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Abstract

The framework of this dissertation is the study of wave propagation phenomena, where the waves
considered are generated by noise sources which are random both in time and space. More pre-
cisely, we are interested in finding real-valued solutions of linear hyperbolic partial differential
equations (typically the wave equation) driven by additive Gaussian noise sources which are

white in time and concentrated on surfaces in space.

It is a well known fact that when the spatial dimension is greater than one, the wave equa-
tion driven by a space-time Gaussian white noise admits a solution which takes its values in a
distribution space. If we want the solution to be function-valued, it is natural to consider noise

with some spatial correlation.

In this dissertation, we are going to see that this also happens for the wave equation driven
by a Gaussian noise concentrated on a surface, in particular the sphere or the plane. In both
cases, we give minimal conditions on the spatial covariance of the noise which guarantee the

existence of a function-valued solution of the linear equation.

For the case of a noise concentrated on a d-dimensional sphere, we give two conditions, one
necessary and one sufficient, for the existence of a square-integrable solution of the linear wave
equation in the ball delimited by the sphere. These conditions are expressed in terms of the
Fourier coefficients of the spatial covariance of the noise. In the case of a noise concentrated on

a circle, the necessary condition can be reformulated into an explicit condition on the covariance.

For the linear wave equation in a d-dimensional space driven by noise concentrated on a k-
plane (with 1 < k < d), we give optimal conditions for the existence of a solution with values in
some fractional Sobolev space in the directions perpendicular to the k-plane. These conditions
are expressed in terms of the spectral measure of the noise and can also be reformulated into

explicit conditions on the covariance.

Moreover, for the particular case of a noise concentrated on a hyperplane, we give two opti-
mal conditions on the spectral measure which guarantee the existence of a real-valued solution

defined, respectively, only outside the hyperplane that supports the noise, or everywhere in
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space. In the latter case, we establish the existence and uniqueness of a real-valued solution for
a non-linear equation of the same type. Under stronger conditions on the spectral measure, we
also establish that the solution of the linear equation is Holder-continuous outside the hyper-

plane.

Finally, we consider similar questions for the linear heat equation in a d-dimensional space
driven by noise concentrated on a k-plane (with 1 < k < d) and we show that under a fairly mild
assumption on the covariance of the noise, there exists a real-valued solution which is defined

outside the hyperplane, but the solution is never defined on the k-plane itself.
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Version abrégée

Le cadre de cette these est 'étude des phénomenes de propagation d’ondes engendrées par des
sources de bruit aléatoires en temps et en espace. Plus précisément, nous nous intéressons
a l'existence de solutions a valeurs réelles d’équations linéaires aux dérivées partielles hyper-
boliques (du type de I'équation des ondes) dirigées par des sources de bruit gaussiennes addi-

tives, décorrélées en temps et concentrées sur des surfaces en espace.

Il est bien connu que lorsque la dimension spatiale considérée est supérieure a un, I’équation
d’onde linéaire dirigée par un bruit gaussien blanc en temps et en espace admet une solution qui
prend ses valeurs dans un espace de distributions. Sil’on veut obtenir une solution & valeurs dans
un espace de fonctions, il est naturel de considérer que le bruit posséde une certaine corrélation

spatiale.

Dans cette thése, nous allons voir que ceci se produit également pour I'équation d’onde
linéaire dirigée par un bruit gaussien concentré sur une surface, en particulier la sphére ou le
plan. Pour ces deux cas, nous donnons des conditions minimales sur la covariance spatiale du
bruit garantissant ’existence d’une solution a valeurs dans un espace de fonctions pour ’équation

linéaire.

Pour le cas d’un bruit concentré sur une sphére d-dimensionnelle, nous donnons deux con-
ditions, une nécessaire et une suffisante, pour I'existence d’'une solution de carré intégrable de
I’équation d’onde linéaire dans la boule délimitée par la sphére. Ces conditions sont exprimées
en termes des coefficients de Fourier de la covariance spatiale du bruit. Dans le cas d’un bruit
concentré sur un cercle, la condition nécessaire peut étre reformulée en une condition explicite

sur la covariance.

Pour 'équation d’onde linéaire dans I’espace de dimension d dirigée par un bruit concentré
sur un k-plan (avec 1 < k < d), nous donnons des conditions optimales pour P'existence d’une
solution & valeurs dans un espace de Sobolev fractionnaire dans les directions perpendiculaires
au k-plan. Ces conditions sont exprimées en termes de la mesure spectrale du bruit et peuvent

aussi étre reformulées en des conditions explicites sur la covariance.



De plus, pour le cas particulier d’un bruit concentré sur un hyperplan, nous donnons deux
conditions sur la mesure spectrale garantissant 'existence d’une solution a valeurs réelles définie
respectivement seulement en dehors de 1'hyperplan qui supporte le bruit, ou partout dans
I’espace. Dans ce dernier cas, nous montrons l'existence et 'unicité d’'une solution a valeurs
réelles pour une équation non-linéaire du méme type. Sous des conditions plus fortes concer-
nant la mesure spectrale, nous montrons également que la solution de I’équation linéaire est

holdérienne en dehors de ’hyperplan.

Finalement, nous considérons des questions similaires pour I’équation de la chaleur linéaire
dans I'espace de dimension d dirigée par un bruit concentré sur un k-plan (avec 1 < k < d)
et nous montrons que sous une hypothese peu restrcitive concernant la covariance du bruit, il
existe une solution & valeurs réelles définie en dehors du k-plan, mais cette solution n’est jamais

définie sur le k-plan lui-méme.
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Chapter 1

Introduction

Stochastic partial differential equations are of both mathematical and practical interest. The
mathematical aspects concern the extension of the now well developed theory of partial differen-
tial equations to similar equations with random source terms, which are strongly irregular, both
in time and space. On the other hand, the practical interest of these equations comes from the
fact that they provide models for physical phenomena with temporal and spatial variations that
are too rapid to be well described by deterministic models. Examples of such phenomena are to
be found in various domains, such as oceanography [3, 22|, fluid mechanics [10] or mathematical

finance [8].

Many approaches have been developed in order to handle these new kinds of equations. In
the present dissertation, we follow mainly the approach described by J. B. Walsh in [62], which
considers partial differential equations driven by additive noises (essentially white noise). Solu-
tions of such equations are described as random fields indexed by the time and space variables,
and are expressed as generalized stochastic integrals with respect to a martingale measure con-
structed from the noise under consideration. For the same kind of equations, one could also
use the approach of G. Da Prato and J. Zabczyk described in [18, 19], which consider solutions
as processes indexed by the time variable with values in some functional space of the space
variable, namely Banach or Hilbert spaces. We will also use some aspects of this approach in
the present dissertation. For different approaches to stochastic partial differential equations, see
[10, 27, 31, 48], among many others. Let us also mention here that there is another “class” of
stochastic partial differential equations with no additive noise but random coefficients, which

has lead to different types of analysis and results (see for example [47, 60]).

The first kind of stochastic partial differential equations which have been studied are those
driven by additive space-time Gaussian white noise. For the linear equation, viewing the noise
as a random distribution allows to apply deterministic methods; see [28, 37, 63]. In the specific
case where the spatial dimension is one, it can be shown that even though the noise is strongly

irregular, the solution of the equation is continuous; it is therefore possible to consider non-linear



2 Chapter 1. Introduction

equations of the same type: see for example [11, 12, 49, 50]. On the other hand, the solution of
the linear equation is no longer a function when the space dimension is greater than one. One
possible way of studying non-linear equations in higher space dimension is then to define the
non-linear transformation of a distribution (see [43, 44]). Another way is to replace the white
noise by a spatially homogeneous Gaussian noise whose covariance satisfies a minimal condition
in order for the solution to be a function, and then to analyze non-linear equations of the same

type. This latter approach is reviewed in the next section.

The main purpose of the present dissertation is to study hyperbolic partial differential equa-
tions driven by Gaussian noises that are white in time and concentrated in space on manifolds
of lower dimension than the space variable under consideration; typically a sphere or a plane. It
turns out that also in this case, solutions are not function-valued when we consider white noises
concentrated on surfaces and when the space dimension is greater than one. Since we do not
want to consider non-linear transformations of distributions, we will follow the second approach
described above, and therefore try to find minimal conditions on the covariance of the noise in
order to obtain function-valued solutions. This allows us afterwards to study equations driven

by non-linear stochastic source terms concentrated on these manifolds.

A typical example of such an equation is the equation describing wave propagation in or-
dinary three dimensional space perturbed by a noise concentrated on a plane. This type of
situation might for example arise in the study of the sound wave produced by the noise of the
rain falling on the surface of a lake. This noise is composed of a large number of small con-
tributions (namely the droplets of rain); it is therefore natural to consider that it is Gaussian.
Moreover, it is concentrated on a surface (namely the lake surface), so the pressure wave emitted

by this noise satisfies a wave equation driven by an additive noise source concentrated on a plane.

There have been many studies of equations driven by noises concentrated on manifolds (gen-
erally considered as stochastic boundary conditions). Most of these studies however concern the
case where the spatial dimension is one, so the boundary noise is therefore a pointwise noise (see
for example [4, 20, 33]). Some recent results have been obtained for parabolic equations driven
by boundary noises in higher space dimension: see [34, 61]. Among these two papers, the most
closely related to this dissertation is the paper [61]. The methods for parabolic equations differ
from those studied here, since these equations exhibit regularizing properties, which is not the
case of hyperbolic equations. This has made it possible to analyse parabolic equations driven by
noises concentrated on fairly general manifolds. For the case of hyperbolic equations, the analy-
sis is more intricate, because we need Fourier analysis techniques developed for equations driven
by spatially homogeneous noises. In the present dissertation, we therefore restrict ourselves to

equations driven by noises concentrated on two canonical manifolds: the sphere and the plane.
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1.1 Equations driven by spatially homogenous noises

Even though a noise concentrated on a manifold is not spatially homogeneous, the techniques
that we use in this dissertation are quite similar to those used for equations driven by spatially
homogeneous noises. The first contributions to this subject are to be found in [13, 17, 21, 26, 38,
39, 40]. Afterwards, there have been many papers on the subject, some following the approach
of J.B. Walsh (see [14, 15, 35, 36, 54, 55]) and some the approach of G. Da Prato and J. Zabczyk
(see [30, 51, 52, 53]).

In this section, we describe the recent results obtained independently by R. C. Dalang in [15]
and A. Karczewska and J. Zabczyk in [30] for the heat and the wave equation in R? (d > 1) driven

by spatially homogeneous noise. The equation considered in these references is the following;:

Lu(t,z) = F(t,z), (t,z) € Ry x RY,
where L is either the heat or the wave operator (with vanishing initial conditions) and F is a

generalized centered Gaussian process with covariance

B(F(t,2) F(s,y)) = do(t — 5) [z —y),

where dg is the usual Dirac measure on R and I' is a non-negative and non-negative definite
tempered Borel measure on R?. Let us also denote by p the spectral measure of the noise,

defined as the inverse Fourier transform of T'.

Theorems 11 and 13 in [15], as Theorem 1 in [30], state that there exists a real-valued process

which is the solution (in a weak sense) of the above equation if and only if the following condition

p(d§)
/Rd 14 =%

The reformulation of this condition into a condition on I' yields (see Theorem 2 in [30]):

on p is satisfied:

( no condition on T, when d=1,

1
/ ['(dz) In <—> < 00, whend =2,
J B(0,1) ||

1
/ [(dz) —= < oo, when d > 3.
\ JB(0,1) ks

When I'(dz) = f(|z|) dz, with f a continuous function on ]0, oo[, this implies the following.

- When d = 2, the above condition is equivalent to

/0] dr f(r)r In G) < 00.
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- When d > 3, the above condition is equivalent to

/]drf(r)r<oo.
Jo

Note that the condition for d = 2 was previously obtained by R.C. Dalang and N. Frangos in [14].

Moreover, Theorem 13 in [15] states that when d < 3, under the same assumption on y and
for globally Lipschitz functions g and h, there exists a real-valued process which is the solution

of the following non-linear equation:

Lu(t,z) = g(u(t,z)) + h(u(t, z)) F(t, ).

The study of the regularity of this real-valued solution has been performed by M. Sanz-Solé and

M. Sarra in [54] for the semi-linear equation, that is, when h = 1, and the result is the following.

If 6 €]0,1] and
/ pldg)
Jra (L+[E2)F ’

Theorems 4.1 and 4.2 in [54] then state that the solution of the equation is a.s. locally Holder-
continuous with exponent v < f in z, and 7y < /2 in ¢ in the case of the heat equation or
v < BA % in ¢ in the case of the wave equation. For other results on the regularity of the

solution of this kind of equations, see also [35, 36, 55].

Finally, let us also mention that another approach to these non-linear equations can be found
in [51, 52, 53], where it is shown that the solution belongs to some weighted Sobolev space on
R

1.2 Equations driven by boundary noises

In this section, we summarize briefly the main results obtained in the present dissertation, fo-
cusing on the results concerning hyperbolic equations driven by boundary noises, which is our
main interest. We also describe briefly what are the main ideas of the proofs of these results,

reviewing the chapters of the dissertation at the same time.

Noise on a sphere (Chapters 2 and 3). Let d > 2 and consider the equation

La,b“(tam) = F(faT) 683(0,1)(7;)7 (ta T) € Ry x B(Oa 1)3

where B(0,1) is the unit ball in R? and dB(0,1) is the unit sphere in R, a,b € R and Lgy is

the following linear partial differential operator

8? B
Lop=— 42 2 4p— A
wb = op TG T ’
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with homogeneous Neumann boundary conditions on dB(0,1) (note that when a = b =0, L,
is simply the wave operator). The noise F' considered here is a Gaussian centered noise with
covariance
E(F (t,5) F(s,9)) = 0o(t — ) S Pz -y), 5y € B0, 1), (1.1)
leEN
where the a; are non-negative numbers and the P, are the generalized Legendre polynomials.

That is, F' is a boundary noise, white in time and rotationally invariant on the sphere.

The result is then the following (see Theorem 3.3.3): a sufficient condition for the existence
of an L2(B(0,1))-valued process {u(t), t € R, } which is a solution (in a weak sense) of the

above equation is

Z(Il ln(l-i-l) < 00

o 141

Zlﬁﬁoo'

leN

and a necessary condition is

In order to establish this result, we consider in Chapter 2 the hyperbolic equation in a bounded
domain driven by general noise. We first establish a weak formulation of the equation and prove
by standard techniques using the spectral decomposition of the Laplacian in a bounded domain,
that under a specific condition on the covariance of the noise, there exists a unique weak solution
which is a process u = {u(t), t € R, } with values in L?(D).

In Chapter 3, we consider more specifically the case where the domain is the unit ball B(0, 1)
in R and the noise is concentrated on the sphere dB(0, 1), with covariance of the form given
in (1.1), which can be shown to be a fairly general form. We then particularize the specific
condition obtained in Chapter 2 to the present case, which brings us to the above mentioned
result. The proof relies mainly on estimates on the eigenvalues and eigenvectors of the Laplacian

in the unit ball, which are expressed in terms of spherical harmonics and Bessel functions.

Noise on a k-plane (Chapters 4, 5 and 6). Let d > k > 1 and for 2 € R?, write z = (21, 13),

where 27 € RF and x5 € R?%. Consider the equation

Lopu(t,z) = F(t,z1) do(z2), (t,z) € Ry x R?, (1.2)

where a,b € R and L, is the following linear partial differential operator on RY:

o2 B,
Lop = — +2a — +b— A.
ab =55 T2 5+

The noise F' considered here is a Gaussian centered noise with covariance

B(F(t,21) F(s,491)) = do(t — ) D21 — ),
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where I' is a non-negative definite measure on R¥. That is, the noise F' is white in time, con-

centrated on the k-plane x93 = 0, and spatially homogeneous on this k-plane.

Let u be the spectral measure of the noise (defined as the inverse Fourier transform of T' in
the coordinate 1), < 1 — d;Qk and HP(R?*) be the fractional Sobolev space of order § on
R?* We then have the following result (see Theorem 6.4.3): the solution of the above equation
is an HP(R?~F)-valued process {u(t,z1), (t,21) € Ry x R} if and only if

p(dér) d—k
LS <o, hen 8 < ———, 1.3
fofrap <o wens<o 0
dé) In (14 |&]? d—k
JrE L+ &1 2
d d—k d—k
/ 2 gl)dfk < 00, whenfe€]— ,1— [.
RF (1 + ‘51‘2)1+T*ﬂ 2 2

One can notice that § is possibly non-negative only when k = d — 1, that is, when the noise is

concentrated on a hyperplane.

In order to obtain this result, after some preliminaries in Chapter 4, we consider in Chap-
ter 5 the hyperbolic equation in R? driven by general noise and show that under a fairly mild
assumption on the covariance of the noise, there always exists a unique weak solution which is
a process u = {u(t), t € Ry } with values in some distribution space. For this proof, we use the

Walsh theory [62] of stochastic integrals with respect to martingale measures on RY.

In Chapter 6, we consider the case where the noise is concentrated on a k-plane, and first
show that the Fourier transform of the weak solution in zo (that is, in the directions perpendic-
ular to the k-plane) is a real-valued process (rather than a distribution-valued one) if and only
if a specific condition on the spectral measure of the noise is satisfied, namely condition (1.3)
(see Proposition 6.3.6). The scheme that we follow for this proof is similar to that used by R.
Dalang for the equation driven by spatially homogeneous noise on R? (see [15]). We first extend
the Walsh stochastic integral to distribution-valued integrands and then show that under the
above mentioned condition, it is possible to define a real-valued process which is the stochastic
integral of a distribution-valued integrand (namely the Fourier transform in x5 of the Green
kernel of the equation) and which is the Fourier transform of the weak solution in z5. We then
show that if it is possible to define such a process, then the above condition is satisfied, proving

therefore that this condition is optimal.

In order then to establish the above result, we use the classical fact that a distribution be-
longs to a fractional Sobolev space H? if and only if its Fourier transform belongs to a weighted

L?-space (the weight depending on ). We then study the integrability of the square of the
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Fourier transform of the solution in x5, which we found to be a real-valued process in the pre-
ceding analysis. Some technical estimates are needed here, which lead to the above optimal

conditions.

Noise on a hyperplane (Chapters 7 and 8). Consider the same equation as above in the
case where £ = d — 1. Our first two results are the following: Theorem 7.2.5 states that the
solution of equation (1.2) is a real-valued process {u(t,z1,z3), (£, 71,22) € Ry x R x R*}

defined outside the hyperplane zo = 0 if and only if
p(dér)

—F < .
Jra-1 /1 + |&1|2

Theorem 7.3.3 then states that the solution of the above equation is a real-valued process
{u(t,z), (t,x) € Ry x R?} defined on the whole space (including the hyperplane zo = 0) if and

only if the following stronger condition on p is satisfied:

p(dr) n (VT+IET)
/Rf“ VitlaP

The fact that this condition is different from the previous one shows that it is quite different to

< 00. (1.4)

require that a process solution be defined everywhere rather that just almost everywhere, such
as for zo # 0.

In Chapter 7, we establish the first two mentioned results by techniques similar to those of
Chapter 6. We also establish some regularity properties of the solution, using techniques similar
to those used by M. Sanz-Solé and M. Sarra in [54] for spatially homogeneous noises. Namely,
we show (see Theorem 7.4.3) that the solution is a.s. locally Holder-continuous with exponent

v < B e]o, %[ outside the hyperplane zo = 0 if

[ R
it (L4 [17)3 7

Furthermore, when d < 3 and a? > b, we also consider the following non-linear equation
Lu(t,z) = g(u(t, z1,0)) 6o (z2) + h(u(t,z1,0)) F(t,z1) do(z2).
Theorem 8.1.1 states that there exists a real-valued process u which is solution of this equation

if g and h are globally Lipschitz functions and condition (1.4) is satisfied.

In Chapter 8, we follow the approach of R. Dalang developed in [15] for non-linear equations
driven by spatially homogeneous noises. We first study a mild formulation of the non-linear
equation described above, restricted to the hyperplane xo = 0, and show that this equation ad-
mits a unique solution by the standard Picard’s iteration scheme used for spatially homogeneous

noises. We then extend the solution to the whole space.
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Let us finally mention the two following facts. At the end of Chapter 7, we establish that
when k = d — 2, there does not exist a real-valued process defined outside the k-plane zo = 0
which is the solution of the linear hyperbolic equation driven by noise on the k-plane. On the
other hand, we study in Chapter 9 the case of the heat equation in R?, which is the simplest
example of a parabolic equation, driven by noise on a k-plane. The answers obtained for this
equation are rather different than for the hyperbolic one. The two main results (see Theorems
9.2.5 and 9.2.7) state that under a fairly mild assumption on the covariance, the solution is
always a real-valued process defined outside the k-plane zo = 0, but that on the other hand, it
can never be defined on the k-plane itself. We then compare these results with those obtained
by R. Sowers in [61].



Chapter 2

Linear equation in a bounded
domain

Let D be a bounded domain in R? whose boundary 9D is a C™ manifold and such that D is
locally on one side of D. Let also a,b € R. We are interested in solving the following stochastic

linear hyperbolic equation:

( 0%u ou D
W(t’ z) + 2a E(f,'r) +bu(t,z) — Au(t,z) = FV(t,x), (t,z) € Ry x D,
ou
X 5 (ha) =0, (t,z) € Ry x dD, (2.1)
v
ou
u(0,2) =uola), = (0.2) =vo(e).  x €D,

where % is the normal derivative of u at the boundary, ug, vy are two given functions on D, and

FP = {FP(t,z), (t,z) € Ry x D} is a generalized centered Gaussian process whose covariance

is formally given by

E(FP (t,2) FP(s,y)) = 6ot — ) Up(a,y),

where dy is the usual Dirac measure on R and I'p is a non-negative definite distribution on

D x D, in a sense that will be precised below.

2.1 Spectral theorem

Let us consider the following spaces:

— 0
-8(D) = {90 € C*°(D) such that 8_()0‘81) = 0}, the space of test functions.
v

- L?(D), the usual space of measurable and square integrable functions on D, equipped with the

scalar product

(u,v)g = / dz u(z) v(z),
D

9
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and the corresponding norm || - [|o.

- H'(D), the Sobolev space of functions in L?(D) whose first partial derivatives belong also to
L?(D), equipped with the scalar product
<ua U>] = <U7U>U + <vua V’U)(),

and the corresponding norm || - [|; (note that S(D) ¢ H'(D)).

- H Y(D), the dual of H'(D), equipped with the norm

lallloi=  sup L2
WEHL(D),p#0 el

Let us also denote by (-,-)_1 1 the duality product between H~'(D) and H'(D), simply defined
by
(u, 0) 1,1 = u(p).

We will use the following theorem from classical analysis (see [59, pp. 111-112]), which states
the existence of a Hilbertian basis of L?(D) composed by the eigenfunctions of the Laplacian
operator on D with Neumann boundary conditions. Before stating it, let us write a,, ~ b,, when
there exists C' € ]0, oo[ such that

. an
lim — = C.

Theorem 2.1.1. There exist two sequences {e,,n € N} C S(D) and {\,,n € N} C Ry such
that
Ae, + Apen = 0, Vn € N,

{en,n € N} is a Hilbertian basis of L?(D) and {\,,n € N} is an increasing sequence of non-
negative numbers such that

2/d

Ap ~n as mn — oo. (2.2)

Note that \g = 0 and eg(z) = ——, since we consider Neumann boundary conditions.

RV

Estimate (2.2) is known as Weyl’s law. In the following, we will only use a consequence of

this estimate, namely that the eigenvalues of the Laplacian tend to infinity as n — oo.

A direct consequence of the above theorem is that

14+ A,

is a Hilbertian basis of H!(D). Moreover, we have the following equalities:

lall§ =D u,en)ol?,

neN

lallf =D (14 An) [(us endol?,

neN
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and the norm ||| - |||y on H !(D) is equivalent to
2 (u, en) 11|
Jul?, = 3 Aokt
neN

2.2 Gaussian noise

Since FP(t,z) is not well defined for fixed (t,2) € R, x D, we will rather consider in the
following the process FP? = {FP(p), t € Ry, ¢ € S(D)} which is related to F'? by the informal

relationship
¢
= / ds/ dz FP(s,z) ¢(z), teRy, peS(D). (2.3)
Jo Jb

In order to define F'” rigorously, we assume that the covariance I'p is a bilinear, symmetric and

non-negative definite form on S(D), that is,

m

Z Ci Cj FD(‘Pza‘Py) > 07 Vm > 13 Cly---,Cm € Ra P15 Pm € S(D)

ij=1
By the Kolmogorov extension theorem, (see [42, prop. 3.4]), there exist a probability space
(92,G,P) and a centered Gaussian process FP = {FP(p), t € Ry, ¢ € S(D)} defined on this

space, whose covariance is given by

E(ES () F(4)) = (t A s) Tnlp,9).

Moreover, there exists a modification F” = {FP(y), t € R, } of FP such that for all ¢ € S(D),
the process {F}”(¢), t € Ry} is a P—a.s. continuous Brownian motion with covariance parameter

(e, ). In the following, we will consider implicitely the modification FP.

2.3 Weak formulation of the equation

Now that we have a precise definition of the Gaussian noise under consideration, we also need
to give a rigorous meaning to equation (2.1). Setting formally v(t,z) = 2% 5i (t, ), we obtain the

following two formal equations, after integration in ¢ of equation (2.1):

u(t,z) = ug(x) + /Ulds v(s, ),

v(t,x) = vo(z) + /0 ds (—2a v(s,z) —bu(s,z) + Au(s,z) + FP(s,z)).

We now multiply both sides of these two equations by a test function ¢ € S(D) and integrate
them in z on the domain D, with two more integrations by parts in z of the term with the
Laplacian, taking into account the fact that g_f‘an
ou ‘BD = 0. Assuming that (ug,uv0) € L?(D)® H '(D), considering that (u,v) takes its values

in L?(D) @ H (D) and using the informal relationship (2.3) gives then the following rigorous

= 0 and the Neumann boundary condition
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formulation: a weak solution of equation (2.1) is a process (u,v) = {(u(t),v(t)), t € Ry} with
values in L?(D) @ H'(D) such that for all ¢ € S(D), the map t — ((u(t), @)o, (v(t),p)_1.1) is

P — a.s. continuous on R, and satisfies, for all t € R, ,

(u(t), )0 = (uo, pho + / ds (0(5), 9) 1.1,

t

ds (—2a (v(s), )11 — b (u(s), )0 + (u(s), Ap)o) + F ().
(2.4)

Moreover, we say that the weak solution of equation (2.1) is unique if for any two solutions

(uM,vM) and (u,v?),

(0(8), 9) 11 = (v0, )11 + /

uM (@) =u?(t) and oW (@) = v (1),
forallte Ry, P—a.s.

Remark 2.3.1. In the following, we will often be loosely speaking of u, instead of (u,v), for

the solution of equation (2.4).

Remark 2.3.2. A solution u of (2.4) is termed a “weak” solution of equation (2.1), because it
takes its values in L?(D), and therefore neither Au nor % sp are defined. A stronger way of
defining a solution (u,v) of equation (2.1) is to impose that it takes its values in H!(D) & L%(D).
Nevertheless, we will see in the next chapter that there never exists such a solution when the
noise is a boundary noise (see also Remark 2.5.6 in the present chapter). Furthermore, we will
see in Section 3.2 that for this kind of noise, equation (2.4) can be reinterpreted as the weak

formulation of an equation which is different from the original equation (2.1).

2.4 Green kernel decomposed in eigenmodes
Let n € N and G,, : R — R be the function solution of

GI(t) +2a G (1) + (b+ Ap) Gu(t) =0,  GL(0)=0, G,

n

(0) = 1. (2.5)

Thus, G,, is given by

o S A”er_ag), if A, >a?—b,
VAn +b—a?
Gn(t) =< et if a>-b>0 and M\, =a’ b, (2.6)
¢ Sinh (tvVaZ—b—\,)
Va?—b=x,

Note that the first of these three expressions contains actually the other two, since we have
sin(u)
u

T > 0, there exists C(T') > 0 such that

if a>—b>0 and M\, <a’®—b.

lim,, o = 1 and sin(iu) = isinh(u). The following estimates are easy to obtain: for all

IGa(t) < C(T),  Vte[0,T], neN, (2.7)
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and
|Gl (1) < C(T), vt €10,T], n € N. (2.8)

Moreover, we have the following lemma.

Lemma 2.4.1. For all t > 0, there exist C_(t), C+(t) > 0 and ng(t) € N such that

@ _ [ ) Cil)
< <
1+ A, /0 ds Gin(s)" < T+ N,

for all n. > ny(t).

Proof. Let ng(t) € N be such that A, ) > 2 (a®> —=b)+(1V tlz) and n > ng(t). Then

t t in? (sv/ A, + b — a?
/0 ds Gp(s)* = /0 ds ¢ 205 28 (s ¢ ) (2.9)

An +b—a?

207t

Let us compute the upper bound first. Using the fact that e 2% < ¢ , where a~ denotes the

negative part of a, we obtain

t ) t@Qait
ds G < ——
,/0 8 Gn(s) T A+ b—a?
Since A, > 2 (a® — b) + 1, we also have
1-A 1+
An+b—a®>> X\, + 2”2 J;” (2.10)
so we obtain
t ) te207t
ds Gp(s)* < ——.
/0 n(8)” < 2 (14 X)

The lower bound is obtained as follows. Denote by a™ the positive part of a. Formula (2.9) then

implies

“ A F+b—a??2

t Sty sin (2073 ¥5 a2
/dan(5)2> e t 1_qm( n+ a) .
0 2t/ A + b — a?

Since tv/ A, + b —a? > 1, we have
<1 B sin (Zt\/kn +b-— a2)) > %’

2t/ A, +b—a?
and since
14 A if b-a®<1
N ‘2 < s -
An+b—a” < {(50,2) (1+A,), if b—a?>1,
< (1V(b—a?) (14, (211)
we obtain

t ) t 20Tt
ds G > - i
/U $Guls) 2 Ty =) T+ )
This completes the proof. [l
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Let us also define, for n € N and ¢t € R, H,(t) = GJ,(t) + 2a G, (t). We easily see that H,

satisfies
H, (t) 4+ 2a Hy(t) + (b+ A\,) Hp(t) =0, H,(0) =1, H/(0) = 0. (2.12)

The equation follows directly from the definition of H,, and equation (2.5). In order to check
the initial conditions, let us compute
sin (VA 7 h )

H,(t) =e ™ cos (t An +b— a2> +ae” (2.13)

therefore H, (0) =1, and

in (6vV A\, +b—a?
H (t)= e " /X, +b—a? Sin(t )\n—l-b—a?)fa,?e*“t sm(}\ —T—b QG),
Vin+b—a

therefore H) (0) = 0. Moreover, the following estimates are easy to obtain: for all 7' > 0, there
exists C(T") > 0 such that

|Hy,(t)] < C(T), Vt € [0,T], n € N, (2.14)
and

|H,,(t)] < C(T) V14X n,  VE€[0,T], n €N (2.15)

2.5 Existence and uniqueness of the solution

What we will show is that there exists a unique weak solution to equation (2.1) under the follow-
ing assumption. Let us denote v, ,, = I'p(ep, €y,) for n,m € N, where the e, are the elements

of the Hilbertian basis of Theorem 2.1.1, and ~,, = 7, , for n € N.

Assumption Hj.

(i) T'p is continuous with respect to the H'-norm, that is, there exists C' > 0 such that

In(e.e) <Clellf, Vo eSD).

(ii) The following condition is satisfied:

Tn < 0o

nEN1+>\n

Remark 2.5.1. Part (i) of the above assumption implies that there exists Qp € L(H' (D)), the

space of linear continuous operators on H'(D), such that

FD(()Oa([zb) = <()03 QD¢>1, V%?ﬁ € S(D)

Assuming that this is true, part (ii) of assumption Hy implies moreover that Qp € L' (H!(D)),
the space of trace-class linear operators on H' (D), that is,

> {fa: @pfadr < o0,

neN

where {f,, n € N} is any Hilbertian basis of H'(D).
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Furthermore, note that by estimate (2.2), we could make part (ii) of Assumption Hy more

Yn
— < XX
Z 2/d ’

neNl—I—n/

precise, namely

but this will not be needed in the study of the following chapter, since we will consider in there

a different way of ordering the eigenvalues A,,.

We will also need the following stochastic Fubini theorem.

Theorem 2.5.2. If W = {W,, s € Ry} is a standard Brownian motion, g : Ry x Ry — C is
continuous and t € Ry, then P — a.s.,

t s t t
/ ds / dW, g(r,s) = / dWr/ ds g(r,s).
0 0 0 r

Proof. We use here the fact that the two square-integrable random variables

t s t t
X —/ ds / dW, g(r,s) and Xo —/ dWr/ ds g(r,s)
0 0 0 r

are equal P — a.s. if and only if E(X?) = E(X; X3) = E(X3) (that is, the variances and the

covariance of the two terms are all equal). Let us then compute

sxt) = [ [ae( [ aw g [ aw,o00.0)

= /Ut ds /Ot dr /US/\pdT g(r,s) g(r,p),
((fon o)) Lo (o)
/Utdr/;ds/rtdp 9(r.s) g(r.p).

E(X, X,) = /tds]E</ AW, g(r, s) /dW/dpgrp))
_ /ds/dr/dpqrs (r,p).

Since these three integrals are integrals of the same function on the same domain:

2

=
o8
I

and finally,

{(s,r,p) € [0,#)3

<s and rgp},

we obtain the desired result. O

Let us now state the two main theorems of this section.



16 Chapter 2. Linear equation in a bounded domain

Theorem 2.5.3. Let (ug,vy) € L?(D) @ H (D). Under Assumption Hy, the process (u,v) =
{(u(t),v(t)), t € Ry} with values in L?(D) @ H '(D) defined by

) = S0 ) ae and (0= R0 + 00 (216)
where : "
W) = Ha(t) (o, en)o + Galt) (o0, en) 11, plt uﬁfdpf Gult— 5),
o800 = H (0 (aoeado + Golt) fnsen) 11, anl0) = [ dEP(e) Gt = ),

admits a modification (,v) which is the unique weak solution of equation (2.1). Moreover,

E(||a(t)|2) < oo and E(||5(t)]|? ) < oo, for all t € R,

Theorem 2.5.4. Let (ug,vy) € L*(D) @ H (D). If there exists a weak solution (u,v) to
equation (2.1) such that E(||u(tg)||3) < oo, for some ty > 0, then part (ii) of Assumption Hy is
satisfied.

Remark 2.5.5. Note that these two results belong to the general theory developed by G. Da
Prato and J. Zabczyk in [18], but since the case that we consider here is a simple one, we rewrite

the proofs in this simple case for clarity and completeness.

Proof of Theorem 2.5.3. Let us first show existence. The deterministic process (u’, ") defined
by
u'(t) = Z ud(t) e, and 0O(t) = Z v (t) en,

neN neN
takes its values in L2(D) @ H (D) by estimates (2.7), (2.8), (2.14) and (2.15). By a direct

calculation using equations (2.5) and (2.12), we see that (u),v}) satisfies, for a fixed n € N,

ul (t) = (ug, en tsvos,
1) u,m+ﬂdnu

0 = (oosen) 10— [ ds 2aud(s) + (-4 An) ul(o)).
J0

Multiplying this equation by (e, ¢)¢ and summing over n € N gives then the following equation

for (u®,v"), after some permutations of sums and integrals:

t
«mepwmwﬁ/dMWwwlm
0

t
(W0(t), ) —1,1 = (vo, ) 1,1 +/ ds (—2a (v°(s), ) 1,1 — b (u’(s), ©)o + (u(s), Ap)o).
0
(2.17)
for all t € Ry and ¢ € S(D).
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On the other hand, integrating equation (2.5) in ¢, then with respect to the Brownian motion

FP(e,) gives

'/Ut dFP (eq) Gu(t - s) = '/Ut dFP (e,) ./: dr Gl(r — s),

/ AP (en) G (£ — 8) = FP(en) — / dFP (e) / dr (20 G (r — 5) + (b+ An) Ga(r — 5)).

JO J0 Js

Applying the stochastic Fubini theorem 2.5.2 to the integral terms, we obtain that the process
(P, qn) defined in the theorem satisfies

pult) = /O/ds an(s),
' (2.18)

an(t) = FP(e,) — /0 ds (2a gn(8) + (b4 An) pn(s)).

Let us now define the process (p, q) by
= an(t) en and q(t) = Z Gn(t) €n.
neN neN
We first check that E(|[p(t)]|3) < oc, for all t € R, :
Tn
E(lp®I3) = Y Br. () < Y vn/dsa (t=sP+Ct) 3 T <o,
neN n<no(t n>ng(t)

by the upper bound in Lemma 2.4.1 and part (ii) of Assumption Hy. Moreover, let us check
that E(||q(t)]|? ;) < oo, for all t € R;:

2
B (lg)12) = Y A <o Yo T <o
neN " neN "

by estimate (2.8) and part (ii) of Assumption Hy. We then have, using the fact that the Laplacian

is symmetric on S(D),

(p(t), Ap)y = D pu(t) (en; Ap)o = Y pult) (Aen, o),
neN neN
= - Z An pn ena > 05
neN

by Theorem 2.1.1. Multiplying equation (2.18) by (e,, ¢)o and summing over n € N gives then

the following equation for (p, q), after some permutations of sums and integrals:

(1), oo = / ds (q(s), ¢) 1.1,
(2.19)

(q(t),0) 11 = FP(p) +/0 ds (—2a (q(s), p)-1,1 — b (p(s), p)o + (p(s); Ap)o),
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P —a.s, for all t € Ry and ¢ € S(D), where we have used the fact that

> FEP(en) (en. )0 =F () P as, VEER,, p € S(D),
neN

by part (i) of Assumption Hy. Combining finally equations (2.17) and (2.19), and using the Kol-
mogorov continuity theorem (see [29, Thm 2.8]) shows that the process (u,v) = {(u(t),v(t)),t €
R, } defined by (2.16) admits a modification (@,0) such that for all ¢ € S(D), the map
t— ((a(t), p)o, (0(t), p)—1,1) is P — a.s. continuous and solves equation (2.4).

In order to prove uniqueness, let (u("),»()) and (u(?),2(?)) be two solutions of equation (2.4)
and define (7,7) = (u(Y) — 4@ (1) —y@)). For all ¢ € S(D), there exists a P-null set such that
outside this set, the following equation satisfied for all t € R, :

wmwmﬂ—é@emw@wmn—uwmm+W@Amw

Fix now n € N and define @, (t) = (u(t), ep)o and v, (t) = (0(t),en)-1,1, for £ € Ry, Replacing ¢
by e, in the preceding equation and using the symmetry of the Laplacian on S(D), we obtain

that for all n € N, (uy,,v,) satisfies, outside a P-null set and for all t € Ry,

%w—f@%@,

p(t) = — /0 ds (2a v, (8) + (b4 Ap) up(s))-

Therefore, for all n € N, we have that u,(t) = v,(t) = 0 for all ¢ € Ry, outside a P-null set.
Since N is countable and u, v are entirely determined by their components u,,, v,,, the conclusion
follows. 0

Proof of Theorem 2.5.4. Let (u,v) be a solution of equation (2.4) and let t; > 0 be such that
E(|lu(to)|2) < oo. Let us then replace ¢ by e, in equation (2.4) and denote u,(t) = (u(t), ey )o
and vy, (t) = (v(t),e,)—1,1. By calculations similar to those of the proof of the preceding theorem,

we obtain that
Un(t) = up(t) + pu(t) and  v,(t) = vn(t) + gu(t),

where

t
ud (t) = Hp(t) (ug, en)o + Gn(t) (vo,en)—1.1, pnlt / dFP (en) Gy (t — ),
0

t
1)2(15) = H] (t) (ug,en)o + Gl (t) (vo.en)—11. qn(t /0 dFD G (t—s),
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Since, for the same reasons as before, the process (u”,v°) defined by
ud(t) = Z ud(t) e, and 0O(t) = Z v (t) en,
neN neN

belongs to L?(D) @ H '(D) for all t € Ry, the assumption made on u then implies that if

p(t) = Znean(t) en, then
E(|Ip(to)[§) < oo

But a direct calculation shows that

2 Yn
Bl (to 112 Z%/ ds Gult =5 > C(1) Y 1

neN n>no(to)

by the lower bound in Lemma 2.4.1, so part (ii) of Assumption Hy must be satisfied, and this
completes the proof. O

Remark 2.5.6. Performing the same kind of analysis as above, we could see that if there exists
a solution (u,v) to equation (2.4) with values in H'(D) @ L?(D), then the following condition
(stronger than part (ii) of Assumption Hj) must be satisfied:

D < o (2.20)

neN

Nevertheless, this latter condition is never satisfied in the case of a boundary noise, as we will
see in the next chapter, so there does not exist a solution with values in H'(D) @ L?(D) in this

case.

2.6 Heat equation

If, instead of the hyperbolic equation considered above, we rather consider the following parabolic

equation:
r %(f,’r) — 3 Au(t,z) = FP(t, ), (t,z) € Ry x D,
{ Ou (2.21)
8—(t,7}) :0, (t,'I;) ER_F XaD,
v

L U(O,LE):UO(.’E), LEED,
we can then reproduce the entire analysis of the preceding sections. The only difference will
consist in the fact that the weak formulation is simpler to express (we only have one process u

taking its values in L?(D)) and that the G,, are solutions of

GL(t)+ 20 Gat) =0,  Gn(0) =1. (2.22)

_n
2
They are therefore given by

Gn(t) = exp(—%). (2.23)
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The analysis is similar to that of the hyperbolic case because these (G, also satisfy Lemma 2.4.1,
so Theorems 2.5.3 and 2.5.4 (adapted to the present situation) remain valid in the case of the

heat equation.

Nevertheless, qualitative differences appear between the behavior of the solution of the hy-
perbolic and the heat equation in the case of a boundary noise. These will be explained in the

next chapter.



Chapter 3

Noise on a sphere

Let d be a natural number greater than one, B(0, 1) the centered unit ball in R? and dB(0,1) =
S%=1 the centered unit sphere embedded in R?. In this chapter, we would like to study the
existence of a weak solution to the hyperbolic equation (2.1) (in the sense defined in (2.4)), in
the specific case where the domain D = B(0, 1) and the noise considered is concentrated on the
sphere S%-1.

3.1 Eigenvalues and eigenfunctions of the Laplacian in B(0,1)

Let us first define the following Bessel functions for [ € N and d > 2:

d r

Ji(d,r) =T (§> (5)22[1 Jas(r),  7>0, (3.1)

where I' is the Euler Gamma function defined by

I'(v) = / dtt' e, v >0, (3.2)
0

and .J, is the regular Bessel function of order v of the first kind (see Appendix B for a definition).

In the following, we will also need the expression of the derivative of J)(d,-) in r when d > 2:

Jl(d,r) =T (g) (g) B (Jl'erQQ(r) - % JHdQQ(r)) . (3.3)

Let us now describe precisely the solutions of the following eigenvalue problem:

dp
A Ap =0in B(0,1 d — =0
p+Ap=0inB(0,1) and = o500
which exist by the spectral theorem 2.1.1. By standard theory (see [41, §22]), they are of the
form p(z) = f(r) Y(0), where r = |z| and 6 is a vector of dimension d — 1 representing the

angular part of z. Y is solution of the following eigenvalue problem:
AgY (0) + A Y (6) =0,

where Ay denotes the Laplace-Beltrami operator on S '. The solutions of this problem are

well known and given by
{Ala lema le N7 1 <m < N(dul)}a

21
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where Aj = I(l4+d —2), {Y", 1 <m < N(d,l)} is the list of generalized spherical harmonics of
order I on S%! and N(d,l) is the number of these harmonics (see [41, §15]). Note that when
d=2, N(2,l) =2 and Yli(ﬁ) = exp(=£ilf); when d = 3, N(3,]) = 2l + 1 and the Y, are the

standard spherical harmonics on S2.

For a fixed [ € N, f is now solution of the following eigenvalue problem

e+ (- -0 =

f'r) +
The solutions of this problem are also well known (see [41, §22]) and given by

{Met, fror, B € N}

where A\ = u%l, with {ug;, k& € N} the ascending list of zeros, for a fixed [ € N, of the derivative
of the Bessel function Jj(d, ) defined by (3.1), and f; is the function defined, for fixed k,l € N,
by

Ji(d
sz(?“) _ 1 z( ,Mkﬂ") _
\/fo dq ¢ Ji(d, pi q)?

This gives finally the following set of eigenvalues and eigenfunctions of the Laplacian in B(0, 1):

ety ekim = fu @Y™, k1 €N, 1 <m < N(d, 1)},

the above “tensor product” being understood as e (%) = fri(r) Y™ ().

Note that these eigenfunctions are normalized in L?(B(0,1)), that is,
[ drlewn(@P =1 VKIEN 1<m <N
JB(0,1)

and let us mention the two following facts, which will be used in the next section.

Lemma 3.1.1. For all k,l € N,

2 Ay

1)? = :

Proof. Let us first compute the normalizing factor in fi;(1)2, using formula (6.52) p.101 in [7]:

/01 dg q Ji(aq)? = % (Jl'(oz)2 + (1 _ ﬁ) Jl(a)2> ’ 0> 0.

When d = 2, we therefore have

! 2 1 ? 2
dq q Ji(pr q)” = ) 1 - v A
0]

since Jj(pg;) = 0. From this, we see immediately that

J, 2 2\
sz(1)2 - - dl(lltkz) ; _ S kzp_
Jo da ¢t Ty (ki q) kL=
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When d > 2, we have, by definition of J;(d,-) and the above formula,

1 - d\ 2 2-d 1
/ dg """ Ji(d pria)* =T ( (ﬁ) / dq q J,, a2 (p g)?
Jo 2 2 Jo 2

1 (d\? [\ 2—d (1 + 52)2
- §F<§> (%) <J1’+f122(ﬂkl)2+<1>\7; Jl+d;22(ﬂkl)2 :

But using (3.3) and the fact that Jj(d, ug) = 0, we have

d—2
2 pgr

JL_% (Mkl) = JH»% (Mkl)a

SO

1 (Ak; —2—1(d-2)
2

1
/ dq ¢ J(d. priq)® = /\
kl

J0

) Jl(da ,u’kl)Qa

therefore,

T -2 —1(d-2)
and this completes the proof. [l

Fr(1)?

Lemma 3.1.2. For all k,l € N,

d—2 d—2
l—l—T—I-W(kf?)Sﬂklfg(l—FT)—I—w(k—l-Z).

Proof. Let us denote by {u) ,k € N} the list of zeros of the standard Bessel function J, (the
first zero being therefore indexed by k£ = 0); by Theorem 1 and Lemma 2 in [9], we have

y+7r(k—1)§u2,,§gl/+7r(k+l).

Since Ji(d, -) is proportional to J;, 42 (-) and by the interlacing property of the zeros of Bessel
2
functions and their derivatives (that is, if v are the zeros of Jj(d, ), then vy_1; < pg < vg41,),

we have
0 0
Pe14452 S Mkt S [ SSWRRELE
so we obtain that

d-2 d—2
l+T+7r(k—2)guk,gg(l+7)+w(k+2),

which completes the proof. O
Let us end this section with the following comment. The generalized spherical harmonics
{V/", 1 e N, 1 <m < N(d,l)}

form a Hilbertian basis of L?(S%1) and are the eigenfunctions of the Laplace-Beltrami operator
Ag on S9!, with corresponding eigenvalues [(I +d — 2), as mentioned before. Let us now define
H%(Sdfl) as the Sobolev space of order & on S%~! (that is, the domain of (I—Ag)% in L2(89°1),
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see [59, p. 255]). By the spectral decomposition of Ay in the spherical harmonics, we therefore

obtain the following characterization of H? (Se=1):

N(d,l) N(d,l)
1
H2(S" ) =quv=>" > am¥™ | Y Y (40 |am/* <ooy,
IeEN m=1 IeEN m=1
and we equip this space with the norm
N(d,l)
ol =32 30 (40 el

1eN m=1

Interesting to us is the following relation between H'(B(0,1)) and H> (S9=1) (see [2, Thm 7.53]):
H3 (8% = {v=rou|ue H'(B(0,1)},

where 7 is the trace operator of H'(B(0,1)) on H%(Sd’]), defined by

Yoo =¢|ga, Ve CPB(0,1)),
and further extended by continuity to H'(B(0,1)). The operator 7 is continuous with respect
to the norm || - ||; and there also exists an application Ry : H%(Sd’l) — H'(B(0,1)) which is

continuous with respect to the norm || - |1 and such that
2

YoRov = v, Y € H%(Sdfl).

3.2 Covariance of the noise and Schonberg’s theorem

In order to obtain a general form for the covariance of a Gaussian noise concentrated on the
sphere S%~ 1, let us first consider the case of a continuous covariance. Let f: 8% ! x §4-1 5 R
be a continuous function which is assumed to be symmetric and non-negative definite on S,

that is,

m
Z Ci ¢ f(x(i),x(j)) >0, Vm>1, c,...,cm €R, 20 0 M g gd-T,
ij=1
This function f is then the covariance of a centered Gaussian process indexed by the elements
of §471. Let us moreover assume that the noise is isotropic, that is, there exists a continuous
function g : [-1,4+1] — R such that
m . .
Z Ci ¢ g(x(z)-x(])) >0, Vm>1, ¢, om €R 20 0 M) g gi-T (3.4)
ij=1
and f(z,y) = g(z - y) for all z,y € S%~!, where z - y is the Euclidean scalar product of z and y
in RY.
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For d > 2, let us also define the following generalized Legendre polynomials (see [41, §2,

Lemma 4])
1\ F(ﬂ) sa [ d\ d—3
Pdt)=—-=] —2"—(1-t)>2 (=] (1-)F> leN, te[-1,+1
o= (-3) s n-0% () a-e ren el

where T' is the Gamma function defined in (3.2). Let us mention that these are simply the

Chebychev polynomials when d = 2 and the standard Legendre polynomials when d = 3.

Schonberg’s theorem (see [56, Thm 1]) states the following.

Theorem 3.2.1. Let g : [-1,4+1] = R be a continuous function. Then g is non-negative definite
on 841 (in the sense of (3.4)) if and only if there exists a sequence {a;, | € N} of non-negative

numbers such that ), a; < oo and
o) =S Bild,t), te[1,+1],
leN

where Py(d,-) are the Legendre polynomials defined above.

This theorem, similarly to the Bochner theorem concerning non-negative definite functions

on R?, gives us a spectral characterization of continuous non-negative definite functions on the
sphere S4-1.

To extend this to more general functions f, let us mention that I's : C®(S4= 1) x C>®(8%1) —
R defined by

Pstpot) = [ dota) [ doty) pla) alo- ) wl). v € O(ST),

(where o is the uniform measure on the unit sphere S¢~') is a semi-scalar product on C>°(S4~1)

under assumption (3.4). Moreover, I'g is isotropic, that is,

Ts(Ryp,RY) =Ts(p,4), Ve, € CF(S4),

for any rotation R on the sphere S4~! (where Rp(z) = ¢(R™'z) by definition).

Considering I'g instead of g allows us then to remove the continuity assumption on g. In
view of the preceding theorem, we will therefore consider in the following that the covariance of

the noise concentrated on the sphere S is given by
Ps(e.9) =Y aDilp,9), @€ C(S),
leN

where

Tpi) = [ dota) [ doty) (o) Pud. ) b0,
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and a; > 0, but the condition ;. a; < oo is replaced by

Z e < 00
(141)ro ’

leN

for some 7y > 0. Let us check that T's(g,9) < oo for each ¢, € C*®(S%1). By the Cauchy-
Schwarz inequality, it is sufficient to check that T's(p, ) < oo for each ¢ € C*(S9!). Using
the fact that

Co(sT ) c (N H(S™,

r>0

we obtain that a function ¢ in C*®°(S9~!) can be written as

N(d,l) N(d,l)
p=> Y V" with > 1+ Y o> <oco, Vr>0. (3.5)
leEN m=1 leN m=1

Using the following additivity property (see [41, §2, Thm 2]):

Pldw-y) = gy D V@) '), (3.6)
N m=1

and the orthonormality of the spherical harmonics, we can compute

r = do(z) o(z) Y™ (z)| = tm | 3.7
(00) =y 2| [, 0@ ele) @ | = e O bl 67

m=1 m=1
Since (3.5) implies that for 79 > 0, there exists C' > 0 such that |cj,|? < ﬁ for all [, m, we
obtain that o5t

r < — VieN.

](()07<p) = (1+l)r07
This implies finally that
_ a
Ds(pip) = > Lilp o) < C IS 1Y s < o

leN leN

by the assumption made above, so T's is a well defined covariance on C*(S%~1).

Remark 3.2.2. It would be a nice generalization of Schonberg’s theorem to prove that every
isotropic semi-scalar product T' on C*(S§%"1), with some additional continuity property, is of
the form given above. In the case of a covariance on R?, this extension (of the classical Bochner

theorem) is the classical theorem of L. Schwartz (see Theorem 4.3.1).

In order to relate the particular covariance I'g on S4-1 defined above with the general
covariance I'p which was considered in Chapter 2 and defined on the entire domain D (here
equal to B(0,1)), we define I'p by

FD(‘Pan) :FS ((P‘Sd—lu'l;b‘sd—1)a (P7¢ES(D)3

where §(D) is the space of test functions defined in the preceding chapter.
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Remark 3.2.3. Even if the particular noise defined in the present section satisfies all the
requirements of the preceding chapter, it turns out, as already mentioned in Remark 2.3.2, that
in this case, equation (2.4) can be reinterpreted as the weak formulation of another equation

than equation (2.1). This is because the noise term F;” () can be formally rewritten here as
t .
BP0 = [ds [ do(e) BGsin) o), p e S(D),
Jo  Jar)

where F5 is a generalized centered Gaussian process concentrated on the sphere 9B(0,1) = S¢-!

with covariance

E(F*(t,x) F3(s,y)) = do(t — ) Dg(x,y).

Therefore, the noise term can be reinterpreted as a stochastic boundary condition and the

“classical” equation corresponding to (2.4) would then be

2
r %(f,’r) + 2a %(t, z) +bu(t,z) — Au(t,z) =0, (t,z) € Ry x D,
ou S 3.8
o tn) = FS(t.x),  (t.x) €Ry x 0D, (3.8)
[ u(0,2) = up(z), %(O,m) = wvg(z), r €D.

This interpretation of the boundary term is the one considered by R. Sowers in [61], for the heat

equation.

Remark 3.2.4. Let us mention a qualitative difference between the behavior of the solution of
the parabolic and the hyperbolic equations, which will be made more explicit in the following
chapters concerning the equation in R?. For the heat equation, and because of the regularizing
property of the Green kernel of this equation, the solution is always regular inside the ball B(0, 1)
and explodes near the boundary. On the contrary, for the hyperbolic equation, the explosion,
if any, occurs rather at the center of the ball, where the influence of the boundary noise is

maximum for one particular time, because of the finite speed of propagation of the equation.

3.3 Explicit conditions

In the following, we give two explicit conditions on the coefficients a;, one necessary and one

sufficient, for the existence of a weak solution to equation (3.8).

In the present setting, part (ii) of Assumption Hy of the preceding chapter can be rewritten

as
N(d,l)

Z 17le < 00
EJeN m=1 T Akt
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where Yiim = U'p(€gim, €kim). The first step consists therefore in rewriting the sum in the above

expression as

N(d,)

2 1?1;,9; =2 ab

kJleN m=1 IEN

where b; depends on the eigenvalues and eigenfunctions of the Laplacian computed in Section

3.1. This is done in the following lemma.

Lemma 3.3.1. For alll € N,

fri(1
b _|Sd l‘zl-l-)\kl

Proof. Let us compute

Yeim = Up(€kims ekim) = Us(fr(1) V7™, fra(1) V™)
= flcl(l)2 Z an Fn(Ylma Ylm)
neN

By definition of '), and the additivity property (3.6), we have

g1 N

N(d,n)

Ln (Y™, Y™) =

D 2 ‘Sd ! |
do Yym }/n x = n
/gdl (LE) l (LE) ( ) N(d, 7?) 0 0

since the spherical harmonics Y;™ are orthonormalized. This implies that

a0 a5
= a
Yelm = Jkl l N(d,l)’
therefore,
N(d,l) 9
Yeim a1 fra(1)

5 ~s T (TR

kleN m=1 L+ A lEN pen 1 Akt
which ends the proof. O

The second step consists in estimating the behavior of b; in [, with the help of Lemmas 3.1.1
and 3.1.2.

Lemma 3.3.2. There exist Cy,Co > 0 such that for sufficiently large I,

ay a; In(1+1)
C <p <Oy ——=.
TN e

Proof. Using Lemma 3.1.1, we obtain that

kal _ Z Akl 1
1+ Ay Nl-l—)\kl A — 12 —1(d—2)

Since \
1
_ kL el=

14+ Ay
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for A\g; > 1, we can remove this term from the preceding sum and study the behavior in [ of

1
ZAM—P—Z(d—Q)‘

keN

Let us first prove the lower bound. Using the right-hand side of Lemma 3.1.2, we then have

> : > > 1
— 12— 1(d— = d—2
i Ak I(d—2) i (B + 52 + ok +2))2
1 1 S 1 /Ood 1
== —a -7 1 9 - 4 Z —q ,mi—
w5+ k)2 T Ty (L + %2 +12)?
1 1 1
= — >C
71.2%_’_(122_’_27 Y15

In order to prove the upper bound, we use the left-hand side of Lemma 3.1.2:

1

D e i B T RS
keN)\klflizfl(de) T opd—12—1(d-2) k24(l+%+w(k—2))2—l2—l(de)

4 1
pa =12 —1(d-2) * kz>2 w2k? + 2wkl

+ ax - .9
/,Lol l l(d 2) 1 T (7(.’1}“‘2:)

Let us consider the first term of this expression; denoting by {4}, k& € N} the list of zeros of
J!, and using (3.3), we obtain for d > 2:

ol

l:oo MUVH'd‘%Q ’

and 10, = g, by definition when d = 2. By [1, 9.5.16]), there exists now ¢ = 0.80861 > 0 such
that

1
1 =
~ UV+cV3
Koy v 3
therefore,

1
piy — 12— 1(d = 2) 100 (1 4 92 4 ¢ (1 4 552)

| Q

ol

)2 — 12— I(d —2) Ie0 |

W=

Computing now the second term in (3.9) by simple element decomposition gives

oo
o 1 1 x In(1 + 2 In(1+1
/ dp —— = — | 2 :n( W)SCQ n(—l—)’
1 mx (rx +21) 2wl z+ 2 ) 27l 1+1
which dominates [% for sufficiently large I, so the conclusion follows. O
[3

We can now state the following theorem, which is a reformulation of Theorems 2.5.3 and

2.5.4 in the present setting.
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Theorem 3.3.3. Let (ug,v) € L2(B(0,1)) @ H Y(B(0,1)). If

Z ay ln(l + l) < 0, (310)

e L

then there exists a unique weak solution u of equation (3.8) such that E(||u(t)||2) < oo, for
all t € Ry. On the other hand, if there exists a weak solution u to equation (3.8) such that
E([|lu(to)|2) < oo, for some ty > 0, then
a
< (3.11)

ew LT

Proof. Let us first prove the sufficiency of (3.10). By Theorem 2.5.3, we simply have to check
that this condition implies parts (i) and (ii) of Assumption H of the preceding chapter. By
the comment made at the end of Section 3.1, we see that I'p is continuous with respect to the
H'-norm on B(0,1) if and only if I'g is continuous with respect to the H7-norm on S '. Let

us check the latter. (3.10) certainly implies that there exists C' > 0 such that
a < C (141), Vi eN

Let then ¢ € C*°(S%7"); as already mentioned in this chapter, ¢ can be written as

N(d,l) N(d,l)
p=>"3 am V", where o]l = (141 > |eml’ < oc.
IEN m=1 > len 1
By (3.7), we have
51 N(d,l) ,
F —
s, ) > a N@D) > leiml
leEN m=1
N(d,])
< CTY U+ D el
leN m=1
= 18" el

where we have used the above estimate on a; and the fact that N(d,l) > 1 for all [ € N. So
part (i) of assumption Hj is satisfied. Part (ii) of this assumption is then a direct consequence

of condition (3.10), Lemmas 3.3.1 and the upper bound in Lemma 3.3.2.

On the other hand, in order to show the necessity of condition (3.11), we use Theorem 2.5.4,
which states the necessity of part (ii) of Assumption Hy. By Lemma 3.3.1 and the lower bound in

Lemma 3.3.2, we obtain directly the necessity of condition (3.11), so the theorem is proven. O

Remark 3.3.4. The difference between conditions (3.10) and (3.11) comes from the estimate on
the zeros of Bessel functions of Lemma 3.1.2. Since this estimate seems to be the best available

among uniform estimates in k and [, it seems difficult to fill in the gap and decide which of the two
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conditions (3.10) and (3.11) is optimal. Still, one can say something more about condition (3.11).
By the proof of the preceding theorem, we see that this condition implies that I'g is continuous
with respect to the H%—norm, and this in turn implies that there exists Qg € E(H% (89=1)), the
space of linear continuous operators on H> (89=1), such that

FS‘(‘P,?ﬁ) = <()07 st>la V(paw € COO(Sdil)'

2

But condition (3.11) then simply says that Qg € L' (H%(Sd’])), the space of trace-class linear
operators on H%(Sdfl), that is,

< o0,

Z<gna Q59n>

neN

1
2
where {g,, n € N} is any Hilbertian basis of H%(Sd’]).

Condition (3.11) can therefore be expressed in a general way which could be adapted to a
noise concentrated on a boundary with a different shape. It then seems to be more natural than
(3.10) (and so the lower bound in Lemma 3.1.2 is perhaps not optimal). In Appendix C, we will
see that in the case of a noise concentrated on one side of a hypercube, we obtain a necessary

and sufficient condition which can be expressed in the same general way as condition (3.11).

Remark 3.3.5. Following Remark 2.5.6 of the preceding chapter, we see that if the solution u
of equation (2.4) would take its values in H'(B(0,1)), then condition (2.20) would be satisfied,

which can be rewritten in the present case as

N(d,l)
Z Z Vkim < 0.

kN m=1

By the preceding calculations, we have

N(d.])
Yo W =18 (Z fkl(l)Q) ;

kleN m=1 1EN kEN

and since the term in parentheses is never finite, this allows us to conclude that this condition is
never satisfied, so there also never exists a solution with values in H'(B(0, 1)), when the noise

under consideration is a boundary noise.

Remark 3.3.6. Now that we have obtained an explicit condition which guarantees the existence
of a solution u with values in L?(B(0,1)), we could consider non-linear equations of the same
type, following the general theory of G. Da Prato and J. Zabczyk. For the heat equation, this
has been already studied in [34]. However, note that it is impossible to consider non-linear
terms of the form g(u(t,z)) FS(t, ), since the noise F' is concentrated on the boundary but

the solution u is not well defined on that boundary.
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3.4 Reformulation of the necessary condition in the case d = 2

We consider here the case d = 2, that is, the linear hyperbolic equation with two space dimensions
driven by noise concentrated on the unit circle S'. Since S' is a group, this case is special and
we can therefore use Fourier analysis techniques to reformulate condition (3.11). In order to do
this, one needs a further assumption on the covariance I'g. Let us first recall that this covariance

is given by

Pstet) = S [ doto) [ doly) (o) Pila ) v10)

IeEN

= S a | do. | do, e0,)cos(i(0s —0,)) ¥(0,)
]EN ] /7‘(’ -/71' QO

= S a [ df cos(lh) [ db, w(8,) $(6, — 0),
]EN ] /7‘(’ /7'(' QO

by the change of variable 6 = 6, — 6,. This can be rewritten as
sle ) =Y a / do cos(16) (¢ * ) (H),
leN -
where

w*wwy—/”wwwvww—w»

is the convolution product on S* and (6) = 4)(—6). The map
<pr—>Za]/ do cos(10) p(0), e C>®(S),
leN -

defines a distribution on S' (see [57, Chap. VII, §I]). Let us now assume that this distribution
is non-negative. By the fundamental theorem of Radon-Riesz (see for example [32, Chap. II,

Thm 2.2]), there exists therefore a non-negative Borel measure I' on S' such that
™
/ Zal/ df cos(10) p(6), Vo € C®(S").
o leN T

We now have the following reformulation of condition (3.11) as a condition on the measure I'.

Proposition 3.4.1. If condition (3.11) is satisfied, then

/7; I'(df) In (%) < . (3.12)

This condition is actually a condition on the integrability of I' near zero, as are the conditions
obtained for Gaussian noises on R? in the following chapters. Note that since we have proven
that (3.11) is a necessary condition, but not that it is a sufficient one, there would be little

interest in considering the converse implication.
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Moreover, note that if I'(df) = f(|6|) df, with f a continuous function on ]0, 7|, condition

'/07r d0 £(6) In <%> < .

h(f) = In <|%> =9y Z ¢ cos(19), 0 € [, w]\{0}.

2
leN*

(3.12) simply reads
Proof. Set

Note that since h belongs to L?(—m, ), the above Fourier series converges also in L%(—m, ).

Moreover, computing the coefficient ¢; gives, for [ € N*,

2 [T 1
oq = —/ df In (—) cos (1)
™ Jo 9

_ 2 In (1) sin(10) |~ N 2 / " sin(10)
s

0 I o Jo o
& :
_ E/ du sm(u)’
7Tl 0 A

Uu

)

by integration by parts and change of variable v = 1. Since

we obtain that ¢ ~ } as [ — o0o. We therefore have

Zliil < oc¢ if and only if Za; ¢ < 0.
leN IEN

But this last condition implies, by the dominated convergence theorem, that

lim >~ M < oo :
;fon ajc e < oo (3.13)
leN
Let us now define, for ¢ > 0,
1 2
P (0) = + — e M cos(10)
™

0 € |-, 7,

by a direct calculation. It is a non-negative function on [, ] and since e % — 1, limy o ¥y = dp.

Let us now define
0 (0) = (h x1)(0), 0€l—m,m.

By Parseval’s identity,

wi(0) =co +2 Z ¢ e cos(16), 0 € [—n,
leN*



34 Chapter 3. Noise on a sphere

and belongs to C>°(S1), for all ¢t > 0, since the coefficients ¢; e~!* are rapidly decreasing in .

Moreover,

/07r Za; / df cos(10) v () = ((10 co + Z aj ¢ e”) ) (3.14)

leN leN*

Using now (3.13), (3.14) and Fatou’s lemma, we obtain that

. / S 0) Tim
oo > ltlfgl . ['(df) pi(0) > /WI‘((]()) hr{lul)nf v (0),

and since

lim ;(6) = In (%) VB € [—m m\{O},

10

this proves the result. O

3.5 Noise on a sphere of lower radius

Let us turn back to the beginning of this chapter, but assume now that the noise is concentrated
on a sphere of lower radius rq € ]0, 1], therefore interior to the domain B(0,1). The preceding
analysis can also be applied to this case and the changes are the following. The general form

for the covariance of the noise is

FS(‘ﬁafl/}) = Zal Fl(()paf(:b)a

leEN

e = [ o) / o) olo) P (d, —3”) W),

and the a; and P, are the same as before and S(rg) is the sphere of radius ry. The covariance

where

I'p is related to I's by the following;:

p(@:9) = s (¢lspoy ¥lsin) ©% € S(D).
Performing the same calculations as before, we obtain that

|54
N(d,1)’

Yerm = Lo (€kim, exim) = fri(ro)? a;

where (see Lemma 3.1.1)

Falro)? = 2 A ) (Jl(d, [k 7“0)>2

Mg — 12— 1(d — Ji(d, pir)
Therefore, the following condition is satisfied:

N(d,l)
Yklm
> <
EJeN m=1 L+ A
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if and only if

1 Ji(d, i o) ) 2
a < Q.
Z l <Z At — 12— 1(d - 2) < Ji(d, pr)

leN keN
Since l
cos(r — 2 — %)
Jl(da T) ~ = 4 y
r—00 \/')_"

(see formula 9.2.1 in [1]), we obtain that the term

2
<Jl (d, pgi o) >
Ji(d, pr)
oscillates between 0 and % as k — oo. It is therefore difficult to decide whether or not it changes

the behavior in [ of the sum

3 1 (Jl(daﬂkl 7“0)>2
Akt =12 =1(d—2) \ Ji(d, pxr)

keN

compared to the case where g = 1 studied before. Our guess is that the behavior in [ does not
change, and therefore that the conclusion remains the same, but no explicit calculation has been

made in order to check this point.
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Chapter 4

Preliminaries for the study in R4

4.1 Tempered distributions and Fourier transform

Fix d a positive natural number and let us introduce the following notations.

- By(R?) denotes the set of bounded Borel subsets of R?.

- For r >0 and a € R?, B(a,r) denotes the ball of center a and radius r in R?.

- C$°(R?) denotes the space of complex-valued C* functions on R? with compact support.

- S(R%) denotes the space of complex-valued C* functions on R? with rapid decrease.

- O (RY) denotes the space of complex-valued C* functions on R? with polynomial growth.
- &'(R%) denotes the space of distributions with compact support on R?,

- §'(R%) denotes the space of tempered distributions on R? (which is the dual of S(R?%)).

- O'C(Rd) denotes the space of distributions with rapid decrease on R? (which is not the dual of
Onr(RY)).

- Fy denotes the Fourier transform of ¢ € S(R?), which is defined by

Fo(€) = [ dopla) €7, e,

and we have the following Fourier inversion formula (cf. [57, formula (VII,2;3)]):

F o) = (271r)d Fo(-§),  VEeR. (1)

- FT denotes the Fourier transform of T € S'(R%), which is defined by (FT, ) = (T, Fyp) for
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¢ € S(R?). By [57, Chap. VII, Thm XV], we have
T € OR(RY) if and only if FT € O (RY). (4.2)

- ¢ % 1) denotes the convolution product of ¢, € S(R?), which is defined by

(o h)e) = [ dyo) via—u).  seR

- S+ T denotes the convolution product of S € O}, (R?) and T € S'(IR%); it belongs in general to
S'(R%), and it belongs to S(R?) if T € S(R?); moreover, by [57, Chap. VII, Thm XV], we have
the following property:

F(S«T)=FS- - FT. (4.3)

-For ¢ € R?, d¢ denotes the Dirac measure at point £ and x¢ the function defined by x¢(z) = et
z € R? (note that Fdg = x¢, so Fxe = (2m)% 6_¢ by (4.1)).

- Let 9 € C§°(R?) be such that ¢ is non-negative, supp ¢ C B(0, 1), Jga dz (z) =1 and define

n(z) = n? Y(nz), z € R%; then (1b,) is a sequence of (non-negative and compactly supported)

approximations of the Dirac measure §y in the sense that 1, — &y in S'(R?). Moreover, for
n—0oC

all ¢ € RY, Fop,(€) — 1 and |Fep,(€)] < 1 for all n.
n—oo
Let us also mention the two following facts.

-If T € 8'(R?) is non-negative (in the sense that T'(p) > 0 for all ¢ > 0), then it is also a
non-negative measure on R? (see [57, Chap. I, Thm V]).

- Tf 11 is a signed Borel measure on R? with total variation measure |u| which is moreover assumed

to be tempered, that is, there exists r > 0 with

ulde)
/R A+ =%

then p € S'(RY) (see [57, Chap. VII, Thm VII]). By extension, we will call x itself a tempered

measure.

4.2 Sobolev spaces

For 8 € R, let us denote by H?(R?) the fractional Sobolev space of order 4 on R?, which is the
set of u € S'(R%) whose Fourier transform Fu belongs to L2(RY; (1 4 [£]2)d¢) (see for example

[59, p. 251] for an overview of the properties that follow). We define the following scalar product
on HP(R%):

()5 = [ de (1+1€)° Ful) Fofd), (1.4
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and denote its corresponding norm ||-||3. Note that for 8 = 0, H?(R?) is the usual space L%(R?),
which we identify to its dual.

Let n € N. We have the following inclusions:
SR c...cH"RY c...cL*RY) c...c H"(RY) c...c 'R

and
S®RY = (VH'RY), S'®)=JH"®).
neN neN
For m > n + £, there is an Hilbert-Schmidt imbedding of H™(R?) into H"(R?), which means
that for any a Hilbertian basis {¢y, k > 1} of H™(R?), we have

> lerllz < oo (4.5)

k>1

Moreover, note that the following norm on H~"(R%):

lollln=  sup L@l (4.6)
peH™(R®),p#£0 ||(P||n

is equivalent to || - | _,, so H "(R?) is the dual space of H"(R?).

4.3 Gaussian noises on R? and their spectral measure

In this section, we present some general considerations on spatially homogeneous Gaussian noises
on R?, which will be used in Chapters 6 to 8. Formally, such a noise is a generalized centered

Gaussian process F' = {F(z), = € R?} whose covariance is given by
E(F(z) F(y) =T(z —y), @,y€eR’,

where T is a non-negative definite distribution on R, Since F(z) is not well defined for fixed
z € R?, we will rather consider in the following the process F = {F(¢p), ¢ € S(R?)} which is
related to F by the informal relationship

F(o) = [ o Fla) pla), o e SR, (4.7)

In order for F to be well defined, we need to assume that the covariance I' belongs to S'(R?)

and that it is non-negative definite on R?, that is,
D(p* @) >0,  VpeSERY, (4.8)

where ¢(z) = p(—z), z € R?. By the Kolmogorov extension theorem (see [42, Prop. 3.4]), there
exist a probability space (€2,G,P) and a centered Gaussian process F = {F(yp), ¢ € S(R%)}
defined on this space, whose covariance is given by

E(F(p) F(§) =T(p*9), .9 € S(RY).
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If one wants to analyze the properties of the covariance I, it is often useful to refer to its spectral
measure 4, which is defined in the following generalization of the Bochner theorem due to L.
Schwartz (see [57, Chap. VII, Thm XVIII)):

Theorem 4.3.1. Let T' € S'(RY). Then T' is non-negative definite on R if and only if there

exists a non-negative tempered Borel measure pn on RY such that T' = Fp.

Note moreover that when the distribution I' is real-valued (in the sense that I'(¢) € R for

all real-valued ¢ € S(R?)), then p is symmetric on R?, and reciprocally.

In the present work, we consider partial differential equations driven by noises whose spatial
component is a process of the form mentioned above. Our study will lead to conditions on the

spectral measure of the noise which ensure some regularity of the solution of the equation. A

p(d€) ~
/R M+ e < (4.9)

typical condition will be

where 1 € [0,1]. We want here to make some comments on this condition, in order to interpret

it as condition on the covariance I'.

4.4 Reformulation of the conditions on the spectral measure

Note that condition (4.9) states that u needs to decrease sufficiently rapidly at infinity (that is,
there are not too many high frequencies in the noise), which can be reformulated into a condition
on the integrability of the covariance I' near 0 (which in turn means that the noise has some
regularity) in the case where I' is a non-negative distribution on R? (which implies that it is also

a non-negative measure on R%).

The first case that we consider is the case = 0. In this case, condition (4.9) says that u is
a finite measure, and therefore, by the classical Bochner theorem, it is equivalent to say that I’

is a uniformly continuous and bounded function on R?.

The second case is the case 7 = 1. As mentioned in the intoduction, this case has been
studied in [30] and the conclusion is that when I" is assumed to be a non-negative distribution

on R%, (4.9) is equivalent to

( no condition on I, when d=1,

1
I'(dz) In|{ -— | < oo, whend =2,
S /B(O,l) (dz) <|7'> (4.10)

1
/ [(dz) —=— < oo, when d > 3.
B(0,1) k4
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Let us finally consider the case n € 0, 1] and assume that I' is a non-negative distribution on
R?. Let us then define

de(m):]-'1< 1)77)(.'17), z€R.

(1 +[¢]?

Since FGy,, depends only on [{|, we have, by [58, (V,3;22)],

1 o d-1 1
Gip(r) = —F—F+ / drr 2 ——— \/|z|r Jas(Jz|T),
! (2m)% |22 Jo (1+r2) z

where J, is the regular Bessel function of the first kind and of order v (see Appendix B for a

definition). Using [46, formula 1.4.23], we obtain that there exists a constant Cy, > 0 such that
_d
Gan(x) = Cag 2 Ky, (Io]), (4.11)

where K, is the modified Bessel function of the second kind and of order v (see also Appendix

B for a definition). Let us moreover define

Fualo) = [ Ts) Gaglo —9). v e R

We can now formulate the following proposition.

Proposition 4.4.1. Let us assume that T' is a non-negative measure on R%. If condition (4.9)
is satisfied, then
Fin(0) = / I'(dz) Gap(z) < occ. (4.12)
JRA

On the other hand, if Fy, is a bounded function on R? (which implies that Fy,(0) < 00), then
condition (4.9) is satisfied.

Remark 4.4.2. Note that F;, is non-negative definite, since its Fourier transform
de:U =F (F * Gd,n) =u- deﬂ?’

is non-negative. Therefore, the assumption that Fy, is a bounded function is not a particularly
strong assumption, since every non-negative definite distribution which is continuous at 0 is a
bounded function by [57, Chap. VII, p. 276].

Proof of Proposition 4.4.1. Suppose first that condition (4.9) is satisfied. We then have by the

dominated convergence theorem,

bk b e
00> ./Rd“(df) TENGRI ./Rd“(df) TESrETA

Let us denote p; = F~'(e”! ‘5‘2), the heat kernel in R?. By standard properties of the Fourier

transform, we have

b e . ¢ o) (2
|9 e [ 1) Gy i) o) (1.13)
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and Fatou’s lemma tells us that
liminf/ I(dz) (Gagy * pr)(z) 2 / [(dz) Gay(z),
tl0 Rd Rd
since

(Gap * pi)(z) J?) Gin(z), YV #£ 0.

This proves the first statement of the theorem. In order to prove the second one, let us assume
that Fy, is bounded, and note that since p; is a probability measure on R? for all t € R, we

have

sup / dy pu(y) Fam(y) < sup Fin(y) < oo.
teRy JRRE yeRd

But on the other hand,

/ dy p(y) Fany) = / P (de) (Gay * p1) (@),
JRA

Jrd

by definition of Fy;, and Fubini’s theorem. By (4.13), this expression is still equal to

1 2 1
de) — ot [ e — L
fo98) g 1 2 [ Gy
by the monotone convergence theorem, so the theorem is proven. O

Remark 4.4.3. In [54, Prop. 5.3], (4.9) and (4.12) were announced to be equivalent. But at
the end of the proof of Lemma 5.1 in [54], the following equality:

fim [ (da) (Gagepla) = [ Pldo) Guylo).

was claimed to be true because of the monotone convergence theorem and the fact that the map
oo
t—e! (Gap*pi)(x) = Cy / doe ? (o —t)7 ! py()
Jt

is monotone. If this map is indeed increasing as ¢ | 0 when n = 1 (which yields the character-
ization (4.10)), this is no longer the case for n € ]0, 1], so the proof of Proposition 5.3 in [54]

seems to be incomplete.

Let us now make (4.12) more explicit. Since I' is a tempered measure on R? and using
estimate (B.1), we see that the integral over B(0,1)¢ in (4.12) is always finite, so we can omit
this part of the integral. On the other hand, using estimate (B.2), we obtain the following

equivalences for condition (4.12).
-Ifn > %, then (4.12) imposes no particular restriction on I'.

-Ifnp= g, then (4.12) is equivalent to

/ I'(dz) In (i> < 0.
B(0,1) k4
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-Ifp < g, then (4.12) is equivalent to

1
I'der) ——— < 0.
./B(O,l) (dz) |42

Remark 4.4.4. Note when n > %, G,y is continuous at 0 and rapidly decreasing on R?, so it

is dominated by a function ¢ € S(R?), and we therefore have

Fyy(y) < /Rdl“(dm) oz —y) = /Rdu(df) Fo(€) xy(§) < /Rdu(df) Fo(€), VyeR’,

which in turn implies that F}, is bounded and therefore that (4.9) holds for all ;s by Proposition
4.4.1.

Remark 4.4.5. When p is the Lebesgue measure on R? (which is the spectral measure of white

noise on R?, that is, the noise with covariance ' = §;), the integral in condition (4.9) is equal to

d o] ,rdfl
[ o[
Jra (14 [€]%)" Jo (1+72)
which is finite if and only if n > %. From this and Remark 4.4.4, we see that if condition (4.9)
is satisfied for white noise, then it is satisfied for any noise with non-negative covariance. In

this sense, the white noise represents the most irregular noise among noises with non-negative

covariance.

Note that when I'(dzx) = f(|z|) dz, with f a continuous function on ]0,c0[, we have the

following.
-1fn> g, then (4.12) imposes no particular restriction on f.

-Ifp = g, then (4.12) is equivalent to

/1 dr f(r)r® 1 In (1> < 0.
0 r

-TIfn < 4, then (4.12) is equivalent to

1
1
d — .
/0 r f(r) Ty <

In order to be complete, let us finally give a stronger but more explicit sufficient condition
on I" which implies (4.9).

Proposition 4.4.6. Let us assume that T is a non-negative measure on R and let n < %. If

there exists v > d — 2n and C' > 0 such that
[(B(a,r)) <Cr?,  VYaeR: r>0, (4.14)

then Fy, is bounded and condition (4.9) is therefore satisfied by Proposition 4.4.1.
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Proof. Let us decompose Fy, in two parts:

Fyunly) = /B( | L) Ganle ) + /R( 1) Gagle ).y e R
. ya s ya ¢

By (4.11) and (B.1), we have

I'(dz) Gap(z —y) < Z/Q [(dz) C e 1o~

By1) n>172" I <|z—y|<e2n
< C ) T(B(y,2") exp(—2"")
n>1
< C ZQ”"’ exp(—2""") < oo,
n>1

and the bound does not depend on y. Let now n < %. Using (B.2), we obtain

C
I(dr) Gip(rz —y) < / (dy) ———
/B(y,l) () Ganl ) 2 2 (dz) |z — y|d2n

n<la—y|<2-nt

n>1
< 0 Y T(Bly2 ) 2
n>1
< C 22(7714»])"/ 2n(d72n) < 00,
n>1

by the assumption made, and the bound again does not depend on y. This estimate and the

previous one prove that F, is bounded when n < %. When n = %, we have, using again (B.2),

/B(yyl)l“(dx) Guylz—y) < 2/2 I(dz) C ln( ! )

= i~y
< ¢ Sr(B(y,2 ") (@)
n>1

< ¢ ) 20T In(27) < oo,
n>1

n<lz—y|<2-nt

by the assumption made, so Fy, is bounded also in this case, and this completes the proof. [J

Let us now consider a class of covariances for which condition (4.9) gives an optimal criterion.
Consider that I' is of the form p
x
[(dz) =

el
where 0 < a < d (in order for I' to be a well defined covariance). Let us first make explicit a

sufficient condition which implies condition (4.9) by means of Proposition 4.4.6. For all » > 0,

we have
' C
[(B(0,r)) = C/ du u® 172 = pi—o
J 0 d— «
For a € R? such that |a| < 27, we have by the triangle inequality,
C 3l
F(B(a,'r)) < F(B(0,3r)) — Tdfa_

d— o
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Finally, for a € R? such that |a| > 2r, we have

dz \B(a,r)| Cri

< =C ri e,
(a,r) |x‘a N (|a‘ _,r)a e

P = [

Therefore, if & < 21 (which is a restriction only when 7 < ), then (4.14) is satisfied, hence

2
4.9) by Proposition 4.4.6. On the other hand, if & > 25, then by estimate (B.2), we have
n
d 'd
/ I(dz) Gy (z) > c/ S E—— 0/ r_ .
JRra JBo,1y |z|® [z|42n Jo T

so (4.12) is not satisfied, and neither is (4.9) by Proposition 4.4.1. For this simple class of

covariances, we have therefore obtained a condition (« < 27) equivalent to condition (4.9).
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Chapter 5

Linear hyperbolic equation in R4

Let a,b € R. We are interested in solving the following stochastic linear hyperbolic equation:

0%u ou 0 d
W(t,x) + 2a E(t’ z) +bu(t,z) — Au(t,z) = F°(t,z), (t,z) € Ry x R%,

(5.1)
w0.2) =wole),  H0.#) =w(), e B,

where ug, vy are two given distributions on R? and F? = {FO(t,z), (t,z) € Ry x R%} is a

generalized centered Gaussian process whose covariance is formally given by
E(FU (t’ T) FO(Say)) = 60(t o S) Fﬂ(may)a

where §y is the usual Dirac measure on R and I'y is a non-negative definite measure on R? x Rd,

in a sense that will be precised below.

Note that there are three interesting particular cases of this general equation. When a = b =
0, this is simply the wave equation. When a > 0 and b = 0, this equation is the wave equation
with attenuation, also called the telegraph equation when d = 1. And finally, when a = 0, this
is the Klein-Gordon equation. What will appear in the following is that the values of ¢ and b
have no impact on the hyperbolic nature of the equation (that is, the singularity of the Green
kernel and the finite speed of propagation of the equation), therefore on the problems studied
in the following. On the other hand, Appendix D gives an example of a higher order equation

whose nature changes depending on the coefficients.

For technical reasons (see Remark A.1.1), we will restrict ourselves to the two cases where

either d < 3 and a, b are any real numbers, or d is any positive natural number and a = b = 0.

5.1 (Gaussian noise

Since FO(t,z) is not well defined for fixed (¢,2) € Ry x R?, we will proceed as in Section 4.3 and
rather consider in the following the process FO = {F?(yp), t € Ry, ¢ € S(R?)} which is related
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to FO by the informal relationship

FX(p) = / ds/ dz FO(s,z) o(z), teRy, ¢ € S(RY). (5.2)
Jo o Jrd

In order to define F rigorously, we need some precise assumptions on the covariance I'y: we
assume that it is a signed Borel measure on R? x R¢ (with total variation measure |T'g|) which
is also non-negative definite on R4 x R%, that is,
m

Z ci ¢; Do(A; x Aj) >0, Ym>1,c1,...,c;m €C, Ay,..., An € Bb(Rd),

3,j=1
which implies that I'y(-, -) is hermitian (see [6, p. 68]), hence symmetric, since it is a real-valued
measure. Furthermore, we assume that there exists a non-negative Borel measure vy on R x R?,

which is also non-negative definite, which dominates |I'y|, that is,
To|(Ax B) <uy(Ax B),  VA,B e By(RY),

and which is moreover tempered, that is, there exists r > 0 such that

dx, d
/ VU( T, U) . < oo.
rixgd (1 + 2]+ [yl)

Note that in general, |T'g| is not non-negative definite, even if 'y is; that is why we need a
non-negative definite dominating measure 1. These assumptions are used in the definition of
the stochastic integral with respect to the noise F¥ (see Section 5.3). In Chapter 6, we will see

examples of covariances which satisfy such assumptions.

By the Kolmogorov extension theorem (see [42, Prop. 3.4]), there exist a probability space
(92,G,P) and a centered Gaussian process FO = {F?(¢), t € Ry, ¢ € S(R?)} defined on this

space, whose covariance is given by

E(F} () F(®)) = (A 5) /R o DoY) 9(2) DY), Vhs €Re, g € SR (53)

We study now the joint regularity in time and space of this process. For this, we need the

following two lemmas.

Lemma 5.1.1. For all t € Ry, FP(-) is a random linear functional on S(R?), that is, for all
A ER and @, € S(RY), we have

FY g +9) = XF(¢) + F)(¢), P—a.s. (5.4)
and for oll T > 0, there exists Cr > 0 and n € N such that
E(|F (9) = F(@)*) <Or llly [t —sl. Vs, t€[0,T], p € S(RY), (5.5)

where || - ||, is the Sobolev norm defined by (4.4).
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Proof. The first statement follows from formula (5.3) and the fact that the two complex-valued
square integrable random variables Z; = F?(A¢ + ) and Zy = X F2(p) + F2(¢) are equal
P — a.s. if and only if E(|Z; |?) = E(Z; Z) = E(|Z3|?). For the second, note that since I'y is a

signed tempered Borel measure on R? x R?, it is in S'(R? x R?) and since
SR xR = | ] H "R xR?),
neN
there exist » € N and C' > 0 such that
[, Toldzdy) ele) T < Clo@ Bl Vo€ S
Rd x Rd
Moreover, using definition (4.4), we see that

le@wly = /Rd Lo Hdn (L+[]* + [n*)" |F©)* |Fp(n)l®

< [ dearlen FoOF [ ane Py Fot-a)l

= el

Therefore,

[, Tolda.dy) olo) 50 < C [l (56)

Rd xRd
This implies that
E(F (¢) — FO(o)?) = |t — Po(dz, dy) o(z) 2(9) < C Il It — sl
Rd xRd

which completes the proof. O

In particular, the preceding lemma implies that for all T > 0, there exists C'r > 0 and n € N
such that
E(F (9)I*) < Crlleln, V€ [0,T], ¢ € SRY). (5.7)

Remark 5.1.2. The constant Cr does actually not depend on T in the present case. However,
in the following, we will refer to properties (5.4) and (5.5) for more general processes. That is

why we keep the possibility for the constant to depend on T'.
The following lemma is an adaptation of [62, Thm 4.1] in the present simple setting.

Lemma 5.1.3. Let FO = {F)(p), t € Ry, ¢ € S(RY)} be a centered Gaussian process satisfying
properties (5.4) and (5.5) of Lemma 5.1.1. Then there exists m € N and a modification FO of
O such that for all t € Ry, FO(-) € H ™(R%).

Proof. Fixte Ry, m >n+ % and let {¢g, k& > 1} be a Hilbertian basis of H™(R%). By (5.7)
and (4.5), we obtain that

Z‘Ft @) ZE‘Ff @) )SCtZ||SDk||%<OOa

k>1 k>1 k>1
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so the set €2y defined by

D =qweN: Z |E2 (0r)]? < o0
k>1

has probability one. Therefore, let us define, for ¢ € S(R?Y),
ZFfO((Pk)<<pk7<p>mu on Q]a
Fto(sa) = k2l
0, on Qf.

This is well defined, since by the Cauchy-Schwarz inequality, we have on €2y,

> F o) ek @)m| < D NFer)? Y Kk 0hml® = DI (er) P llells, < oo (5.8)

E>1 E>1 k>1 k>1

It remains to show that ﬁ’tﬂ satisfies the required properties. Let us therefore define, for N > 1,

N
M =" 0k {0k, PIm
k=1

By (5.4), we have

{0k, ©)m, P—a.s.,

Mz

k=1
so we obtain that
N 2
E| |F(9) — Y F(or) (0ks ©)m = E(F (¢ — ™))
k=1
< Crlle—e™M2,
y (5.7). Since
le — ™2 <l — o™z, = 0,

N—o0

we have proven that

= ZFfO(wk) (‘pk,@)m, P—a.s.
k>1

This equality and the fact that P(Q;) = 1 imply that F° is a modification of F?.

takes its values in H—™(R?) since by (4.6) and (5.8), we have

~ Fy
WEDI2, = sup % S IF ()l Lo, < oo,
peH™(RY),p£0 ¥ k>1

which completes the proof.

This allows us to establish the following theorem.

Moreover, F°
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Proposition 5.1.4. Let FO = {F)(¢), t € Ry, ¢ € S(R?)} be a centered Gausssian process
satisfying properties (5.4) and (5.5) of Lemma 5.1.1. Then F° admits a modification F° such
that FO(-) € S'(R?) for all t € Ry and P — a.s., for all ¢ € S(RY), the map t — F2(p) is

continuous from Ry to C.

Proof. The first statement is a direct consequence of the preceding lemma, since H~™(R?%) C
S'(R%). In order to prove the second, let us consider again {¢, k& > 1}, the Hilbertian basis of
H~™(R%) used in the proof of the preceding lemma. What we will use here is the Kolmogorov
test for Gaussian processes with values in a Hilbert space (see [18, Prop. 3.15]). First note that
FO, being the modification of a Gaussian process, is itself a Gaussian process. Moreover, it can
also be seen as a Gaussian process with values in H~"(R?), with trace-class covariance operator

Q(t), since the following condition is satisfied:

Tr(Q(t) = Y E(F (pr)*) < C Y lenlls < oo,

k>1 k>1

by (5.7) and (4.5). Moreover, we have by (4.6) and a slight adaptation of (5.8),

1FY(9) = F (o)

1B — F|)2, = sup

Lol o€ I (R) 540 lll2,
< STIE (er) — F2(or)? 1.
k>1

Therefore, for fixed T' > 0 and s,t € [0,T], we also have
50 70012 0 0 2
E(IIF - %) < D E(F (o) — F(er))
E>1

< Cr Y ekl It = sl,

k>1

A\

by (5.5). Since the above sum is finite by (4.5), Proposition 3.15 of [18] states that there exists
a modification F° of F° such that for all v < %, there exists C'r, > 0 which satisfies P — a.s.

EY — FO| < Crpy |t —s]7, Vs, t € 10,71,
)
1E () = E) (@) < Crpy @llm |t — [, Vs,t € [0,T], ¢ € S(R).
In particular, this implies that P — a.s., for all ¢ € S(R?), the map t Fto((p) is continuous

from Ry to C, which ends the proof. O

Remark 5.1.5. The preceding proposition has been expressed in a general way which will be
used later on. Note however that the process FO has the more specific property that P — a.s., for
all p € S(R?), the process {F(p), t € R} is a continuous Brownian motion with covariance

parameter

/ To(dz, dy) ¢(z) p(y).
R4 xRd

In the following, we will consider implicitely the modification FO.
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5.2 Weak formulation of the equation

Now that we have a precise definition of the Gaussian noise under consideration, we also need
to give a rigorous meaning to equation (5.1). We therefore proceed as in Section 2.3. Setting
formally v(t,z) = %(t,m), we obtain the following two formal equations, after integration in ¢

of equation (5.1):

t
u(t, ) = ug(x) +/ ds v(s, ),
0

t

v(t,z) = vo(z) + /lds (—2a v(s,x) — bu(s,z) + Au(s,z) + F(s,z)).

0

We now multiply both sides of these two equations by a test function ¢ € S(R?) and integrate
them in z, with two more integrations by parts in z of the term with the Laplacian. Assuming
that (ug,vp) € S'(R?) @ S'(R?), considering that (u,v) takes its values in S'(R?) @ S'(R%)
and using the informal relationship (5.2) gives then the following rigorous formulation: a weak
solution of equation (5.1) is a process (u,v) = {(u(t),v(t)), t € R} with values in S'(R?) @
S'(R%) such that P — a.s., for all ¢ € S(R?), the map t — ((u(t), ¢), (v(t), p)) is continuous on
R, and satisfies, for all t € Ry,

(ult). @) = (o, @) + / ds (v(s), o),

(5.9)

(0(t), ) = (vo, ) + /lds (—2a (u(s), 9) — b (u(s), p) + (u(s), Ap)) + F(p).

0

Moreover, we say that the weak solution of equation (5.1) is unique if for any two solutions

(uM,vM) and (@, ),
<“‘(1) (), ) = (“‘(2) (t),) and <U(1) (), ) = (7)(2) (), 9),
for all t € Ry and ¢ € S(RY), P — a.s.

Remark 5.2.1. As for the solution of equation (2.4), we will often be loosely speaking of u,

instead of (u,v), for the solution of equation (5.9).

5.3 Stochastic integral

In order to obtain an explicit expression for the solution of (5.9), we shall define a stochastic
integral with respect to the noise FU. This section refers directly to [62, Chap. 2], so some

details will be omitted. Consider the augmented natural filtration of the noise, defined by
G = o{F)(p), s € 0,8, pe SRN}VN,  teRy,

where A is the class of P-null sets in . The noise F? extends to a worthy martingale measure
MO = {M)(A), G, te R, Ac By(R?)} (see [62, Chap. 2] for a precise definition; in short, M°
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is a martingale in ¢ and a random measure in A) with covariation measure )y and dominating

measure K given respectively by
Qo([0,1] x Ax B) =tTy(Ax B) and Ky([0,t] x A x B) =tvy(A x B),

for t € Ry and A, B € By(R?). Note that the existence of the dominating measure K (“domi-
nating” in the sense that [Q([0,%] x A x B)| < Ky([0,t] x A x B)) is a necessary condition for
the stochastic integral to be well defined (and also the reason why we say that M is a “worthy”

martingale measure).
We can now define the space £° of elementary integrands by
g0 = {qS Ry xR x Q= C| ¢t z,w) = 1]a,b](t) 1a(z) X(w), where 0 < a <b,
A € By(R?) and X is a bounded G%-measurable random variable}.

For an element of £°, its stochastic integral with respect to the martingale measure M is defined
by
(¢ M")i(B) = X (Myp, (AN B) — My, (ANB)),  teRy, BeB[R.

We have the following isometry:
E((¢ - M°)i(B) (- M©),(C)) = (¢ 15,4 1e)ro, Vo, € E°, B,C € B(RY), (5.10)

where

(6 154 10)ro = E(/O s [ Tuldedy) 9(s.0) T (5.11)

Let us moreover denote by | - [+, the semi-norm induced by the semi-scalar product (-,-); 0.

We extend now the stochastic integral (¢ - M°);(B) to more general integrands. Let us first

consider linear combinations of elementary integrands. For
m
¢:Zci¢i’ where n > 1, ¢1,...,¢m €C, ¢1,...,¢m € EY,
i=1

we define
m

(- M) (B) = ci (¢ M°)(B), teRy, BeB(RY.
=1

One can check that this definition is correct, since it does not depend on the decomposition
chosen for ¢. Moreover, the stochastic integral is a random linear functional in ¢ (in the sense
of (5.4)) and the isometry property (5.10) remains satisfied. Let then PY be the predictable

o-field generated by the functions of £, and term predictable functions the functions which are
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PY-measurable (note that any Borel-measurable function ¢ : R, x RY — C is a deterministic
predictable function). For ¢+ € R, and predictable ¢ : [0,#] x R? x Q — C, let us define

t
60 o= ( s [ wnlasia) o(s,2) 60501

Moreover, set

H o= {gb: 0,] x RT x Q — C

¢ is predictable and ||¢|/; 40 < oo}.

By classical arguments (see [62, Chap. 2]), the stochastic integral (¢ - M?%),(B) can be extended
to elements of H; yo. Furthermore, both the a.s. linearity and the isometry property (5.10)
remain satisfied. In the following, we will adopt the notation (¢ - M%), = (¢ - M?);(R?).

Note also that the stochastic integral (¢ - M?); of a deterministic integrand, being the limit
in L?(Q) of Gaussian variables, is itself Gaussian, and that in a similar manner, the process
(¢ M%) = {(¢- M®);, t € R, } is a Gaussian process. Furthermore, we have the following

isometry for deterministic integrands ¢ and :

B - M) G370 = [ [ Tolde.dy) g(s.2) TG00 (512)

The following stochastic Fubini theorem will be used to show the existence of a solution to
equation (5.9); a similar theorem can be found in [62, Chap. 2]. The present version is given
here only for continuous deterministic integrands, since this is all we need in the following. For
¢:Ry xR, xR? - C and s € Ry, let us define ¢4(r,z) = $(s,r,2), r € Ry, z € R?,

Theorem 5.3.1. If ¢ : Ry x R x RY = C is continuous, t € R, and

t t
/ ds / dr / voldz, dy) |§(s, @) $(s, )| < oc,
JO JO JRA xR

then ,
[ @ M0 = (e MO, P - as. (5.13)
J0

t

where Y(t,r,x) = /lds ¢(s,r, ).

J0

Proof. Let us introduce the following notation:

t _
o= [ s [ wlde.dy) i (s.0) Tl

Since vy is non-negative definite, this is a semi-scalar product and the following Cauchy-Schwarz

inequality is satisfied:

(1, 2)e,4.0 < l[H1lle, 4.0 lld2lle,+0- (5.14)
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Let us then show that v; belongs to H; { o: it is clearly continuous since ¢ is, and

t
o = [ ds [ w(de.dy) luts,)| o)

t t t
< /Uds/Rded uo(dw,dy)/ﬂ d?"/ﬂ dq |p(r,s,z)| |P(q, s, y)]|
t t
- / d/ dq (|v, g )
t 2
< ( [ ar ||¢r||t,+,o)
<

/dr 6124
= / dr/ ds/W Rd o(dz, dy) |¢(r, s, x)| |(r, s,y)| < 0.

In order to show that both sides of (5.13) are equal P — a.s., let us proceed as in the proof of

Theorem 2.5.2 and compute

E( 2) - /dr/ dg (¢ - M°); (g, - M),

_ /0 dr/ﬂ dq/o ds'/WXRdFo(dx,dy) b(r.5,2) (a5, 9)
-/ s [, Tolds.dy) bt.5.2) ¥{2.5.3)

0 Rd xRd
= (|- MO[).

t
/0 dr (¢ - Mo)t

Furthermore,

t

]E('/Otdr(‘ﬁr'Mo)tm) _ /dr ( M), (g - M0)>

E
t t -
= d dx,d
/ ’f'/ov S /]RdXRd ( Z, y) 'l,b(t,S,y) ¢(T757y)

o

o
U

t

— (]9/ Rd FU dT dU) TP("» 9’1/) w(t’ 37y)

0

B (e M0)[).

Since this covariance is equal to the two variances above, the proof is complete. [l

We will use the following special case of the preceding theorem.

Corollary 5.3.2. Let D = {(s,r,z) € Ry xRy xR :5>7r} (for ¢ : D = C, s € Ry, note
that ¢ is defined on [0,s] x RY). If ¢ : D — C is Borel-measurable, t € R, and

t S
/ ds / dr / vo(dz, dy) |§(s,r,z) $(s,7.1)| < oo,
Jo Jo J R xRE
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then .
/ ds (¢ - M°)g = (- MO),, P a.s.,
0

t

where Y(t,r,x) = /lds o(s,r, ).

Proof. Replace ¢(s,r,z) by ¢(s,r,z) - 15>, in Theorem 5.3.1. O

5.4 Properties of the Green kernel

Let G be the solution of

0’°G oG oG

— 4+2a—+bG-AG=0, G0)=0, —(0)=dg. 5.15

5z T2t . G0)=0, —-(0) =4 (5.15)
G is called the Green kernel of equation (5.1). We need to study carefully its properties before
studying equation (5.1). Note that in the following, the dependence on a or b of any function

(like the Green kernel or a “constant”) will be omitted in order to simplify the notation.

From the explicit expressions of G listed in Appendix A, we deduce that for d < 3 and
arbitrary a, b, or arbitrary d > 1 and a = b = 0, G satisfies the following property: for
all t € Ry, G(t,-) is a finite order distribution with compact support on R? and there exist
K(t) > 0 and N € N such that

wp (G <KW S swp |00, Ve e SEY, (5.16)
s€[0,1] In|<N T€B(0,t)
where n = (ny,...,nq) denotes a multi-index in N and |n| = ny + --- + ng.

On the other hand, we deduce easily from (5.15) that the Fourier transform of G in z satisfies

2
P78 16 +20 28 ) + 4162 FORO =0, teR ¢em

(5.17)
FG(0,6) =0, 82:—tG(0,£):1, ¢ € Re.

Solving this ordinary differential equation in ¢ gives the following expression for FG, which is

valid for every positive natural number d:
sin (t €2 +b— a2>
—at

VIEP+b—a?
FG(t,&) =< e, if a?>-b>0 and [£]? =a® b, (5.18)
sinh (t\/a? - |g\2)

e " , if a>=b>0 and |2 <a®—b.

var —b—[¢]?

Note that, as for (2.6), the first of these three expressions contains the other two. From these,

if |£2>a® —b,

we also deduce that FG is a real-valued and continuous function on R x R?, which is symmetric
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and infinitely differentiable in ¢, since for all t € R, FG(t,-) is an analytic function on R?, whose

Taylor series is given by
£2n+1

Gnr ) (1€ + b — a®)", V¢ e RY,

FG(t&=e Y (-1)"

neN

and since FG(t,-) and all its derivatives vanish at infinity, FG(t,-) € Oy (R?). Moreover, FG
satisfies the following properties: for all ' > 0, there exits Cy(T) > 0 such that

IFG(t, 8| < Co(T),  Vte[0,T], € € RY, (5.19)

and

\FG(t,€) — FG(s,8)| < Co(T) |t —s|, Vs, t€[0,T], £ € R (5.20)
Furthermore, we have the following estimates, which will be used in the next chapter.

Lemma 5.4.1. For all t > 0, there exists C1(t) > 0 such that

FG(s,6)? < AW

7@, VSE[O,t], £€Rd

Proof. 1f |€]? > 2(a® — b) + 1, then (2.10) implies that we obtain that

1 2
|§‘2 +b— a2 > ﬁ’ (521)
so we have
, , sin? (s \§|2+b—a2) oa—t 2
poelt — o 2as < e*® .
(s,6)" =e €210 a2 =0 TP

If 2(a? —b) + 1 > 0 and a? — b < |¢]? < 2(a® — b) + 1, then

2 % 2 sin® (5 VIgP +b—a2) 2a=t ;2
FG(s,6) =e " s N (e — <et 't

since r—2 sin?(r) < 1 for all » > 0. Finally, if a> — b > 0 and |£]2 < a? — b, then

sinh? (sda? —b— \E|2>

s? (a* = b —[¢]?)

< e?® U2 cosh(Va2 —bt)?,

FG(s,6)* = e 0% s

since 72 sinh?(r) < cosh(r)? for all # > 0 and cosh is an increasing function. Summing up
these estimates, we obtain finally that there exist R, K(t), K2(t) > 0 such that

K (t)
FG(s,6)? < —— Vs € [0,t], €| > R,
(Sf)flﬂ£|2 s €10,1], |¢] >
and LR
+
FG(s,8)* < Ka(t) < Ka(t) TP Vs € [0,], [¢] < R.

Defining O (t) = max(K;(t), Ka(t) (1 + R?)) gives the desired result. O
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The above lemma will be used for rather technical purposes; as a consequence, we can directly
obtain the following upper bound, which we list separately for later reference, and which is also

satisfied by the Green kernel of the heat equation, while Lemma 5.4.1 is not.

Lemma 5.4.2. For all t > 0, there exists Ca(t) > 0 such that

/t ds FG(s,€)? < s (t) Vé € R?,

Jo T4 g

Proof. We obtain this inequality by a simple integration in s of the result of Lemma 5.4.1. [
The following lemma gives a corresponding lower bound.

Lemma 5.4.3. For allt > 0, there exists Cs(t) > 0 such that

Cs(t)

t
ds FG(s, €)? > ——, VE € RY.
/0 52 T e
Proof. 1f [£]2 > a® — b+ ti‘z’ then (2.11) implies that
P +b—a® <AV (b-a?) (1+]EP), (5.22)

so we obtain that
t \ t \ sin? (s\/|£\2+b—a2>
ds FG(s, = ds e %
[ #sreser = | 7+ b—a?
672(1,+t 1

| t
.2
LV (b—a?) 1+ ¢ /0 ds sin® (sv/[€7 +b—a?) .

vV

This implies that

sin (2t €12 +b— (1,2>

t
t
in? 2 _g2) =2 _
./0 ds sin (5\/\§| +0b a) 5 1 >

t
2t\/€2 + b — a2 4’

since t1/|€|2 +b — a? > 1 and |sin(r)| < 1 for all 7 > 0. So we obtain finally that

_92aTt
e2at

t 1
(1V(b—a?) 4 1+

/t ds FG(s,&)? >
0

Ifa2—b—|—t]—2ZOandaQ—bg|§\2§a2—b+tl2,then

t t sin? (s\/|£\2+b—a2> 3
2 —2as 2 ‘ —2att B o
'/0 ds FG(s,§) _./0 ds e s N (PR " >e g sin (1),

since s1//€2 +b—a? < 1forall s € [0,#] and 2 sin?(r) > sin(1)? > 0 for all r € [0, 1]. Finally,
if a> — b >0 and [£]? < a® — b, then

sinh? (s\/a? = b~ [¢]?) .

t t t3
d G 2 — d —2as 2 > —2aTt 7
/U s FG(s,€) /0 se S (@0 >e T
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since 72 sinh?(r) > 1 for all > 0. Summing up these estimates, we obtain finally that there
exist R(t), K1(t), K2(t) > 0 such that

t
Ky (1)
ds FG(s, €)? > —~, V|¢| > R(t),
| asFaeor> SN vie > Ro)
and . X
' t
[ s FGls.67 > Kolt) > 50 Vel < o
Jo 1+ ¢
Defining C5(t) = min(K(t), K2(t)) gives the desired result. O

As for the linear hyperbolic equation in a bounded domain, let us also define H = %(t; +2a G.

We easily see that H satisfies
0’H 0H OH

S T2 b H = AH =0, H(0) =3, —-(0)=0. (5.23)

The equation follows directly from the definition of H and equation (5.15). In order to check
the initial conditions, let us compute
sin (t €12 +b— (1,2)

VIE2+b—a? 7

FH(t,€) = e cos (t €2 +b— a2) tae® (5.24)

therefore FH(0,£) = 1, and

sin (t\/|§\2 +b-— a2)

H
%(t’@ =—e " €12+ b—a? sin (t €12 +b— (l2> —a’e

H
therefore 8%(0,5) = 0.

5.5 Existence and uniqueness of the weak solution

To show the existence of a solution to equation (5.9), we will need the following three lemmas.

Lemma 5.5.1. Fort € Ry and ¢ € S(R?), the functions ¢, b1, : [0,1] = S(RY) defined by

brol:0) = (G =)+ D)) and tols.0) = (2= 00) (@) se0d] v

belong to Hy 4 o.

Proof. The argument is the same for ¢;, and 1);,. Let us then consider only ¢;,. We first
show that the map (s,z) — (G(t — s) * ¢)(x) is continuous, therefore Borel-measurable. The
continuity in z is a consequence of the fact that for fixed s € [0, ], the map = — (G(t —s) *¢)(z)
belongs to S(R%); it remains then to show that the map s — (G(t — s) % )(z) is continuous on
[0,#], uniformly in = € R?. Using the identity F~' o F = Id, we obtain by (4.1) and (4.3) that

(Gt — (5 + h)) * @) (z) — (G(t — 5) * 0) ()]
1

- ‘W /TRd df (IG(f - S5~ h,f) o fG(f o 376)) f@(f) X*T(f)

1

= ol

[ 46176 — 5= 1.6) = FGlt = 5.8)| | Fol6).
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Since FG is continuous by (5.18), Fy € S(R?) and using (5.20), we can apply the dominated
convergence theorem to conclude that the above expression, which does not depend on z, tends

to 0 as h — 0, so the continuity in s is proven and it is uniform in z.

Secondly, for all s € [0, ], we have

/ vo(de, dy) (5, %) $r.p(5,9)] < oo,
R x R4

since ¢y ,(s,") = G(t — s) x p € S(R?) and 1y is a tempered measure on R x R?. To show that
| #t,pllt,+,0 < 00, it suffices then to show that for all » > 0, there exists C' > 0 such that

C
sup |¢rp(s, )| < ——,
selog (L+ [=])"

By (5.16), we obtain that

V€ R, (5.25)

p [up(s ) = sup Gt~ 5.0 N <K@ Y sup [Pl 2]
s€[0,1] s€[0,t] ‘E‘SNzEB(O’t)

But since ¢ € S(R?), for all r > 0, there exists K > 0 such that

K
sup [0%p(7)| < —F—-
In|<N (1 +[z))r

Using the fact that | — z| > |z| — ¢ for all z € B(0,t), we obtain

1
sup |¢g (s, z)] < K(t N—i—ldK(—Al),
se[o’t}‘ tnp( )‘ ()( ) (1+"I}|*t)r

so (5.25) is satisfied with C' = K () (N 4+ 1)% K 2". This completes the proof. O

Let us now define the process P = {P;(¢), t € Ry, ¢ € S(R?)} by

Pyp) = ((G(t =) % p) - M°),.

By the preceding lemma, this process is well defined. Moreover, it will turn out to be the first
component u of the solution of equation (5.9), with vanishing initial conditions. It is a centered

Gaussian process with the following covariance, which can be easily deduced from (5.12):

B P = [ [ Tuldedy) G- )+ 0)) G 06 6:20)
Furthermore, it satisfies the following properties.
Lemma 5.5.2. For allt € Ry, A € R and ¢, € S(R?), we have
P(Ap+1) = A P(¢) + P($), P as.
and there exists n € N such that for all T > 0, there exists Cr > 0 such that
E(1P:(p) — Ps(9)]”) < Crllglln [t —sl, Vst €[0,7], € S(RY),

where || - ||, is the Sobolev norm defined by (4.4).
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Proof. The first statement follows from the a.s. linearity of the stochastic integral. In order to

prove the second one, we use (5.6), which states that there exist n € N and C > 0 such that

[, Tolda.dy) ¢lo) 50 < C 1ol
Rd x Rd
Fix now T > 0. By formula (5.26), we have for all s,¢ € [0, 7T,

E(|1P () — Py(9)?)

S

=/ dr . Lo(dz, dy) (G(t —7) = G(s = 7)) x ) (z) (G(t —7) = G(s — 7)) * ) (y)

[ar [, Tadrdy) (66 1) )o) G 775 910
s R4 x R4

_|_

< C( dr [[(G(t —7) - G(S—T))*wlliﬂL/thIIG(t—T)*¢IIi>-

78

Using now (4.4) and properties (5.19) and (5.20), we obtain that

(Gt —r) — G(s — ) * ol = /Rd ¢ (L+[EP)" [FG(t —1,8) — FG(t — 5,6)]” |Fo(¢)?

Co(T)? Nl It — s

IN

and

G —r) ol = /Rd d¢ (1+ |¢[2)" |FG(t =67 |Fe(&)]? < Co(T) llel-
This implies finally that
E(| Py () = Ps(¢)|*) < C T Co(T)? llglly |t = s> + Co(T) lllly [t = s| < Cr llell7 [t — ],

where Cr = 2 C T? Cy(T)? + Cy(T). This completes the proof. O

A direct consequence of this lemma combined with Proposition 5.1.4 is that the process P
admits a modification P such that P;(-) € §'(R%) for all t € Ry and P — a.s., for all ¢ € S(R?),
the map ¢ — P,(p) is continuous from R, to C. We will implicitely consider this modification

in the following.

Note that the entire preceding analysis gives rise to the same conclusions for the process
Q=1{Qi(p), t e Ry, p € S(R?)} defined by

) = (G —ve) M) |

which will turn out to be the second component v of the solution of equation (5.9) with vanishing

initial conditions.

The last lemma is a classical one concerning the determistic equation.
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Lemma 5.5.3. For ¢, € S(R?), ty € R, the functions p,q: R x R? — R defined by

pt,z) = (H(t —to) * ¢)(x) + (G(t —to) * ) (x)

wnd q(t,z) = <88—ft[(t — ) * ¢> () + <88—C;(t — o) * ¢> (=)

for (t,z) € R x RY, satisfy the following two equations:

t
dr q(r,z),

plt.) = gla) +

to

(5.27)
alt.2) = (o) + [ dr (~2a4(r)  bp(ris) + Ap(r. )

to

Moreover, p(t,-) and q(t,-) belong to S(R?), for all t € R.

Proof. These equations simply follow from the definition of p and ¢ and equations (5.15) and
(5.23). O

We can now state the existence and uniqueness theorem.

Theorem 5.5.4. Let (ug,u1) € S'(RY) @ S'(R?) and define vg = uy + 2a ug. The process
(u,v) = {(u(t),v(t)), t € Ry} with values in S'(R?) @ S'(R?) defined by

u(t) =u’(t) + P, and v(t) = 0°(t) + Qy, (5.28)
where
ul(t) = H(t) xug + G(t) xvo,  Pip) = (G(t — ) xp) - MO)y,

vO(t) = 88—}:(1‘) * ug + 88—?(7‘) xvg, Qi(p) = <<88—f(f ) *(p) -M0>t,

admits a modification (4, 0) which is the unique weak solution of equation (5.1).

Proof. Let us first show existence. Using Lemma 5.5.3, we see that for a fixed ¢ € S(R?), the
functions p and ¢ defined by

p(t.x) = (u°(5) + @)(x) and qlt,z) = (0°(¢) * @) (),

where ¢(z) = ¢(—1z), satisfy equation (5.27) with ¢y = 0 and initial conditions ¢(z) = (ug*@)(x)
and 9 (z) = (v *

@) (z). Evaluating this equation in z = 0 gives

(WO (1), ) = {u, ) + / ds (1(3), ),
JO

(5.29)

(v°(t), ) = (o, ) +/0 ds (=2a (v°(s), ) — b (u°(s), ) + (u’(5), Ag)).
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for all t € Ry and ¢ € S(RY).

On the other hand, fix now ¢t € R, , ¢ € S(R?), and define

(

s ot

s = (Gt )00 @) /d <2a (G0 9ve)

—b (G(r—s) xp)(z) + (G(r — s) * Aw)@)) + ¢(z),

Ctio(s,2) = (G(t = 5) * ) () —/tdr (%(T—S) *@) (z),

Using the fact that for fixed s € R, and ¢ € S(R?), the functions p and ¢ defined by

p(t.x) = (Gt — ) % ¢)() and q(t,w:(%—f(ts)w) (), t>s zERY,

satisfy equation (5.27) with ¢ty = s, ¢ =0, and 9 = ¢, we obtain that (;, = & , = 0. Moreover,
by Lemma 5.5.1 (slightly adapted for the integral terms), all the components of ¢; , and & ,
belong to H; 1 o. So we can write that ({s,, - MY); =0 and (&1, - MY); = 0, which gives, by the

linearity of the stochastic integral,

((@t—yeprmtn = (([ar G- p) ar0)

D (G ) =2 (oG] )
L —b ((/tdr G(r—-)*<p> -M”>t+ ((/tdr G(r—-)*A<p> -M”>t+Ft”(<p).

Applying then Corollary 5.3.2 to each integral term leads to the conclusion that the processes

P and () defined in the theorem satisfy the following equation:

Pi(g) = /O/ds Qu(p).
' (5.30)

Qulp) = /0 ds (~2a Qu(p) — b Pu(9) + Pu(Ap)) + F2(g).

P—a.s, for all t € Ry and ¢ € S(R?). Using now Proposition 5.1.4 for all the terms of the above
equation (which are shown to satisfy (5.4) and (5.5) by the same arguments as those in Lemma
5.5.2), we obtain that there exist modifications P and Q of P and Q which satisfy the above
equation for all t € R, and ¢ € S(R?), P — a.s. Combining finally equations (5.29) and (5.30)
shows that the process (u,v) = {(u(t),v(t)),t € Ry} defined by (5.28) admits a modification
(4, %) such that P — a.s., for all ¢ € S(R?), the map t — ((a(t), ¢), (#(t), ¢)) is continuous and
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solves equation (5.9).

In order to prove uniqueness, we follow a classical deterministic argument. Let (u(l),v(l))
and (u(?,9()) be two solutions of equation (5.9) and define (u,v) = (u(") — u® (1) — 4(3),

The process (u,v) then satisfies the following equation:

(alt). o) = / ds (0(5). ).
(5.31)
(0(t), ) = / ds (~2a (0(s),0) — b (a(s), 0} + (u(s). Ag)).

for all t € Ry and ¢ € S(R?), P —a.s. Let now p and g satisfy equation (5.27) with ¢, = T € Ry

and ¢, 9 arbitrary. Set moreover

A(t) = (u(t),q(t)) = (o(t), p(t))-

Combining equations (5.27) and (5.31) gives for ¢1,t9 € R, ,

Alts) — Ah) = / " ds ((u(s). 2a qls) — bp(s) + Ap(s) + (0(s).a(s))

t1

- / " ds ({3(s), a(s)) — 2 (8(5), p(s)) — b (a(s). p(s)) + (a(s), Ap(s)))

t1

— 2 / " ds ((i(s), a(5)) — (9(s),p(5)))

Therefore,

A(T) = e 2T A(0) = e > ((a(0),4(0)) — (0(0),p(0)) =0,

since u(0) = 9(0) = 0. Using now the terminal conditions p(T) = ¢ and ¢(T) = 9 and
considering successively the cases (¢, 1) = (¢,0) and (¢, 1) = (0, ), we obtain that

(a(T), o) = (0(T), ) = 0,

for arbitrary 7' € Ry and ¢ € S(R?), P — a.s., so the conclusion follows. O



Chapter 6

Noise on a k-plane

Let d be a natural number greater than 1 and fix k¥ € {1,...,d — 1}. Let us also introduce the

following notations.
- For z € R? = RF x RI=F | write 2 = (x1,22) where z; € R* and z, € R¥F.
- For 7 > 0 and a € R¥, let By(a,r) denote the ball of center a and radius r in RF.

- For ¢ € S(R?), let Fip (resp. Fop) denote the Fourier transform of ¢ in the coordinates
parallel to the k-plane R* x {0} (resp. in the perpendicular ones): these are defined by

Frp(&r,z2) = /

dxy ¢(r1,22) Xe, (1)
Rk

and

Faplorie) = [ doa plor.za) xea(oo),
JRa—

where we recall that x¢, (z;) = e’é'%i These Fourier transforms extend to 7' € S’(R?) and note

that F = Fy o Fy = Fy 0 Fjy.

The aim of this chapter and the next one is to study the regularity of the weak solution of

equation (5.1) when the measure T'g is formally given by
Lo(z,y) = (w1 — y1) do(z2) do(y2),
which can be rigorously written as

/ Po(de, dy) ¢(x) B(y) = / P(dz) ($(,0) } §(-0)) (1), Voop € SED,  (6.1)
Rd xRd Rk

where x; denotes the convolution product in R¥ and @(71) = ¢(—1) for 77 € R¥. This situation

corresponds to a noise concentrated on the k-plane R¥ x {0} and spatially homogeneous on this

65
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k-plane. The “classical” equation corresponding to equation (5.9) is then

0%u Ou :
87;‘(@ z) + 2a 8—;‘(,5,.@) Fhult,z) — Ault,z) = F(t,21) do(x2), (f7) € Ry x RY,
’ ’ (6.2)
ou d
u(0, ) = ug(z), E(O,m) = wvg(x), r € R%.

Our aim here is to relate the regularity of the weak solution u of this equation to explicit
conditions on the covariance of the noise defined above. By the nature of the noise itself, the be-
havior of the solution will certainly be different along the directions parallel to the k-plane (1)
and along the perpendicular ones (z3). Since the noise is spatially homogenous in the coordinate
x1, one should not expect a solution with an L?-type behavior in z1 (unless we consider some
weighted L2-space as in [51]). On the contrary, this seems quite plausible for the coordinate 5.

To be precise, what we are going to show in this chapter is that for § < 1 — % and under
some optimal condition Bg on the the spectral measure of the noise (which can be reformulated
afterwards into a condition on the covariance: see section 6.6), the weak solution of (6.2) is a
process U = {U(t,z1), (t,z1) € Ry x Rf} indexed by the time variable and the coordinates
of the k-plane, with values in some fractional Sobolev space H?(R?~*) (see Section 4.2 for a

definition of this space).

This analysis prepares for the study of the following question: when is the weak solution
u of equation (6.2) a real-valued process, and not a distribution-valued one? We will see in
Chapter 7 that in the case of a noise concentrated on a hyperplane (that is, when k = d — 1),
the optimal condition By obtained here for the process U to be L?(IR)-valued is also the optimal
condition for the weak solution u of (6.2) to be a real-valued process outside the hyperplane
x9 = 0. What we shall also observe in that chapter is that the solution of equation (5.9) cannot
be a real-valued process in the case where k = d — 2, in concordance with the result obtained
here that in this case, the process U, if it exists, has to take its values in some fractional Sobolev
space HB(R¥F) with f8 strictly negative.

6.1 Chapter 5 revisited

Though the general results of the preceding chapter apply directly to the particular noise con-

sidered here, we prefer to rephrase them somewhat, in order to simplify the analysis later on.

Let us first make precise the assumptions made on the covariance I': T' is assumed to be a

signed Borel measure on R¥, which is non-negative definite on R* in the sense of (4.8), that is,

/Rk D(dn) (0 +1 3)(z1) >0, Vo € S(RE). (6.3)
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This implies that I' is hermitian (cf. [57, Chap. VII, Thm XVII]), hence symmetric, since it is
a real-valued measure. Moreover, we assume that there exists a tempered non-negative Borel

measure v on R¥ which is non-negative definite and which dominates |T'|, that is,
IT|(A) <w(A), VA€ By(RF).

We give here some examples of covariances that satisfy these conditions. Clearly, when T' is
a non-negative, tempered and non-negative definite Borel measure on R?, then v = I' satisfies
the required assumptions. This non-negativity assumption was taken as a basic assumption in
[15, 54] (in the case of a spatially homogeneous noise on R%) and will be needed in our case for
the analysis of non-linear equations (see Chapter 8). Among this class of covariances, we can
consider covariances of the form I'(dzi) = f(|z1|) dz1, where f is a non-negative continuous
function on |0, oo[, and examples of such f are
f(r) = i, where 7 €0, k].
Y
We can also show the following. Let A be the Lebesgue measure on R¥; if T' is a non-negative

definite tempered Borel measure on R? such that there exists C' > 0 where
I 4+ C) is a non-negative measure on R¥, (6.4)

then v = '+ 2C )\ satisfies the required assumptions: v is non-negative definite, being the convex

combination of two non-negative definite measures, and
=T+ CAX—CA<|[T+CA+|CAN=T+2CA=v.

Note that (6.4) was taken as a basic assumption in [51, 52, 53] (in the case of a spatially homo-

geneous noise on R%).

Let us now consider the centered Gaussian process F = {Fi(p), t € Ry, ¢ € S(R¥)} whose

covariance is given by

BF(e) Fil) = (¢ s) [ D) (pra)(a). Vi € Ry, g9 € SR,
This process is well defined (see Section 4.3), and (6.1) implies that

FP($) £ Fi(4(-,0),  VteR,, ¢ € SRY,

where £ stands for equality in distribution. This gives an expression for the last term of equation
(5.9). Moreover, since we would like to study the regularity of the solution in relation to the
regularity of the noise, we restrict ourselves here to the case where ugy = vg = 0, and so equation
(5.9) becomes

(u(t), ¢) = / ds (0(5), 0),
' (6.5)

(v(t), ) :/0 ds (—2a (v(s), ) — b (u(s), ) + (u(s), Ap)) + Fi((:, 0),
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for all t > 0 and ¢ € S(RY), P — a.s.

Remark 6.1.1. When k£ = d — 1 (that is, when the noise is concentrated on a hyperplane),
and as mentioned in Remark 3.2.3 for the case of a noise on a sphere, we could intepret the
noise term as a boundary term, and therefore consider that (6.5) is the weak formulation of the

following classical equation in the upper half space:

0%u ou d_1
W(t,x) + 2a E(t,x) + bu(t,x) — Au(t,xz) =0, (t,z) e Ry x R x Ry,

with the stochastic boundary condition

O 1,0) = Fit,a).
8.’1}2

Let us now follow the analysis of Chapter 5 and denote by {G;} the natural augmented
filtration of the noise, £ the space of elementary integrands and P the predictable o-field; the
noise F' extends naturally to a worthy martingale measure M and we can define a corresponding

stochastic integral (¢ - M), for integrands belonging to

H,, = {(;5 . [0,4] x R* x Q — C predictable such that

ol =B [ ds [ vtz (6159141 186,00 < oo},

using the isometry

B M 3000 = b =B ( [ ds [ 1) 0l m i) 60

Let us also denote by || -||; the semi-norm induced by the semi-scalar product (-, -);. The stochas-
tic Fubini Theorem 5.3.1 can be adapted to the present situation, and the rest of the analysis is

identical to the one of the preceding chapter.

For clarity, we will adopt the following notation for the stochastic integral of a predictable

integrand ¢ : [0,1] x R¥ x R¥* x  — C restricted to the k-plane x5 = 0:
(9C0) M) = [ M(ds.der) (s,m1.0).
J]0,t] xRk

In particular, the unique solution u of equation (6.5) will be given by
(“‘(t)a ()0> = / M((]?,d’[’l) (G(f o S) * (70)(7;170)7 te R-I—a pE S(Rd)a (67)
[0,t] xRk

where G is the solution of equation (5.15), whose properties are listed in Section 5.4.

With these modifications in hand, we can proceed further.
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6.2 Extension of the stochastic integral

The first technical step towards the study of the regularity of the solution consists in extending
the stochastic integral to distribution-valued integrands, since the processes that will appear in

the following will be expressed as stochastic integrals of such integrands.

Following [15], we first consider a more general class of martingale measures, in order to in-
clude directly the treatment of non-linear equations in our analysis. Let Z = {Z(t,z1), (t,z1) €
R, x R¥} be a real-valued predictable process such that for all 7' > 0,

sup E(Z(t, x1)?) < oco. (6.8)
(t,1)€[0,T] x Rk

By [62, Chap. 2], M? = {(Z - M)y(B), G, t € Ry, B € By(RF)} defines also a worthy

martingale measure with covariation measure

Q%([0,1] x A x B) —]E(/U ds ./Rk U(dz) ((Z(s,-) 14) %1 (Z(s,) i;;))(zﬂ)

and dominating measure

KA x A x B) =B ( s [ wlaz) (126 10) 51 (260 )en) )

This implies that we can define the stochastic integral (¢ - M?); of a Borel-measurable function
¢ :[0,1] x R¥ — C such that

61 o =2 ( [ s [ vtz (605 205,91 805.) 25,0 0) ) < o,

and let us denote by H; 4  the space of such (deterministic) integrands. Note that if ¢ € H;

and ¢ is deterministic, then

o747 < sup E(Z(s,21)%) [l9]7 4 < oo,
(s,w1)€[0,t] xRF

so ¢ € H; 4 7. Moreover, the following isometry property holds:
E((¢ - Mz)t (- MZ)) = (4, V)7,

where

iz =E( [ as [ ) (60 26,4 06 Zs D)) (69)

Let us also denote by || - ||¢,z the semi-norm induced by the semi-scalar product (-,-); z.

We can now proceed to the extension of the stochastic integral. If we assume that Z satisfies

B(Z(t,z1) Z(t,y1)) = B(Z(t,0) Z(t, 21 —y1)), Vt e Ry, z1, y) € R, (6.10)
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then the function v : R, x R¥ — R defined by
Y(t.21) =B(Z(£,0) Z(t.z1)),  (tz1) € Ry x RE,

is symmetric in 2z and for ¢,v € H; 1 7, (6.9) can be rewritten as

¢
G = [ s [ T Atz (Bls) 1 s D) (6.11)
Therefore, for s € [0,#], the measure I'Z defined by
7 (dz1) = T(dz1) (s, 21)

is a non-negative definite measure on R, since
[ r2ae) (o @) =B ( [ T (0 205000 6 26,060 ) 20 Vo€ SE
R R

by (6.3). Moreover, since for all s € [0,#], ['Z is a signed tempered Borel measure on R, it

belongs to S’(R¥). The Bochner-Schwartz theorem 4.3.1 then implies that there exists a non-
negative tempered Borel measure uZ on R¥ such that TZ = FyuZ. Moreover, uZ is symmetric
on R¥ since I'Z is real-valued. Let us now consider the following subspace of H; 4, composed by

regular deterministic integrands:

‘9

Hiy = {qﬁ : [0, ] x R* — C Borel-measurable such that

||¢Ht,+ < oo and ¢(Sa ) € S(Rk)a Vs € [Oaf]}

If ¢,9 € H;p, then Fi¢, Fi1p are Borel-measurable functions and we obtain the following

expression for (6.11), using basic properties of the Fourier transform:

t
Wb = [ s [ ntdg) Fiots, &) FaG. 6. (6.12)

With this expression in hand, we can finally define a larger space, which contains (deterministic)

distribution-valued integrands:

H,; = {gb: [0,1] = OL(R*) | (s,&) — Fié(s,€) is Borel-measurable,

|¢lls,7z < oo and I(¢y,) C Hyp such that ||¢ — ¢y, o 0},
where || ¢,z is defined here by

t
o2, = [ s [t 170, 0P
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The stochastic integral (¢ - M%), extends then by isometry to elements of H; 7. Note that as
before, the linearity and the isometry property remain satisfied. We will once again adopt the
following notation for the stochastic integral of ¢ : [0,] x R¥ x R¢*F — C restricted to the

k-plane zo = O:

(000 MP)y = [ M(ds,dm) Z(s,m1) d(5,1,0),
[0,t] xRk

even in the case where ¢(s,-,0) is a distribution in z;.

Note that for the linear equation, we will only need the definition of the stochastic integral
when Z = 1, in which case we denote the space of integrands by H; and the isometry (6.6)

becomes

B - M) ) = Gl = [ s [ utde) Figle) PG (6.9

Moreover, one can notice that since the integrand considered here is deterministic, the process
(p-M)={(¢- M), t € R;} is a Gaussian process.

The following theorems will also be useful (cf. [15, Thms 2 and 3] and [16] for proofs).
Before stating them, let us denote by O’C(Rk)+ the space of non-negative distributions with

rapid decrease on R¥.

Theorem 6.2.1. Let Z be a process satisfying (6.8) and (6.10). If T is a non-negative measure
on RE, ¢ :[0,8] — OL(RF), is such that F1¢ is a Borel-measurable function and |¢||; < oo,
then ¢ € Hy 7 and

E((¢ - M7)[%)

t
/ ds / u?(der) | Fro(s, &)
Jo JRE

t

< [ds swp EZGan)) [ pde) 176,60
Jo JRF

T1 E]Rk

Theorem 6.2.2. If ¢ : [0,] — O (R¥) is such that Fi¢ is a Borel-measurable function, ||¢[|; <

oo and

t
Wb J @ /R plder)  sup |Fi9(r &) = Figls. &) = 0. (6.14)

then ¢ € Hy.

6.3 Fourier transform of the solution in coordinates perpendic-
ular to the k-plane

Let u be the solution of equation (6.5), for which we have an explicit formula given by (6.7). In
order to study when this solution is a process U = {U(t,71), (t,z1) € R. x Rf} indexed by the

time variable and the coordinates of the k-plane, with values in some fractional Sobolev space
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HP(RI=F), we first need to consider the Fourier transform of the solution in the coordinate z»
perpendicular to the k-plane and see when it is a real-valued process. The reason for this comes

from the definition of H?(R?~*), which states (see Section 4.2) that
v e HY(RT®) if and only if Fov € L2(RYF; (14 |65]3)F dés).
Therefore, FoU (t, 21, ) needs at least to be function-valued if one wants U (¢, z1, ) to belong to

HP(RTF),

We will see here that under an explicit condition on the spectral measure p, which will be
shown to be optimal, there exists a real-valued process Y which is the Fourier transform in x5

of the distribution-valued solution u of equation (6.5), that is,

Wt Fag) = [ don [ de V(e el ), Pas VieR., g e SR

(Note that by definition, (u(t), Fap) = (Fau(t), ) for all ¢ € S(R?)). The condition is the

following.

Assumption Aj.
d
/ 1( 51)2 < 0o
re 1+ &1

Remark 6.3.1. This condition is the same as that obtained for the existence of a real-valued
process which is the solution of a hyperbolic equation in R*¥ driven by spatially homogeneous
noise with spectral measure u (see [15, 30]). It can be reformulated into an explicit condition

on the covariance I': see Section 6.6.

In order to show the sufficiency of Assumption Ay, we begin by establishing the following

three lemmas.

Lemma 6.3.2. Under Assumption Ag and for (t,z1,&) € Ry xRE xRF | the function T
[0,1] = OL(RF) defined by

¢t,m1,§2(5, ) = -7:2G(t —S5T1 — '752)7 ERS [Oat]a
belongs to Hy.

Before proving this lemma, let us note that the above definition means that

<¢t,:1:1,§2(3)a ()0> = <f2G(t - S, 'a£2)v 90('771 - )>a s € [Ovt]v pE S(Rk)

Proof. Fix (t,z1,&) € Ry xRF xRF Tt is sufficient to prove that ¢1t,2, ¢, satisfies the conditions
of Theorem 6.2.2. First note that for all s € [0,#], & € RF,

Fidia 6,(5,61) = FG(t — s,—&1,82) Xy (&1),
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80 Fira 6 (8,") € On(RF) (see Section 5.4) and this implies by (4.2) that ¢4, ¢,(s,") €
O’C(Rk). Moreover, Fi¢; 4, ¢, is a continuous and therefore Borel-measurable function, and

formula (6.13) gives

t
bneli = [ ds [ i) 76t 561,00

Ca(t)
< [ mee) 1 e
(dér)
= 02('5)/Rk1+£1|2
< 00,

by Lemma 5.4.2 and Assumption Ayg. We now check condition (6.14), that is,

¢
lim ds/ p(der)  sup | Fidra, 6 (&) — Fidra e (s,&)> = 0.
R0 Jo Rk s<r<s+h

Since FG(-, &1,&2) is a continuous function, it is uniformly continuous in s on [0, ¢], so we obtain
that for all (s,&1) € [0,4] x RF,

lim sup |FG(t—r,—&.&) Xa (&1) = FG(t — 8, —&1,6) Xay (61)]° = 0.
hl0 s<r<s+h

Moreover, by Lemma 5.4.1,

sup “7:G(t -, _51 3 52) Xz1 (51) - ‘7:G(t -8, _51352) Xz1 (51)|2
s<r<s+h

4 Cy(t) 4 Ci(t)
< < )
L+&6P2+ &2 — 14 &)

(6.15)

so we obtain that condition (6.14) is fulfilled, using again Assumption Ay and the dominated

convergence theorem. O

Lemma 6.3.3. Let M be the worthy martingale measure defined in Section 6.1. Under As-
sumption Ag, the real-valued process Y = {Y (t,xz1,&), (t,71,&) € Ry x RF x R¥™F1 defined
by

Y(t, z1,6) = / : M (ds,dy) FoG(t — 5,21 — y1,&2), (t, 71, &) € Ry x RF x REF,
J[0,t] xR

s a centered Gaussian process whose covariance is given by
E(Y (2, 21,&2) Y(s,y1.m2))

tAs
= /Rk M(dfl)/o dr FG(t —r, —£1,62) FG(s —r, —£1,m2) Xar—y: (&1), (6.16)

and is such that the map (t,z1,&) — Y (t, 21, &) is continuous from Ry x R¥ x RTF to L2(Q).

Remark 6.3.4. By [42, Prop. 3.6 and Cor. 3.8], this result implies that the process Y admits
a modification Y such that the map (¢, 21, &, w) — Y (¢, 21, &, w) is jointly measurable. We will

implicitely consider this modification in the following.
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Proof of Lemma 6.3.3. By Lemma 6.3.2, the process Y is well defined. The fact that it is a
centered Gaussian process with the covariance given above follows easily from (6.13) and the

remark following it. Moreover, since y and FG are symmetric in &7, (6.16) is equal to

tAs
[ utden) [ dr 6l =1 61,6 FGls = r.=trm) cos(ér - (a1 = )

and this implies that Y is real-valued.

In order to show that the map (¢, z1,&) — Y (t, 21, &) is continuous from R, x RF x Ré—k
to L2(12), we will show that for all T > 0, it is continuous from [0, 7] x R¥ x R4~ to L2((Q).
We do this in three steps, showing first that the map & +— Y (¢, 21, &) is continuous in L?(€2)
uniformly in (¢,21) € [0,T] x R¥ then that for fixed & € R4 ™% the map z; — Y (t,21,&) is
continuous in L?(Q) uniformly in ¢ € [0,7] and finally that for fixed (z;,&) € RY, the map
t = Y (t,21,&) is continuous in L%(€2). These three properties clearly imply joint L?-continuity
of the map (t,z1,&) — Y (t,21,&) on [0,T] x RF x RI—F,

Let &9, no € R¥F. Using (6.16), we obtain that

sup E((Y (t,z1,m0) — Y (¢, 21,£))?)
(t,01)€[0,7] xRF

t
= s ) [ s (PG s =)~ POl s -6 (€0

(tzml)E[O,T}XRk .

t
= sup /]R’f Iu(d&)/[) dr (FG(Tv _5177]2) _fG(Tv _51752))2a

t€[0,T] -

where we have used the change of variable r = ¢t — s and the fact that |x,, (£1)2 = 1, so the
integrand does not depend on z; and the supremum over z; disappears. Since the integrand is

also non-negative, the supremum is attained at ¢ = T', so we obtain that

sup E((Y (t,z1,m0) — Y (t.71,£))?)
(t,1)€[0,T] xRk

T
- / u(déy) / dr (FQ(r,—&1,m) — FG(r,—&1,6))". (6.17)
J Rk JO

Since F@ is continuous, the integrand in (6.17) converges to 0 as 79 — &». Moreover, by Lemma
5.4.1, we obtain, as in (6.15), that for all (r, &) € [0,T] x R¥,

4 C(T
(FG(r,~€1,12) — FG(r,~£1,6))* < ﬁéﬂl’

so by Assumption Ay and the dominated convergence theorem, (6.17) converges to 0 as 9y — &s.
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Now, let z1, y1 € RF and & € R**. Using (6.16), we find that

sup E((Y(ta y17£2) - Y(tax]aSQ))Q)
te[0,7T]

t
= sup 2 /nee p(dé1) / ds FG(t — s,—&1,&)” (1 — cos(ér - (y1 — 21)))
JRFE Jo

t€[0,7T)
T
= 2/ p(déy) / dr FG(r,—&, &) (1 —cos(& - (y1 — 21))), (6.18)
JRE J0

where we have used the change of variable r = ¢ — s and the fact that 1 — cos(&; - (y1 — x1)) is
non-negative to remove the supremum in ¢. By continuity of the cosine function, the integrand

in (6.18) converges to 0 as y; — x1, and by Lemma 5.4.1,

faw,énsﬂ20<m“&'@1m”)§%§?g%'

Therefore, Assumption Ay and the dominated convergence theorem imply, as before, that ex-

pression (6.18) converges to 0 as y; — .

Finally, let t,h € Ry, z; € R* and & € R**. By (6.16),

E((Y (t+ h,z1,&) = Y (1,21,6))?)

t
- /’uu&)/tu(qu+h—s_fh&)—qu—s_fh&DQ
JRE JO
t+h
+./TRk M(d&)/t ds FG(t+h — s, —£1,&)?
t
- /’uw&)/(ﬁ(faw+h,gh@>wa,sh@»Q (6.19)
RE 0

h
+/Rku(d§1)/0 dq FG(g, =&, &) (6.20)

In the above, we have used the changes of variable r =¢ — s and ¢ =t + h — s. Since
(FG(r+h,=&1,6) — FG(r,—&1,6))? o 0

and, by Lemma 5.4.1 and as in (6.15),

(wa+h,£h@)waafh®”25£%%%§§Q

for all h < hg, we obtain that the term in (6.19) converges to 0 as h — 0 by Assumption Ay and

the dominated convergence theorem. Moreover, by Lemma 5.4.1, for all h < hy,

/RkM(d&)/ohdq}"(}(q,_g],@y < /Rk,u(d&)/ﬂhd Cy(ho)

q
1+ |&1]2 + [&2)?

d
hcmm)ékféf%@

IN
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so by Assumption Ag, (6.20) also converges to 0 as h — 0, and this establishes the right-
continuity in ¢ of the process Y (in L2(f)).

To show the left-continuity, let us compute
B((Y (t = h.21.&) = Y (t,21,6))°)

t—h
- /’um&)/ ds (FG(t — h— 5,61, 69) — FG(t — 5,61, 6))’
JRE JO
t
+ [ i) [ asFG s -6
t—h
- /’um&)/ dr (FG(r.—&1,62) — FG(r + h, &1, 6))”
JRE JO

h
- 2

In the above, we have again used the changes of variable r =¢ — h — s and ¢ =t — s. But this

last expression is less than or equal to

t h
/ N(dfl) (/ dr (fG(T + h’a 761152) o IG(Ta 751a£2))2 + / dq fG(qa £1a£2)2> 3
JRF J0

J0

which converges to 0 as h — 0 by same arguments as above. This completes the proof. [l

Lemma 6.3.5. Let us make Assumption Ay, let Y be the process defined in Lemma 6.5.3 and
let u be the solution of equation (6.5). Then for all t € R, and ¢ € S(R?Y),

(u(t), Fap) = /nek dz; /Wk déy Y (t,21,&) p(z1,&2), P—a.s.

Proof. By Lemma 6.3.3 and Remark 6.3.4, the integral on the right-hand side of the above
equation is well defined. We show that both sides of the above equation are equal P-a.s. by
computing their variances and covariance, as in the proof of Theorem 5.3.1. By (6.7) and (6.13),
we obtain that

2

E(|(u(t), F29)I%) E

/ M (ds,dx1) (G(t — s) x Fap)(x1,0)
[0,t] xRF

t
= [, ntde) [ as 176l =5« B, 00
Since Fy = F, ' F and F(G * H) = FG - FH, we can write that
Fi(G(t = ) * Fap)(€1,0) = Fy (FG(t = 5) - FFap) (&1, 0).

Now, since by (4.1),

Fy (6.0 = G [ d 9(61.62)

(2m)
and

FFrp(&1,6) = FiF5p(61, &) = 2m)" F Frp(&r, —&),
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we obtain that

ROl =)« Fag)61.0) = [ der FG(t=5.606) Fivler=6). (621)

SO

2

B(®). F)) = [ ptas) [as | [ de G- s Fipler-g) - (622)

On the other hand, by Fubini’s theorem and (6.16),

2
E( '/Rk dz, /de déa Y (t,21,£2) p(r1,&2) )

= / dxy / d&/ dy / dno B(Y (t,z1,&) Y (¢, y1,m2)) e(z1, &) ©(y1,m2)
JRE JRA—k J Rk JRA—Ek

./Rku(d&)'/otds
- ./Wu(d&)'/otds

Using the change of variables £, — —&5, we see that (6.22) and (6.23) are equal, since FG is

2

/ da; / dés FG(t — s,—&1,8&2) X (&1) 0(21,&2)
J Rk JIRAd—k

2

[de dey FG(t — s, —&1,6) Fioplér, &)

(6.23)

symmetric in £.

Let us now compute, using Fubini’s theorem and (6.13),

E <<“(t)a7280) : /Rk dxy /Wk déo Y (t,21,62) <P(-7f'1,f2)>

N /Rk d /Rd k don ( /foRk M i) (Gl =92 P, O

'/[0 xR M(dsady]) FQG(t_Sa$1 _y1a§2)> (P($],§2)
t|x

t
= /Rk (]’1'1 /de de /Rk M(dfl)/ ds fl(G(t*S) *.7:2()0)(51,0)
FG(t—8,-61,82) Xay (§1) @(71,&2).

By (6.21) and Fubini’s theorem, this last expression is equal to

t
/ M(dfl)/ ds (/ dés FG(t — s,61,82) Frp(ér, —£2)
RF 0 Rd—k

./de d£2 fG(f — 8, *51,52) -7:1(,0(61, 62)>’

which is also equal to (6.22) and (6.23). This completes the proof. O

With these three lemmas in hand, we now prove the following proposition, which tells us

that Assumption A is a necessary and sufficient condition for the existence of the process Y.
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Proposition 6.3.6. Let u be the solution of equation (6.5). There exists a square integrable real-
valued process Y = { Y (t,21,&), (t,21,€&) € Ry x R¥ x R&*Y such that the map (t, 1, &) —
Y (t,z1,&) is continuous from Ry x RF x R¥=F to L2(Q) and

<U(t)w7’—280> = / dlE] / d§2 Y(tax]aéé) (P(x]a§2)7 P—G.S.,
JRE JRA—k
for all t € Ry and ¢ € S(RY) if and only if Assumption Aq is satisfied. Moreover, when Y
exists, it is a centered Gaussian process whose covariance is given by formula (6.16).
Proof. The sufficiency of Assumption Ay is a direct consequence of the three preceding lemmas.

To show the necessity, fix (t,z1,&) € Ry x RF x R and let <p(") = O(g1,6,) * ¥n, where

71,82
(¢) is a sequence of non-negative and compactly supported approximations of dy in R?, so

gogﬂf)& € S(RY) for each n. The assumptions made on Y and Fubini’s theorem imply that

2
/ dy1/ dng Y (¢, y1,72) 80;1)52(%,7]2) )
RF Rd—k

/Rk dyi /Rd dns / dz /Rd de2 Y (t,y1,m2) Y(t, 21,(2)) 90;1)52(1/1,772) so(m 6, (21, (2)
E(Y (t,21,£)°) < (6.24)

On the other hand, replacing ¢ by QSI)& in (6.22) gives

E(|(u(t), oV, )?) = (

Tl—)OO

2

B (0. Fa)) = [ ntazy) [ ds

Since

/ dng FG(t — s,&1,m2) ]:190(1?),52 (&1, —m2)
Rd—k

[, dm PGt~ s.61.m) Frel, (61, -m)
SRk

/ dy1/ dny FG(t — 5,&1,m2) Xe, (1) @i’:)@ (y1, —12)
RF Rd—k ,
= fG(t =S gla *62) Xér (.’Ill)’

n—oo

for all (s, &) € [0,¢] x R¥, Fatou’s lemma and Lemma 5.4.3 imply that

vV

lim E(|(u(t), Foo™, )|2)

00 z1,82

t
/ u(dé) / ds FO(t — 5,61, —&)?
Rk 0]

p(dér)
z 03(”./Rk ERTACETaES

Since the above limit exists and is finite for all £&, € R by (6.24), it holds in particular for

&9 =0, so Assumption Ay is satisfied and this completes the proof. O

6.4 Regularity of the solution in the coordinates perpendicular
to the k-plane

By the comment made at the beginning of Section 6.3, Assumption Ag is the minimal condition

for the solution of equation (6.5) to be a process U with values in some Sobolev space H?(R4~)
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in the coordinate z3. We study thereafter more precisely this regularity, which is linked to the
integrability in z9 of the square of the process Y, namely the Fourier transform of the solution
in x9.

To this end, let us first define, for § < 1 — % and z > 1,

(

1 . d—k
;a if ﬁ< T 79
In(z? _
Aﬂ(Z):{ 22 )a if 6:7%a
1 o dk | _ d—k
Lm, if gel-%5%1-%5%

Let us then fix § < 1 — d;Qk and make the following assumption on .

Assumption Bg.
/Rk p(dér) Ag (\/1 + |51|2> < o0.

For clarity, we can rewrite this assumption in the separate three cases considered in the defini-

tion of the function Ag.

1) When g < —%, Assumption Bg is equivalent to Assumption Aj, namely

p(dér)
/Rk 1+ [&)? =

2) When § = f%, Assumption By is equivalent to what we will term Assumption Aj:

p(déy) In (14 &]?)
/Rk 1+ [&)? =

3) When g €]~ %, 1- %[, Assumption Bg is equivalent to what we will term Assumption
Aq, where a = 8+ &£ €0, 1:

p(dé
/ —( 2)170 < 0C.
re (14 &%)
Note that, as for Ay, these assumptions can be reformulated into conditions on the covariance I
when the latter is non-negative (see Section 6.6). One can already notice that when a tends to
1, Assumption A, looks more and more like “u is a finite measure”, which says, by the classical

Bochner theorem, that the measure I' admits a density which is a uniformly continuous and

bounded function.
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Before stating the main result, we establish a technical lemma; for § < 1 — % and z > 1,
let us define

1

_ 2\8
L) = [ a0+’ zoen

oC
= Wi g dr rd=k-1 1+r257,
-k ],/0 ( ) 22 +r?

where wy, denotes the area of the unit sphere S”. Note that Lg(-) is a well defined and continuous

function since < 1— %. The following lemma tells us that Lg(z) behaves like Ag(z) as z — oo.

Lemma 6.4.1. Let B <1 — %. There exists R>1 and 0 < K1 < K9 < oo such that

K] Aﬂ(z) S Lﬁ(z) S KQ A,@(Z) Vz 2 R.

Proof. We consider separately the three cases: § < —%, B = —% and g €] — %, 1-— d;2k[
1) B < —dg—k :

L o0 2

AZE;; = del./o dr fa(r,z), where fg(r,z) =r®F 1 (1 +r2)f ol

Since lim fg(r,2z) = r&F 1 (1 4125 | f5(r,2)| < r¥F=1 (1 4 72)8 and
Z—00

o] 1 o]
/ dr r4= =1 (14728 < / dr rd=F=1 4 / dr (2r)2Hd=k=1 < oo,
Jo Jo J1
(because 28 +d — k — 1 < —1), we conclude by the dominated convergence theorem that

. Lp(2) > d—k-1 2
lim = Wi k1 / dr r? (1+7r%)f =K € (0,0),
Z—00 Aﬁ(z) Jo

and this implies the result.

Z)ﬁ:f(ig—k:

22 1

22 4+ 12 In(22)’

oo
; = wdkl/ dr gg(r,z), where gg(r,z)= pd—k-1 (14 7"2)6
0

Here we have

1 1
d—k—1
0<'/0 dr gs(r. z) <'/0 drr ) o 0.
Let now
I?(z):/ooﬁ 222 i 1 :ln(1+22)
11 224712 In(2?) 21n(22)

1 22 1 r
(for this last calculation, write —

po il S and integrate). Then
rz24r r 1’4z

20 K(2) < /100 dr gg(r,z) < K(2).
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So the result follows, since
In(2?) < In (1+ z2) < 21n(2?), Vz > V2.

3)56]7%a17d;2k[:

) > d—k—1 2\ 8 227((17]{)726 00
As(2) _wdkl'/o drr (1+7r9) W_wdkl,/o du hg(u, z),

where we have used the change of variable r = zu and

1 1
hg(u,z) = uF 1 (= +u?)8 .
p(u, 2) (z2 ) 14 u?
ud—k—1+28
s see that lim hg(u =
We see tha Jim 5(u, z) T
we need to consider two sub-cases:

. In order to apply the dominated convergence theorem,

yl—k—1+28
3a <0: |hg(u,z)| < ————— and
)B ‘ﬂ(la )|— 1+ u2
o0 udfka—Qﬂ 1 9]
/ dy ——— §/ du yd=F=1+28 —I—/ du ud=F3128 < oo,
0 14 u? 0 1

since d —k — 14206 > —1 and d -k —3 +2f < —1, by the assumptions made on /.
50 83 0 (o] € ) (140295

[e.e] 1 )
/ duu® 1 (1442 < / du u?F1 _|_/ du (2u)4F 328 < o,
0 0 1

Thanks to these etimates, we can apply the dominated convergence theorem in both cases to

conclude that

) Lﬁ (Z) 0o ud—k—]+2ﬂ R
zll{gc Aﬁ(z) = Wd—k—-1 /0 dU 1—}—7’[12 =K S (0, OO),

and this completes the proof. O

We are now able to study the link between the regularity of the noise and the integrability
in z9 of the square of the process Y defined in Proposition 6.3.6, which in turn will give us an

indication on the regularity of the solution in the same coordinate zs.

Lemma 6.4.2. Let § <1 — %. Under Assumption Bg, the process Y defined in Proposition
6.3.6 satisfies

B( [ de(4la? Yim@P) <o Wit eRe xR
JIRA—
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Proof. First note that if Assumption Bg is satisfied for § < 1 — %, then Assumption Ag is, so
the process Y is well defined by Proposition 6.3.6. Using Fubini’s theorem and (6.16) gives

]E( [ de+iery Y(t,xl,&)?)
Jrd—k

t
_ / ds (1 + |62]2)° / () / ds FG(t — 5,—&1,6)°
JRA—k JRE JO

1+ [€]2)°
< Ooft) ./]Rk p(dér) '/de dcs 1 —f— €1 22‘*‘ |)f22

= Oy(t) '/Rku(d&) Lg (m>

by Lemma 5.4.2 and the definition of Lg. We now use Lemma 6.4.1 and Assumption Bg to

conclude that

]E(/ it (1 + |6 2)° Y(t,:m,sa)?)
Jri—k

< Cy(b) <,U(Bl(0aR)) Lg(1) +K2/B o R)Cu(dfl) Ag (\/1+ 512)) < 00,

which completes the proof. O

This allows us to establish the following result, which states the sufficiency and the necessity
of Assumption By for the existence of a process with values in HB(R¥*) in the coordinate x5,

which is the solution of equation (6.5).

Theorem 6.4.3. Let u be the solution of equation (6.5) and let B < 1 — % There ezists a
square integrable process U = {U(t, 1), (t,21) € Ry x R¥} with values in HP(R*F) such that

the map (t, w1, &) — FoU(t, 21,&2) is continuous from Ry x RF x RI=F to L2(Q) and

<“‘(t)790> = /k diy /d . ds ng(t,.’L‘l,fg) -7:271()0('7"1’52)7 P—a.s., Vie R—!—a ZAS S(Rd)a
JR JIRA=

if and only if Assumption Bg is satisfied.

Remark 6.4.4. When 3 > 0, U(t,z,-) € L?(R), so the above equality can be rewritten in a

more natural way:
(u(t), ) :/ dml/dfl;Q Ul(t,z1,72) p(r1,72).
Rd—1 R

Note that we still do not know if U(t, z1,x2) is a well defined random variable for every xy € R,
since we only know that U(t,z1,-) takes its values in L?(IR). This point will be clarified in the

next chapter where we will see that the only problematic point is the point x5 = 0.

Proof of Theorem 6.4.3. Let us first prove the sufficiency of Assumption Bg; since it implies
Assumption Ay, let Y be the process whose existence is affirmed by Proposition 6.3.6. Define
the process U = {U(t,z1), (t,21) € R, x R¥} by

U(t,[E],'):f;]Y(t,ZE],'), (tax])ERF XRk'
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By Lemma 6.4.2, this is a square integrable process which takes its values in H?(R?~*) and satis-
fies all the desired properties, by Proposition 6.3.6 and the fact that FoU (¢, 21,&2) = Y (¢, 21, &2).

In order to prove now the necessity of Assumption Bg, note that by Proposition 6.3.6, the
existence of a process FoU which satisfies the above properties implies that Assumption Ag is
satisfied, so the process Y defined in the same theorem is well defined and the above assumptions
tell us that

Y(t7$17£2) = fQU(tax]aé-Q)u P— a.s., V(tax]7£2) € RF X Rk X Rdika

and that
E </de déy (1 + |52|2)ﬂ Y(t,m1,§2)2> — E(HU(t,fIil)HQﬁ) < Q.

But on the other hand, by (6.16), Lemmas 5.4.3 and 6.4.1,
m( [ da il Vi e?)
JRA—k
t

= [ de0r el [ @) [ dsFG - s -6.6)°

JRd—Ek JRE JO
d

> [ el oo [

JRA— o

re 1+ ]&1]2 + |2

= ) [, ntder) 1y (VITTEP)

> G K [ ) A (VIFTET).
Bi1(0,R)¢
so Assumption By is satisfied and this completes the proof. ]

Remark 6.4.5. We need here to make clear in what sense Assumption Bg is optimal. In the
preceding theorem, we have shown that Assumption Bg is necessary under the assumption that
there exists a real-valued process which is the Fourier transform of the solution in z5. But this
latter assumption is quite strong, since it implies that the solution has some L?-type behavior
in zo (that is, belongs to some H?(R**)), which is a priori not satisfied by any real-valued
function. Nevertheless, the results of the next chapter will confirm that this assumption is not
a restriction and that Assumption Bg is optimal in the case of the hyperbolic equation. On the
contrary, Assumption By is not optimal in the case of the heat equation, since in this case, even
for rough noises (like white noise) on a k-plane, there exists a real-valued process which is the
solution of the equation and which has a strongly singular behavior near the k-plane 29 = 0 (see
Chapter 9).

6.5 Summary

Using the above rewriting of Assumption Bg into three separate cases, we can make Theorem

6.4.3 more explicit.
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1) The solution of equation (6.5) is a process U = {U(t,z1), (t,z1) € R, x RF} with values in
Hf%fg(Rd’k), for some ¢ > 0, if and only if Assumption Ay is satisfied.

Remark 6.5.1. As mentioned in Remark 6.3.1, Assumption Aq is also the necessary and suf-
ficient condition for the existence of a real-valued process which is the solution of a hyperbolic
equation in R¥ driven by spatially homogeneous noise with spectral measure . In the present
case, the equation is the hyperbolic equation in R? driven by the noise term F(t,x]) do(x2).
Noting that &g € Hfgff(ﬂ%d’k), for any ¢ > 0, allows us to see the clear connection between

these two reults.

—k

2) The solution is a process U = {U(t,z1), (t,71) € Ry x RF} with values in H*dT(Rd’k) if

and only if Assumption Aj is satisfied.

3) For a € ]0,1], the solution is a process U = {U(t,z1), (t,71) € Ry x R¥} with values in
Ho~ 5" (R?=F) if and only if Assumption A, is satisfied.

Remark 6.5.2. The exponent = o — % of the Sobolev space in which the process U takes
its values can be non-negative (that is, the solution can be a function-valued process) only when

k = d—1 (that is, in the case of a noise concentrated on a hyperplane), in which case Assumption

/ p(dér) < oo
Jrar (14162777

for g € [0, %[ In the next chapter, we will see that this assumption implies another kind of

regularity of the solution.

Bg becomes

6.6 Reformulation of the conditions on the spectral measure

Let us now assume that I" is a non-negative measure on R¥. We will give here conditions on the
covariance I' which are (almost) equivalent to condition A, for a € [0, 1], using the results of

Section 4.4.

First note that Assumption A, is condition (4.9) with d replaced by k and 7 replaced by
1 — a. Using then (4.10) and Proposition 4.4.1, we obtain that Assumption A, is equivalent to

[, Tlan) Gy -alon) < . (6.25)
Rk

modulo the boundedness assumption of Proposition 4.4.1 for the case a # 0. Following the

argument of Section 4.4, let us now make this last condition more explicit.

-Ifk=1and a < %, then (6.25) imposes no restriction on the covariance I
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-Ifk=1and a =5, or k=2 and a =0, then (6.25) is satisfied if and only if

/ [(dzy) In <L> < 0.
Bi(0,1) |21

- Otherwise, (6.25) is satisfied if and only if

1
2

1
I(dz) ——— < .
./Bl([],]) | [2ath—2

In the case where I'(dz1) = f(|z1]) dz1, with f a continuous function on |0, oo, this implies

the following.
-If k=1 and « < §, then (6.25) imposes no restriction on f.

-If k=1 and « = 3, then (6.25) is satisfied if and only if

'/01 dr f(r) In G) < 0.

-If k=2 and o = 0, then (6.25) is satisfied if and only if

/Oldr Fr) 7 In (%) < 0.

- Otherwise, (6.25) is satisfied if and only if

1
2

1
1
0 T

Finally, the reformulation of condition Af,, though not established because of technical diffi-

culties, is conjectured to give the following.

- If k = 1, then Assumption Af, imposes no restriction on the covariance I' (this is clear because

assumption Aj, implies Assumption Ay and is implied by Assumption A, for example).
1

- If k = 2, we expect that Assumption Aj is satisfied (perhaps modulo a boundedness assump-

1\2
/ I'(dz1) In (—) < 0.
Bi(0,1) 1

- If k > 2, we expect that Assumption Aj is satisfied (perhaps modulo a boundedness assump-

1 1
J B1(0,1) 1 1

tion) if and only if

tion) if and only if
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Chapter 7

Existence of a real-valued solution

A first remark concerns the expression: “real-valued solution”. It is intended here to be opposed
to “distribution-valued solution” (not to “complex-valued solution”). To be precise, a real-
valued solution is a real-valued process X which represents the weak solution u of equation (6.2)

in the sense that

(u(t), @) :/ dr X (t,z) ¢(x), P—a.s., Vt € Ry, ¢ € S(R).
Rd

In this chapter, we answer two questions: when is the weak solution of equation (6.2) a real-
valued process? How regular then is this process? In the case of a noise on a hyperplane (that
is, when k = d — 1), we will see that the answer to the first question is positive when Assumption
Bg of Section 6.4 is satisfied for 5 € [0, %[ and that the regularity of the solution depends on f,
whereas in the case of a noise on a lower dimensional plane (that is, when k < d — 1), there does

not exist a real-valued process which is the weak solution of equation (6.2).

We begin with the case of a noise on a hyperplane (that is, when k = d — 1). The techniques
that we use are similar to those of Section 6.3. However, we first need to establish some proper-
ties of F1G, the Fourier transform in the first d — 1 coordinates of = of the solution of equation
(5.15), since this term will appear in the expectation of the square of the real-valued process

which is the weak solution of equation (6.2).

For the same kind of technical reasons as in Chapter 5, we now restrict ourselves to the case
where either d € {2,3} and a, b are any real numbers, or d € {4,5} and a = b = 0 (see Remark
A2.1).

7.1 Fourier transform of the Green kernel in 2,

Using (4.1), (5.18) and [45, formulas 1.5.83 and 1.7.61], we obtain the Fourier transform of G in
the first d — 1 coordinates of z: for (t,&,z2) € Ry x R™! x R, we have

87
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FiG(t1.02) = 75 (G061 )) a2) = 5= [ da FG(E.61,6) X6

efat

T (VIGPF0=a) =) 1y < I [P 20?0
- (7.1)

—at
Iy (\/(GQ—I)—‘&P) (t2—$%)> 1{‘$2‘ <t}’ if 4> —-b>0and |§]|2<a2—b,

e
2

where Jy and I are the zero order regular and modified Bessel functions of the first kind (see

Appendix B for an overview of their basic properties which will be used below).

F1G is a real-valued and Borel-measurable function, which is bounded on [0, 7] x R¥~! x R
for all T > 0, and it is symmetric and infinitely differentiable in &;, since for all £ € R, and
z9 € R, F1G(t,-,29) is an analytic function on R¥~!, whose Taylor series is given by

1 n (£ —a3)" 2 2\n d—1
FiG(t, &) = 5 Y (—1)" 25 ([&]* + b — a”) Wiy <y VO €RTL

m ()2
2 = 221 (n!)

Moreover, since Fi1G(t, -, xz9) and all its derivatives in &; vanish at infinity, F1G(t, -, 22) €
Om(RE 1), s0 G(t, -, 22) € OL(RY!) by (4.2).

From the explicit expressions of G listed in Appendix A, we also deduce that for all t € R,
and 23 € R, G(t,-,x2) is a finite order distribution with compact support on R4~!: furthermore,
for all t € Ry, there exist K;(t) > 0 and Ny € N such that

sup  |G(s,.m0)| <Ky (t) Y sup  [0%e(zy)], Ve e SERIT, (7.2)
SE[O,tLCL’QER ‘ﬂl‘SNl m1EB1(U,t)

where n; denotes a multi-index in N~ 1.

F1G has also the following properties, which will be used in the next section.

Lemma 7.1.1. For all t > 0, there exists Cy(t) > 0 such that

Ca(t) !
2
flG(sagla"I’?) < \/1 ¥ ‘61‘2 \/52 _ x% 1{|.’E2‘ < 5}’

Vs €[0,t], & e R, 25 € R

C
Proof. If |&1|2 > 2(a? — b) + 1, then since Jy(r)? < — for all » > 0 and (5.21) implies that
r

VEETI @ > LS 7.3
1 a” -~ D) ) ()

we obtain that

672(1,5
FiG(s,&1,m)° = —— J§ (Wfluba?) <)> Y|za| < 5}
e20,’15 C\/i 1

1 .
4 1462 /s —a3 {lza| < s}
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If 2(a2 —b) + 1 > 0 and a® — b < |&2 < 2(a® — b) + 1, then since Jo(r)? < 1 for all ¥ > 0, we

obtain

672as
FiG(s,&1,m9)° = 1 I (\/(|§12+b—02) (s? —$%)> Wizl < s}
eQa*t
< I
S T Yimal < s}
eQa’t t
<

1
T g el <sp

since y/s2 — 22 < s < t. Finally, if a? —b >0 and |£]? < a? — b, then since [y(r)? < C e for

all r > 0, we have

—2as
2 _ € 2 2
FiG(s,&,m0)° = —— 1 (\/(a2 —b—1&?) (s* = $2)> Yjaal < 5}
e ! 2va2—bt
< @
< — Ce Yjma| < 5}
20"t

< € C e2Va? bt t

—1
N 777 ol < s}

since /s2 — x% < s <t as before. The proof now ends as the proof of Lemma 5.4.1. O

The preceding lemma, as Lemma 5.4.1, will be used for rather technical purposes. A direct

consequence is the following upper bound.

Lemma 7.1.2. For allt > 0, there exists C5(t) > 0 such that

t Cs(t) t
! $,&1,m9)? < —2222_ arccosh | — =1 1y € R".
/0 ds F1G(s,&1,22)" < TP arccosh 2] 1{‘$2| <tb VG eR"™, 29 €R

Proof. We obtain this inequality by a simple integration in s of the result of Lemma 7.1.1. [
As Lemma 5.4.3, the following lemma gives a corresponding lower bound.

Lemma 7.1.3. For allt > 0 and 9 € R such that 0 < |z9| < t, there exists Cg(t, z2) > 0 such

that
Ce(t,z2)

VI+&2

Proof. If |€1]2 > a? — b+ ﬁ (recall that 0 < |z2| < ¢ by assumption), then

t
/ ds Fi1G(s,&1,20)* > Ve € R
J 0

t t —2as
/g ds F1G(s,&,20)° = /(] ds - 4 T3 (\/(512 +b—a?) (s? - x%)) 1{|,7;2| < s}

> S [ (VisRre- e (o).

T2

Use the change of variables r = \/(|&1[2 + b — a?2) (52 — 22), so that

_ r dr rdr
s (lalP+b—a?) T t(EP+b—a?)

ds
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and set R = \/(|€1]2 + b — a?) (2 — x2) to see that

9t
62(1,1‘, 1

t R
ds F1G(s, €1, 22)° > dr r Jo(r)%
'/0 s F1G(s, €1, m2)" > TR /0 rr Jo(r)

Since R > 1 and using Lemma B.2.1, we obtain that

Ce 2™ (&GP +b—d?) (12—}
4t &2 +b—a? '

¢
/ ds F1G(s, &, 19)* >
Jo

Moreover, by (5.22),

VIEPE+b—a? < (1VVb—a?) 1+ &), (7.4)

S0 )
Ce 207t /12 — g2 1 1

4t 1VVD—a? \/1+]&]2
Ifa? = b+ 1 >Oanda —b<[&P <a® b+ 5 2,them

t t 6720,5 2
/U ds FiG(s, &1, 19)° = / ds 1 Jo <\/(|£12 +b—a?) (s T%))

To|

> e 2 (t — |zy)) Jo(1)2,

¢
/ ds F1G(s, &, 12)" >
Jo

since \/(s2 — x3) (|&1|2+ b —a?) < 1 for all s € [0,#] and Jo(r)? > Jo(1)? > 0 for all r € [0,1].
Finally, if a2 — b > 0 and |¢1|? < a? — b, then

t t —2as 2
/0 ds F1G(s,61,10)7 = / ds S 1o (\/(aQ—b—|§]|2) (32—x§)>

S|z

A )

since Ip(r)? > 1 for all » > 0, and the proof ends as the proof of Lemma 5.4.3. O

7.2 Optimal condition on the spectral measure

Similarly to Section 6.3, we will see here that there exists a real-valued process defined outside
the hyperplane z9 = 0 which is the weak solution of equation (6.2) if and only if Assumption
By of the preceding chapter is satisfied, namely

_ pld&)
Jri-1 /1 + |51\2

Note that because of the square root, this condition is stronger than the one obtained for the
equation driven by spatially homogeneous noise (see [15, 30]), but this is quite normal since the
noise considered here, being concentrated on a hyperplane, is by nature more singular than a

spatially homogeneous one.

In Section 7.5, we give a reformulation of Assumption By into a condition on the covariance

I', when the latter is non-negative. One can already notice that the Lebesgue measure on R4~!
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(which is the spectral measure of white noise on R?~1) does not satisfy this condition for any
dimension d greater than 1. This result is then completely different from the one obtained for
the heat equation, for which there always exists a real-valued solution outside the hyperplane
x9 = 0 (see Chapter 9).

We now prove the sufficiency of Assumption By through the following three lemmas.

Lemma 7.2.1. Under Assumption By and for (t,z1,22) € Ry x R~ xR*, the function Dty 0
[0,1] = O (RIY) defined by

¢t:$1,$2(87 ) = G(t — 5T — ',1732), s € [Oat]a
belongs to H,.

Proof. Theorem 6.2.2 does not apply here (condition (6.14) is not satisfied, mainly because F;G
is not continuous in s), so we need to show directly that ¢; », 4, € Hy, using the definition of this
space (see Section 6.2). Fix therefore (¢,z1,73) € Ry x R¥~! x R*. Note that for all s € [0, 1],
& eRME,

Fiotm (8,61) = F1G(t — 8, —E1,72) Xy (§1)-

Thus, for all s € [0,¢], Fi¢ru,2s(5,-) € Op(RI1) (see Section 7.1) and this implies that
Gtow120(8,") € OL(RITT), by (4.2). Moreover, Fy¢;z, 4, is a Borel-measurable function and

using Lemma 7.1.2 and Assumption By, we obtain that

t
Btz aslli = / M(dﬁl)/ ds FiG(t — s, —&1,m2)?
Rd—1 0

p(déy) t
< e — .
< Cs(t) oo ST ET arccosh ] 1{|.7;2\ <} <% (7.5)

since 9 # 0 by the assumption made above. Let us now define

¢)("nr)1 \ T2 (sayl) = (¢t,m1,,’r,2 (5) *1 wn) (yl)a S € [Oat]a Y1 € Rdi]a (76)

where (1,,) is a sequence of non-negative and compactly supported approximations of dy in R~

which satisfies
[ doiala) =10 s Fia(e) <1, v € R
Ri-

For each n, we have
71¢§321,$2(5, §1) = Fidbtzy (8, 61) Frbn(&1),

which implies that

t
s = Wl = [ s [ (00 Frn s, 0 11~ Fihal60)P

Using the dominated convergence theorem together with the following facts:

Fign(er) = 1, |1= Fp(€)] <2 and g, ol < o0,
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we conclude that

|$raeres = Siraalle = 0.

It remains to check that ¢£:1 s, € Hyyp for each n. By (7.6) and definition of ¢§7T;)1;$27 qﬁg;)hm
is a Borel-measurable function and for all s € |0, f] d), e 72( ) € S(RE), since ¢y 2 (8,7) €
O}, (R4-1). The last condition to verify is that ||¢t,m1,m2||t,+ < o0.

We also deduce from the definition of (;St 1.z, that for all s € [0, ], d), ﬁ 772(9, -) is compactly
supported, and therefore belongs to C§°(R?~1) and so does ¢t,z1,z2 (s,-) %1 ¢t wl,zz( -). Moreover,
by estimate (7.2), there exists R; > 0 such that

o (6552 41 002 25 (1) =0, Va1 € RO with a1 > Ry
s€|0,t

This implies that

162l = [ [ wtde0) (02 ) o1 1042, s Do) < o
which completes the proof. [l

Lemma 7.2.2. Let M be the worthy martingale measure defined in Section 6.1 in the case
k = d — 1. Under Assumption By, the real-valued process X = {X(t,z1,2z2), (t,21,29) €
R, x R x R*} defined by

X (t, w1, 72) = / M(ds,dy:) G(t — 5,21 — y1,%2), (t,71,72) € Ry x R x R¥,
[0,¢] xR~ 1

1s a centered Gaussian process whose covariance is given by

E(X (t, 1, 22) X(s,91,%2))

tAs
= /R ,U,(df]) / dr F]G(t =T, _51 s 1732) ‘7:1 G(S =T, _51 s yQ) Xz1—11 (51)5 (77)
JRA—1 Jo

and such that the map (t,z1,x2) — X (t, 21, x9) is continuous from Ry x R x R* to L2(Q).

Remark 7.2.3. This result and [42, Prop. 3.6 and Cor. 3.8] imply that the process X admits a
modification X such that the map (¢, 1, 22, w) — X (f, 21, %2, w) is jointly measurable. We will

implicitely consider this modification in the following.

Proof of Lemma 7.2.2. First note that the proof follows exactly the same scheme as the proof

of Lemma 6.3.3, but the estimates are quite different.

By Lemma 7.2.1, the process X is well defined. The fact that X is a centered Gaussian
process with the covariance given above follows easily from the isometry (6.13), and since p and

F1G are symmetric in &;, (7.7) is equal to

tAs
/Rd1 M(dﬁl)/o dr FiG(t —r, —&1,22) F1G(s — 1, —&1,92) cos(ér - (w1 —y1)),
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so X is real-valued.

In order to show that the map (¢, 1, xz2) — X (¢, 21, 22) is continuous from R, x R~ x R*
to L?(Q), we show that for all T > 0, it is continuous from [0,7] x R*™! x R* to L?(Q), showing
first that the map zo — X (¢, 21, x2) is continuous in L?(Q) uniformly in (¢,z;) € [0,T] x R,
then that for fixed zo € R*, the map z1 + X (¢, 1,29) is continuous in L2(£2) uniformly in
t € [0,T] and finally that for fixed (z1,22) € R¥™! x R*, the map t — X (¢, 1, 22) is continuous
in L2().

Therefore, let 9, yo € R*. Using (7.7) and arguments similar to those that led to (6.17), we
obtain that

sup E(X (¢, z1,y2) —X(ta$1,$2))2)
(t,wl)E[O,T}de*I
T
_ / w(dé) / dr (FiG(r,—E1.ya) — FiGlr, €1, 22))" (7.8)
JRA-1 JO

We will show in two steps that this expression converges to 0 as yo — 2. First note that for
each & € R¥™1 and r # |z|,

(FiG(r, =&, y0) — FiG(r, =&, 12))> — 0.

Y2—T2

Moreover, since F; G is bounded on [0, 7] x R¢~! x R, we obtain from the dominated convergence

theorem that

T
/ dr (F\G(r,—E1,y2) — FiGlr,—£1,22)> — 0.
JO

Y2 —T2

But for € € ]0, |z2|[ and |y2 — 2| < €, we obtain by Lemma 7.1.2 that

T
/ dr (F1G(r, &1, y2) — FiG(r, —&1,22))°
Jo

2C5(T)

T T
T (oo () 1 <my e () 1y <)
2 C5(T)

T T
T\&\? (arccosh (ﬁ) 1{‘m2‘76<T}+arcmSh (T—2|> 1{|.7,'2|<T}>’

since |ya| > |z2| — €. So by Assumption By and the dominated convergence theorem, (7.8)

converges to 0 as yo — 2.

Now, let 1, 11 € R¥™! and 2y € R*. As in the proof of (6.18), (7.7) leads to

sup E((X(t,y1,22) — X(t,21,72))?)
t€[0,T7]

T
= / u(d{l)/ dr F1G(r,—&1,22)% 2 (1 — cos(&1 - (g1 — 1))). (7.9)
Ri-1 0
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By continuity of the cosine function, the integrand in (7.9) converges to 0 as y; — z7 and by
Lemma 7.1.1,

FiG(r,—€1,12)> 2 (1 — cos(&r - (y1 — 4 Cu(T) !

SVIrGR Vg Al <rh

so using again Assumption By, the fact that, since z9 # 0
T

1 T
ﬁ 1{‘:52‘ <r} = arccosh (T—2|> 1{|x2| <T} < 00

and the dominated convergence theorem, we obtain that the expresssion in (7.9) converges to 0
as Y1 — T1.

Finally, let t,h € R, 21 € R and x5 € R*. As in (6.19) and (6.20), (7.7) leads to
E((X(t + h7$1 3 xQ) - X(ta T, LEQ))2)

t
/ (1) /dr(ﬂG(TJrh,&,ma)ﬂG( €12)
R~ 0

h
[ ) [ da 766" (711)

Using the same technique as above for the continuity in z9, we show that (7.10) converges to 0

(7.10)

as h — 0. First, note that the integrand converges to 0 for all r in [0,¢] such that r # ¢

, 1] sucn ¢ ) , — |.’I,‘2‘,
and that it is bounded on [0,#] x R¥~! x R, so by the dominated convergence theorem

t

[ dr (FiGU+~,0) =BGl ~62))” 5,0
Jo

But since for all h < hg,

t
/ dr (FLG(r + hy—&1,22) — F1Gr, —E1. 25))?
0

¢ ¢
2 (/ dr FiG(r + h, —&,29)? + / dr FG(r, —§1a$2))2>
Jo Jo

t+hg
4/ dr F1G(r, —&1,19)?
J 0

Marccmh ﬂ 1
T+la2 |29 {|zg] < t+ho}

by Lemma 7.1.2, we obtain that the expression (7.10) converges to 0 as h — 0 by Assumption
By and the dominated convergence theorem. On the other hand, Lemma 7.1.1 implies that for
all h < hyg,

IN

IN

h
/ p(déy) / dg F1G(q, =&, 12)°
Jra—1 Jo

h
[ g [ag B
Rd—1

\/14_‘&‘2 N \$2|<(I}
Ca(ho 7“51)

h
wcosh | — | 1
Ri-1 /1 + |&]? e <|~7"2|> {[z2| <h}

IN

IN
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so by Assumption By, the integral in (7.11) converges also to 0 as A — 0, and this shows the
right-continuity in # of the process X (in L2(f2)). The left-continuity follows in the same way as

in the proof of Lemma 6.3.3, and this completes the proof. ]

Lemma 7.2.4. Let u be the solution of equation (6.5) (with k =d—1). Under Assumption By,
the process X defined in Lemma 7.2.2 satisfies

(ulthph = [ do X(ha) o). P,
JRd

for allt € Ry and ¢ € S(R?) such that supp ¢ C R x R*.

Proof. By Lemma 7.2.2 and Remark 7.2.3, the integral on the right-hand side of the above
equation is well defined, since supp ¢ C R?~! x R*. To show that both sides are equal P-a.s.,
we proceed as in the proof of Lemma 6.3.5. By (6.7) and (6.13), we obtain that

2
Bttt o)) = E{|[ M(ds, dz1) (G(t = s) * ¢)(1.0)
J[0,t]xRd~1
t
= [, e [ as ARG 9 )02,
Rd—1 0
Since Fy = F, ' F and F(G x H) = FG - FH, we can write that
FG(t-5)*9)(,0) = F(FG(t-s)- Fp)(1.0)
= o [0 FGH - 56.8) Foln ), (112
T Jr
where we have used (4.1), so
t 2
B(®. o)) = [ utde) [Cas 5o [ e FaE— s Feleng) . (113)

On the other hand, by Fubini’s theorem and (7.7),

foxean)

[ s / dy B(X(1,3) X(L,y)) ¢(z) p(y)
Rd JRd

- /R u(d&)/ﬂtds

Using now the definitions of F; and Fs, we obtain that

/ dr X(t,z) ¢(x)
R

2
/ dz1 / dro F1G(t —s,—&1,22) Xe, (1) @(z1,22)| .(7.14)
JRFE JRA—k

/ dxy / dzo F1G(t —s,—&1,22) Xe (1) (271, 22)
RFk Rd—k

= /d$2 FiG(t — 5, =&, x2) Fro(&r,z2)
JR

1

= o ) % FG(t — s, &, &) Follr, &), (7.15)
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which is equal to (7.12), by symmetry of FG in &, so (7.13) and (7.14) are equal. Following the

proof of Lemma 6.3.5, it remains to compute, using Fubini’s theorem and (6.13),

B (0.0 [ dr X(0.0) ot

— / M(d&)/ ds (fl(G(tS)*so)(fl,O)
Rd—1 0

/d dx flG(t -5 7513'7"2) X& (7"1) (70(7:)>
R,

Using calculations (7.12) and (7.15), we obtain that this last expression is equal to

t
/Rdl u(d&)/ﬂ s <%/Rd& FG(t - s,61.6) Folér,6)

27TR

L[ ae, 76— s, —61, &) Fole, 52))-

which is also equal to (7.13) and (7.14). This completes the proof. O

With these three lemmas in hand, we can now prove the following theorem, which shows
moreover that Assumption By is optimal, as already mentioned in Remark 6.4.5 in the preceding

chapter.

Theorem 7.2.5. Let u be the solution of equation (6.5)(with k =d —1). There exists a square
integrable real-valued process X = { X(t,x1,22), (t,x1,22) € Ry x RI™! x R*} such that the
map (t,z1,x2) — X (t, 21, x2) is continuous from Ry x R x R* to L?(Q) and

(u(t), ) = /Rd dr X (t,z) ¢(x), P—a.s.,

for allt € Ry and ¢ € S(R?) such that supp ¢ C RI™L x R* if only if Assumption By is satisfied.

Moreover, when X exists, it is a centered Gaussian process whose covariance is given by formula
(7.7).

Proof. This proof follows the same scheme as the proof of Proposition 6.3.6 in Section 6.3.
The sufficiency of condition By follows directly from the three preceding lemmas, so let us
now care about the necessity: fix (¢, z1,22) € Ry x R¥™! x R such that 0 < |zo| < t and
let 905«7)’7-2 = O(zy,00) * Pn € S(R?), where (¢,) is a sequence of non-negative and compactly

supported approximations of dy in R?. Since supp gogﬁ'),m C R x R* for n sufficiently large,

= [ dne [ e de BOCr ) X (21,220) @8 1, 0) o1, 2)
JR JIR

= E(X(t,z1,22)?) < o0. (7.16)

n— 00

the assumptions made on X and Fubini’s theorem imply that

E(|(u(t), o,,) ) = ]E(

/d dyy dyz X (t,y1,92) 90;?),:;;2(?/1, Y2)
Jra
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On the other hand, replacing ¢ by @;SZ)@Z in (7.13) gives

2

! 1
B(|(u(t), ¢{ra)[*) = /TR - nld) /0 ds |- /]R dgy FG(t — 5,61,62) Flt), (61, €2)

™

Let us then compute

1
oo | 46 FG(t = s.6.6) Fol,, (61.6)
T JRr

= / dys FAG(t — 5,&1, —y2) ]:180:(5?),:1:2(51,?/2)
R

= /Rd dy, /Rdyz FiG(t - 8,61, —12) Xe (91) 8, (41, 92)
= FiG(t —s,&, —x2) Xa1 (&1),

n—oo

for all (s,¢&;1) € [0,#] x R4™T such that s # ¢ — |25|. Fatou’s lemma and Lemma 7.1.3 then imply
that

lim E(|(u(t), o5,)1%)

n—0o0

v

t
/ M(dfl)/ ds flG(tisagla*mQ)Q
Rd-1 0

p(dr)
Jri-1 (/1 4 |&1]?
Since the above limit exists and is finite by (7.16), Assumption B is satisfied and this completes

the proof. O

2 06 (ta x?)

Remark 7.2.6. From estimate (7.5) in the proof of Lemma 7.2.1, one sees that under Assump-
tion By and for fixed t € R, , there exists C'(t) > 0 such that

A

t 1
b, 49)2) < . 2COS — ~ — .
E(X (t,z1,22)") < C(t) arccosh 7l 1{|x2| <t} . 0 In 7l

This estimate implies that
/ dxy B(X (t,z1,12)%) < oo,
JR

so by Fubini’s theorem, the map x9 + X (,21,22) belongs P — a.s. to L%(R), in concordance
with Theorem 6.4.3 of the preceding chapter (in the case k = d — 1 and 8 = 0). On the other
hand, the behavior in ln(‘a}—ﬂ) is the reason why the process X is not defined on the hyperplane

29 = (0. In the following section, we shall see that under a stronger assumption on the spectral

measure u, the process X can be defined also on the hyperplane zo = 0.

7.3 A stronger condition

By Theorem 7.2.5, Assumption By only guarantees that the solution of equation (6.5) is a real-
valued process X defined outside the hyperplane z9 = 0. We are going to show here that the
process X is defined on the whole space under the following slightly stronger condition on

(which does not belong to the set of assumptions of the preceding chapter).
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Assumption B|).

p(d) n (VI+T6P)
441 VitaP

Note that there is only an extra logarithmic factor in this assumption compared to Assumption
By. At the end of this section, we give an example of a spectral measure p which does not

satisfy Assumption B but satisfies Assumption By.

One can also notice that the situation is once again completely different in the case of the
heat equation, since there never exists a real-valued solution defined on the whole space for this

equation; see Chapter 9.

We will now prove the optimality of the above condition through the following two estimates,
which are slightly more delicate to establish than Lemmas 7.1.2 and Lemmas 7.1.3, but give

bounds valid for x5 = 0.

Lemma 7.3.1. For allt > 0, there exists C7(t) > 0 such that

1+1n (\/1+|£1\2)
V146 ? ’

V¢ € Rdi], T2 € R.

¢
/ ds F1G(s,&1,12) < Cr(t)
Jo

Proof. If |¢1|2 > 2(a? — b) + 1, then since

we obtain that

t 4 —2as 2
/o ds F1G(s, &1, 29)° = /o ds - 4 Jo (\/(|§12 +b—a?) (s? - x%)) Yizs| < s}

C 20"t t 1
< 1 .
a 4 /5132 VIt (GR+b—a) (23 Uz2l<t}

Computing the integral gives

062(11‘ )
s + 2 _g
|aP+bfGQ |&P+b—a ?

\/5062(1,*1‘, | t+\/m+t27.’1}% .
n
T iy
4 /14162 2] + == {lz2] <t}

s=t

Ylzo| < )

s=|za|

using (7.3). This last expression is maximum when x5 = 0, in which case it is equal to

v2C e ! 2 — 3 1 2
4m<1n(\/|& +b a)+ln<t+\/£]|2+b_a2+t .
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Morevoer, using (7.4) and the fact that < 2, we obtain that

1
|€1]%+b—a?

/t ds F1G(s, &, 22)
J0
% (1n (\/1 + |§1\2) +1In (\/1 Vb a,2)) +1In (t +V2+ t2)) .

If 2(a2 —b) + 1 >0 and a® — b < |&2 < 2(a® — b) + 1, then since Jy(r)? < 1 for all ¥ > 0, we
get that

t t g—2as 2
/0 ds FiG(s,&1,00) = /0 ds S Jy (\/(512 +b—a?) (2 - xg)> L iml < 5}
o207t
4
Finally, if a®> — b > 0 and |&|2 < a® — b, then since Iy(r)? < C e for all r > 0, we get that

t t —2as 2
'/0 ds F1G(s,&,19)° = '/0 d564 Iy <\/(a2—b—|§12) (32—33%)) 1{|x2|<5}

20"t
e /
< ' C e2Vor-bt t,

t.

<

and the proof ends as the proof of Lemma 5.4.1. O

Lemma 7.3.2. For all t > 0, there exist Cs(t), C4(t) and R(t) > 0 such that

Cs(t) In (\/1 ¥ \51\2) —Ol(t)
V146 7

Proof. Let R(t)? = 2(a® — b) + (7;—; V1) and |£;| > R(t). We then compute

t t —2as 2
/ds]—"]G(s,&,O)Q - /ds6 Jo (s \/|§]\2+b—a2)
JO J0

t
/ ds F1G(s,&1,0) > Ve € RET with [&] > R(t).
J 0

4
20ttt 9
> / ds Jy (S VIE)Z+b— (1,2)
4 0
672a+t t \/1€1]2+b—a?

= dr Jb(T)2,
4 ‘51‘2 +b- a2 J0

by the change of variable r = s1/|£1|2 + b — a?. Using now (7.4), we obtain that

t ) 972a+t t+/|&1]2+b—a? )
ds F1G(s.60,0)° > : / dr Jo(r)
/[] 44/1V (b—a?) 1+ |42 )1
o207t In (t &1]2 +b— (1,2) -
41V (b —a?) 1+ ]2 m ’
by Lemma B.2.2. Using (7.3), we moreover have
t
In (t VIE]? +b— (1,2) > In <\/1 + \£1|2) +1In <ﬁ> :

so the conclusion follows. O
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We can now state the theorem.

Theorem 7.3.3. Let u be the solution of equation (6.5) (with k = d —1). There exists a square
integrable real-valued process X = {X (t,x), (t,2) € Ry x R} such that the map (t,z) — X (¢, z)
is continuous from R, x R% to L?(Q) and

(ult) o) = [ dr X(19) p(o).  Poas, VER,, peSE),
Rd

if and only if Assumption By is satisfied. Moreover, when X exists, it is a centered Gaussian

process whose covariance is given by formula (7.7).
Proof. The proof is similar to that of Theorem 7.2.5. Let us first show the sufficiency of As-

sumption By, considering what needs to be modified in Lemmas 7.2.1, 7.2.2 and 7.2.4.

In Lemma 7.2.1, we simply use Lemma 7.3.1 and Assumption B instead of Lemma 7.1.2 and
Assumption By in order to estimate ||¢s 4, 4, |l¢, which gives us the finiteness of this expression
for all (t,x1,29) € Ry x R x R.

For Lemma 7.2.2, we need some slightly different estimates of the L2-increments of the
process. Let us first consider x9, yo € R. We have, following the proof of this lemma,

(t,21)€[0,T] xRd~1

T
- / u(d&)/ dr (F1G(r. —&1,y2) — FiGlr,—&1,2))
Rd-1 0

Using twice the dominated convergence theorem as in the proof of Lemma 7.2.2, jointly with

Lemma 7.3.1 and Assumption B}, we obtain that the above expression converges to 0 as yo — 9.

Now, let z1, 11 € R~ and 25 € R As above, we have

sup E((X(ta Y1, -’EQ) - X(ta x]a*/‘CQ))Q)
te[0,7]

T
- / u(d&)/ dr F1G(r,—E1,12)> 2 (1 — cos(&1 - (g1 — 71))).
,Rd—l Jo

Once again, using twice the dominated convergence theorem joinlty with Lemma 7.3.1 and As-

sumption B, we obtain that the above expression converges to 0 as y; — 7.

Finally, let ¢,h € Ry, 21 € R"" and x5 € R. Then
E((X(t + h7x1 3 LEQ) - X(ta Z1, xQ))Q)

t
= /]Rdl ,u(df]) /0 dr (f]G(?" + h, —61,{52) — ]Z']G(T’ _517{52))2 (7.17)

h
+/Rdlﬂ(df1)/ﬂ dg F1G(q, &1, 22)°. (7.18)
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Using the same arguments as above, we obtain that (7.17) converges to 0 as h — 0. For the
second term, note that as F;G is bounded on [0, k] x R x R,

h
/ dqg F1G(q,—&,m2)> — 0, V&G eRT
0 h—0
Moreover, by Lemma 7.3.1,

1+hn (VITIEP)
V16 ’

for all h < hg. So the dominated convergence theorem allows us to conclude that the process X

h
/ dg F1G(q, &1, 12)* < Cr(ho)
0

is L2-right-continous in #, and an argument similar to that of the proof of Lemma 6.3.3 allows
us to to prove the left-continuity. Summing up these results gives us the L2-continuity of the

process X on Ry x R?, then the existence of a jointly measurable modification.

The proof of Lemma 7.2.4 remains unchanged, except that the condition supp ¢ C R*~! x R*
disappears. This completes the proof of the sufficiency.

In order to prove the necessity, let us also follow the proof of Theorem 7.2.5. Assuming that

the process X exists, we therefore have

00 > E(X (t,21,0)%) = lim E(|(u(t), o0 0) 2, (7.19)

n—oo 1,0

where o™ = 6, ¢ in &'(R%). Using (7.13), we obtain
—0oQ

513170 n

2

Bt e ) = [ e [ s

% ,/R d&x FG(t = 5,61, 62) f‘P(z?),o(fhéé)

So by the same calculations as in the proof of Theorem 7.2.5 and Fatou’s lemma, we have

t
tim B (o). ) > [ ) [ s FiGl - 60,07

n—oo

But since by Lemma 7.3.2,

t t
/ u(déy) / ds FIG(t — 5,6,,0) > / (1) / ds FIG(t — 5,61,0)°
JRa-1 Jo B0, R Jo

/ ey SO (VIFTER) - cy)
p(dé, ;

B (0,R(1))° V16

we obtain, using (7.19) and the fact that p(B1(0, R(t))) < oo,

[ v Catt) In (VIFTEP) - Cil) _
Rd—1 plas m .

v
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Now we use Theorem 7.2.5 which tells us that under the assumptions made in the present

theorem, Assumption By is satisfied, therefore,

- ] n(VI+[aP) ] Cs(t)In (VT &) - Ci(t)
0 [ wag) = = [ wae) EE

p(dr)
+ C4(t) ——— < oo,
N e TGP
so Assumption B is satisfied, and this completes the proof. O

This proves that under condition By, the weak solution u of equation (6.2) does not explode
near 23 = 0. Let us now give an example of a spectral measure p which satisfies By but not By,
and for which there is therefore an explosion near z9 = 0, by the necessity of condition Bj. We
consider the case d = 2 (that is, the case where p is a measure on the real line) and describe p
by its density ¢ given by

)
32 ifreloel
e

p(r) = )

In(r)?
and ¢(r) = ¢(—r) for r < 0. One can easily check that

o(r) 1 $(r)
T2 roee In(r)2 e 0 /R dr V1412 <o

if r € [e, o0],

On the other hand,

é(r) In(v/1 4 r?) N 1 “ /dr d(r) In(v/1+r?) _
N e s P U

Let us now check that the corresponding covariance I' = Fju satisfies all the required as-

sumptions. Clearly, p is a non-negative tempered Borel measure on R, so I' is a tempered
non-negative definite distribution by the Bochner-Schwartz theorem 4.3.1. It remains to show
that I" is a measure on R. For this, let us note that ¢ is decreasing and convex on [0, co[, so by
Polya’s criterion (see for example [23, §2.3.d]), ¢ is a (symmetric) non-negative definite function
on R. By the classical Bochner theorem, this implies that I' is a non-negative finite measure on

R. We therefore have constructed a relevant example.

7.4 Holder-continuity of the solution

In this section, we show that when 3 is positive, Assumption By of the preceding chapter implies
a stronger regularity of the solution than the one obtained in that chapter. Namely, we can show
here Holder-regularity of the solution. The techniques that we use are similar to those used in

[54] for the solution of the hyperbolic equation driven by spatially homogeneous noise.
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For the clarity of the calculations, we assume in this section that the coefficients a and b of
equation (6.5) are both equal to 0 and that the space dimension d belongs to {2, ...,5} (because
of the preceding restriction). Let then 5 € ]0, %[ and suppose that Assumption Bj of the

preceding chapter is satisfied, which can be written when £k =d — 1 as

[
RO (14 [6[2)2 7

Note that this condition is always stronger than By and B, and that when f tends to %, it

“u is a finite measure”, as it was the case for the condition A, of the

looks more and more like

preceding chapter, with «a tending to 1.

We will now prove that under this assumption, the process X admits a modification which
is P — a.s. locally Holder-continuous outside the hyperplane zo = 0, with exponent v < 5 A %.

For this, we need the following two lemmas.

Lemma 7.4.1. Fiz $ €]0,5[. For all T >0 and R > > 0, there exists Co(T, R,€) > 0 such
that
ly — 2o 2002

t
/ ds (F1G(s,&1,y2) — F1G(s, &1, 12))° < Cy(T, R, ) T
70 VR SIDE

)

for all t €10,T), & € R and e < |x2], 12| < R.

Proof. Let us first recall that we have assumed that a = b = 0, so the Fourier transform of G in

the coordinate 21 simply reads (see (7.1))

1 _
FiG(t,&1,19) = 3 Jo <§1| 2 T%) 1{\352‘ <t} V(. &,20) ER x R Ix € R,

Let us fix t € [0,T], & € R £ < |z3], |y2| < R and assume, without loss of generality, that
e <19 < ys < R. Let us then compute

t
/0 ds (F1G(s,&1,y2) — Fi1G(s. €1, 7))

1 [t 2
= Z/U ds (JU <|£1 s2 — U%) 1{?/2 < s}t Jo (£1| s2 ’r%) 1{.’1}2 < g}> (7.20)

Adding and substracting the term Jy (\El\ V82— ’I'%) 1{y2 < s} inside the parentheses, we
obtain that (7.20) is less than or equal to

1 t 2
3 L <ty [ ao (0 (1 52 08) - 0 (Jel /o2~ 53) ) (7.21)
Y2

1 Y2 2
+ 5 / ds .]0 (5] 52 — x%) . (722)

2
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We now need to bound these two terms. We begin with (7.22). Since Jy(r)? < % for all » > 0,
we obtain that when [&;| > 1,

Y2 2
[ as (|s] - x)
Jxo

o y2 C de 1

— /s

(ST —72 \51\ V(s +32) (85— 29)
C 2c VY2 — 73

11 V222 Ja \/ s—x9) V2 &l

since s + z9 > 2z9 > 2¢. On the other hand, when [&;| < 1,

IN

Y2 2
/ ds Jy (|§1 52_73%) <y — 22 < V2R \/ys — x9,
i

o

since Jo(r)? <1 forall 7 > 0 and 0 < 29 < y3 < R. So there exists C(R,¢) > 0 such that (7.22)

is less than or equal to
VY2 — 22
VI+[&)?

We now turn to (7.21). If [&1]| > 1, then since J{(r) = —Jy(r) for all » > 0, where J; is the first

order regular Bessel function of the first kind (see Appendix B), we have

(0 (a5 =32) o (a1 oo —t) )

] Voot v 2(1-p)
= (/gl J dr J1(7”)> <J0 <|fl s2 — U%) - (|£1 — 12>> )

Using the fact that |Ji(r)] < Q for all r > 0, we obtain

C(R,¢)

g

=

).

</§1 \s2—x3
l€1] \/s2—y3

28
dr (r)> <0 Gl (2 - )t - (2 - 1)

Since zo < yo and for all v > u > 0,

VU — A u v—u LV

1 1
v4d —udst = )

Qut (Vv ++u) dut

we get that

1] /52 —3 2 2, 2\28
( / ir J1<r)> < oy P 2R

€1l V57— o2 4(s2 —2)%
—x5)28
< (R g W)

(s2 — v3)



7.4. Holder-continuity of the solution 105

where we have used the fact that y2 — 22 = (yo + z2) (y2 — 22) < 2R (y2 — 22). On the other
hand, since Jo(r)? < g for all » > 0 and yy > x9,

2(1-8)
(Jo (m 2 y) o (m - x))
2 2 1-8
(m(m —y2) +2Jo<|§1| —x))

(o)’
1-8
VP (s — y3)

Combining the above estimates gives

t 2
1{y2 < t} / ds <JU <|§1 5% — y%) —Jo (fl - x2>>
7Y2

IN

IN

! 1 (yo2 — 22)%P
< CR¥1 / ds '
= 2 <t} 77 (2 —y2ysts Gl
Since S € |0, %[,
sup 1 //ds —— < o0, (7.23)
el W2 <), T (2 - y3)2 o

so we have obtained the desired bound for (7.21) when |£;| > 1. On the other hand, when

|£1| S 13
2
(Jo (51 5% — y%) —Jo (51 - 362))
1] /73 ’ 2
= </ dr Jl(T)) < (\/gQT%\/QQ’U%> )
1] \/52*115

13
since Ji(r)? <1 for all » > 0 and |¢;| < 1. Moreover,

2 2 27,{,2
\/82—$%—\/52—y% < : <R
2\/32—y% & —y2
< R (2R)172ﬂ (y2 7'7"2) ﬁ

Vst —ys ’

' 2
< [ (4o 7))
Y2

).

so we obtain that

< R(2R)'™

C / ds ——— (y2 — 72
= <t
{y2 } \/s2 — yQ
Since

(7.24)

sup

1 /dsi
te[0,T],y2€[e,R] {y2 <t} vV S
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we conclude that there exists C(T, R,e) > 0 such that (7.21) is less than or equal to

— 28
(1, Rye) 2=
(1+ &2z
Combining the two bounds obtained for (7.21) and (7.22) gives the desired result. O

Lemma 7.4.2. Fiz 8 €10, %[. For all T >0 and R > ¢ > 0, there exists C1o(T, R, ) > 0 such

that
hQﬁ/\%

(1+]&2)2 8

t
/ ds (F1G(s + h,&,12) — F1G(s,&1,12))* < Cro(T, R, €) ;
J0
for allt €10, T), h€[0,T —t], & € R and e < |22 < R.

Proof. The proof is quite similar to the preceding one. Fix t € [0,T], h € [0,T — t], & € R,

£ < z9 < R and compute

t
/ ds (F1G(s + h, 1. 9) — F1G(5, 61, 2))?
J0O

1/t 2
ST A O GIRYCR ) RIS (CIRVCEe) T
J0

1 ! ?
< Umen [ o (0 (0o =a) - a (i -23)) (7.25)
1 T2 2
+§ /aah ds Jy (fl (S + h)2 — ’I'%) . (726)

Let us first bound the term in (7.26), using arguments similar to those used to bound (7.22).

When ‘£]| 2 1,

“asn (e Jorne ) < [T !
dSJU<fl s+ h ’I') < — ds
/xh 2 &l Jeson (s +h+x2) (s+h—29)
< 20V
T V2e [Gf

since s + h + x9 > 229 > 2e. On the other hand, when || < 1,
To 2
/ ds.]0(§1| 32—x3> < h<VT Vh,
Jxa—h

so there exists C(T,e) > 0 such that (7.26) is less than or equal to

vh
VIFIGR

For the term (7.25), an argument analogous to that used for (7.21) gives, when |&]| > 1,

’ 2
Yz, < t}/ ds (JO (§1| (s+h)?— T%) —Jo <|51| 52 — T%))

C T " ! Lk
< TP 1 s ,
= {2 <1} / (2 — a2)5+8 &1 7P

C(T,¢)
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and when [&] < 1,

t 2
Yay < 1} / s (Jo (ﬁl (s+h)2—w%) ~Jo (|§1| s?—x%))

< T (27

t
1
26 1 ds ———— K28,
{x2<t}l2 5 /32,37%

(7.23) and (7.24) then allow us to conclude that there exists C(T, R,e) > 0 such that (7.25) is

less than or equal to
h?b

1+ &)
and combining the two bounds obtained for (7.25) and (7.26) gives the result. O

C(T, R,¢)

Let us now state the theorem.

Theorem 7.4.3. Let 5 € |0, %[, let us make Assumption Bg and let X be the process defined
in Theorem 7.3.3. There emists then a modification X of the process X such that the map
(t,z1,29) = X (t,21,29) is P-a.s. locally Holder-continuous on Ry x R x R* with ezponent
vy < BA %, that is, for all T > 0 and R > ¢ > 0, there exists a P — a.s. positive random variable
d(w) and a constant K (T, R,e) > 0 such that

X(u)— X
P sup M <K(T,R,e) | =1,
|lu—v|<d, u,ve B(T,R,¢), "LL - 'U|’Y
where
B(T,R,e) =[0,T] x R ! x ([-R, —¢] U[e, R])
and

lu| = \/t2 + |z1|2 + 25 for w= (t,z1,72) € B(T, R, ¢).

Note that this theorem implies that if Assumption Bg is satisfied for any g € ]0, %[, then the
modification X of the process X is continuous outside the hyperplane z9 = 0, and in particular

on the set |z9| = ¢, which was not clear a priori.

We point out that in the study of the heat equation, this question of regularity of the solution
outside the hyperplane 2o = 0 is answered in a simple manner through the regularizing property

of the Green kernel: see Chapter 9.

Proof. We want to apply here the Kolmogorov continuity theorem, so we need first to study
carefully the continuity in L2(Q) of the process X. Therefore, let T > 0 and R > £ > 0. We

would like to estimate the L2-increment

E((X(t + h,y1,y2) — X(t,21,22))*)
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when ¢t € [0,T], h € [0,T —t], 21, y1 € R! and € < |zy|, |y2| < R. To this end, note that this

increment is less than or equal to

3 (E(X(t+ h,y1,y2) — X(t,y1,92))°)
+E((X (t,y1,12) — X (t, 21,92))%) (7.27)

(
(X(t,21,y2) — X(t,21,22))?)).

—_~~ o~~~

+E

Let us consider the three terms separately, beginning by the last one. Using (7.7) and Lemma
7.4.1, we obtain that

E(X (t,z1,y2) — X (t, 21, 22))?)

t
= / N(dfl)/ ds (FiG(t — s, —&,y2) — F1G(t — 8, —&1,29))°
Rd-1 0

d 1
< CQ(Ta Ra E) / L)liﬂ ‘yQ - $2|2ﬂ/\27
JrRE-T (14 [&4]2)2

the integral in &; being finite by Assumption Bg. For the second term in (7.27), we have by
(7.7),

E((X (t,y1,52) — X (t,71,12))°)

t
= / M(dﬁl)/ ds F1G(t — s, —€1,y2)% Ixy: (€1) — X (€1) .
Rd—1 0

Since
9 9 y1-&1 ) 2
(€)X (@F € 4 (€) - xn (@) =4 | [ arer
Jx1-&1
< 41417 |y — @,
we obtain by Lemma 7.1.2 that
E((X(ta Y 7y2) - X(t,$],y2))2)
t p(dg1) 2
< 4 Cx(T) arccosh [ — —_— |3y — B
- (1) <|y2|> {ly2| <t} JRA1 (1 4 1€ 2 )%*5 o=y
T (d.
< 4C5(T )ar(‘(‘oqh< ) 1{8<T}/ —51)\-’171*.711\%.
R (1 + [&1]2)2

Finally, let us consider the first term in (7.27), which is equal to

E((X (¢ + h,y1,y2) — X (t, 41, 92))°)

t
— /Rdl ,u(df]) /0 dr (f]G(?" + h, —f],yg) _ f]G(T, _5]7y2))2 (7.28)

h
+/Rdlﬂ(dfl)/0 dq F1G(q, —€1,y2)%, (7.29)

by (7.10) and (7.11) in the proof of Lemma 7.2.2. By Lemma 7.4.2, (7.28) is now less than or

equal to

d
Cio(T, R, ) / % B280%
SR (14 161]2)2
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Moreover, F1G(q, &1, —y2) = 0 when g < |ya|, so (7.29) is equal to 0 when h < ¢, and by Lemma
7.1.2, it is also bounded by

T dé,
C(T,e) = C5(T) arccosh <;> 1{5 <7} '/Wl \/%’

so (7.29) is less than or equal to C(T,¢) g Summing up all these bounds gives the following
result: there exists C(T, R,e) > 0 such that

E((X(t + h,y1,y2) = X (t,21,79))%)
< CO(T,R,¢) (hQﬂA% + |y — x]|2ﬂ +lyg — xﬂ%/\%)

1
< 3C(T,R,e) (h® + |y1 — z1]* + (y2 — 22)?)P"1.

Since X is a Gaussian process, this implies that for all m > 1, there exists C'(™) (T,R,e) >0
such that

B((X (£ + h,yn,y2) = X (8,1, 29))°™) < CU(T, Rye) (W + g1 — a[* + (yo — 2)2)PH 0™,

By the Kolmogorov continuity theorem (see for example [29, Problem 2.2.9]), we obtain that
there exists a modification X of X such that the map (¢, 1, z9) — X (t, 21, x2) is P-a.s. locally
Holder-continuous on Ry x R¥~! x R* with exponent v < 8 A %. O

Moreover, one can notice that by the proof of the preceding theorem and under Assumption
Bg, the process X admits a modification which is P — a.s. locally Holder in z; with exponent

v < (3, which is an improvement when 3 > %.

7.5 Reformulation of the conditions on the spectral measure

Following the scheme of Section 6.6, let us assume that the covariance I' is non-negative and
note that Assumption Bg is condition (4.9) with d replaced by d — 1 and 7 replaced by % - B.
Using then (4.10) and Proposition 4.4.1, we obtain that Assumption Bpg is equivalent to

/ P(do1) Gy 11 4(m) < oo, (7.30)
Rd—1 72

modulo the boundedness assumption of Proposition 4.4.1. As before, let us now make this last

condition more explicit.

-If d =2 and B = 0, then (7.30) is satisfied if and only if

/ I'(dzy) In <L> < 0.
JB1(0,1) |1 |

- Ifd>2or B €]0,1], then (7.30) is satisfied if and only if

1
I(dz) —7—— < 0.
/31(0,1) |29 2P +2
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In the case where I'(dz1) = f(|z1|) dz1, with f a continuous function on |0, oc[, this implies
that:

-If d =2 and B = 0, then (7.30) is satisfied if and only if

/01 dr f(r) In (%) < 00.

Jif d > 2 or B €10, 5[, then (7.30) is satisfied if and only if

! 1
/0 dr f(r) o < o0.

Finally, the reformulation of condition Bj, though not established because of technical diffi-

culties, is conjectured to give the following.

- If d = 2, we expect that Assumption B] is satisfied (perhaps modulo a boundedness assump-

1 \2
/ [(dzy) In <—> < 0.
B1(0,1) |21

- If d > 2, we expect that Assumption B] is satisfied (perhaps modulo a boundedness assump-

1 1
B1(0,1) |71 |21

7.6 Noise on a lower dimensional plane

tion) if and only if

tion) if and only if

Let us first consider the case where the noise is concentrated on a k-plane, with £k = d —2. Using
(4.1), (7.1) and [45, formulas 1.14.16, 1.14.55 and 1.18.31], we can compute the Fourier transform
of G in the first d — 2 coordinates of z. For (t,£1,22) € Ry x R™2 x R?,

F1G(t, &1, 72)
( o—at CoS (\/(\51 2+b—a?) (82 - |$2‘2)>

1
2 N {lwa| <t}

_ (7.31)
o—at cosh (\/(a2 —b— &)%) (#* — ‘72‘2)> a?—b>0 and

| T
| 27 NZErNE {lza| <t} { &2 < a® — b

The next theorem shows that when k = d — 2, the distribution-valued solution v of equation

if ‘51 |2 2 CLQ - ba

(6.5) cannot be a real-valued process, even outside the k-plane zo = 0.

Theorem 7.6.1. Let u be the solution of equation (6.5) with k = d — 2. Then there does not
exist a real-valued square integrable process X = { X (t,z1,2v), (t,z1,20) € Ry x RF x RI=F\{0}}



7.6. Noise on a lower dimensional plane 111

such that the map (t,z1,22) — X (t,z1,29) is continuous from Ry x RF x RI=F\{0} to L?(Q)

and

(ultho) = [ do X(ta) o). P,
JRrd
for allt € Ry and ¢ € S(R?) such that supp o C RF x RIF\{0}.

Proof. Suppose that there exists a process X satisfying the above conditions. As in the proof of
Theorem 7.2.5, fix (t,z1,22) € Ry x R™2 x R? such that 0 < |z3| < ¢ and let @;S;TRIZ = O(gy 20) *
¥y € S(RY), where (1,,) is a sequence of non-negative and compactly supported approximations

of 8y in R?. By the assumptions made on X, we obtain that

lim E(|(u(?), ¢

T1,T:
n—o00 2

W) = B(X(t,21,72)%) < oo, (7.32)
and also that

2
FiG(E = 8) + p2,)(61,0)|

‘ 2

B0, o)) = [ ) [ as

- '/R“u(da)./otds

Moreover, by arguments similar to those used in the proof of Theorem 7.2.5, we obtain that for
all 5 # |z and & € RY2,

Fi(G(s) * 1)s,) (€1,0)

F1(G(s) * @:S;Tf?a:g)(fl,o) T Fi1G(s, &1, —x2) Xay (&1),

where F1G is given by (7.31). So Fatou’s lemma tells us that

t
lim E(|(u(t), o{7),,) %) > /]R - nlde) / ds F1G(s, &1, —m2)". (7.33)

n— 00 IZ‘

For a fixed & € R%~2 such that 1€1]% > a® — b:

ds f]G(s,&,—xg)Q > 5 ds

l’Q‘ 5132‘

= 00,

/t o —2at /t cos (\/(82 — |z2|?) (J&> +b — (1,2))2
J| /|

A s2 — |zo]?

because for ¢ € |0, 1] fixed, there exists § > 0 such that

cos? (V7= [wal?) (67 +b—a?)) > 1 =2, Vs € [lwal, o] +9),

|2|+0 1—
/ dS 2782 = Q0.
| S§° — ‘7'2‘

Za|

and

The right-hand side of (7.33) is therefore infinite, but this is a contradiction since the limit on
the left-hand side of (7.33) exists and is finite by (7.32). We thus have proven that a process X

satisfying all the conditions of the theorem cannot exist. O
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When k£ < d — 2, F71G is no longer a function, but a distribution in £;. We therefore expect
that the following limit

t 2
lim B (u(0), ¢ )2) = [ ntaea) [ ds |Fi(Ge = 5) ol ) (60,0)

n—oo

is also infinite in this case, independently of any condition on u, so that there never exists a

real-valued solution. Nevertheless, this fact has not been proven analytically.

We will show in Chapter 9 that the situation is once again completely different in the case
of the heat equation, for which there always exists a real-valued solution outside the k-plane
x9 =0 for any k € {1,...,d — 1}.



Chapter 8

Non-linear hyperbolic equation in RY
driven by noise on a hyperplane

In the preceding chapter, we have obtained precise conditions which guarantee the existence
of a real-valued weak solution u of the linear hyperbolic equation (6.2) in the case of a noise
concentrated on the hyperplane zo = 0, and also some regularity of this solution. With these

results in hand, we are now able to treat non-linear equations of the same type.
For technical reasons, we make the following assumption.

Assumption Cj.

(i) The covariance I' of the noise is a non-negative measure on R?~'.
(ii) d € {2, 3} (so the “hyperplane” z5 = 0 becomes either a straight line or a plane) and a? > b.

From the expressions of G listed in Appendix A, we see that part (ii) of this assumption
implies that for all £ € Ry and z9 € R, the Green kernel G(%,-,z9) is a non-negative measure
on R?~!. These non-negativity assumptions are necessary in Theorem 6.2.1, which we shall use

repeatedly in the following.

8.1 Non-linear term restricted to the hyperplane

Let us consider the following formal non-linear equation:

( O%u ou
W(t,x) + 2a E(t’ z) +bu(t,z) — Au(t, x)
= g(?t(t,fl)l,O)) (50(.’112) + h’(“‘(tamlao)) F(taml) (50(.’1)2), teERy, z€ Rda (81)
ou d
{ u(O,x)fE(O,x)fO, x € R,

where ¢ and h are real-valued functions and F is the noise concentrated on the hyperplane

29 = 0 considered in Chapter 6 (with K = d — 1). Note that we consider null initial conditions,

113
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but this could be improved; see Remark 8.1.3.

The non-linear term in this equation is restricted to the hyperplane z5 = 0 and composed by
a deterministic part g(u) and a stochastic one h(u)F. If we consider that it is a given function
of (t,z), we can then write formally what should be the solution of this “linear” equation, using

the extended definition of the stochastic integral of Section 6.2:
t
u(t,z1,m9) = / ds/ G(s,dz1,x2) g(u(t — s,21 — 21,0))
Jo . Rd—l
+/ M (ds,dz1) h(u(s,z1,0)) G(t — s,x1 — 21, %2), (8.2)
[0,] x Rd—1

P-a.s., for all (t,21,72) € Ry x R¥™! xR, where G is the solution of equation (5.15) and M is the
worthy martingale measure defined in Section 6.1. Actually, since the non-linear term contains
the unknown u, what we have obtained here is a rigorous formulation of equation (8.1); a mild
solution of equation (8.1) is a predictable process u = {u(t,z), (t,z) € R, x R?} which satisfies

the above equation.

Note that when ¢ = 0 and A = 1, the solution of the above “equation” is precisely the
real-valued solution of equation (6.5), which is well defined on the whole space (see Theorem

7.3.3) when Assumption By is satisfied, namely when

p(d) n (VI+16P)

The following theorem states that under this assumption, there still exists a real-valued solution

< o0

to equation (8.2) when g and h are globally Lipschitz functions.

Theorem 8.1.1. Under Assumptions Bjy and Cy, and if g and h are globally Lipschitz functions,
then there exists a unique mild solution u = {u(t,z), (t,z) € Ry x R} to equation (8.1).
Moreover, the map (t,z) — u(t,z) is continuous from Ry x R? to L*(Q) and for all T > 0,
sup F(u(t, £)?) < oco. (8.3)
(t,2)€[0,7] xRd
Before proving this theorem, let us mention that the Green kernel restricted to the hyperplane
29 = 0 plays a crucial role here; in particular, we will need the following lemma on the behavior

of F1G evaluated in z9 = 0.

Lemma 8.1.2. For all t > 0, there exists C11(t) > 0 such that
Cll(t)

Fi1G(s,6,0)| < ————————
e TIAREY

) V(S,fl) € [Ovt] X Rdil‘

S

Proof of Lemma 8.1.2. If [£1]? > 2 (a? — b), then since
C

[ Jo(r)] < m

, Vr > 0,
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we obtain by (7.1) that

e*(l,s 6“’71: C
| F1G(s,€1,0)] = Jo (|fl‘2+b*a2) sl < )
2 ( ) 2 (1+ (&2 + b — a?) 52)%
But &2 +b—a® > @, SO
1
‘a*t I 2\ 1 _ 1
FG(s,6,0) <0 & (1+M> <ot L
2 2 (14 (&115)2)3

If now a? — b < |£1]? < 2(a? — b), then since |.Jy(r)| < 1 for all r > 0,

ea’t
<
- 2

—as

FiG(s,61,0) = =

o (VIaP+o—a?) s)

Finally, if |¢1]? < a? — b, then since |Io(r)] < C e" for all 7 > 0,

efas

[ F1G(s,61,0)] = ‘I(] ( (a2 — b — |€1]2) 9)‘

2
C e\/a?fbf\&ﬁ s < et ! C 6\/(1,271)15
— 2 b

ea’t

<
and the proof ends as the proof of Lemma 5.4.1. O
With this tool in hand, we can now prove the theorem.

Proof of Theorem 8.1.1. Let us consider v(t,z1) = u(t,z1,0), (t,z1) € Ry x R~ Equation

(8.2) evaluated in z9 = 0 gives the following (closed) equation for v:

v(t, z1) /ds/ G(s,dz1,0) g(v(t — s,z1 — 21))
Rd-1
/ M(ds,dz) v(s,z1) G(t — s,x1 — 21,0). (8.4)
[0,1] xRd—1

Although G(-,-,0) is not the Green kernel of any “standard” equation in R, x R~!, the above
equation is of the type of the ones studied in [15]. We can therefore apply Theorem 13 of that
paper; in order to do this, we need to verify (see [16]) that for all t € Ry, G(¢t,-,0) € O (R "),
(which is clear from the definition of G and the assumptions made on d, a and b), that for all
& € R the map t — F1G(t,£1,0) is continuous (which is also clear from the expression of

G(t,&1,0) in (7.1)) and finally that for all £ > 0, there exists hg > 0 and k : [0,#] — O (R4 1),
such that for all s € [0,], h € [0, hg] and & € R,

[ F1G (s + h,&1,0) — F1G(s,61,0)] < Fik(s, &), (8.5)
and .
/ ds/ p(déy) Fik(s,€1)? < oo. (8.6)
Jo . Rd—l
By Lemma 8.1.2, the distribution-valued function & whose Fourier transform is defined by
2C(t
]k(S,f]): H() ’

(14 (|&1]5)2)7
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satifies (8.5). Note also that for all s € [0,¢], Fik(s,-) € Op(R¥1), so k(s,-) € O (RI1)

by (4.2); moreover, k(s,-) is a non-negative distribution on R?~! since when s = 0, k(s,-) =

2 C11(t) do(-) which is non-negative, and when s > 0, we have by [45, formulas 1.2.7 and 1.18.29]:
ccC

blov) = SO0 g (121

1
S

7 ‘1 ! ), when d = 2,
T4

and

k(S lE]) CCII()K% <|T/—1>7 Whend:3a

s \m1|4 s
where K, is the modified Bessel function of order v of the second kind, which is non-negative
on Ry (see Appendix B). By estimates analogous to those in the proof of Lemma 7.3.1, we also
obtain that

. _Aon®)?
s d¢y) Fik(s,&)* = [ d de c
/0 9'/“{“#( &1) Fik(s, &) / Q/Rd N E DL

T+ 1n (/14 &2
4 CH (t)2 07(t) /Rdl :u'(d&) \/(1_*_75”2 ) )

which is finite by Assumption B, so (8.6) is proven. Theorem 13 of [15] then states that there

IN

exists a unique predictable process v which satisfies (8.4). Moreover, the distribution of v (¢, 1)
is stationnary in z, the map (¢,z1) — v(t,z;) is continuous from R, x R?*~! to L?(Q) (note
that the continuity in ¢ is uniform in z; € R4~") and for all T > 0,
sup E(v(t, 21)?) < oo. (8.7)
(t,@1)€[0,T]xRI~1
So u(t,x1,0) = v(t,z1) gives the solution of equation (8.2) on the hyperplane zy = 0. For
x9 # 0, let us now define u(t,zq,z9) by

t
u(t, z1,x9) = / ds / G(s,dz1,22) g(v(t — 8,21 — 1)) + (G(t — -, 21 — -, x2) - Mh("))t,
Jo Rd 1

which is not anymore an equation, since v is now a given process (note that since G(t—-, z1 —-, 72)
is non-negative, ||G(t — -,x1 — -, x2)||; < oo and Z = h(v) satisfies conditions (6.8) and (6.10),
the stochastic integral is well defined by Theorem 6.2.1). This shows directly that u satisfies
equation (8.2) and moreover that it is the unique process to do so. Moreover, it admits a jointly

measurable modification since it is continuous in L?(£2), what we now prove. To this end, write
U(t, Z1, xQ) = A(t7 Z1, ‘/EQ) + B(t7 Z1, ‘TQ)’

where ;
A(t,z1,29) = / ds / G(s,dz1,22) g(v(t — s, 21 — 21))
Jo . Rd—l

and
B(t7$17$2) = (G(t — T — -,xQ) . Mh(v))t_
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We first verify the L?-continuity of the process B, following the scheme of the proof of Lemma

7.2.2 and using the precise estimates of Theorem 7.3.3. Let us therefore consider zo, Yo € R;

sup E(B(t,z1,y2) — B(t,flﬁ1,fl:2))2)
(t,z1)€[0,T] xRd~1

t
= sup / ds / PO der) (FIG(t — s, &, y0) — FiG(t — 5, —E1,29))°
(t,21)€0,T]xR4-1 JO Rd—1

IA

t
sup /ds sup F(h(v(s,z))?)
(t21)€[0,T]xRi-1J0 2 eRi-1

'/Rdl p(déy) (FIG(t — s, —&1,y2) — FIG(t — 5, &1, 12))%,

by Theorem 6.2.1. Using the global Lipschitz property of h (which implies linear growth), we

find that this expression is less than or equal to

sup K2 E(l —+ /U(S,Zl)Q) .
(s,21)€[0,T|xRd—1

t
sup [t [ ds (RG(s,—€1)  FG s —m),
Ra— 0

(t,x1)€[0,T]xRd~1
which converges to 0 as yo — z9, by (8.7) and the same argument as in proof of Theorem 7.3.3.

For z1, y1 € R“ ! and z9 € R, we have
Y

sup E((B(ta Y1, 1132) - B(ta x]7$2))2)

t€[0,7T)
t
= sup / ds / phON(dey) FrG(t = s, =&, m2)" 2 (1 = cos(& - (11 — 21)))
teo,7]Jo Jra-1
t
< s [ds sup Bh(o(sa)))
t€[0,77 /0 z1€ERI-1
[ ) FiGU s 20?2 (1 costér - (o — 1))
-
< sup K2 E(1 4+ v(s,2)?)

(s,21)€[0,7]xRd—1

t
-sup/ u(d&)/ ds FiG(t — 5. —&1,12)> 2 (1 — cos(&y - (41 — 21)).
R~ 0

t€[0.T]

which converges to 0 as y; — z;.
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Considering finally t,h € Ry, z; € R¥"! and 23 € R, we obtain

]E((B(t + h,:m,xg) — B(t,$1,$2))2)

t
_ / ds / WOV (dE) (FLGt+ = s, —E1, ) — FiG(t — 5, — 61, 2))?
JO .Rd*1

t+h
+ / ds / ph ) (de)) FGtE+h — s, &1, 19)?
Jt JRA—1

sup K?E(1 + (s, 21)%)
(s,21)€[0,t] x RI—1

t
'/d 1 M(d&)/ ds (FiG(t + h — s, —&, m2) — F1G(t — s, —€1,12))°
Rd- 0

+ sup K?E(1 +v(s,21)?)
(8,21 )E[t,t—khg}XRd*]

t+h
. / p(dér) / ds F1G(t + h — s, €1, 32)%,
JRA—1 Jt

IN

for all A < hg, and this expression converges to 0 as h — (. Since a similar estimate holds for

h < 0, we have shown the L2-continuity of the process B.

We now prove the L2-continuity of the process A following a different order: we first show
that the map ¢ — A(t,z) is continuous in L?(Q) uniformly in 2 € R?, then that for fixed ¢t € R, ,
the map z — A(t, z1, ) is continuous in L?() uniformly in 29 € R and finally that for fixed
(t,71) € Ry x R¥~! the map zo — A(t,71,79) is continuous in L%(Q).

Let therefore t,h € Ry ;
sup E((A(t+h7x17$2) _A(tax]axQ))Q)

(:L‘l ,:Ez)E]Rd*l xR

t+h
- E(/ ds/ G, dz,22) g(o(t + h— 5,21 — 2))
0 Ri-1

(,’I:1,.’I?2)€Rd71XR
t 2
—/ ds/ G(s,dz1,x2) g(v(t — s, x1 — z1))>
0 Rd—1

t
2 sup E (/ ds/ G(s,dz1,x2)
(,’I:1,.’I?2)€Rd71 xR J0 JRA—1

(gv(t+h—s,21—21)) —gv(t —s,z1 — z1))))2>

t+h )
+ 2 sup E (/ ds/ G(s,dz1,22) g(v(t + h — s, 21 —z1)) )
(z1,22)ERI-I xR Jt JRd-1

IN

Using the Cauchy-Schwarz inequality and the Lipschitz property of g, we find that this last
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expression is less than or equal to

t
2 sup / ds G(s,R 1)
(,’121,.’132)6Rd71 xR 0

t
/ ds/ G(s, der, ) K2 E((0(t + h— 5,21 — 21) — o(t = 8,21 — 21))?)
JO -Rd*1

t+h i
+ 2 sup / ds G(s,R*" ", x9)
(:El,:L‘Q)ERdflxR Ji

t+h
/ ds/ Gs,dzr,00) K2 E(1 + o(t +h — s,21 — 21)?).
Jt ,Rd—1

Note that
B e a8
G(S,Rd ],.TQ) = f]G(S,U,LEQ): 9 0(\/&2—1)\182—%%) 1{‘.’1)2‘<S}
< 67 C eV s — g, (8.8)

since Io(r) < Ce" for all » > 0, by (B.3). So after introducing the supremum over z; under the

integral sign in the above expression, we obtain that it is less than or equal to

t
20y K?t sup / ds G(s,dz1,m3) sup  E((w(t+h —s,21) —o(t — s,21))%)
9€R JO Rd—1 x1€RI-1

t+h
+2 Cyyny K* h sup / ds / G(s,dz1,z9) sup E(1 +uv(t+h—s,21)%)
Jt . ]Rdfl

r2€R z1ERI-1L
t
< 207 KQt/ ds sup E((v(t+h—s,z1)—v(t—sz))?)
J0 :I,‘lERd71
+2 Cf+h0 K? h? sup E(1 + v(s,:c1)2),

(8,21)€[0,ho] xRE!

for all h < hy. By the dominated convergence theorem, the first term of this expression converges

to 0 as h — 0, since the process v is L2-continuous in ¢, uniformly in 2; € R~ (see [15] and
[16]) and for all A < hy,

sup E((’U(t—Fh—S,.’E]) —’U(t—S,LE]))Q) < 2 sup ]E(’U(S,.’,E] )2) < o0,
(s,21)€[0,t] x RA—1 (s,21)€[0,t+hg]xRI—1

by (8.7). The same conclusion is immediate for the second term: similar estimates give the

convergence to 0 for A < 0.

Let now t € R, and z;, y; € R,

sup E((A(r, 1, 72) — Alt,71,22)))
Tro€

= sup ]E(('/Otds'/w1 G(s,dz1,22) (g(v(t — s,y1 — 1)) — g(v(t — s, 21 — 21)))>2>

z9ER
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Using, as before, the Cauchy-Schwarz inequality and the Lipschitz property of g, we find that

this last expression is less than or equal to

t
sup / ds G(s,R¥1 1)
r2€R JO

t
/ ds/ G(s,dz1,x2) K2 E((v(t — s,y1 — 21) —v(t — s, 21 — 21))?).
0 Rd~1

By (8.8) and the stationnarity of the distribution of v in x;, this expression is less than or equal

to

t
Cy K? t sup / ds G(s,dz1,z2) B((v(t — s,41) — v(t — s,21))?)
T2€R Rd-1

t
< C?K?t / ds B((v(t — s,y1) — v(t — s,21))?).
0

Now, since the process v is L2-continuous in z; and satisfies (8.7), we conclude by the dominated
convergence theorem that the above expression converges to 0 as y; — z7.
Finally, let t € R, z; € R*! and zy, y» € R;

E((A(t,z1,y2) — A(t,21,72))?)

< /ds/Rdl (5,d21,19) g(o(t — 5,31 — 1)
—/Ot s /RG“ G(s,dz1,3) g(o(t — 5,1 — z]))>2).

At this point, we need to consider separately the two cases d = 2 and d = 3. Let us begin by
the case d = 2: using (A.12) and the change of variable z; = /s — 73 w;, we obtain for a

measurable function h defined on R,

/ G(s,dz1,12) h(z)
R

ef(I,S

cosh (\/((1,2 —b) (s? — 13— z%)) "

le ) Zl)

1 -z

{lza| < s} 2 ,/z1< e 2 — x% — Z]Q
1 e p o (V@B ) o

{|$2| < S} 2 /11)1<1 o m l sty -

So
/G(SadzhyQ) h(zl) - / G(SathJCQ) h(21)
R R
e W (H(s w1, p0) — H(s,w1,72))
= — — S,W1,Y2) — S, wW1,T2)).
2m |wi]<1 \/ 1— ‘UJ]|2
where

H(s,wy,29) = cosh (\/(a2 —b) (s —z2) |w1|> h <\/32 — 13 wl> 1{‘:52‘ < s}
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Using the above equality with h(z1) = g(v(t — s, 21 — z1)) and the Cauchy-Schwarz inequality,

we obtain
t —as
e dun
B(A(t a1 0) — Altan o)) < [as G [ S E
0 27 lwi|<1 /1 — |’w] ‘2
t —as
e dw, 9
. ds —/ ————— E((H(s,w1,y2) — H(s,w1,12))").
/0 21 |wi]<1 / 1- |'w1 |2
Since

E((H (s, w1,y2) — H(s,w1,22))?) — 0,

Y2—T2
for s # |z9| and wy € B1(0,1), by the continuity of cosh, the Lipschitz property of g and the
L?-continuity of v; since moreover H is bounded by the Lipschitz property of g and (8.7), and

since finally

/td e’”/ dw, <
s — < X
Jo 21 Jjwy <1 /1 — |wn |? ’

we obtain by the dominated convergence theorem that when d = 2,

E((A(t,21,92) — A(t,21,22)°) = 0.

Y2—T2

When d = 3, using (A.13) and the change of variable z; = \/s2 — 22 w;, we obtain for a

measurable function A defined on R?,
G(s,dz1,12) h(z1)

RQ

—as

e 1
! NoErd B
{lza| < s} "4 ( 52 — a2 Jjzy|=\/57 a3

L (V=5 (7= a3~ [aP)
+ vV az —b le h(zl)
S| <y/5? a3 52 — x5 — |z1|?

—as

£ 2 2
1{‘:52‘ <s} I (./m] dT(wl)h( s? — x5 wl>

1 (V@ =) (7~ 73) wn))
+ \/((1,2 —b) (52 —23) / dw NS h <~ /2 — 3 11)1> >,

lwi]<1

dT(Zl) h(Zl)

where I} is the first order modified Bessel function of the first kind (see Appendix B). So

./R2 G(s,dz1,y2) h(z1) — / G(s,dz1,xz9) h(z1)

JR?2

(,fas

= - </ dr(wy) (H(s,w1,y2) — H(s,wy,x3))
|wi]=1

47

dwq N .
+/ ——— (H(s,w1,y2) — H(s,w1,72)) |,
|wi]<1 \/ 1- ‘UJ] |2

H(s,wi,m3) = h <m“’l> 1{\362\ < s}

where
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and

H(s,wy,z2) =1 <\/(a2 —b) (s2 — 1) |w1> h <@/32 — 13 wl> 1{‘:52‘ < s}

Applying the same technique as before, we conclude that

]E((A(t,m ,yg) — A(t,x],xg))Q) — 0

Y2 —x2

also in the case d = 3. So we have shown the L?-continuity of the processes A and B, therefore
that of the process u. Let us now check that u satisfies (8.3), verifying separately that both

processes A and B do:

t 2
E(A(t,z1,22)*) = E ( </ ds G(s,dz1,z2) g(v(t — s,21 — zl))> )
Jo . Rd—l

IN

t
/ ds G(s, RT1, 25)
0

t
/ dS/ G(S,dZ],$2) K2 E(l +,U(t -8, %1 — 21)2)3
0 Rd-1

by the Cauchy-Schwarz inequality and the global Lipschitz property of g. By estimates (8.7)

and (8.8), this expression is less than or equal to

C? K? 2 sup E(1 + (s, z1)?),
(s,x1)€[0,t]xRI-1
S0
sup E(A(t,z)?) < CF K* T? sup E(1 + v(t, 21)?) < oco.
(t,2)€[0,T] x R4 (t,21)€[0,T] xRI-1

On the other hand, we have
¢
E(B(t, z1,19)) = / ds/ ph ) (dey) FiG(t — s, —&1,22)°
0 Rd—1
¢
< [ds s B b)) [ ) AGE s )
0 Rd—1

y1 ERI-1

by Theorem 6.2.1 and the global Lipschitz property of h. But this last expression is also less

than or equal to

t
sup E(1+v(s,x1)2)/ u(d&)/o ds F1G(t — s, =&, x9)>.

(s,21)€[0,t] x RA—1 JRA-1

So finally,

sup  E(B(t,z)?)
(t,z)€[0,T] x R4

< B +o(te)) G(T) [ plde) L (VITTET)
= sup +ou(t,z 7 / 7
(t,z1)€[0,T]xRI-1 ] JRA-1 ] V1+1&2

by Lemma 7.3.1 and Assumption Bj. The process u satifies then (8.3) and we can apply

< o0,

Proposition 2 of [14] to conclude that w is predictable. This completes the proof. [l
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Remark 8.1.3. From the preceding proof, we see that the solution wu(¢,z1,0) of the equation
restricted to the hyperplane z9 = 0 is spatially homogeneous in z; (that is, its statistical
properties do not depend on z1). Moreover, it turns out also from the preceding proof that if
we want to add initial conditions to the equation, we need to assume that they do not depend

on z1 if we want to leave the proof unchanged.

8.2 Global semi-linear equation

We study here the following formal semi-linear equation:

( 0%u ou
— 2a — - A
D 1,0) + 2 24(1,2) ~ Au(t,z)
= g(“‘(ta T)) + F(taml) (5[](.’1)2), le RH T € Rda (89)
ou d
\ u(O,x)fE(U,x)fO, x € R,

where g is a real-valued function and F is the noise concentrated on the hyperplane z9 = 0
considered in Chapter 6 (with k¥ =d — 1).

The solution of this equation represents a wave generated by a non-linear source g distributed

on the whole space with an additive noise term on the hyperplane zo = 0.

Note that the coefficient b of equation (6.5) is equal here to 0. The reason for this is that the
term bu can be included in the term g(u). So part (ii) of Assumption Cy made at the beginning

of this chapter only imposes here that d € {2,3}.

Following the argument of the preceding section, a mild solution of equation (8.9) is then a

predictable process u = {u(t,z), (t,z) € Ry x R} which satisfies

t
u(t,z) = /0 ds y G(s,dz) g(u(t — s,z — 2))
+/ M(ds,dz) G(t — s,z1 — z1,%3), (8.10)
[0,] xRd—1

P-a.s., for all (t,z) € R, x R, where G is the solution of equation (5.15) with parameter b = 0.

We can now state the following existence and uniqueness theorem.

Theorem 8.2.1. Under Assumptions B} and Cy, and if g is a globally Lipschitz function, there
exists a unique mild solution u = {u(t,z), (t,z) € Ry x R?} to equation (8.9). Moreover, the
map (t,x) — u(t,x) is continuous from Ry x R? to L%(Q) and for all T > 0,

sup F(u(t, £)?) < oco.
(t,2)€[0,T] xRe
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Proof. Following the scheme of the proof of Theorem 13 in [15], let us define recursively the

sequence

t
uO (¢, 2) =0, W (t,z) = / ds G(s,dz) g(ul™ (t — 5,2 — 2))
0 R

+/ M (ds,dz1) G(t — s,z1 — 21, T2).
[0,4] xRd—1
From this, we have the following recurrence relation for n > 1:
t
w4 2) — uM(t,z) = / ds [ G(s,dz) (g™ (t — s,z — 2)) — g(u™ VD (t — 5,2 — 2))),
0 Rd

since the stochastic term in the above definition does not depend on n. We can therefore apply
the argument of [15] to conclude that the sequence (u(™)) converges to the solution of equation

(8.10). The only difference comes in the evaluation of the first term of the sequence:

t
u(t,z) = / ds / G(s,dz) g(0) + / M(ds,dz1) G(t — s, x1 — 21, T2).
J0 J R4 J10,¢] xRA—1
To show that the recurrence in [15] works, we need to show that

sup E(u™ (¢, 7)?) < oc. (8.11)
(t,)€[0,T] xRd

Let us compute

t 2
sup E(wV(t,2)?) < 2 sup </ ds G(s,R?) g(O))
(t,2)€[0,T]xR4 (t.x)el0,1)xRe \Jo

2
+ 2 sup E / M(ds,dz) G(t — s,z1 — z1,%2)
(t,2)€[0, 1] xRe [0,1] xR~

t t t 2
/ ds G(s,R?) = / ds FG(s,0) = / ds s = —,
0 0 0 2

t t inh 1 2|alt
/ ds G(s,R?) = / ds e 2 als < t (1A
Jo Jo

al = g

Since when a = 0,

and when a # 0,

)

we obtain that )

t
sup </ ds G(s,R%) g(O)) < oo.
IxRd \J0

(t,x)€l0,T

On the other hand, using the isometry (6.13) and Lemma 7.3.1, we have

2
sup E / M(ds,dz) G(t — s,z1 — z1,%2)
(t,)€[0,T]xRd J[0,t]xRd—1
t
= s [ [ ) AGE s
0 Rd—1

(t,2)€[0,T] xR
1+1In (\/1 + \51\2)
V1I+ 62

by Assumption B(, so estimate (8.11) is satisfied and the theorem is proven. O

< 00,

< o) [ utie)
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Note finally that because of technical difficulties, the equation

2
r %(f,’r) +2a @(t, z) — Aul(t, z)

ot

= g(u(t,z)) + h(u(t,z)) F(t,z1) dp(z2), teR,, z € RY,

ou
{ u(0, x) :8—1;(0,.7;):0, T € R,

has not been studied. Contrary to the case of a non-linear term restricted to the hyperplane
x9 = 0, the Picard’s iteration scheme used in [15] could not be applied, mainly because the

following term

sup E((u™) (, 2) — u(™ (8, 2))?)
(t,)€[0,T] xRd

could not be estimated with respect to the preceding term in the sequence, without the strong
assumption that p is finite (that is, I" is regular). The problem comes essentially from the

supremum, which has in particular to be taken over all 5 € R.
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Chapter 9

Linear heat equation in R? driven by
noise on a k-plane

Let us consider the following parabolic equation:

%(t, z) — & Au(t,z) = F(t, 1) 0g(x2), teR,, r € RY,
' (9.1)

u(0,z) =0, r € R,

where F is the spatially homogeneous noise on the k-plane R¥ x {0} considered in Chapter 6.

Let us recall that in the case of a spatially homogeneous noise in R?, the optimal condition
on the spectral measure p of the noise which guarantees the existence of a real-valued solution
is the same for both parabolic and hyperbolic equations (see [15, 30]). We shall see in this chap-
ter that the situation is completely different in the case of a noise concentrated on a k-plane,
because it is the regularity of the Green kernel that plays a crucial role, which was not the case

for a spatially homogeneous noise on R?.

Let us go first over some key points from Chapter 5.

9.1 Existence of a weak solution

The first step of our analysis consists, as before, in giving a weak formulation to equation (9.1);
a weak solution of equation (9.1) is a process u = {u(t), ¢t € Ry} with values in &'(R%) such
that P — a.s., for all ¢ € S(R?), the map # > (u(t), ¢) is continuous on R, and satisfies, for all

teR,,

/lds (u(s), Ap) = Fi(¢(-,0)),
0 (9.2)

127
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Remark 9.1.1. As for the hyperbolic equation, this equation can also be interpreted when

k =d — 1 as the weak formulation of the following classical equation in the upper half space:

ou

1
E(t,x) - iAu(t,x) =0, (t,z) € Ry x R x Ry,

with the stochastic boundary condition

ou

8—332(75,1'1,0) = F(t,z1).
We then consider the Green kernel of this equation, which is the solution of
oG 1
— —-AG=0 G(0) = dg. 9.3
L SAG=0. G0) = 93)
Its Fourier transform in x satisfies
0FG 2
26 1.0+ L rog =0 Fe0o -1 (9.4)
S0 ,
19
FG(t&) =e 7, teRy, R, (9.5)
or equivalently,
1 |=|>
G(t,x) = —e o, t>0, xR, (9.6)
(27t) 2

and this implies that for all £ > 0, G(t,-) € S(R?) (that is, the space of non-negative functions
in S(RY)).

Certain properties of the Green kernel of the hyperbolic equation defined by equation (5.15)
are also satisfied by the present Green kernel. In particular, Lemmas 5.4.2 and 5.4.3 are satisfied,
as mentioned before. This explains why the condition on the spectral measure p which guaran-
tees the existence of a real-valued solution is the same for hyperbolic and parabolic equations

in the case of a spatially homogeneous noise.

Following the development in Chapter 5, which led to Theorem 5.5.4, one can show the

existence of a solution to equation (9.2), which is given by
Withpd = [ M(dsdn) (G- 9) x @)@ 0). teRy peSED, (97
J10,t] xRk

where M is the worthy martingale measure defined in Section 6.1. The question of uniqueness
is more delicate. For the hyperbolic equation, we used Lemma 5.5.3 for proving uniqueness, and
more specifically the fact that for a given smooth initial or terminal condition, there exists a
unique classical solution to equation (5.27). This time-reversal property of the solution of the
hyperbolic equation does not hold in the case of the heat equation. Moreover, it is a well known
fact that even for the classical heat equation, one needs to impose some restriction on the growth

of the solution in order to obtain uniqueness (see for example [24]).
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9.2 Existence of a real-valued solution

Before going into an analysis similar to that made in Chapter 7 for the hyperbolic equation, let
us note that the analysis of Chapter 6 can be performed with a few modifications (since Lemma,
5.4.1 is not satisfied, some estimates must be changed), but the results obtained are exactly the
same as those obtained for the hyperbolic equation (6.5). We are going to see that, contrary
to the case of the hyperbolic equation, these results are absolutely not optimal for the heat
equation (9.2). The reason for this difference is that the solution of the heat equation does not
belong in general to some Sobolev space H?(R?~*) in the coordinate 3, even when there exists

a real-valued solution.

Let us then consider the Fourier transform of G in the first & coordinates of z, which can be
easily deduced from (9.5):

2 2
_l&alre 1 _ lzal®
p) -

FiG(t,&1,m2) = e € . (9.8)
(2mt) 2

We will need the following estimate on F;G.

Lemma 9.2.1. For all T > 0 and ¢ > 0, there exist C(T,e) > 0 and a function P with
polynomial growth such that

t
/ ds F1G(s,&,19)? < C(T,e) P(&) e 2°¢ &l
Jo

for all t € [0,T], & € R and 2o € Rk such that |z9) > €.

Proof. If |¢1| > 1, then

1 zal?
e El

t t _
/ ds F1G(s, &, x2)2 = / ds e 161" s
Jo Jo (

2ms)d—k

< /ood —l&1]? s 1 o2l
S € e 8 .
—Jo (2ms)?F

Using now [5, formula 1.5.34], we obtain that this last expression is equal to

L ('5—])“1 Koo (2 Jeal &)
(27T)d7k |$2‘ d—k—1 2 11)s

where K, is the modified Bessel function of the second kind and of order v (see Appendix B).
By estimates (B.1) and (B.2), there exists C' > 0 such that for all » > 0,

Ce " In (%) if v =0,
K,(r) <

671"

'r"”‘

C if v #0,

so we obtain that for [£1] > 1 and |z2| > e,

1 1

t
2 —2e
/0 ds flG(S,fl,.’IJQ) < W 20 ¢ &l 10 (2_8> ,
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when k =d — 1, and

t 1 A d—k-1 e—2¢ &1
2 &
/0 ds F1G(s,&1,22)" < (2m)dF 2 ( ) ¢ (2e)d k1’

when k£ < d—1. If [&| < 1, then

t ) t 1 B r 1 2
ds F1G(s,é1,19)" < [ ds ——— ¢ s < ds ————— e = < oo,
/0 s F1G(s,&1,12) _/0 s Grs)TF e _/0 s )T e oc

and the proof ends like the proof of Lemma 5.4.1. O

We are going to prove now, following the scheme of Section 7.2, that without any additional
assumption on the spectral measure p of the noise, there exists a real-valued process X defined
outside the k-plane z9 = 0 which is the weak solution of equation (9.2). The only restriction
here is that we assume that the covariance T' is non-negative on R¥ in order to use Theorem
6.2.1. Note the strong difference with the case of the hyperbolic equation, for which there never
exists a real-valued solution when £ < d — 1, and even in the case k = d — 1, the existence of
such a real-valued solution is subject to an important restriction (namely Assumption By).

We first have the following two lemmas.

Lemma 9.2.2. For (t,z1,72) € Ry x RE x REF\{0} fized, the function ¢iuy 2, @ [0,1] —
O (RF) . defined by

¢t,m1,m2(37 ) = G(f -8, T1 — 'am2)a 5 € [Oat]a
belongs to H,.

Proof. We use here Theorem 6.2.1; since ¢z, 4,(s,+) € OL(RF) for a fixed s € [0,#] and
Frdteraa(5,61) = F1G(E — 5, =1, 72) X (§1)

is a Borel-measurable function, it suffices then to check that ||¢sq, 1,]¢ < 0o

t
|t ll7 = /Rk M(dﬁl)/ﬂ ds FiG(t — s, —&1,m2)?

IN

C(t, |a]) /R n(der) P(&y) e 2l €,

by Lemma 9.2.1. Since p is a tempered measure and P has polynomial growth, the above

expression is finite for all zs # 0, so the lemma is proven. O

Lemma 9.2.3. Let M be the worthy martingale measure defined in Section 6.1. The real-valued
process X = {X(t,z1,22), (t,71,72) € Ry x R¥ x RI=F\{0}} defined by

X(t,z1,29) = / M(ds,dz1) G(t — s,z1 — 21, T2), (t,z1,72) € Ry x RF x RTF\{0},
[0,t] xRk
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1s a centered Gaussian process whose covariance is given by

E(X (t, 21, 22) X (5,91,%2))

tAs
= /Rk M(dﬁl)/o dr F1G(t —r,—&1,m2) F1G(s — 1, —€1,92) X1 (§1)5 (9.9)

and such that the map (t,z1,22) — X(t,21,29) is continuous from R, x RF x RITF\{0} to
L?(Q).

Remark 9.2.4. This result and [42, prop. 3.6 and cor. 3.8] imply that the process X admits a
modification X such that the map (¢, 21, z2,w) — X (¢, 21, %2, w) is jointly measurable. We will

implicitely consider this modification in the following.

Proof of Lemma 9.2.3 By Lemma, 9.2.2, the process X is well defined. As in the case of the
hyperbolic equation, the fact that X is a centered Gaussian process with the covariance given
above follows easily from the isometry (6.13) and since p and F;G are symmetric in &1, (9.9) is

equal to

tAs
/Rdl M(dﬁl)/o dr FiG(t —r, —&1,22) F1G(s — 1, —&1,92) cos(&r - (w1 —y1)),

so X is real-valued.

In order to show that the map (¢, z1,z9) — X (t, 21, z) is continuous from R, x R¥ x R\ {0}
to L2(9), we show that for all T > 0 and R > ¢ > 0, it is continuous from [0, 7] x R¥ x K (R, ¢)
to L?(Q), where

K(R,e) ={zq € R4 such that R > \xo| > €}.

And we do this in two steps, showing first that there exists C(T, R,e) > 0 such that
E((X (t,y1,y2) — X (t,21,22))*) < C(T, R,¢e) (Jy1 — 211> + |y2 — 72|%), (9.10)

for all t € [0,7], z1, y1 € R* and z9, yo € K(R,¢), which implies that the map (z1,z3)
X (t, 21, 29) is L2-continuous in R¥ x K(R,¢), uniformly in ¢ € [0,T]. The second step con-
sists simply in showing that for fixed (z1,z2) € RF x K(R,¢), the map ¢t — X(t,z1,x2) is

L?-continuous.

We begin by establishing (9.10). We have

E((X (8, y1,2) — X (8,1, 22))%)
< 2 (B((X(Lyr,y2) = X(tz1,92)°) + E(X (8, 21,92) — X (t,21,22))%), (9.11)

so we can handle the two terms separately. Let us then compute

E((X (t,y1,52) — X (t,71,12))°)

t
= / M(dﬁl)/ ds F1G(t — 5, —&1,92)” Xy (&1) — Xan (€1) %
RE 0
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y1-&1 )
/ dr e
Jx1-&1

Since
2

<|& % [y — 2]

|Xy1 (51) — Xz1 (51)|2 =

we obtain by Lemma 9.2.1 that
E((X (t,y1,92) — X (t,21,92))*) < O(T,¢) /k pldér) P(&n) [ ]” e 2= 8y — a2,
JRE
which gives the desired result for the first term of (9.11), since

/Rk p(dér) P&r) &2 e 22 18] < 0.

Let us now consider the second term:

E((X (t,21,y2) — X (t, 71, 72))?)

t
= / p(d€y) / ds (F1G(t — s, —&,y2) — FiG(t — 5, —&1,22))°
Jrk Jo

/ (dé1) /td s 1 et
— b 1S € e s — e s
JRE HAGS Jo (2ms)dk

Suppose without loss of generality that |ya| > |z2|. Then

) g\ 2 . ; ; 2
_lwal? lyal? s I e
e 2s — e 2s = e s e 2s — 1 .

0<l-e*<u, Vz >0,

Since

and
ly21* — [z2* _ (ly2| +|z2]) (2| — |z2))

2s 2s

we obtain that

E((X(tu 1 7y2) - X(tu xhx?))Q)

CeolaPs 1 i R 2
= Rkﬂ(dfl) Ode? sy F ¢ o [y2 — w2l

By estimates similar to those carried out in the proof of Lemma 9.2.1, we obtain that there exist

C(T,¢) > 0 and a function P with polynomial growth such that

t 1 212 1 . -
/ dse 18y ——— e "8 S <O(T,e) P(&1) e 25181 vt e[0,T], & € RF, |za] >,
0 (27s) s

so we have the bound that we wanted for the second term of (9.11), because

/Rk p(dér) P(&y) e 25180 < o0,
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Finally, we need to prove the L2-continuity in ¢; consider (¢, 21, z5) € [0,T] x R¥ x K(R, ¢) fixed
and h > 0:

E((X (t + h, z1,m2) — X (t,21,72))?)
t
= / M(dﬁl)/ ds (F1G(s + h, —&1,29) — F1G(s, —€1,72))? (9.12)
RE 0

h
+ /ku(df])/ ds F]G(S,_é-],CEQ)Q. (913)
JR Jo
Since for & € R* and |za| > e fixed,
f]G(S + h, —51,$2) — F]G(S, —f],$2) — 0
h—0
for all s € [0, ] and since for all h < hy,

sup (F1G(s + h, —&1,m2) — F1G(s, &1, 12))?

s€(0,t]
: 1 _lzol? 9 1 L
< 2 sup (6512(“—}") —————— e sth —}—67‘51\ R eT)
s€[0,¢] (27 (s + h))dF (2ms)d—k
1 <2
S 4 sup s < 00,

5€[0,t+ho] (2ms)d—F

we obtain by the dominated convergence theorem that
t
/ ds (.7:1G(9 + h, —&1, .’1}2) — flG(S, —&q, .’1}2))2 — 0.
0 h—0
Moreover, for all A < hyg,

t
/ ds (FiG(s + hy—&1,12) — FiG(s, —&1, 12))?
JO

IN

t+h
4 / ds .7:1G(3,*£13m2)2
0

< 4C(t+h036) P(£1)6725‘51‘7

by Lemma 9.2.1, so using once again the dominated convergence theorem together with the fact

that
[ mtaen) Pley 279 < o,

we obtain that (9.12) converges to 0 as h — 0. Consider now (9.13):

h 9 h 7‘51‘25 1 ,ﬁ
i ds F1G(s, —&1,m2)" = ; dse " @rs)dF ©

h 1 2 2
N o]
< dselal?s = o~ o~
—Jo (2ms)?k
€

75 P& e V2elbil o5

C(ho,
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for all h < hy by Lemma 9.2.1. So (9.13) is less than or equal to

C(ho, —=) /k p(de)) P(&) e V2ell e

V2 Ik

which converges to 0 as h — 0, since

/ p(déy) P(&r) e V2elbl « o,
JRE

This shows the right-continuity in ¢ of the process X (in L?(Q)). The left-continuity follows

from the same argument as in the proof of Lemma 6.3.3, and this completes the proof. O
We can now state the following existence theorem.

Theorem 9.2.5. Let u be the solution of equation (9.2). There exists then a real-valued centered
Gaussian process X = {X (t, 1, 22), (1,71, 72) € Ry x RE x R=F\{0}} whose covariance is given
by formula (9.9), such that the map (t,z1,29) — X (t,z1,22) is continuous from Ry x RE x
RI=k\{0} to L?(2) and

(it o) = [ o X(t.o) pla), P o,
Rd

for all t € Ry and ¢ € S(R?) such that supp ¢ C RE x RI=F\{0}.
+

Proof. The first part of the theorem follows directly from Lemmas 9.2.2 and 9.2.3. The proof of
the last equality follows then exactly the argument of the proof of Lemma 7.2.4. O

Remark 9.2.6. This theorem implies in particular that there exists a function-valued solution
even when the noise is white, which was the case studied in [61] (for & = d—1). It is therefore clear
that the results obtained in Chapters 2 and 3 are not optimal for the existence of a real-valued
weak solution of the heat equation driven by boundary noise in a bounded domain: concerning
this subject, see the extended analysis in [61] of parabolic partial differential equations driven

by white boundary noises.

One question now remains: under some additional assumption on u, does there exist a real-
valued solution of equation (9.2) which is defined for all (t,2) € R, x R¥? The next theorem

shows that the answer is negative.

Theorem 9.2.7. Let u be the solution of equation (9.2). There does not exist then a real-valued
square integrable process X = {X(t,z), (t,z) € Ry x R?} such that the map (t,z) — X (t, ) is
continuous from Ry x R? to L?(Q) and

(u(t), @) :/ dr X (t,z) ¢(x), P—a.s., Vt € Ry, ¢ € S(R).
Rd

Proof. Suppose that there exists a process X satisfying the above conditions. As in the proof
of Theorem 7.2.5, let us define, for t € R, and z; € R¥, <p(n) = 0(2,,0) * ¥n € S(R%), where

r1,0
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() is a sequence of non-negative and compactly supported approximations of dy in R?. By the

assumptions made on X, we obtain that

lim E(|(u(t), o\ ) ) = B(X (t,21,0)?) < oc. (9.14)

n—0o0

On the other hand,

¢ 2
B(®). o) = [ ) [ s [FGE =9+ ol i6.0)
¢ 2
= [ i) [ s [F(GG) 5 ol)6,0)
JR Jo
Moreover, by arguments similar to those used in the proof of Theorem 7.2.5,
Fi(Gls) 00 (60.0) = FiG(s,61.0) xeu (€1)
’ n—0o0
for all (s,£1) €]0,# x R¥. So Fatou’s lemma tells us that
t
tim Bt ¢ 00) > [ tdey) [ ds 1G5, 0,0
n—00 o J Rk Jo
But since we have, for a fixed ¢, € RF,
t 2 [y eters L
— — Q1 b —
/0 ds flG(S,gl,O) = /U ds e W = 00,
the above expression is also infinite, which contradicts (9.14), so the theorem is proven. O

This theorem implies, among other things, that we will not be able to consider non-linear

equations of the form

88—1;(15,:5) — % Au(t,xz) = f(u(t,z1,0)) do(z2) + g(u(t, z1,0)) F(t,:m) do(z2).

On the other hand, it is possible to analyze equations of the form

ou 1 .

E(t’ z) — 3 Au(t,z) = h(u(t,z)) + F(t, z1) do(z2),

because the solution u does not need to be defined on the k-plane in this case. Since this study
has been performed quite extensively in [61] in the case of a white noise concentrated on a hy-
perplane (and even more generally on a C* boundary), we will not go deeper into this analysis

(remember that the boundary noise in [61] was interpreted as a stochastic boundary condition).

One could also notice that we have skipped the question of the Holder regularity of the so-
lution in the preceding section. Actually, looking at the proof of Lemma 9.2.3, one can already
notice that (9.11) implies that the process X is P — a.s. locally Holder-continuous in x with
exponent y < 1 on R¥ x R¥“#\{0}. But the regularizing property of the Green kernel implies
much more, that is, the process X is P—a.s. C*® on Ry x R¥ x RI=k\{0}; see [61] for more details.
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Finally, note that in the case of a white noise concentrated on a k-plane (that is, when
wu(d&y) = d&1), we can estimate the behavior in z9 of E(

X (t,z1,72)%) near the k-plane 2o = 0
]E(X t I ,LEQ

— /ds/wdf] FiG f],xg) —'/tds( L z22/

2g)d—k ©

- ./0 dW (4—> —o [l

where C = 2%—d o

-, Making now the change of variable u? = 2|

——, we obtain

E(X(t )2) _ 20 * d 2d—3—k _—u? ~ 1
y L1,T2 - ‘[EQ‘Qd*Q*k oo uu € ‘TQ‘_”] 7|x2‘2d727k.

This generalizes the estimate obtained in the case of a noise on an hyperplane in [61] to the case

of a noise on a lower-dimensional plane, and shows that the solution has not an L?-behavior
near the k-plane z9 =0



Chapter 10

Perspectives

Let us first make a general comment and observe the relationships between some results obtained
in this dissertation. In particular, let us look simultaneously at conditions (3.11) and By. Once
we realize that the sequence (a;) of Chapter 3 is nothing but the “spectral measure” of the noise
in a discrete case (because the a; are the Fourier coefficients of the covariance I'), the similarity
between these two conditions becomes evident. Apart from this, Theorems 3.3.3 and 6.4.3 state
that these are both necessary (and nearly sufficient) conditions for the existence of an L2-type
solution of the heat or the wave equation driven by a boundary noise term with such a spectral
measure. Moreover, their reformulation into a condition on the covariance gives the same result
when d = 2: see Sections 3.4, 7.5 and below. On the other hand, one can also appreciate the
similarity between conditions (3.10) and B{. This gives us the intuition that there should be
some generalization of the results obtained in this dissertation for equations driven by noises

concentrated on manifolds of various shapes.

A first possible generalization of the results obtained in Chapter 3 and Appendix C should
be the following: for the heat or the wave equation in a bounded domain D driven by noise
concentrated on a manifold S which is part of the boundary of the domain, there exists a unique
weak solution to the equation (in the sense given in (2.4)) with values in L?(D) if and only if
the covariance I'g of the noise can be represented by a trace-class linear operator Qg on the
Sobolev space H%(S) The question is: does there exist a general argument for this (perhaps
using the general theory developed by G. Da Prato and J. Zabczyk in [18]) and what is the
intuition behind it? One could also ask if the situation remains the same when the manifold
S is part of the interior of the domain (beginning by studying, as in Section 3.5, the equation

driven by noise concentrated on a sphere of radius r( less than 1, interior to the ball B(0,1)).

Let us now give a possible generalization of the results obtained in Chapter 7. For this,
we first make more explicit the connections between the results obtained for the wave equation
driven by noise on a sphere in Chapter 3 and that driven by noise on a hyperplane in Chapter 7.

In Chapter 3, we have seen that if there exists an L?-valued solution to the hyperbolic equation

137
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in the unit disc driven by noise concentrated on the unit circle S' with isotropic covariance f,

then the following condition is satisfied:

'/07r do f(6) In (%) < o,

and this condition was shown to be nearly sufficient. A first improvement of this result would be
to consider when there exists a real-valued solution to this equation and see if the same condi-
tion appears, which seems plausible. Note however that as already mentioned in Remark 3.2.4,
the solution of the equation probably explodes at the center of the sphere, because the entire
influence of the noise on the sphere reaches this point at the same time. If we want therefore
the solution to be real-valued in the general setting of a noise concentrated on a manifold, we
should not expect this to be true for every point in space (and we will also probably have to
distinguish the two cases where the solution is defined only outside the manifold or also on the

manifold itself, as in the case of a noise on a hyperplane).

On the other hand, in Chapter 7, we have seen that if there exists a real-valued process
defined outside the line x5 = 0 which is the weak solution of the wave equation in R? driven
by noise concentrated on this line with spatially homogenous covariance f on the line, then the

following condition is satisfied:

whose similarity with the above condition has not to be proven. For the equation in R? (with

d > 3) driven by noise on a hyperplane, the above condition simply becomes

/0] dr f(r) < occ.

Although it has not been established that the same kind of condition appears in the case of a

noise on a sphere, this is also quite plausible.

Moreover, the analysis of Chapter 7 shows that there never exists a real-valued solution
when the noise is concentrated on a k-plane of dimension & = d — 2, and seemingly neither when
k<d-2.

One clear improvement of this work would then be to generalize these results to hyperbolic
equations in R? driven by noise concentrated on a general manifold. The first problem is the
following: our results are expressed for noises with some rotational or spatial homogeneity. On
a general manifold, such a homogeneity does not exist. Nevertheless, we can restrict ourselves

to noises concentrated on a manifold S with covariance I'g given by

Ps(p. 1) = / do () /q do(y) p(z) [(O(r,) D), puib € SEL,

S
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where ¢ is the uniform measure on S (induced by the Lebesgue measure on R?), d(z,y) is the
geodesic distance between two points x and y on the manifold S and f is a continuous function on
]0,00[. We conjecture then that there exists a real-valued process defined outside the manifold
S and up to a given time defined as the mininum of the radii of curvature of the manifold S,
which is the solution of the hyperbolic equation in R? driven by noise concentrated on S with
covariance of the form given above, only if S is of dimension d — 1 and the following condition

is satisfied:

! 1
/ dr f(r) In (—) < 0o, when d=2,
Jo T

1
/ dr f(r) < oo, when d > 3.
0

Moreover, this condition should be shown to be nearly sufficient, in a sense to be made precise.
We believe that this is achievable since the conditions obtained are all local, and therefore should

not depend on the particular shape of the manifold considered.
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Appendix A

Green kernel of the hyperbolic
equation in R4

A.1 Expressions for the Green kernel

From (5.18) and by calculations similar to (7.1) and (7.31), we obtain the following explicit

expressions for G when d < 3 and a, b are any real numbers. If a®> > b, then:

when d = 1:
G(t,z) = e;t Iy (\/(a2 b (12 xQ)) e <t tERy, TER,

when d = 2:
Gt — o—at cosh (\/((1? N e \m|2)) 1 Len e
’ o N {l=| <t} ’ ’

when d = 3:

—at

G(t,dx) = ‘ (% 5{‘$|:t}(d$)

47

1 (V@B @)
+va*—b \/m 1{‘$|<t}d$ , te Ry,

and if a® < b, then:

when d = 1:
—at
_ € — 2 (12 _ 2
Glt,) = = Jo<\/(b a2 (¢ x)) gl <t} tER, TER
when d = 2:
oal cos <\/(b—a2) = W)) 2
G(t,.’I}): 1{|$‘<t}’ teRy, e R,

o NErE
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(A.3)

(A.4)

(A.5)
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when d = 3:

efat

47

I (V=) (@ T2P))
\/m 1{‘$|<t} dx |, te Ry, (AG)

where J, and I, are the regular and modified Bessel functions of the first kind and of order v
(see Appendix B). For the calculation in the case d = 3, see [45, formulas 1.14.46 and 1.18.33]

f1/bia‘2

for the regular part of G; the singular part can be computed separately in the case a = b = 0.

Note moreover that in the case where a = 0 (namely the case of the Klein-Gordon equation),
(A.4) and (A.6) are formulas (7.3.88) and (11.1.19) in [25], respectively.

On the other hand, when d is any positive natural number and ¢ = b = 0, we also have the

following expressions for G (see [37, p.281]):

when d = 1: .
G(t’m):§1{|$‘<t}’ teRy, reR, (A?)

when d is even:

d—2

1 1 o\ 72 [ .4 o(tr) d

Gt ) = (— —) o [ ar L) rer pes@), (a9)
(2m)? \t Ot al<1 /1 [z

when d is odd and d > 3:

@
o1 <1 3) ’ t“/ do(z) oltr) |, teRy, peSERY). (A9)
2 (2m)= \t Ot =1

G(ta ()0) =

Let us write these expressions more explicitely when d = 4:

1 3p(z) +Ve(z) -z 4
G(t, :—/ da . teR,, pe S(RY, A.10
0= g | — LopESERY,  (A10)
and when d = 5:
1
G(.9) = 5y /_tdrr(m) (Bp(x) + V(@) -2), tER,, p € SR). (A.11)

From all these expressions, one can observe that G(t,-) is a non-negative distribution on R? for

all t € R, if and only if d < 3 and a® > b. Moreover, it is a measure if and only if d < 3.

Remark A.1.1. The reason for which we restricted our study in Chapter 5 to the two cases
where either a and b are any real numbers and d < 3, or d is any positive natural number and
a = b = 0, is that we need the above explicit expressions in order to verify property (5.16).
Nevertheless, explicit expressions can certainly be computed in the general case and property

(5.16) is likely to remain satisfied.
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A.2 Green kernel restricted to a hyperplane

From (A.2), (A.3), (A.5) and (A.6), we deduce the following expressions for G(t,-,z2) when
d € {2,3} and a,b are any real numbers. Fix ¢t € R, and zo € | — ¢,¢[. If a®> > b, then:

when d = 2:
o—at cosh <\/(a2 —b) (12 — 23 — 1)
G(t,z1,x2) = 5 , A.12
(tar.e2) = e (eyrsy (12
when d = 3:
Gt der.zy) — L (dz1)
, A1, T2 — A t2—$% {‘,’131‘: /t27,’12%} T
0 (V@ T ) Nans
#Va T (i) A
and if a® < b, then:
when d = 2:
o—at COS (\/(b —a?) (12 — x5 — T%))
t,x1,%2) = 1 A.14
G( ’TlaTQ) o t2 —x%—x? {‘,’Ii]‘< /t27,’1€}’ ( )
when d = 3:
Gt dor.zg) = L (dz1)
) = T \VEo g e
. (V=) @ —af o)) 1 N
+Vh T M) A1)

On the other hand, from (A.10) and (A.11), we deduce the following expressions for G(t,-, r2)
when d =4 and a = b = 0:

G(t,p1,22) = H (\/t2 - ff?%ﬁﬁl) Lia| <t} (A.16)

where
1 201(x1) +V 1) x
H(SHPI)ZW/ dml (P]( ]) 5 ]w](Q]) ]a SGR—Fa (,0168(R3),
mnes || <s \ S *|.’IJ1‘
and when d = 5:

1 1
G(t = | H(/t? — 3 - —/ d i
( 7<p]7$2) ( ( xQu‘P]) 87T2t2 ' ‘wl‘:m O'(.’E]) @1 (LE])) t {‘7"2| < t}7

(A.17)
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where

1

H(Sawl):m

[ dow) Gale) +Vipi@) m), s €Re, g€ SE).
lz1[=s

As before, we deduce from these expressions that G(t,-,z2) is a non-negative measure on R4~!
for all t € Ry and 23 € R if and only if d € {2,3} and a? > b. Moreover, it is a measure if and
only if d € {2, 3}.

Remark A.2.1. The reason for which we restricted our study in Chapter 7 to the two cases
where either d € {2,3} and a, b are any real numbers, or d € {4,5} and a = b = 0, is that
we need the above explicit expressions in order to verify property (7.2). Nevertheless, explicit
expressions can certainly be computed in the general case and property (7.2) is likely to remain
satisfied.



Appendix B

Bessel functions

B.1 Definitions

Let v € R. We have the following definitions. The regular Bessel funtions of the first kind and

of order v are given by (see formula 9.1.10 in [1]):

e )"
J”(T):<§> %n!f‘(l/inﬂ—l)’ e Ry,

n

where I' is the Gamma function defined in (3.2). The modified Bessel funtions of the first kind
and of order v are given by (see formula 9.6.10 in [1]):

r\» (2
L(r) = (5) ZNn!F(V:-TH—l)’ reRy.

ne

Finally, for v € R, the modified Bessel funtions of the second kind and of order v are given by
(see formula 9.6.23 in [1]):
NG r

K, (r)= —Y" (_)V/ dt e "t (12 — 1)V 3, 3:9
(Ir) F(l/—‘-%) 2 1 € ( ) r R“

and K_,(r) = K,(r) by formula 9.6.6 in [1].

Remark B.1.1. From these definitions, we directly see that I, and K, are non-negative func-

tions, independently of the order v considered. This fact is used repeatedly in this dissertation.

B.2 Estimates

We present here some estimates on Jy, Iy and K, with fixed v € R. First note that all these

functions are continuous, except K, at the point r = 0.

Let us begin with K,: by formula 9.7.2 in [1], there exists C' > 0 such that

™

‘K,,(T) —/=—e "< 23, vr > 1,

2r r2
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so there exists C > 0 such that

K,(r)<Ce", Vr > 1. (B.1)

On the other hand, when r — 0, we have by formulas 9.6.8 and 9.6.9 in [1]:

In(1) ifr=0,

K,(r) ~ (B.2)

1

—_ if v # 0,
'r‘”‘

Let us now consider Iy. By formula 9.6.16 in [1], Iy admits the following integral representation
for r € Ry :

Iy(r) = ! /07r cosh(r cos(t)) dt,

71- .
so Ip(0) = 1 and Ij is increasing on R;. By formula 9.7.1 in [1], there also exists C' > 0 such
that

L) - ——_| < © Vr >0
r) — —, T ,
0 V2|~ r3/2
so there exists C' > 0 such that
Iy(r) < Ce, Vr > 0. (B.3)

Let us finally consider Jy. By formula 9.1.18 in [1], Jy admits the following integral representation

for r € Ry :
1 T
Jo(r) = — / cos(rsin(t)) dt,
T Jo
so [Jo(r)] <1 forallr € Ry, Jy(0) =1 and Jy is decreasing on [0, 1]. By formula 9.1.28 in [1],

Ji(r) = —Ji(r), and by formula 9.2.1 in [1], there also exists C' > 0 such that

Jo(r) — \/g oS (r - %) < 1«3%’ Vr >0, (B.4)
so there exists C' > 0 such that
Jo(r)? < L, vr >0, (B.5)
Vit
which implies that
Jo(r)? < g Vr > 0. (B.6)

Let us also mention the two following useful estimates.

Lemma B.2.1. There exists C > 0 such that

1 R
—/ drr Jo(r)* > C, VR > 1.
R Jo



147

B.2. Estimates

Proof. Let us first prove the following:

.1 (R , 1

lim — drr Jo(r)” = —. (B.7)
R 0 s

R—o0

To see this, note that

2 2
r Jo(r)> — = cos (% - r)

= ‘\/7_".]0(7“)—\/%(308 (%—T) ‘\/FJU(T)+\/%COS (%_T)
< ¢ ’ (B.8)
1+7r

by estimates (B.4) and (B.5). This implies that

R 9 (R 9
/ drr Jo(r)? — = / dr cos (Zfr> <C In(l+R),
0 ™ Jo 4

But since r .
: 2 R 1-sin(Z -2R
/U dr cos (gfr) :54- 1n(42 ),

we obtain that (B.7) is true, which implies that for all £ > 0, there exists Ry > 0 such that

VR > Ry.

— g,

=

I 2
— dr r Jo(r)” >
5| w2
Suppose now that Ry > 1 (otherwise, there is nothing left to prove). On [1, Ry, the above
function of R is greater than 0, so by the compactness of this interval, there exists § > 0 such

that
1 (B )
— drr Jo(r)” >0, VR € [1, Ry).
R Jy

The lemma is then satisfied with C = (£ —¢) A §

Lemma B.2.2. There exists C > 0 such that for all R > ,

R
/ dr Jo(r)? > In(R) _ C.
1 s

Proof. For proving this, we use again (B.8) and obtain that there exists C' > 0 such that for all

r>1,
2 s 2 C

Jo(r)? — = cos (— - ) < —=.

o(r) —eos(y o) (S
From this, we deduce that for R > ,

R R
2 1 2 1
/ dr Jo(r)? — = / dr — cos (E — r) <C(1-=)<C, (B.9)
1 7T 1 T 4 R

Let us now compute
R s
cos (& —r
/ . ( 1 )
1
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observing first that

T r

R T 2 R . T 2
/ dy# oG
1 1

but that on the other hand,
2

R T 2 R . T 2
/ dr COS(4 r) _/ dr sm(4 r) ‘_
1 J1

T T

R—% cos(r)? R+3 CcOSs
/ dr (T)r —/ dr (T}r
Ji—z T+ 1

r—1
Dividing these two integrals in three parts, we obtain that the above expression is less than or

5

equal to
I+3 1 R-7 1 1 R+3 1
/ 4d7" W—I—/ 4d7"< - — W)—l—/ 4d7" —
-z Tt Jigs r-z r+3g R-% T 7
s s R R s
= Inl+=)+In(R-— =) -1 1 =2In(1+ =).
(14 3) + (B = 5) () 4 ) = 21+ )
Therefore,

/Rdr Cos(4
J1

and this implies that

/Rdr cos (% 77")2
J1

v
N | =
—
=

Q

3
o
O
wm
—~
- |

r

So finally, by (B.9),

—
=
U
=
S
©
~—
[}
Vv
SRS
d\_‘
v}
=
=
=3
Q
=]
)]
/N
|
|
=

vV
o

which proves the lemma.



Appendix C

Linear equation driven by noise on
one side of a hypercube

Let d be a natural number greater than 1, D = [0,7]¢ and K = [0, 7]9"! x {0} be the “bottom”
side of the hypercube D (when d = 3, K is the square at the base of the cube D). In this
chapter, we would like to study the existence of a weak solution to the hyperbolic equation (2.1)
(in the sense defined in (2.4)), in the specific case where the domain D is the hypercube defined
above and the noise considered is concentrated on K. For this, we follow an analysis similar to

that of Chapter 3.

Let us first define the noise concentrated on K, considering a quite general covariance. Fol-
lowing an argument similar to that of Section 3.2, let us begin with a continuous and symmetric

]dfl

function h : [-7, 7 — R being non-negative definite on K, that is,

Z cic_jh(x(i) —x(-j)) >0, Vm>1, ¢ryeooemeC, 2, 2™ e K.

This function represents then the covariance of a Gaussian process indexed by the elements of
K, which is moreover spatially homogeneous, that is, the covariance between two points z and y
depends only on the vector y —z. Belonging to this class of functions are the following functions

h:

h(xy,...,xq1) = E Any,..ng_, €os(nizy) --- cos(ng_1zq-1), (z1,...,24-1) € K,
N1y..,ng_1EN
where
anl,...,nd,1 2 0 a’nd E anl,...,nd,1 < .

N1y 1 €N
Note that we cannot apply here the classical Bochner theorem to conclude that any covari-
ance h has the preceding form, because K is not a group. Nevertheless, one can check that
such h satisfies the required properties (using the formula cos(m(z — y)) = cos(mz) cos(my) +

sin(mz) sin(my)).
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Following now the idea of Section 3.2, let us consider that the covariance of the noise con-

centrated on K is given by

FK((,O,’IP) = Z (1‘71‘17---,77471 Fm,...,nd,l(%?ma %TP € COO(K)a

ni,..ng—1EN

where a,, .., , > 0 and

d

]‘—‘nhnwndfl (QO, ?P) = / dxy - drg / dyy -+ - dyq—
K K

(@1, mg) cos(ni(zy — 1)) --- cos(ng—1(Ta—1 — ya—1)) (1, ya-1),
with the condition )

explicit below (see (C.1)), and under which we can easily check that T'x (¢, 1)) is well defined for
each ¢, € C°(K).

g1 €N Onp,ng o < 00 replaced by another one, which will be made

Let us finally define the covariance I'p by

Tp(e,y) =Tk (o] ). w9 €SD).

where S(D) is the space defined in Chapter 2.

We are going to show that there exists a weak solution to equation (2.1) if and only if the

following condition is satisfied:

Q.
Z M1geeesNg—1 < 0. (Cl)

2 2
N1,y 1 €N \/1 +ni+--4ni

Let us now state the theorem (note that a similar result was already obtained in [19, Thm 13.3.1]

for the heat equation).

Theorem C.0. 1. Let (ug,vg) € L%(D) @ H Y(D). There exists a unique weak solution u
of equation (2.1) such that E(||u(t)||3) < oo, for all t € Ry, if and only if condition (C.1) is
satisfied.

Proof. Let us first compute the eigenvalues and eigenfunctions of the Laplacian in D. Note that
since the boundary of the domain is not C*°, we cannot apply directly the spectral theorem

2.1.1. Still, the solutions of the eigenvalue problem

dyp
A Ap=01inD d —/— =0
Y+ Ap n an a0 o ,

are easy to compute here. They have the following simple expressions:

2\ ?
en(x) = <—> cos(nizy) -+ cos(ngrq), An =ni+ - +nj
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where n = (n1,...,n4) denotes a multi-index in N*. One can notice that the ep are C°, even
if 0D is not.

Let us now compute the coefficients v, = I'p(en, en):

Tn = Z Umy,mg o Lmymg (eﬂ‘xveﬂ‘x)'
m17"'7m471€N
Since
2\ 2
GQ‘K(.T],...,LEd,l) = (;) COS(’IZ].’E]) COS(’rLdfl.’Ed,l),

and using again the formula cos(m(xz — y)) = cos(mz) cos(my) + sin(mz) sin(my), we obtain
simply that
o
In order to check now that condition (C.1) is sufficient, we simply need to check that it
implies that Assumption Hy of Chapter 2 is satisfied, which in turn implies the desired result by
Theorem 2.5.3. To see that part (i) of Assumption Hy is satisfied, that is, that the covariance
I'p is continuous with respect to the H'-norm on D, we follow the proof of Theorem 2.5.3 and

verify that 'k is continuous with respect to the H3-norm on K defined by

2 2
Il = > iend e

N1y...,ng—1EN

for

(T, Tq1) = Z Crnrengy COS(N1T1) -+ cos(ng_12q_1).
ni,..ng—1EN

Let us then compute

j : 2
FK(@? <p) = aml,...,md,l le,...,md,1 -

mi,....mqg_1EN

Under condition (C.1), there exists C' > 0 such that

Amyoimg S C \/1 + m% +... +m37],

therefore,

T'k(p,p) <C ||¢||2%-

Let us now verify part (ii) of Assumption Hy and compute

Tn _ 2 Z any,..ng_y
Z R 25 ... 2
fpare? 1+ Xy s e, N 1+ny+ +ny
2 1
= — E a E . C.2
T ni,...sNg—1 1_‘_”%4_‘”_‘_”3 ( )

Nn1,...,ng_1EN ng€N
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Since

1 1 & 1 1 s Ci

E =<3+ dt ———=—5+—-<—, a>1,
eNa2+nd a 0 a’+x a>  2a " a

ng d

we see that (C.1) implies Assumption Hj, therefore the existence of a weak solution u of equation
(2.1) such that E(||u(t)||3) < oo, for all t € Ry, by Theorem 2.5.3. On the other hand, if such a

solution exists, then by Theorem 2.5.4, part (ii) of Assumption H is satisfied, and since

1 > 1 1 T\ | T Cy
E ﬁ -~ dxﬁ:— arctan(—)‘ = — 2 —_—
gy ae +n; ~ Jo a® +x a a’ lo 2a a
bd

\Y

we obtain by (C.2) that condition (C.1) is satisfied, which proves that the latter is a necessary

condition, therefore the theorem. [l

Note that we have obtained here a necessary and sufficient condition, which was not the case

for the noise on a sphere. Performing the same analysis as in Remark 3.3.4, we can show that
1

this condition is equivalent to the existence of a trace-class linear operator Qi on Hz(K) such

that
FK(SOaw) :<()07QKw>la V‘PJPECOO(K)

2



Appendix D

Higher order hyperbolic linear
equation in RY

Let ¢ € Ry and let us consider the following fourth order linear partial differential operator:

0? 0A
L,=—— —2c — + A?
‘o2 ot
What is interesting with this operator is that when ¢ = 0, it is given by

82
Ly ===+ A?
0 8t2 + )
which is a truly hyperbolic operator, but when ¢ = 1, L is given by

VN 0 2
bi=gm 2o+ —<&A> ’

which is rather a parabolic operator. Therefore, the analysis will be different in each case.

In the following two sections, we give sufficient conditions which guarantee the existence of a
real-valued weak solution u (in the sense defined in Chapter 7) of the following (formal) classical

equation:

Lou(t,x) = F(t,x),

in both cases where F is either a spatially homogeneous noise or a noise concentrated on a
hyperplane. Since computations are similar to those made in Chapters 7 and 9, we omit (most

of) the details in the following.

D.1 Spatially homogeneous noise

Let us consider the following equation:

2 A .
Q(t,m)f%a u(t,m)+A21l,(t,m):F(t,m), teR,, z € R4
ot? ot
(D.1)
0.0)= 20,2) =0, sew
u(0,2) = —(0,2) = x
4 3 8t ? 3 3
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where the noise F' is a spatially homogeneous noise on R? with non-negative covariance T.

We do not present here what kind of weak formulation can be given to equation (D.1), but

we simply give the expression for its distribution-valued solution:
withod = [ Mldsds) (Gt )+ p)a),  tER:, p € SE)
[0,t] xRd

where G is the Green kernel of equation (D.1) and M is the martingale measure constructed

from the spatially homogeneous noise F.

Moreover, we have the following explicit expression for the Fourier transform in z of the

Green kernel G of equation (D.1):

—clélt sin(tv1 — 2 |€]?)

) if ce Oal s
iy 0.1
FG(t, &) =4 e ety if =1, (D.2)
: 2
efc‘f‘zt smh(t\/ 62 -1 |§‘ )’ T 1
Ve — 1€

We have the following upper bounds for FG.

Lemma D.1.1. Let ¢ = 0. Then for all t > 0, there exists C(t) > 0 such that

C(t)

o

t
[ s PGy <
J0

Proof. If [¢| > 1, then

t t <2 2
, [ sin(sle?) b
A“F““’.A“ e e

and if |¢] < 1, then

t t -2 2
/ ds FG(s, &) :/ ds % <43
0 0 |£‘

2 gin(r)? < 1 for all r > 0. The proof now ends as the proof of Lemma 5.4.1. g

since r~

Lemma D.1.2. Let ¢ > 0. Then for all t > 0, there exists C(t) > 0 such that

O(t)

Trepe  EER

t
| ds 765,67 <
0

Proof. Let us first consider the case where ¢ € |0, 1[. We have

t : s (s T [e)
ds FG(s,€)* :/ ds e~ 2cléls 21 (s =
A (50" = | @ e

If [¢] > 1, then

t 1 (1 - e 2lely 1
ds FG(5,6)? < — | ———— | < ——,
| as 70 K4< 209eP ) = 2l
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and if |¢| < 1, then since r~2 sin(r)? < 1 for all r > 0,

t t ‘
/ ds FG(s,£)? < / ds e 20EPs 2 < 43,
0 0

For the case ¢ = 1, we have, by successive integrations by parts,

t t ‘
/ ds FG(s,£)? = / ds e 216%s ¢
0 0

o 20€%t o 2/€]2s

t
= — t2+2/ ds ——— s
2|¢2 Jo 2/¢|?

_ 7@*2\6\% f2+e*2\€\2tf+ 1 <1_6252t)
2¢2 7 0 21 4 2(¢[?
C(t)
=~ Wa

if [¢] > 1, and if [¢] < 1, then

t t
/ ds FG(s,€)* :/ ds e 275 2 < 43,

0 0
Finally, consider the case ¢ > 1. We have

/t ds FG(s,8)* = /t ds e 2l sinh”(sv/e? — 1 |§‘2)
Jo Jo

(¢ = 1) ¢
If [¢] > 1, then since sinh?(r) < €2 for all 7 > 0 and ¢ — /¢ — 1 > 0,
! 1 ! /2T 2 1
ds FG(s,€)? < 7/ ds e 2= Ve DIERs < .
/0 N G (¢ = 1) 2(c = ve2 = 1)[E[°

On the other hand, if |¢| < 1, then since r—2 sinh?(r) < cosh(r)? for all r > 0,

t t ‘
/ ds FG(s,&)? < / ds e 2% cosh?(sv/c2 — 1 [£]?) < t,
0 0

since cosh?(r) < e? forall 7 > 0 and V2 — 1 < c.

For these three cases, the proof ends as the proof of Lemma 5.4.1. [l

We address now the following question: under which condition on the covariance I" (or
equivalently the spectral measure 1) of the noise does there exist a real-valued process X such
that

(u(t), p) = /d dx X(t,z) ¢(x), P—a.s., Vte Ry, e SRY?
JR

The answer to this question is given in the following theorem.

Theorem D.1.3. If

_ p(d€)
c=0 and /Rd TENFRE < o0, (D.3)
or
d
c>0 and /Rd % < 00, (D.4)

then there exists a real-valued process X which is the weak solution of equation (D.1).
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Proof. We can use here the result in [15], which states that there exists a real-valued process

which is the weak solution of (D.1) if the following condition on p is satisfied:

T
[ ) [ as 765,87 <o,
Jrd Jo
for all T" > 0. The theorem then follows directly from Lemmas D.1.1 and D.1.2. O

Note that when p is the Lebesgue measure on R? (that is, the spectral measure of white
noise), condition (D.3) is satisfied if and only if d < 4 and condition (D.4) is satisfied if and only
if d <6.

D.2 Noise on a hyperplane

We now consider the following equation

2 A .
Z—:;(tam) —2c 88fu(t,m) + A?u(t,x) = F(t,71) do(x2), (t,z) € Ry x RY,

' / (D.5)
u(0,z) = %(0,7’) =0, r € RY,

where F' is the noise concentrated on the hyperplane x5 = 0 considered in Chapter 6 (with

k =d — 1), with non-negative covariance T'.

As in the preceding section, we do not present here what kind of weak formulation can be

given to equation (D.5), but we simply give the expression for its distribution-valued solution:
Wihph = [ Mdsde) (Gt s) x)on,0), e Ry, g€ SR,
J10,8)xRd-1

where G is the Green kernel of equation (D.1) and M is the martingale measure constructed

from the noise F.

The expression of F1G is given by (4.1):

FiG(t, &1, w2) = % /Rd& FG(t,&1, &) X—as(&2), (D.6)

and we will not compute it since its explicit expression is too intricate. On the other hand, we
have the two following upper bounds. We restrict ourselves to the two cases where either ¢ = 0

or ¢ = 1 for simplicity.
Lemma D.2.1. Let ¢ = 0. Then for all t > 0, there exists C(t) > 0 such that

C(t)

< — 7 V(& 10) eRTI X R
>~ 1+|£1|2 (51 TQ)

t
/ ds F1G(s, &1, 29)’
0
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Proof. We have
Sin((‘gl |2 + 5%)8) 77:,’12262

1
FiG(t1,m2) = o | des
R

ar+g  C
therefore, when [£| > 1,
1 1 1
e ) < 3 [ o6 s = gy
S0 . 2 .
/Uds]-"lG(s,ﬁl,mg) §4‘£1|2.

When |¢1] < 1, we have, since r~? sin(r)2 < C(1 +7?)"! for all r > 0,

C
FiG(t, &, < — — ==,
[FAG(t, &, w2))| /521+£2 5
therefore,
t CQt
/ ds flG(SaglamQ)2 < ]
0 4
and the proof ends as the proof of Lemma 5.4.1. O

Lemma D.2.2. Let ¢ = 1. Then for all t > 0, there exists C(t) > 0 such that

c()
(L +1]&%)?

Proof. When ¢ =1, we can compute F; G explicitely:

t
/ ds Fi1G(s,&1,12)° < V(& m0) e RE xR
0

1
flG(t’glﬁ"I’?) = 27r deP ‘51‘4'52) t *77’252

— e*\fl\ tt/ dés 6*§§t o262
R

t 23
— ol Eew—%, (D.7)

We therefore obtain, for all 29 € R,

2
T3

t 1 t .
/ ds F1G(s,&1,79)% = — / ds e 2161 g o738 <
J0o 47T Jo

t

o 2
/dse 2[61]%s o
Jo

672‘51‘275 + 17 eiQ‘EI‘Qt < O(t)
8m|€1 |2 167[& )~ &)

5=

By integration by parts, we have

¢
/ ds F1G(s,&1,12)* =
Jo

when |£1| > 1, and when [£;| < 1, we have

t 1 t f2
/ ds _7:1G(s,fl,:1;2)2 < _/ ds e 2l€11%s s < ——

The proof now ends as the proof of Lemma 5.4.1. O
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The following upper bound shows moreover the analogy between equation (D.1) with ¢ =1
and the heat equation (9.1).

Lemma D.2.3. Let ¢ = 1. Then for all T > 0 and € > 0, there exist C(T,e) > 0 and P a

function with polynomial growth such that
¢
/ ds FiG(s,61,25)" < C(T,e) P(&1) e 7 4,
Jo

for all t € 10,7, & € R and x5 € R such that |za| > ¢.

Proof. From the explicit expression (D.7) of F1G and following an argument entirely similar to

that of the proof of Lemma 9.2.1, we obtain the result. [l
These estimates lead to the following theorem.

Theorem D.2.4. If

p(dér)

=0 and —_— D.8

c an '/Rdll_*_|§]2<oo, (D.8)
. (&)
pniag

c=1 and —y < 00, D.9

Lo Ty (B5)

then there exists a real-valued process X which is solution of equation (D.5). Moreover, if ¢ = 1,
there always exists a real-valued process defined outside the hyperplane zo = 0 which s solution

of equation (D.5), without any specific assumption on p.

Proof. The proof follows the same scheme as the proof for the second order hyperbolic equation
in Chapter 7. We will therefore not go into the details of this proof. Just note that Lemmas
D.2.1, D.2.2 and D.2.3 are the essential ingredients of the argument (as was Lemma 7.1.2 for
Theorem 7.2.5). O

Note that when p is the Lebesgue measure on R?~! (that is, the spectral measure of white
noise), condition (D.8) is satisfied if and only if d < 3 (3 being a limiting case) and condition
(D.9) is satisfied if and only if d < 4.

For a further analysis, we could also study the case ¢ # 0,1 in this section (for which the

answer is not clear a priori) and see if all the conditions obtained in this appendix are optimal.
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