what we now prove. To this end, writeu(t; x1; x2) = A(t; x1; x2) +B(t; x1; x2);where A(t; x1; x2) = Z t0 dsZRd�1 G(s; dz1; x2) g(v(t � s; x1 � z1))and B(t; x1; x2) = (G(t� �; x1 � �; x2) �Mh(v))t:



8.1. Non-linear term restrited to the hyperplane 117We �rst verify the L2-ontinuity of the proess B, following the sheme of the proof of Lemma7.2.2 and using the preise estimates of Theorem 7.3.3. Let us therefore onsider x2, y2 2 R;sup(t;x1)2[0;T ℄�Rd�1 E((B(t; x1 ; y2)�B(t; x1; x2))2)= sup(t;x1)2[0;T ℄�Rd�1 Z t0 dsZRd�1 �h(v)s (d�1) (F1G(t� s;��1; y2)�F1G(t� s;��1; x2))2� sup(t;x1)2[0;T ℄�Rd�1 Z t0 ds supz12Rd�1 E(h(v(s; z1 ))2)�ZRd�1 �(d�1) (F1G(t� s;��1; y2)�F1G(t� s;��1; x2))2;by Theorem 6.2.1. Using the global Lipshitz property of h (whih implies linear growth), we�nd that this expression is less than or equal tosup(s;z1)2[0;T ℄�Rd�1K2 E (1 + v(s; z1)2) �sup(t;x1)2[0;T ℄�Rd�1 ZRd�1 �(d�1)Z t0 ds (F1G(t� s;��1; y2)�F1G(t� s;��1; x2))2;whih onverges to 0 as y2 ! x2, by (8.7) and the same argument as in proof of Theorem 7.3.3.For x1, y1 2 Rd�1 and x2 2 R, we havesupt2[0;T ℄ E ((B(t; y1 ; x2)�B(t; x1; x2))2)= supt2[0;T ℄Z t0 dsZRd�1 �h(v)s (d�1) F1G(t� s;��1; x2)2 2 (1� os(�1 � (y1 � x1)))� supt2[0;T ℄Z t0 ds supz12Rd�1 E (h(v(s; z1))2)�ZRd�1 �(d�1) F1G(t� s;��1; x2)2 2 (1� os(�1 � (y1 � x1)))� sup(s;z1)2[0;T ℄�Rd�1K2 E(1 + v(s; z1)2)� supt2[0;T ℄ ZRd�1 �(d�1)Z t0 ds F1G(t� s;��1; x2)2 2 (1� os(�1 � (y1 � x1)));whih onverges to 0 as y1 ! x1.



118 Chapter 8. Non-linear hyperboli equation in Rd driven by noise on a hyperplaneConsidering �nally t; h 2 R+ , x1 2 Rd�1 and x2 2 R, we obtainE((B(t + h; x1; x2)�B(t; x1; x2))2)= Z t0 dsZRd�1 �h(v)s (d�1) (F1G(t+ h� s;��1; x2)�F1G(t� s;��1; x2))2+Z t+ht dsZRd�1 �h(v)s (d�1) F1G(t+ h� s;��1; x2)2� sup(s;z1)2[0;t℄�Rd�1 K2 E (1 + v(s; z1)2)�ZRd�1 �(d�1)Z t0 ds (F1G(t+ h� s;��1; x2)�F1G(t� s;��1; x2))2+ sup(s;z1)2[t;t+h0℄�Rd�1 K2 E (1 + v(s; z1)2)�ZRd�1 �(d�1)Z t+ht ds F1G(t+ h� s;��1; x2)2;for all h � h0, and this expression onverges to 0 as h ! 0. Sine a similar estimate holds forh � 0, we have shown the L2-ontinuity of the proess B.We now prove the L2-ontinuity of the proess A following a di�erent order: we �rst showthat the map t 7! A(t; x) is ontinuous in L2(
) uniformly in x 2 Rd , then that for �xed t 2 R+ ,the map x1 7! A(t; x1; x2) is ontinuous in L2(
) uniformly in x2 2 R and �nally that for �xed(t; x1) 2 R+ � Rd�1 , the map x2 7! A(t; x1; x2) is ontinuous in L2(
).Let therefore t; h 2 R+ ;sup(x1;x2)2Rd�1�R E ((A(t + h; x1; x2)�A(t; x1; x2))2)= sup(x1;x2)2Rd�1�R E �Z t+h0 dsZRd�1 G(s; dz1; x2) g(v(t + h� s; x1 � z1))�Z t0 dsZRd�1 G(s; dz1; x2) g(v(t � s; x1 � z1))�2!� 2 sup(x1;x2)2Rd�1�R E �Z t0 dsZRd�1 G(s; dz1; x2)�(g(v(t + h� s; x1 � z1))� g(v(t� s; x1 � z1)))�2!+ 2 sup(x1;x2)2Rd�1�R E �Z t+ht dsZRd�1 G(s; dz1; x2) g(v(t+ h� s; x1 � z1)�2!:Using the Cauhy-Shwarz inequality and the Lipshitz property of g, we �nd that this last



8.1. Non-linear term restrited to the hyperplane 119expression is less than or equal to2 sup(x1;x2)2Rd�1�R Z t0 ds G(s;Rd�1 ; x2)�Z t0 dsZRd�1 G(s; dz1; x2) K2 E((v(t + h� s; x1 � z1)� v(t� s; x1 � z1))2)+ 2 sup(x1;x2)2Rd�1�R Z t+ht ds G(s;Rd�1 ; x2)�Z t+ht dsZRd�1 G(s; dz1; x2) K2 E (1 + v(t+ h� s; x1 � z1)2):Note thatG(s;Rd�1 ; x2) = F1G(s; 0; x2) = e�as2 I0�pa2 � bqs2 � x22� 1fjx2j < sg� ea�s2 C epa2�b s = Cs; (8.8)sine I0(r) � C er for all r � 0, by (B.3). So after introduing the supremum over x1 under theintegral sign in the above expression, we obtain that it is less than or equal to2 Ct K2 t supx22R Z t0 dsZRd�1 G(s; dz1; x2) supx12Rd�1 E((v(t + h� s; x1)� v(t� s; x1))2)+ 2 Ct+h0 K2 h supx22R Z t+ht dsZRd�1 G(s; dz1; x2) supx12Rd�1 E(1 + v(t+ h� s; x1)2)� 2 C2t K2 tZ t0 ds supx12Rd�1 E ((v(t + h� s; x1)� v(t� s; x1))2)+ 2 C2t+h0 K2 h2 sup(s;x1)2[0;h0℄�Rd�1 E(1 + v(s; x1)2);for all h � h0. By the dominated onvergene theorem, the �rst term of this expression onvergesto 0 as h ! 0, sine the proess v is L2-ontinuous in t, uniformly in x1 2 Rd�1 (see [15℄ and[16℄) and for all h � h0,sup(s;x1)2[0;t℄�Rd�1 E ((v(t + h� s; x1)� v(t� s; x1))2) � 2 sup(s;x1)2[0;t+h0℄�Rd�1 E(v(s; x1 )2) <1;by (8.7). The same onlusion is immediate for the seond term: similar estimates give theonvergene to 0 for h � 0.Let now t 2 R+ and x1, y1 2 Rd�1 ;supx22R E ((A(t; y1 ; x2)�A(t; x1; x2))2)= supx22R E �Z t0 dsZRd�1 G(s; dz1; x2) (g(v(t � s; y1 � z1))� g(v(t � s; x1 � z1)))�2!:



120 Chapter 8. Non-linear hyperboli equation in Rd driven by noise on a hyperplaneUsing, as before, the Cauhy-Shwarz inequality and the Lipshitz property of g, we �nd thatthis last expression is less than or equal tosupx22RZ t0 ds G(s;Rd�1 ; x2)�Z t0 dsZRd�1 G(s; dz1; x2) K2 E ((v(t � s; y1 � z1)� v(t� s; x1 � z1))2):By (8.8) and the stationnarity of the distribution of v in x1, this expression is less than or equalto Ct K2 t supx22R Z t0 dsZRd�1 G(s; dz1; x2) E((v(t � s; y1)� v(t� s; x1))2)� C2t K2 t Z t0 ds E((v(t � s; y1)� v(t� s; x1))2):Now, sine the proess v is L2-ontinuous in x1 and satis�es (8.7), we onlude by the dominatedonvergene theorem that the above expression onverges to 0 as y1 ! x1.Finally, let t 2 R+ , x1 2 Rd�1 and x2, y2 2 R;E ((A(t; x1 ; y2)�A(t; x1; x2))2)= E �Z t0 dsZRd�1 G(s; dz1; y2) g(v(t � s; x1 � z1))�Z t0 dsZRd�1 G(s; dz1; x2) g(v(t� s; x1 � z1))�2!:At this point, we need to onsider separately the two ases d = 2 and d = 3. Let us begin bythe ase d = 2: using (A.12) and the hange of variable z1 = ps2 � x22 w1, we obtain for ameasurable funtion h de�ned on R,ZRG(s; dz1; x2) h(z1)= 1fjx2j < sg e�as2� Zjz1j<ps2�x22 dz1 osh�p(a2 � b) (s2 � x22 � z21)�ps2 � x22 � z21 h(z1)= 1fjx2j < sg e�as2� Zjw1j<1 dw1 osh�p(a2 � b) (s2 � x22) jw1j�p1� w21 h�qs2 � x22 w1� :So ZRG(s; dz1; y2) h(z1)� ZRG(s; dz1; x2) h(z1)= e�as2� Zjw1j<1 dw1p1� jw1j2 (H(s; w1; y2)�H(s; w1; x2)):where H(s; w1; x2) = osh�q(a2 � b) (s2 � x22) jw1j� h�qs2 � x22 w1� 1fjx2j < sg:



8.1. Non-linear term restrited to the hyperplane 121Using the above equality with h(z1) = g(v(t � s; x1 � z1)) and the Cauhy-Shwarz inequality,we obtain E ((A(t; x1 ; y2)�A(t; x1; x2))2) � Z t0 ds e�as2� Zjw1j<1 dw1p1� jw1j2� Z t0 ds e�as2� Zjw1j<1 dw1p1� jw1j2 E((H(s; w1 ; y2)�H(s; w1; x2))2):Sine E ((H(s; w1 ; y2)�H(s; w1; x2))2) !y2!x2 0;for s 6= jx2j and w1 2 B1(0; 1), by the ontinuity of osh, the Lipshitz property of g and theL2-ontinuity of v; sine moreover H is bounded by the Lipshitz property of g and (8.7), andsine �nally Z t0 ds e�as2� Zjw1j<1 dw1p1� jw1j2 <1;we obtain by the dominated onvergene theorem that when d = 2,E ((A(t; x1 ; y2)�A(t; x1; x2))2) !y2!x2 0:When d = 3, using (A.13) and the hange of variable z1 = ps2 � x22 w1, we obtain for ameasurable funtion h de�ned on R2 ,ZR2 G(s; dz1; x2) h(z1)= 1fjx2j < sg e�as4�  1ps2 � x22 Zjz1j=ps2�x22 d�(z1) h(z1)+pa2 � b Zjz1j<ps2�x22 dz1 I1 �p(a2 � b) (s2 � x22 � jz1j2)�ps2 � x22 � jz1j2 h(z1)!= 1fjx2j < sg e�as4�  Zjw1j=1 d�(w1) h�qs2 � x22 w1�+q(a2 � b) (s2 � x22) Zjw1j<1 dw1 I1 �p(a2 � b) (s2 � x22) jw1j�p1� jw1j2 h�qs2 � x22 w1�!;where I1 is the �rst order modi�ed Bessel funtion of the �rst kind (see Appendix B). SoZR2 G(s; dz1; y2) h(z1)� ZR2 G(s; dz1; x2) h(z1)= e�as4�  Zjw1j=1 d�(w1) ( ~H(s; w1; y2)� ~H(s; w1; x2))+Zjw1j<1 dw1p1� jw1j2 (Ĥ(s; w1; y2)� Ĥ(s; w1; x2))!;where ~H(s; w1; x2) = h�qs2 � x22 w1� 1fjx2j < sg



122 Chapter 8. Non-linear hyperboli equation in Rd driven by noise on a hyperplaneand Ĥ(s; w1; x2) = I1�q(a2 � b) (s2 � x22) jw1j� h�qs2 � x22 w1� 1fjx2j < sg:Applying the same tehnique as before, we onlude thatE((A(t; x1 ; y2)�A(t; x1; x2))2) !y2!x2 0also in the ase d = 3. So we have shown the L2-ontinuity of the proesses A and B, thereforethat of the proess u. Let us now hek that u satis�es (8.3), verifying separately that bothproesses A and B do:E(A(t; x1 ; x2)2) = E  �Z t0 dsZRd�1 G(s; dz1; x2) g(v(t� s; x1 � z1))�2!� Z t0 ds G(s;Rd�1 ; x2)�Z t0 dsZRd�1 G(s; dz1; x2) K2 E (1 + v(t� s; x1 � z1)2);by the Cauhy-Shwarz inequality and the global Lipshitz property of g. By estimates (8.7)and (8.8), this expression is less than or equal toC2t K2 t2 sup(s;x1)2[0;t℄�Rd�1 E (1 + v(s; x1)2);so sup(t;x)2[0;T ℄�Rd E (A(t; x)2) � C2T K2 T 2 sup(t;x1)2[0;T ℄�Rd�1 E (1 + v(t; x1)2) <1:On the other hand, we haveE (B(t; x1 ; x2)2) = Z t0 dsZRd�1 �h(v)s (d�1) F1G(t� s;��1; x2)2� Z t0 ds supy12Rd�1 E(1 + v(s; y1)2)ZRd�1 �(d�1) F1G(t� s;��1; x2)2;by Theorem 6.2.1 and the global Lipshitz property of h. But this last expression is also lessthan or equal to sup(s;x1)2[0;t℄�Rd�1 E(1 + v(s; x1)2) ZRd�1 �(d�1)Z t0 ds F1G(t� s;��1; x2)2:So �nally, sup(t;x)2[0;T ℄�Rd E (B(t; x)2)� sup(t;x1)2[0;T ℄�Rd�1 E (1 + v(t; x1)2) C7(T )ZRd�1 �(d�1) 1 + ln�p1 + j�1j2�p1 + j�1j2 <1;by Lemma 7.3.1 and Assumption B00. The proess u sati�es then (8.3) and we an applyProposition 2 of [14℄ to onlude that u is preditable. This ompletes the proof. �



8.2. Global semi-linear equation 123Remark 8.1.3. From the preeding proof, we see that the solution u(t; x1; 0) of the equationrestrited to the hyperplane x2 = 0 is spatially homogeneous in x1 (that is, its statistialproperties do not depend on x1). Moreover, it turns out also from the preeding proof that ifwe want to add initial onditions to the equation, we need to assume that they do not dependon x1 if we want to leave the proof unhanged.8.2 Global semi-linear equationWe study here the following formal semi-linear equation:8>>>>>>><>>>>>>>:
�2u�t2 (t; x) + 2a �u�t (t; x)��u(t; x)= g(u(t; x)) + _F (t; x1) Æ0(x2); t 2 R+ ; x 2 Rd ;u(0; x) = �u�t (0; x) = 0; x 2 Rd ; (8.9)

where g is a real-valued funtion and _F is the noise onentrated on the hyperplane x2 = 0onsidered in Chapter 6 (with k = d� 1).The solution of this equation represents a wave generated by a non-linear soure g distributedon the whole spae with an additive noise term on the hyperplane x2 = 0.Note that the oeÆient b of equation (6.5) is equal here to 0. The reason for this is that theterm bu an be inluded in the term g(u). So part (ii) of Assumption C0 made at the beginningof this hapter only imposes here that d 2 f2; 3g.Following the argument of the preeding setion, a mild solution of equation (8.9) is then apreditable proess u = fu(t; x); (t; x) 2 R+ � Rdg whih satis�esu(t; x) = Z t0 dsZRd G(s; dz) g(u(t� s; x� z))+Z[0;t℄�Rd�1 M(ds; dz1) G(t� s; x1 � z1; x2); (8.10)P-a.s., for all (t; x) 2 R+ �Rd , where G is the solution of equation (5.15) with parameter b = 0.We an now state the following existene and uniqueness theorem.Theorem 8.2.1. Under Assumptions B00 and C0, and if g is a globally Lipshitz funtion, thereexists a unique mild solution u = fu(t; x); (t; x) 2 R+ � Rdg to equation (8.9). Moreover, themap (t; x) 7! u(t; x) is ontinuous from R+ � Rd to L2(
) and for all T > 0,sup(t;x)2[0;T ℄�Rd E(u(t; x)2) <1:



124 Chapter 8. Non-linear hyperboli equation in Rd driven by noise on a hyperplaneProof. Following the sheme of the proof of Theorem 13 in [15℄, let us de�ne reursively thesequeneu(0)(t; x) = 0; u(n+1)(t; x) = Z t0 dsZRd G(s; dz) g(u(n)(t� s; x� z))+Z[0;t℄�Rd�1 M(ds; dz1) G(t� s; x1 � z1; x2):From this, we have the following reurrene relation for n � 1:u(n+1)(t; x)� u(n)(t; x) = Z t0 dsZRd G(s; dz) (g(u(n)(t� s; x� z))� g(u(n�1)(t� s; x� z)));sine the stohasti term in the above de�nition does not depend on n. We an therefore applythe argument of [15℄ to onlude that the sequene (u(n)) onverges to the solution of equation(8.10). The only di�erene omes in the evaluation of the �rst term of the sequene:u(1)(t; x) = Z t0 dsZRd G(s; dz) g(0) + Z[0;t℄�Rd�1 M(ds; dz1) G(t� s; x1 � z1; x2):To show that the reurrene in [15℄ works, we need to show thatsup(t;x)2[0;T ℄�Rd E(u(1) (t; x)2) <1: (8.11)Let us omputesup(t;x)2[0;T ℄�Rd E (u(1)(t; x)2) � 2 sup(t;x)2[0;T ℄�Rd�Z t0 ds G(s;Rd) g(0)�2+ 2 sup(t;x)2[0;T ℄�Rd E 0� Z[0;t℄�Rd�1 M(ds; dz1) G(t� s; x1 � z1; x2)!21A :Sine when a = 0, Z t0 ds G(s;Rd) = Z t0 ds FG(s; 0) = Z t0 ds s = t22 ;and when a 6= 0, Z t0 ds G(s;Rd) = Z t0 ds e�as sinh jajsjaj � t (1 ^ e2jajt)jaj ;we obtain that sup(t;x)2[0;T ℄�Rd�Z t0 ds G(s;Rd) g(0)�2 <1:On the other hand, using the isometry (6.13) and Lemma 7.3.1, we havesup(t;x)2[0;T ℄�Rd E 0� Z[0;t℄�Rd�1 M(ds; dz1) G(t� s; x1 � z1; x2)!21A= sup(t;x2)2[0;T ℄�RZ t0 dsZRd�1 �(d�1) F1G(t� s; �1; x2)2� C7(T ) ZRd�1 �(d�1) 1 + ln�p1 + j�1j2�p1 + j�1j2 <1;by Assumption B00, so estimate (8.11) is satis�ed and the theorem is proven.



8.2. Global semi-linear equation 125Note �nally that beause of tehnial diÆulties, the equation8>>>>>>><>>>>>>>:
�2u�t2 (t; x) + 2a �u�t (t; x) ��u(t; x)= g(u(t; x)) + h(u(t; x)) _F (t; x1) Æ0(x2); t 2 R+ ; x 2 Rd ;u(0; x) = �u�t (0; x) = 0; x 2 Rd ;has not been studied. Contrary to the ase of a non-linear term restrited to the hyperplanex2 = 0, the Piard's iteration sheme used in [15℄ ould not be applied, mainly beause thefollowing term sup(t;x)2[0;T ℄�Rd E((u(n+1) (t; x)� u(n)(t; x))2)ould not be estimated with respet to the preeding term in the sequene, without the strongassumption that � is �nite (that is, � is regular). The problem omes essentially from thesupremum, whih has in partiular to be taken over all x2 2 R.



126 Chapter 8. Non-linear hyperboli equation in Rd driven by noise on a hyperplane



Chapter 9Linear heat equation in R d driven bynoise on a k-planeLet us onsider the following paraboli equation:8><>: �u�t (t; x)� 12 �u(t; x) = _F (t; x1) Æ0(x2); t 2 R+ ; x 2 Rd ;u(0; x) = 0; x 2 Rd ; (9.1)where _F is the spatially homogeneous noise on the k-plane Rk � f0g onsidered in Chapter 6.Let us reall that in the ase of a spatially homogeneous noise in Rd , the optimal onditionon the spetral measure � of the noise whih guarantees the existene of a real-valued solutionis the same for both paraboli and hyperboli equations (see [15, 30℄). We shall see in this hap-ter that the situation is ompletely di�erent in the ase of a noise onentrated on a k-plane,beause it is the regularity of the Green kernel that plays a ruial role, whih was not the asefor a spatially homogeneous noise on Rd .Let us go �rst over some key points from Chapter 5.9.1 Existene of a weak solutionThe �rst step of our analysis onsists, as before, in giving a weak formulation to equation (9.1);a weak solution of equation (9.1) is a proess u = fu(t); t 2 R+g with values in S 0(Rd ) suhthat P� a:s:, for all ' 2 S(Rd ), the map t 7! hu(t); 'i is ontinuous on R+ and satis�es, for allt 2 R+ , 8>><>>: hu(t); 'i � 12 Z t0 ds hu(s);�'i = Ft('(�; 0));hu(0); 'i = 0: (9.2)
127



128 Chapter 9. Linear heat equation in Rd driven by noise on a k-planeRemark 9.1.1. As for the hyperboli equation, this equation an also be interpreted whenk = d� 1 as the weak formulation of the following lassial equation in the upper half spae:�u�t (t; x)� 12�u(t; x) = 0; (t; x) 2 R+ � Rd�1 � R+ ;with the stohasti boundary ondition�u�x2 (t; x1; 0) = _F (t; x1):We then onsider the Green kernel of this equation, whih is the solution of�G�t � 12 �G = 0; G(0) = Æ0: (9.3)Its Fourier transform in x satis�es�FG�t (t; �) + j�j22 FG(t; �) = 0; FG(0; �) = 1; (9.4)so FG(t; �) = e� j�j2 t2 ; t 2 R+ ; � 2 Rd ; (9.5)or equivalently, G(t; x) = 1(2�t) d2 e� jxj22t ; t > 0; x 2 Rd ; (9.6)and this implies that for all t > 0, G(t; �) 2 S(Rd )+ (that is, the spae of non-negative funtionsin S(Rd)).Certain properties of the Green kernel of the hyperboli equation de�ned by equation (5.15)are also satis�ed by the present Green kernel. In partiular, Lemmas 5.4.2 and 5.4.3 are satis�ed,as mentioned before. This explains why the ondition on the spetral measure � whih guaran-tees the existene of a real-valued solution is the same for hyperboli and paraboli equationsin the ase of a spatially homogeneous noise.Following the development in Chapter 5, whih led to Theorem 5.5.4, one an show theexistene of a solution to equation (9.2), whih is given byhu(t); 'i = Z[0;t℄�Rk M(ds; dx1) (G(t � s) � ')(x1; 0); t 2 R+ ; ' 2 S(Rd); (9.7)where M is the worthy martingale measure de�ned in Setion 6.1. The question of uniquenessis more deliate. For the hyperboli equation, we used Lemma 5.5.3 for proving uniqueness, andmore spei�ally the fat that for a given smooth initial or terminal ondition, there exists aunique lassial solution to equation (5.27). This time-reversal property of the solution of thehyperboli equation does not hold in the ase of the heat equation. Moreover, it is a well knownfat that even for the lassial heat equation, one needs to impose some restrition on the growthof the solution in order to obtain uniqueness (see for example [24℄).



9.2. Existene of a real-valued solution 1299.2 Existene of a real-valued solutionBefore going into an analysis similar to that made in Chapter 7 for the hyperboli equation, letus note that the analysis of Chapter 6 an be performed with a few modi�ations (sine Lemma5.4.1 is not satis�ed, some estimates must be hanged), but the results obtained are exatly thesame as those obtained for the hyperboli equation (6.5). We are going to see that, ontraryto the ase of the hyperboli equation, these results are absolutely not optimal for the heatequation (9.2). The reason for this di�erene is that the solution of the heat equation does notbelong in general to some Sobolev spae H�(Rd�k ) in the oordinate x2, even when there existsa real-valued solution.Let us then onsider the Fourier transform of G in the �rst k oordinates of x, whih an beeasily dedued from (9.5): F1G(t; �1; x2) = e� j�1 j2 t2 1(2�t) d�k2 e� jx2j22t : (9.8)We will need the following estimate on F1G.Lemma 9.2.1. For all T > 0 and " > 0, there exist C(T; ") > 0 and a funtion P withpolynomial growth suh thatZ t0 ds F1G(s; �1; x2)2 � C(T; ") P (�1) e�2 " j�1j;for all t 2 [0; T ℄, �1 2 Rk and x2 2 Rd�k suh that jx2j � ".Proof. If j�1j � 1, thenZ t0 ds F1G(s; �1; x2)2 = Z t0 ds e�j�1j2 s 1(2�s)d�k e� jx2j2s� Z 10 ds e�j�1j2 s 1(2�s)d�k e� jx2j2s :Using now [5, formula I.5.34℄, we obtain that this last expression is equal to1(2�)d�k 2 � j�1jjx2j�d�k�1 Kd�k�1(2 jx2j j�1j);where K� is the modi�ed Bessel funtion of the seond kind and of order � (see Appendix B).By estimates (B.1) and (B.2), there exists C > 0 suh that for all r > 0,K�(r) � 8>><>>: C e�r ln �1r� if � = 0;C e�rrj�j if � 6= 0;so we obtain that for j�1j � 1 and jx2j � ",Z t0 ds F1G(s; �1; x2)2 � 1(2�)d�k 2 C e�2" j�1j ln� 12"� ;



130 Chapter 9. Linear heat equation in Rd driven by noise on a k-planewhen k = d� 1, andZ t0 ds F1G(s; �1; x2)2 � 1(2�)d�k 2 � j�1j" �d�k�1 C e�2" j�1j(2")d�k�1 ;when k < d� 1. If j�1j � 1, thenZ t0 ds F1G(s; �1; x2)2 � Z t0 ds 1(2�s)d�k e� jx2j2s � Z T0 ds 1(2�s)d�k e� "2s <1;and the proof ends like the proof of Lemma 5.4.1.We are going to prove now, following the sheme of Setion 7.2, that without any additionalassumption on the spetral measure � of the noise, there exists a real-valued proess X de�nedoutside the k-plane x2 = 0 whih is the weak solution of equation (9.2). The only restritionhere is that we assume that the ovariane � is non-negative on Rk , in order to use Theorem6.2.1. Note the strong di�erene with the ase of the hyperboli equation, for whih there neverexists a real-valued solution when k < d � 1, and even in the ase k = d � 1, the existene ofsuh a real-valued solution is subjet to an important restrition (namely Assumption B0).We �rst have the following two lemmas.Lemma 9.2.2. For (t; x1; x2) 2 R+ � Rk � Rd�knf0g �xed, the funtion �t;x1;x2 : [0; t℄ !O0C(Rk )+ de�ned by �t;x1;x2(s; �) = G(t� s; x1 � �; x2); s 2 [0; t℄;belongs to Ht.Proof. We use here Theorem 6.2.1; sine �t;x1;x2(s; �) 2 O0C(Rk )+ for a �xed s 2 [0; t℄ andF1�t;x1;x2(s; �1) = F1G(t� s;��1; x2) �x1(�1)is a Borel-measurable funtion, it suÆes then to hek that k�t;x1;x2kt <1:k�t;x1;x2k2t = ZRk �(d�1)Z t0 ds F1G(t� s;��1; x2)2� C(t; jx2j) ZRk �(d�1) P (�1) e�2 jx2j j�1j;by Lemma 9.2.1. Sine � is a tempered measure and P has polynomial growth, the aboveexpression is �nite for all x2 6= 0, so the lemma is proven.Lemma 9.2.3. Let M be the worthy martingale measure de�ned in Setion 6.1. The real-valuedproess X = fX(t; x1; x2); (t; x1; x2) 2 R+ � Rk � Rd�knf0gg de�ned byX(t; x1; x2) = Z[0;t℄�Rk M(ds; dz1) G(t� s; x1 � z1; x2); (t; x1; x2) 2 R+ � Rk � Rd�knf0g;



9.2. Existene of a real-valued solution 131is a entered Gaussian proess whose ovariane is given byE(X(t; x1 ; x2) X(s; y1; y2))= ZRk �(d�1)Z t^s0 dr F1G(t� r;��1; x2) F1G(s� r;��1; y2) �x1�y1(�1); (9.9)and suh that the map (t; x1; x2) 7! X(t; x1; x2) is ontinuous from R+ � Rk � Rd�knf0g toL2(
).Remark 9.2.4. This result and [42, prop. 3.6 and or. 3.8℄ imply that the proess X admits amodi�ation ~X suh that the map (t; x1; x2; !) 7! ~X(t; x1; x2; !) is jointly measurable. We willimpliitely onsider this modi�ation in the following.Proof of Lemma 9.2.3 By Lemma 9.2.2, the proess X is well de�ned. As in the ase of thehyperboli equation, the fat that X is a entered Gaussian proess with the ovariane givenabove follows easily from the isometry (6.13) and sine � and F1G are symmetri in �1, (9.9) isequal toZRd�1 �(d�1)Z t^s0 dr F1G(t� r;��1; x2) F1G(s� r;��1; y2) os(�1 � (x1 � y1));so X is real-valued.In order to show that the map (t; x1; x2) 7! X(t; x1; x2) is ontinuous from R+�Rk�Rd�knf0gto L2(
), we show that for all T > 0 and R > " > 0, it is ontinuous from [0; T ℄�Rk �K(R; ")to L2(
), where K(R; ") = fx2 2 Rd�k suh that R � jx2j � "g:And we do this in two steps, showing �rst that there exists C(T;R; ") > 0 suh thatE ((X(t; y1 ; y2)�X(t; x1; x2))2) � C(T;R; ") (jy1 � x1j2 + jy2 � x2j2); (9.10)for all t 2 [0; T ℄, x1; y1 2 Rk and x2; y2 2 K(R; "), whih implies that the map (x1; x2) 7!X(t; x1; x2) is L2-ontinuous in Rk � K(R; "), uniformly in t 2 [0; T ℄. The seond step on-sists simply in showing that for �xed (x1; x2) 2 Rk � K(R; "), the map t 7! X(t; x1; x2) isL2-ontinuous.We begin by establishing (9.10). We haveE ((X(t; y1 ; y2)�X(t; x1; x2))2)� 2 (E ((X(t; y1 ; y2)�X(t; x1; y2))2) + E((X(t; x1 ; y2)�X(t; x1; x2))2); (9.11)so we an handle the two terms separately. Let us then omputeE ((X(t; y1 ; y2)�X(t; x1; y2))2)= ZRk �(d�1)Z t0 ds F1G(t� s;��1; y2)2 j�y1(�1)� �x1(�1)j2:



132 Chapter 9. Linear heat equation in Rd driven by noise on a k-planeSine j�y1(�1)� �x1(�1)j2 = ����Z y1��1x1��1 dr eir����2 � j�1j2 jy1 � x1j2;we obtain by Lemma 9.2.1 thatE ((X(t; y1 ; y2)�X(t; x1; y2))2) � C(T; ")ZRk �(d�1) P (�1) j�1j2 e�2 " j�1j jy1 � x1j2;whih gives the desired result for the �rst term of (9.11), sineZRk �(d�1) P (�1) j�1j2 e�2 " j�1j <1:Let us now onsider the seond term:E((X(t; x1 ; y2)�X(t; x1; x2))2)= ZRk �(d�1)Z t0 ds (F1G(t� s;��1; y2)�F1G(t� s;��1; x2))2= ZRk �(d�1)Z t0 ds e�j�1j2 s 1(2�s)d�k �e� jx2j22s � e� jy2j22s �2 :Suppose without loss of generality that jy2j � jx2j. Then�e� jy2j22s � e� jy2j22s �2 = e� jx2j2s �e� jy2j2�jx2j22s � 1�2 :Sine 0 � 1� e�x � x; 8x � 0;and jy2j2 � jx2j22s = (jy2j+ jx2j) (jy2j � jx2j)2s � Rs jy2 � x2j;we obtain that E((X(t; x1 ; y2)�X(t; x1; x2))2)= ZRk �(d�1)Z t0 ds e�j�1j2 s 1(2�s)d�k e� jx2j2s R2s2 jy2 � x2j2:By estimates similar to those arried out in the proof of Lemma 9.2.1, we obtain that there exist~C(T; ") > 0 and a funtion ~P with polynomial growth suh thatZ t0 ds e�j�1j2 s 1(2�s)d�k e� jx2j2s 1s2 � ~C(T; ") ~P (�1) e�2 " j�1j; 8t 2 [0; T ℄; �1 2 Rk ; jx2j � ";so we have the bound that we wanted for the seond term of (9.11), beauseZRk �(d�1) ~P (�1) e�2 " j�1j <1:



9.2. Existene of a real-valued solution 133Finally, we need to prove the L2-ontinuity in t; onsider (t; x1; x2) 2 [0; T ℄�Rk �K(R; ") �xedand h � 0: E ((X(t + h; x1; x2)�X(t; x1; x2))2)= ZRk �(d�1)Z t0 ds (F1G(s+ h;��1; x2)�F1G(s;��1; x2))2 (9.12)+ZRk �(d�1)Z h0 ds F1G(s;��1; x2)2: (9.13)Sine for �1 2 Rk and jx2j � " �xed,F1G(s+ h;��1; x2)�F1G(s;��1; x2) !h!0 0for all s 2 [0; t℄ and sine for all h � h0,sups2[0;t℄ (F1G(s+ h;��1; x2)�F1G(s;��1; x2))2� 2 sups2[0;t℄ �e�j�1j2(s+h) 1(2�(s+ h))d�k e� jx2j2s+h + e�j�1j2s 1(2�s)d�k e� jx2j2s �� 4 sups2[0;t+h0℄ 1(2�s)d�k e� "2s <1;we obtain by the dominated onvergene theorem thatZ t0 ds (F1G(s+ h;��1; x2)�F1G(s;��1; x2))2 !h!0 0:Moreover, for all h � h0, Z t0 ds (F1G(s+ h;��1; x2)�F1G(s;��1; x2))2� 4 Z t+h0 ds F1G(s;��1; x2)2� 4 C(t+ h0; ") P (�1) e�2 " j�1j;by Lemma 9.2.1, so using one again the dominated onvergene theorem together with the fatthat ZRk �(d�1) P (�1) e�2 " j�1j <1;we obtain that (9.12) onverges to 0 as h! 0. Consider now (9.13):Z h0 ds F1G(s;��1; x2)2 = Z h0 ds e�j�1j2 s 1(2�s)d�k e� jx2j2s� Z h0 ds e�j�1j2 s 1(2�s)d�k e� jx2j22s e� jx2j22h� C(h0; "p2) P (�1) e�p2 " j�1j e� "22h



134 Chapter 9. Linear heat equation in Rd driven by noise on a k-planefor all h � h0 by Lemma 9.2.1. So (9.13) is less than or equal toC(h0; "p2)ZRk �(d�1) P (�1) e�p2 " j�1j e� "22hwhih onverges to 0 as h! 0, sineZRk �(d�1) P (�1) e�p2 " j�1j <1:This shows the right-ontinuity in t of the proess X (in L2(
)). The left-ontinuity followsfrom the same argument as in the proof of Lemma 6.3.3, and this ompletes the proof. �We an now state the following existene theorem.Theorem 9.2.5. Let u be the solution of equation (9.2). There exists then a real-valued enteredGaussian proess X = fX(t; x1; x2); (t; x1; x2) 2 R+�Rk �Rd�knf0gg whose ovariane is givenby formula (9.9), suh that the map (t; x1; x2) 7! X(t; x1; x2) is ontinuous from R+ � Rk �Rd�knf0g to L2(
) and hu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:;for all t 2 R+ and ' 2 S(Rd ) suh that supp ' � Rk � Rd�knf0g.Proof. The �rst part of the theorem follows diretly from Lemmas 9.2.2 and 9.2.3. The proof ofthe last equality follows then exatly the argument of the proof of Lemma 7.2.4.Remark 9.2.6. This theorem implies in partiular that there exists a funtion-valued solutioneven when the noise is white, whih was the ase studied in [61℄ (for k = d�1). It is therefore learthat the results obtained in Chapters 2 and 3 are not optimal for the existene of a real-valuedweak solution of the heat equation driven by boundary noise in a bounded domain: onerningthis subjet, see the extended analysis in [61℄ of paraboli partial di�erential equations drivenby white boundary noises.One question now remains: under some additional assumption on �, does there exist a real-valued solution of equation (9.2) whih is de�ned for all (t; x) 2 R+ � Rd? The next theoremshows that the answer is negative.Theorem 9.2.7. Let u be the solution of equation (9.2). There does not exist then a real-valuedsquare integrable proess X = fX(t; x); (t; x) 2 R+ � Rdg suh that the map (t; x) 7! X(t; x) isontinuous from R+ � Rd to L2(
) andhu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:; 8t 2 R+ ; ' 2 S(Rd):Proof. Suppose that there exists a proess X satisfying the above onditions. As in the proofof Theorem 7.2.5, let us de�ne, for t 2 R+ and x1 2 Rk , '(n)x1;0 = Æ(x1;0) �  n 2 S(Rd ), where



9.2. Existene of a real-valued solution 135( n) is a sequene of non-negative and ompatly supported approximations of Æ0 in Rd . By theassumptions made on X, we obtain thatlimn!1 E (jhu(t); '(n)x1 ;0ij2) = E (X(t; x1 ; 0)2) <1: (9.14)On the other hand,E(jhu(t); '(n)x1 ;0ij2) = ZRk �(d�1)Z t0 ds ���F1(G(t� s) � '(n)x1;0)(�1; 0)���2= ZRk �(d�1)Z t0 ds ���F1(G(s) � '(n)x1;0)(�1; 0)���2 :Moreover, by arguments similar to those used in the proof of Theorem 7.2.5,F1(G(s) � '(n)x1;0)(�1; 0) !n!1 F1G(s; �1; 0) �x1(�1);for all (s; �1) 2 ℄0; t℄ � Rk . So Fatou's lemma tells us thatlimn!1 E(jhu(t); '(n)x1 ;0ij2) � ZRk �(d�1)Z t0 ds F1G(s; �1; 0)2:But sine we have, for a �xed �1 2 Rk ,Z t0 ds F1G(s; �1; 0)2 = Z t0 ds e�j�1j2 s 1(2�s)d�k =1;the above expression is also in�nite, whih ontradits (9.14), so the theorem is proven.This theorem implies, among other things, that we will not be able to onsider non-linearequations of the form�u�t (t; x)� 12 �u(t; x) = f(u(t; x1; 0)) Æ0(x2) + g(u(t; x1; 0)) _F (t; x1) Æ0(x2):On the other hand, it is possible to analyze equations of the form�u�t (t; x)� 12 �u(t; x) = h(u(t; x)) + _F (t; x1) Æ0(x2);beause the solution u does not need to be de�ned on the k-plane in this ase. Sine this studyhas been performed quite extensively in [61℄ in the ase of a white noise onentrated on a hy-perplane (and even more generally on a C1 boundary), we will not go deeper into this analysis(remember that the boundary noise in [61℄ was interpreted as a stohasti boundary ondition).One ould also notie that we have skipped the question of the H�older regularity of the so-lution in the preeding setion. Atually, looking at the proof of Lemma 9.2.3, one an alreadynotie that (9.11) implies that the proess X is P � a:s: loally H�older-ontinuous in x withexponent  < 1 on Rk � Rd�knf0g. But the regularizing property of the Green kernel impliesmuh more, that is, the proessX is P�a:s: C1 on R+�Rk�Rd�knf0g; see [61℄ for more details.



136 Chapter 9. Linear heat equation in Rd driven by noise on a k-planeFinally, note that in the ase of a white noise onentrated on a k-plane (that is, when�(d�1) = d�1), we an estimate the behavior in x2 of E(X(t; x1 ; x2)2) near the k-plane x2 = 0:E (X(t; x1 ; x2)2)= Z t0 dsZRk d�1 F1G(s; �1; x2)2 = Z t0 ds 1(2�s)d�k e� jx2j2s ZRk d�1 e�j�1j2s= Z t0 ds 1(2�s)d�k e� jx2j2s �4�s �k2 = C Z t0 ds 1sd� k2 e� jx2j2s ;where C = 22k�d � 3k2 �d. Making now the hange of variable u2 = jx2j2s , we obtainE (X(t; x1 ; x2)2) = 2 Cjx2j2d�2�k Z 1jx2jpt du u2d�3�k e�u2 �jx2j!0 1jx2j2d�2�k :This generalizes the estimate obtained in the ase of a noise on an hyperplane in [61℄ to the aseof a noise on a lower-dimensional plane, and shows that the solution has not an L2-behaviornear the k-plane x2 = 0.



Chapter 10Perspetives
Let us �rst make a general omment and observe the relationships between some results obtainedin this dissertation. In partiular, let us look simultaneously at onditions (3.11) and B0. Onewe realize that the sequene (al) of Chapter 3 is nothing but the \spetral measure" of the noisein a disrete ase (beause the al are the Fourier oeÆients of the ovariane �), the similaritybetween these two onditions beomes evident. Apart from this, Theorems 3.3.3 and 6.4.3 statethat these are both neessary (and nearly suÆient) onditions for the existene of an L2-typesolution of the heat or the wave equation driven by a boundary noise term with suh a spetralmeasure. Moreover, their reformulation into a ondition on the ovariane gives the same resultwhen d = 2: see Setions 3.4, 7.5 and below. On the other hand, one an also appreiate thesimilarity between onditions (3.10) and B00. This gives us the intuition that there should besome generalization of the results obtained in this dissertation for equations driven by noisesonentrated on manifolds of various shapes.A �rst possible generalization of the results obtained in Chapter 3 and Appendix C shouldbe the following: for the heat or the wave equation in a bounded domain D driven by noiseonentrated on a manifold S whih is part of the boundary of the domain, there exists a uniqueweak solution to the equation (in the sense given in (2.4)) with values in L2(D) if and only ifthe ovariane �S of the noise an be represented by a trae-lass linear operator QS on theSobolev spae H 12 (S). The question is: does there exist a general argument for this (perhapsusing the general theory developed by G. Da Prato and J. Zabzyk in [18℄) and what is theintuition behind it? One ould also ask if the situation remains the same when the manifoldS is part of the interior of the domain (beginning by studying, as in Setion 3.5, the equationdriven by noise onentrated on a sphere of radius r0 less than 1, interior to the ball B(0; 1)).Let us now give a possible generalization of the results obtained in Chapter 7. For this,we �rst make more expliit the onnetions between the results obtained for the wave equationdriven by noise on a sphere in Chapter 3 and that driven by noise on a hyperplane in Chapter 7.In Chapter 3, we have seen that if there exists an L2-valued solution to the hyperboli equation137



138 Chapter 10. Perspetivesin the unit dis driven by noise onentrated on the unit irle S1 with isotropi ovariane f ,then the following ondition is satis�ed:Z �0 d� f(�) ln�1�� <1;and this ondition was shown to be nearly suÆient. A �rst improvement of this result would beto onsider when there exists a real-valued solution to this equation and see if the same ondi-tion appears, whih seems plausible. Note however that as already mentioned in Remark 3.2.4,the solution of the equation probably explodes at the enter of the sphere, beause the entireinuene of the noise on the sphere reahes this point at the same time. If we want thereforethe solution to be real-valued in the general setting of a noise onentrated on a manifold, weshould not expet this to be true for every point in spae (and we will also probably have todistinguish the two ases where the solution is de�ned only outside the manifold or also on themanifold itself, as in the ase of a noise on a hyperplane).On the other hand, in Chapter 7, we have seen that if there exists a real-valued proessde�ned outside the line x2 = 0 whih is the weak solution of the wave equation in R2 drivenby noise onentrated on this line with spatially homogenous ovariane f on the line, then thefollowing ondition is satis�ed: Z 10 dr f(r) ln�1r� <1;whose similarity with the above ondition has not to be proven. For the equation in Rd (withd � 3) driven by noise on a hyperplane, the above ondition simply beomesZ 10 dr f(r) <1:Although it has not been established that the same kind of ondition appears in the ase of anoise on a sphere, this is also quite plausible.Moreover, the analysis of Chapter 7 shows that there never exists a real-valued solutionwhen the noise is onentrated on a k-plane of dimension k = d�2, and seemingly neither whenk < d� 2.One lear improvement of this work would then be to generalize these results to hyperboliequations in Rd driven by noise onentrated on a general manifold. The �rst problem is thefollowing: our results are expressed for noises with some rotational or spatial homogeneity. Ona general manifold, suh a homogeneity does not exist. Nevertheless, we an restrit ourselvesto noises onentrated on a manifold S with ovariane �S given by�S('; ) = ZS d�(x)ZS d�(y) '(x) f(�(x; y))  (y); ';  2 S(Rd);



139where � is the uniform measure on S (indued by the Lebesgue measure on Rd ), �(x; y) is thegeodesi distane between two points x and y on the manifold S and f is a ontinuous funtion on℄0;1[. We onjeture then that there exists a real-valued proess de�ned outside the manifoldS and up to a given time de�ned as the mininum of the radii of urvature of the manifold S,whih is the solution of the hyperboli equation in Rd driven by noise onentrated on S withovariane of the form given above, only if S is of dimension d� 1 and the following onditionis satis�ed: 8>>>><>>>>: Z 10 dr f(r) ln�1r� <1; when d = 2;Z 10 dr f(r) <1; when d � 3:Moreover, this ondition should be shown to be nearly suÆient, in a sense to be made preise.We believe that this is ahievable sine the onditions obtained are all loal, and therefore shouldnot depend on the partiular shape of the manifold onsidered.
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Appendix AGreen kernel of the hyperboliequation in R d
A.1 Expressions for the Green kernelFrom (5.18) and by alulations similar to (7.1) and (7.31), we obtain the following expliitexpressions for G when d � 3 and a, b are any real numbers. If a2 � b, then:when d = 1:G(t; x) = e�at2 I0 �p(a2 � b) (t2 � x2)� 1fjxj < tg; t 2 R+ ; x 2 R; (A.1)when d = 2:G(t; x) = e�at2� osh�p(a2 � b) (t2 � jxj2)�pt2 � jxj2 1fjxj < tg; t 2 R+ ; x 2 R2 ; (A.2)when d = 3:G(t; dx) = e�at4�  1t Æfjxj = tg(dx)+pa2 � b I1 �p(a2 � b) (t2 � jxj2)�pt2 � jxj2 1fjxj < tg dx!; t 2 R+ ; (A.3)and if a2 < b, then:when d = 1:G(t; x) = e�at2 J0 �p(b� a2) (t2 � x2)� 1fjxj < tg; t 2 R+ ; x 2 R; (A.4)when d = 2:G(t; x) = e�at2� os�p(b� a2) (t2 � jxj2)�pt2 � jxj2 1fjxj < tg; t 2 R+ ; x 2 R2 ; (A.5)141



142 Appendix A. Green kernel of the hyperboli equation in Rdwhen d = 3:G(t; dx) = e�at4�  1t Æfjxj = tg(dx)�pb� a2 J1 �p(b� a2) (t2 � jxj2)�pt2 � jxj2 1fjxj < tg dx!; t 2 R+ ; (A.6)where J� and I� are the regular and modi�ed Bessel funtions of the �rst kind and of order �(see Appendix B). For the alulation in the ase d = 3, see [45, formulas I.14.46 and I.18.33℄for the regular part of G; the singular part an be omputed separately in the ase a = b = 0.Note moreover that in the ase where a = 0 (namely the ase of the Klein-Gordon equation),(A.4) and (A.6) are formulas (7.3.88) and (11.1.19) in [25℄, respetively.On the other hand, when d is any positive natural number and a = b = 0, we also have thefollowing expressions for G (see [37, p.281℄):when d = 1: G(t; x) = 12 1fjxj < tg; t 2 R+ ; x 2 R; (A.7)when d is even:G(t; ') = 1(2�) d2 �1t ��t� d�22  td�1 Zjxj<1 dx '(tx)p1� jxj2! ; t 2 R+ ; ' 2 S(Rd); (A.8)when d is odd and d � 3:G(t; ') = 12 1(2�) d�12 �1t ��t� d�32  td�2 Zjxj=1 d�(x) '(tx)! ; t 2 R+ ; ' 2 S(Rd): (A.9)Let us write these expressions more expliitely when d = 4:G(t; ') = 14�2t2 Zjxj<t dx 3'(x) +r'(x) � xpt2 � jxj2 ; t 2 R+ ; ' 2 S(R4); (A.10)and when d = 5:G(t; ') = 18�2t2 Zjxj=t d�(x) (3'(x) +r'(x) � x) ; t 2 R+ ; ' 2 S(R5): (A.11)From all these expressions, one an observe that G(t; �) is a non-negative distribution on Rd forall t 2 R+ if and only if d � 3 and a2 � b. Moreover, it is a measure if and only if d � 3.Remark A.1.1. The reason for whih we restrited our study in Chapter 5 to the two aseswhere either a and b are any real numbers and d � 3, or d is any positive natural number anda = b = 0, is that we need the above expliit expressions in order to verify property (5.16).Nevertheless, expliit expressions an ertainly be omputed in the general ase and property(5.16) is likely to remain satis�ed.



A.2. Green kernel restrited to a hyperplane 143A.2 Green kernel restrited to a hyperplaneFrom (A.2), (A.3), (A.5) and (A.6), we dedue the following expressions for G(t; �; x2) whend 2 f2; 3g and a; b are any real numbers. Fix t 2 R+ and x2 2 ℄� t; t[. If a2 � b, then:when d = 2: G(t; x1; x2) = e�at2� osh�p(a2 � b) (t2 � x22 � x21)�pt2 � x22 � x21 1njx1j<pt2�x22o; (A.12)when d = 3:G(t; dx1; x2) = e�at4�  1pt2 � x22 Ænjx1j=pt2�x22o(dx1)+pa2 � b I1 �p(a2 � b) (t2 � x22 � jx1j2)�pt2 � x22 � jx1j2 1njx1j<pt2�x22o dx1!;(A.13)and if a2 < b, then:when d = 2: G(t; x1; x2) = e�at2� os�p(b� a2) (t2 � x22 � x21)�pt2 � x22 � x21 1njx1j<pt2�x22o; (A.14)when d = 3:G(t; dx1; x2) = e�at4�  1pt2 � x22 Ænjx1j=pt2�x22o(dx1)+pb� a2 J1 �p(b� a2) (t2 � x22 � jx1j2)�pt2 � x22 � jx1j2 1njx1j<pt2�x22o dx1!:(A.15)On the other hand, from (A.10) and (A.11), we dedue the following expressions for G(t; �; x2)when d = 4 and a = b = 0:G(t; '1; x2) = H �qt2 � x22; '1� 1fjx2j < tg; (A.16)where H(s; '1) = 14�2s2 Zjx1j<s dx1 2'1(x1) +r1'1(x1) � x1ps2 � jx1j2 ; s 2 R+ ; '1 2 S(R3);and when d = 5:G(t; '1; x2) =  H �qt2 � x22; '1�� 18�2t2 Zjx1j=pt2�x22 d�(x1) '1(x1)! 1t 1fjx2j < tg;(A.17)



144 Appendix A. Green kernel of the hyperboli equation in RdwhereH(s; '1) = 18�2s2 Zjx1j=s d�(x1) (3'1(x1) +r1'1(x1) � x1) ; s 2 R+ ; '1 2 S(R4 ):As before, we dedue from these expressions that G(t; �; x2) is a non-negative measure on Rd�1for all t 2 R+ and x2 2 R if and only if d 2 f2; 3g and a2 � b. Moreover, it is a measure if andonly if d 2 f2; 3g.Remark A.2.1. The reason for whih we restrited our study in Chapter 7 to the two aseswhere either d 2 f2; 3g and a, b are any real numbers, or d 2 f4; 5g and a = b = 0, is thatwe need the above expliit expressions in order to verify property (7.2). Nevertheless, expliitexpressions an ertainly be omputed in the general ase and property (7.2) is likely to remainsatis�ed.



Appendix BBessel funtionsB.1 De�nitionsLet � 2 R. We have the following de�nitions. The regular Bessel funtions of the �rst kind andof order � are given by (see formula 9.1.10 in [1℄):J�(r) = �r2��Xn2N (� r24 )nn! �(� + n+ 1) ; r 2 R+ ;where � is the Gamma funtion de�ned in (3.2). The modi�ed Bessel funtions of the �rst kindand of order � are given by (see formula 9.6.10 in [1℄):I�(r) = �r2��Xn2N ( r24 )nn! �(� + n+ 1) ; r 2 R+ :Finally, for � 2 R+ , the modi�ed Bessel funtions of the seond kind and of order � are given by(see formula 9.6.23 in [1℄):K�(r) = p��(� + 12) �r2�� Z 11 dt e�rt (t2 � 1)�� 12 ; r 2 R+ ;and K��(r) = K�(r) by formula 9.6.6 in [1℄.Remark B.1.1. From these de�nitions, we diretly see that I� and K� are non-negative fun-tions, independently of the order � onsidered. This fat is used repeatedly in this dissertation.B.2 EstimatesWe present here some estimates on J0, I0 and K� , with �xed � 2 R. First note that all thesefuntions are ontinuous, exept K� at the point r = 0.Let us begin with K� : by formula 9.7.2 in [1℄, there exists C > 0 suh that����K�(r)�r �2r e�r���� � Cr 32 ; 8r � 1;145



146 Appendix B. Bessel funtionsso there exists C > 0 suh that K�(r) � C e�r; 8r � 1: (B.1)On the other hand, when r! 0, we have by formulas 9.6.8 and 9.6.9 in [1℄:K�(r) � 8><>: ln �1r � if � = 0;1rj�j if � 6= 0; (B.2)Let us now onsider I0. By formula 9.6.16 in [1℄, I0 admits the following integral representationfor r 2 R+ : I0(r) = 1� Z �0 osh(r os(t)) dt;so I0(0) = 1 and I0 is inreasing on R+ . By formula 9.7.1 in [1℄, there also exists C > 0 suhthat ����I0(r)� erp2�r ���� � Cr3=2 ; 8r > 0;so there exists C > 0 suh that I0(r) � C er; 8r � 0: (B.3)Let us �nally onsider J0. By formula 9.1.18 in [1℄, J0 admits the following integral representationfor r 2 R+ : J0(r) = 1� Z �0 os(r sin(t)) dt;so jJ0(r)j � 1 for all r 2 R+ , J0(0) = 1 and J0 is dereasing on [0; 1℄. By formula 9.1.28 in [1℄,J 00(r) = �J1(r), and by formula 9.2.1 in [1℄, there also exists C > 0 suh that�����J0(r)�r 2�r os�r � �4������ � Cr3=2 ; 8r > 0; (B.4)so there exists C > 0 suh that J0(r)2 � Cp1 + r2 ; 8r � 0; (B.5)whih implies that J0(r)2 � Cr ; 8r > 0: (B.6)Let us also mention the two following useful estimates.Lemma B.2.1. There exists C > 0 suh that1R Z R0 dr r J0(r)2 � C; 8R � 1:



B.2. Estimates 147Proof. Let us �rst prove the following:limR!1 1R Z R0 dr r J0(r)2 = 1� : (B.7)To see this, note that����r J0(r)2 � 2� os��4 � r�2����= �����pr J0(r)�r 2� os��4 � r������ �����pr J0(r) +r 2� os��4 � r������� C1 + r ; (B.8)by estimates (B.4) and (B.5). This implies that����Z R0 dr r J0(r)2 � 2� Z R0 dr os��4 � r�2���� � C ln(1 +R);But sine Z R0 dr os��4 � r�2 = R2 + 1� sin(�2 � 2R)4 ;we obtain that (B.7) is true, whih implies that for all " > 0, there exists R0 > 0 suh that1R Z R0 dr r J0(r)2 � 1� � "; 8R � R0:Suppose now that R0 > 1 (otherwise, there is nothing left to prove). On [1; R0℄, the abovefuntion of R is greater than 0, so by the ompatness of this interval, there exists Æ > 0 suhthat 1R Z R0 dr r J0(r)2 � Æ; 8R 2 [1; R0℄:The lemma is then satis�ed with C = ( 1� � ") ^ Æ.Lemma B.2.2. There exists C > 0 suh that for all R � �,Z R1 dr J0(r)2 � ln(R)� � C:Proof. For proving this, we use again (B.8) and obtain that there exists C > 0 suh that for allr � 1, ����J0(r)2 � 2�r os��4 � r�2���� � Cr2 :From this, we dedue that for R � �,����Z R1 dr J0(r)2 � 2� Z R1 dr 1r os��4 � r�2���� � C (1� 1R ) � C; (B.9)Let us now ompute Z R1 dr os ��4 � r�2r ;



148 Appendix B. Bessel funtionsobserving �rst that Z R1 dr os ��4 � r�2r + Z R1 dr sin ��4 � r�2r = ln(R);but that on the other hand,�����Z R1 dr os ��4 � r�2r � Z R1 dr sin ��4 � r�2r ����� = �����Z R��41��4 dr os(r)2r + �4 � Z R+�41+�4 dr os(r)2r � �4 ����� :Dividing these two integrals in three parts, we obtain that the above expression is less than orequal to Z 1+�41��4 dr 1r + �4 + Z R��41+�4 dr � 1r � �4 � 1r + �4 �+ Z R+�4R��4 dr 1r � �4= ln(1 + �2 ) + ln(R� �2 )� ln( R1 + �2 ) + ln( RR� �2 ) = 2 ln(1 + �2 ):Therefore, Z R1 dr os ��4 � r�2r � Z R1 dr sin ��4 � r�2r � 2 ln(1 + �2 );and this implies thatZ R1 dr os ��4 � r�2r � 12  Z R1 dr os ��4 � r�2r + Z R1 dr sin ��4 � r�2r � 2 ln(1 + �2 )!= ln(R)2 � ln(1 + �2 ):So �nally, by (B.9), Z R1 dr J0(r)2 � 2� Z R1 dr 1r os��4 � r�2 �C� ln(R)� � C � ln(1 + �2 );whih proves the lemma.



Appendix CLinear equation driven by noise onone side of a hyperubeLet d be a natural number greater than 1, D = [0; �℄d and K = [0; �℄d�1 �f0g be the \bottom"side of the hyperube D (when d = 3, K is the square at the base of the ube D). In thishapter, we would like to study the existene of a weak solution to the hyperboli equation (2.1)(in the sense de�ned in (2.4)), in the spei� ase where the domain D is the hyperube de�nedabove and the noise onsidered is onentrated on K. For this, we follow an analysis similar tothat of Chapter 3.Let us �rst de�ne the noise onentrated on K, onsidering a quite general ovariane. Fol-lowing an argument similar to that of Setion 3.2, let us begin with a ontinuous and symmetrifuntion h : [��; �℄d�1 ! R being non-negative de�nite on K, that is,mXi;j=1 i j h(x(i) � x(j)) � 0; 8m � 1; 1; : : : ; m 2 C ; x(1); : : : ; x(m) 2 K:This funtion represents then the ovariane of a Gaussian proess indexed by the elements ofK, whih is moreover spatially homogeneous, that is, the ovariane between two points x and ydepends only on the vetor y�x. Belonging to this lass of funtions are the following funtionsh:h(x1; : : : ; xd�1) = Xn1;:::;nd�12N an1;:::;nd�1 os(n1x1) � � � os(nd�1xd�1); (x1; : : : ; xd�1) 2 K;where an1;:::;nd�1 � 0 and Xn1;:::;nd�12N an1;:::;nd�1 <1:Note that we annot apply here the lassial Bohner theorem to onlude that any ovari-ane h has the preeding form, beause K is not a group. Nevertheless, one an hek thatsuh h satis�es the required properties (using the formula os(m(x � y)) = os(mx) os(my) +sin(mx) sin(my)). 149



150 Appendix C. Linear equation driven by noise on one side of a hyperubeFollowing now the idea of Setion 3.2, let us onsider that the ovariane of the noise on-entrated on K is given by�K('; ) = Xn1;:::;nd�12N an1;:::;nd�1 �n1;:::;nd�1('; ); ';  2 C1(K);where an1;:::;nd�1 � 0 and�n1;:::;nd�1('; ) = ZK dx1 � � � dxd�1 ZK dy1 � � � dyd�1� '(x1; : : : ; xd�1) os(n1(x1 � y1)) � � � os(nd�1(xd�1 � yd�1))  (y1; : : : ; yd�1);with the ondition Pn1;:::;nd�12N an1;:::;nd�1 < 1 replaed by another one, whih will be madeexpliit below (see (C.1)), and under whih we an easily hek that �K('; ) is well de�ned foreah '; 2 C1(K).Let us �nally de�ne the ovariane �D by�D('; ) = �K �'��K ;  ��K� ; ';  2 S(D):where S(D) is the spae de�ned in Chapter 2.We are going to show that there exists a weak solution to equation (2.1) if and only if thefollowing ondition is satis�ed: Xn1;:::;nd�12N an1;:::;nd�1q1 + n21 + � � �+ n2d�1 <1: (C.1)Let us now state the theorem (note that a similar result was already obtained in [19, Thm 13.3.1℄for the heat equation).Theorem C.0. 1. Let (u0; v0) 2 L2(D) � H�1(D). There exists a unique weak solution uof equation (2.1) suh that E(ku(t)k20 ) < 1, for all t 2 R+ , if and only if ondition (C.1) issatis�ed.Proof. Let us �rst ompute the eigenvalues and eigenfuntions of the Laplaian in D. Note thatsine the boundary of the domain is not C1, we annot apply diretly the spetral theorem2.1.1. Still, the solutions of the eigenvalue problem�'+ �' = 0 in D and �'�� ����D = 0;are easy to ompute here. They have the following simple expressions:en(x) = � 2�� d2 os(n1x1) � � � os(ndxd); �n = n21 + � � �+ n2d;



151where n = (n1; : : : ; nd) denotes a multi-index in Nd . One an notie that the en are C1, evenif �D is not.Let us now ompute the oeÆients n = �D(en; en):n = Xm1;:::;md�12N am1;:::;md�1�m1;:::;md�1 �en��K ; en��K� :Sine en��K(x1; : : : ; xd�1) = � 2��d2 os(n1x1) � � � os(nd�1xd�1);and using again the formula os(m(x � y)) = os(mx) os(my) + sin(mx) sin(my), we obtainsimply that n = 2� an1;:::;nd�1 :In order to hek now that ondition (C.1) is suÆient, we simply need to hek that itimplies that Assumption H0 of Chapter 2 is satis�ed, whih in turn implies the desired result byTheorem 2.5.3. To see that part (i) of Assumption H0 is satis�ed, that is, that the ovariane�D is ontinuous with respet to the H1-norm on D, we follow the proof of Theorem 2.5.3 andverify that �K is ontinuous with respet to the H 12 -norm on K de�ned byk'k212 = Xn1;:::;nd�12N q1 + n21 + : : :+ n2d�1 jn1;:::;nd�1 j2;for '(x1; : : : ; xd�1) = Xn1;:::;nd�12N n1;:::;nd�1 os(n1x1) � � � os(nd�1xd�1):Let us then ompute �K(';') = Xm1;:::;md�12N am1;:::;md�1 ��m1;:::;md�1 ��2 :Under ondition (C.1), there exists C > 0 suh thatam1;:::;md�1 � C q1 +m21 + : : : +m2d�1;therefore, �K(';') � C k'k212 :Let us now verify part (ii) of Assumption H0 and omputeXn2Nd n1 + �n = 2� Xn1;:::;nd2N an1;:::;nd�11 + n21 + � � � + n2d= 2� Xn1;:::;nd�12N an1;:::;nd�10�Xnd2N 11 + n21 + � � �+ n2d1A : (C.2)



152 Appendix C. Linear equation driven by noise on one side of a hyperubeSine Xnd2N 1a2 + n2d � 1a2 + Z 10 dx 1a2 + x2 = 1a2 + �2a � C1a ; a � 1;we see that (C.1) implies AssumptionH0, therefore the existene of a weak solution u of equation(2.1) suh that E (ku(t)k20) <1, for all t 2 R+ , by Theorem 2.5.3. On the other hand, if suh asolution exists, then by Theorem 2.5.4, part (ii) of Assumption H0 is satis�ed, and sineXnd2N 1a2 + n2d � Z 10 dx 1a2 + x2 = 1a artan�xa� ���10 = �2a � C2awe obtain by (C.2) that ondition (C.1) is satis�ed, whih proves that the latter is a neessaryondition, therefore the theorem.Note that we have obtained here a neessary and suÆient ondition, whih was not the asefor the noise on a sphere. Performing the same analysis as in Remark 3.3.4, we an show thatthis ondition is equivalent to the existene of a trae-lass linear operator QK on H 12 (K) suhthat �K('; ) = h';QK i 12 ; 8'; 2 C1(K):



Appendix DHigher order hyperboli linearequation in R d
Let  2 R+ and let us onsider the following fourth order linear partial di�erential operator:L = �2�t2 � 2 ���t +�2What is interesting with this operator is that when  = 0, it is given byL0 = �2�t2 +�2;whih is a truly hyperboli operator, but when  = 1, L is given byL1 = �2�t2 � 2���t +�2 = � ��t ���2 ;whih is rather a paraboli operator. Therefore, the analysis will be di�erent in eah ase.In the following two setions, we give suÆient onditions whih guarantee the existene of areal-valued weak solution u (in the sense de�ned in Chapter 7) of the following (formal) lassialequation: Lu(t; x) = _F (t; x);in both ases where _F is either a spatially homogeneous noise or a noise onentrated on ahyperplane. Sine omputations are similar to those made in Chapters 7 and 9, we omit (mostof) the details in the following.D.1 Spatially homogeneous noiseLet us onsider the following equation:8>>><>>>: �2u�t2 (t; x)� 2 ��u�t (t; x) + �2u(t; x) = _F (t; x); t 2 R+ ; x 2 Rd ;u(0; x) = �u�t (0; x) = 0; x 2 Rd ; (D.1)153



154 Appendix D. Higher order hyperboli linear equation in Rdwhere the noise _F is a spatially homogeneous noise on Rd with non-negative ovariane �.We do not present here what kind of weak formulation an be given to equation (D.1), butwe simply give the expression for its distribution-valued solution:hu(t); 'i = Z[0;t℄�Rd M(ds; dx) (G(t� s) � ')(x); t 2 R+ ; ' 2 S(Rd);where G is the Green kernel of equation (D.1) and M is the martingale measure onstrutedfrom the spatially homogeneous noise _F .Moreover, we have the following expliit expression for the Fourier transform in x of theGreen kernel G of equation (D.1):FG(t; �) = 8>>>>><>>>>>: e�j�j2t sin(tp1� 2 j�j2)p1� 2 j�j2 ; if  2 [0; 1[;e�j�j2t t; if  = 1;e�j�j2t sinh(tp2 � 1 j�j2)p2 � 1 j�j2 ; if  > 1: (D.2)We have the following upper bounds for FG.Lemma D.1.1. Let  = 0. Then for all t > 0, there exists C(t) > 0 suh thatZ t0 ds FG(s; �)2 � C(t)(1 + j�j2)2 ; 8� 2 Rd :Proof. If j�j � 1, then Z t0 ds FG(s; �)2 = Z t0 ds sin2(sj�j2)j�j4 � tj�j4 ;and if j�j < 1, then Z t0 ds FG(s; �)2 = Z t0 ds sin2(sj�j2)j�j4 � t3;sine r�2 sin(r)2 � 1 for all r � 0. The proof now ends as the proof of Lemma 5.4.1.Lemma D.1.2. Let  > 0. Then for all t > 0, there exists C(t) > 0 suh thatZ t0 ds FG(s; �)2 � C(t)(1 + j�j2)3 ; 8� 2 Rd :Proof. Let us �rst onsider the ase where  2 ℄0; 1[. We haveZ t0 ds FG(s; �)2 = Z t0 ds e�2j�j2s sin2(sp1� 2 j�j2)(1� 2) j�j4 :If j�j � 1, then Z t0 ds FG(s; �)2 � 1j�j4  1� e�2j�j2t2j�j2 ! � 12j�j6 ;



D.1. Spatially homogeneous noise 155and if j�j < 1, then sine r�2 sin(r)2 � 1 for all r � 0,Z t0 ds FG(s; �)2 � Z t0 ds e�2j�j2s s2 � t3;For the ase  = 1, we have, by suessive integrations by parts,Z t0 ds FG(s; �)2 = Z t0 ds e�2j�j2s s2= �e�2j�j2t2j�j2 t2 + 2Z t0 ds e�2j�j2s2j�j2 s= �e�2j�j2t2j�j2 t2 + e�2j�j2t2j�j4 t+ 14j�j4  1� e�2j�j2t2j�j2 !� C(t)j�j6 ;if j�j � 1, and if j�j < 1, thenZ t0 ds FG(s; �)2 = Z t0 ds e�2j�j2s s2 � t3:Finally, onsider the ase  > 1. We haveZ t0 ds FG(s; �)2 = Z t0 ds e�2j�j2s sinh2(sp2 � 1 j�j2)(2 � 1) j�j4 :If j�j � 1, then sine sinh2(r) � e2r for all r � 0 and �p2 � 1 > 0,Z t0 ds FG(s; �)2 � 1(2 � 1) j�j4 Z t0 ds e�2(�p2�1)j�j2s � 1(2 � 1) 2( �p2 � 1)j�j6 :On the other hand, if j�j < 1, then sine r�2 sinh2(r) � osh(r)2 for all r � 0,Z t0 ds FG(s; �)2 � Z t0 ds e�2j�j2s osh2(sp2 � 1 j�j2) � t;sine osh2(r) � e2r for all r � 0 and p2 � 1 � .For these three ases, the proof ends as the proof of Lemma 5.4.1.We address now the following question: under whih ondition on the ovariane � (orequivalently the spetral measure �) of the noise does there exist a real-valued proess X suhthat hu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:; 8t 2 R+ ; ' 2 S(Rd )?The answer to this question is given in the following theorem.Theorem D.1.3. If  = 0 and ZRd �(d�)(1 + j�j2)2 <1; (D.3)or  > 0 and ZRd �(d�)(1 + j�j2)3 <1; (D.4)then there exists a real-valued proess X whih is the weak solution of equation (D.1).



156 Appendix D. Higher order hyperboli linear equation in RdProof. We an use here the result in [15℄, whih states that there exists a real-valued proesswhih is the weak solution of (D.1) if the following ondition on � is satis�ed:ZRd �(d�) Z T0 ds FG(s; �)2 <1;for all T > 0. The theorem then follows diretly from Lemmas D.1.1 and D.1.2.Note that when � is the Lebesgue measure on Rd (that is, the spetral measure of whitenoise), ondition (D.3) is satis�ed if and only if d < 4 and ondition (D.4) is satis�ed if and onlyif d < 6.D.2 Noise on a hyperplaneWe now onsider the following equation8>>><>>>: �2u�t2 (t; x)� 2 ��u�t (t; x) +�2u(t; x) = _F (t; x1) Æ0(x2); (t; x) 2 R+ � Rd ;u(0; x) = �u�t (0; x) = 0; x 2 Rd ; (D.5)where _F is the noise onentrated on the hyperplane x2 = 0 onsidered in Chapter 6 (withk = d� 1), with non-negative ovariane �.As in the preeding setion, we do not present here what kind of weak formulation an begiven to equation (D.5), but we simply give the expression for its distribution-valued solution:hu(t); 'i = Z[0;t℄�Rd�1 M(ds; dx1) (G(t� s) � ')(x1; 0); t 2 R+ ; ' 2 S(Rd );where G is the Green kernel of equation (D.1) and M is the martingale measure onstrutedfrom the noise _F .The expression of F1G is given by (4.1):F1G(t; �1; x2) = 12� ZR d�2 FG(t; �1; �2) ��x2(�2); (D.6)and we will not ompute it sine its expliit expression is too intriate. On the other hand, wehave the two following upper bounds. We restrit ourselves to the two ases where either  = 0or  = 1 for simpliity.Lemma D.2.1. Let  = 0. Then for all t > 0, there exists C(t) > 0 suh thatZ t0 ds F1G(s; �1; x2)2 � C(t)1 + j�1j2 8(�1; x2) 2 Rd�1 � R:



D.2. Noise on a hyperplane 157Proof. We have F1G(t; �1; x2) = 12� ZR d�2 sin((j�1j2 + �22)s)j�1j2 + �22 e�ix2�2 ;therefore, when j�j � 1, jF1G(t; �1; x2)j � 12� ZR d�2 1j�1j2 + �22 = 12j�1j ;so Z t0 ds F1G(s; �1; x2)2 � t4j�1j2 :When j�1j < 1, we have, sine r�2 sin(r)2 � C(1 + r2)�1 for all r � 0,jF1G(t; �1; x2)j � 12� ZR d�2 C1 + �22 = C2 ;therefore, Z t0 ds F1G(s; �1; x2)2 � C2t4 ;and the proof ends as the proof of Lemma 5.4.1.Lemma D.2.2. Let  = 1. Then for all t > 0, there exists C(t) > 0 suh thatZ t0 ds F1G(s; �1; x2)2 � C(t)(1 + j�1j2)2 8(�1; x2) 2 Rd�1 � R:Proof. When  = 1, we an ompute F1G expliitely:F1G(t; �1; x2) = 12� ZR d�2 e�(j�1j2+�22)t t e�ix2�2= e�j�1j2t tZR d�2 e��22t e�ix2�2= e�j�1j2t r t4� e�x224t : (D.7)We therefore obtain, for all x2 2 R,Z t0 ds F1G(s; �1; x2)2 = 14� Z t0 ds e�2j�1j2s s e�x222s � 14� Z t0 ds e�2j�1j2s s:By integration by parts, we haveZ t0 ds F1G(s; �1; x2)2 = e�2j�1j2t8�j�1j2 + 1� e�2j�1j2t16�j�1j4 � C(t)j�1j4 ;when j�1j � 1, and when j�1j < 1, we haveZ t0 ds F1G(s; �1; x2)2 � 14� Z t0 ds e�2j�1j2s s � t24� :The proof now ends as the proof of Lemma 5.4.1.



158 Appendix D. Higher order hyperboli linear equation in RdThe following upper bound shows moreover the analogy between equation (D.1) with  = 1and the heat equation (9.1).Lemma D.2.3. Let  = 1. Then for all T > 0 and " > 0, there exist C(T; ") > 0 and P afuntion with polynomial growth suh thatZ t0 ds F1G(s; �1; x2)2 � C(T; ") P (�1) e�2 " j�1j;for all t 2 [0; T ℄, �1 2 Rd�1 and x2 2 R suh that jx2j � ".Proof. From the expliit expression (D.7) of F1G and following an argument entirely similar tothat of the proof of Lemma 9.2.1, we obtain the result.These estimates lead to the following theorem.Theorem D.2.4. If  = 0 and ZRd�1 �(d�1)1 + j�1j2 <1; (D.8)or  = 1 and ZRd�1 �(d�1)(1 + j�1j2)2 <1; (D.9)then there exists a real-valued proess X whih is solution of equation (D.5). Moreover, if  = 1,there always exists a real-valued proess de�ned outside the hyperplane x2 = 0 whih is solutionof equation (D.5), without any spei� assumption on �.Proof. The proof follows the same sheme as the proof for the seond order hyperboli equationin Chapter 7. We will therefore not go into the details of this proof. Just note that LemmasD.2.1, D.2.2 and D.2.3 are the essential ingredients of the argument (as was Lemma 7.1.2 forTheorem 7.2.5).Note that when � is the Lebesgue measure on Rd�1 (that is, the spetral measure of whitenoise), ondition (D.8) is satis�ed if and only if d < 3 (3 being a limiting ase) and ondition(D.9) is satis�ed if and only if d < 4.For a further analysis, we ould also study the ase  6= 0; 1 in this setion (for whih theanswer is not lear a priori) and see if all the onditions obtained in this appendix are optimal.
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Curriulum VitaeI was born on Otober 2nd 1971 in Geneva, Switzerland. After my primary shool and �rstyears of seondary shool in Collonge-Bellerive, a nie little village at the lake side near Geneva,I attended the Coll�ege Calvin in Geneva, where I obtained the Maturit�e F�ed�erale et Cantonalede type A (gre-latin) in June 1990. I then studied physis at the Swiss Federal Institute ofTehnology (EPFL) and graduated with a Diplôme d'ing�enieur-physiien in Marh 1995. Aftera trainee period of three months at the Physis Department of the EPFL, I beame a researhand teahing assistant in Otober 1995 at the Mathematis Department of the EPFL, where I�rst worked in Numerial Analysis with Prof. Jaques Rappaz until August 1996, then in Prob-ability Theory with Prof. Robert C. Dalang. I began to work on the present PhD dissertationin Otober 1997 under the supervision of Professor Robert C. Dalang. During this period, I alsogot married with Marivi on May 1st 1998.

165


