
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

HYPERBOLIC STOCHASTIC PARTIALDIFFERENTIAL EQUATIONS DRIVEN BYBOUNDARY NOISES
TH�ESE No 2452 (2001)PR�ESENT�EE AU D�EPARTEMENT DE MATH�EMATIQUES�ECOLE POLYTECHNIQUE F�ED�ERALE DE LAUSANNEPOUR L'OBTENTION DU GRADE DE DOCTEUR �ES SCIENCESPAROlivier L�EVÊQUEIng�enieur-physi
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Abstra
tThe framework of this dissertation is the study of wave propagation phenomena, where the waves
onsidered are generated by noise sour
es whi
h are random both in time and spa
e. More pre-
isely, we are interested in �nding real-valued solutions of linear hyperboli
 partial di�erentialequations (typi
ally the wave equation) driven by additive Gaussian noise sour
es whi
h arewhite in time and 
on
entrated on surfa
es in spa
e.It is a well known fa
t that when the spatial dimension is greater than one, the wave equa-tion driven by a spa
e-time Gaussian white noise admits a solution whi
h takes its values in adistribution spa
e. If we want the solution to be fun
tion-valued, it is natural to 
onsider noisewith some spatial 
orrelation.In this dissertation, we are going to see that this also happens for the wave equation drivenby a Gaussian noise 
on
entrated on a surfa
e, in parti
ular the sphere or the plane. In both
ases, we give minimal 
onditions on the spatial 
ovarian
e of the noise whi
h guarantee theexisten
e of a fun
tion-valued solution of the linear equation.For the 
ase of a noise 
on
entrated on a d-dimensional sphere, we give two 
onditions, onene
essary and one suÆ
ient, for the existen
e of a square-integrable solution of the linear waveequation in the ball delimited by the sphere. These 
onditions are expressed in terms of theFourier 
oeÆ
ients of the spatial 
ovarian
e of the noise. In the 
ase of a noise 
on
entrated ona 
ir
le, the ne
essary 
ondition 
an be reformulated into an expli
it 
ondition on the 
ovarian
e.For the linear wave equation in a d-dimensional spa
e driven by noise 
on
entrated on a k-plane (with 1 � k < d), we give optimal 
onditions for the existen
e of a solution with values insome fra
tional Sobolev spa
e in the dire
tions perpendi
ular to the k-plane. These 
onditionsare expressed in terms of the spe
tral measure of the noise and 
an also be reformulated intoexpli
it 
onditions on the 
ovarian
e.Moreover, for the parti
ular 
ase of a noise 
on
entrated on a hyperplane, we give two opti-mal 
onditions on the spe
tral measure whi
h guarantee the existen
e of a real-valued solutionde�ned, respe
tively, only outside the hyperplane that supports the noise, or everywhere iniii



spa
e. In the latter 
ase, we establish the existen
e and uniqueness of a real-valued solution fora non-linear equation of the same type. Under stronger 
onditions on the spe
tral measure, wealso establish that the solution of the linear equation is H�older-
ontinuous outside the hyper-plane.Finally, we 
onsider similar questions for the linear heat equation in a d-dimensional spa
edriven by noise 
on
entrated on a k-plane (with 1 � k < d) and we show that under a fairly mildassumption on the 
ovarian
e of the noise, there exists a real-valued solution whi
h is de�nedoutside the hyperplane, but the solution is never de�ned on the k-plane itself.
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Version abr�eg�eeLe 
adre de 
ette th�ese est l'�etude des ph�enom�enes de propagation d'ondes engendr�ees par dessour
es de bruit al�eatoires en temps et en espa
e. Plus pr�e
is�ement, nous nous int�eressons�a l'existen
e de solutions �a valeurs r�eelles d'�equations lin�eaires aux d�eriv�ees partielles hyper-boliques (du type de l'�equation des ondes) dirig�ees par des sour
es de bruit gaussiennes addi-tives, d�e
orr�el�ees en temps et 
on
entr�ees sur des surfa
es en espa
e.Il est bien 
onnu que lorsque la dimension spatiale 
onsid�er�ee est sup�erieure �a un, l'�equationd'onde lin�eaire dirig�ee par un bruit gaussien blan
 en temps et en espa
e admet une solution quiprend ses valeurs dans un espa
e de distributions. Si l'on veut obtenir une solution �a valeurs dansun espa
e de fon
tions, il est naturel de 
onsid�erer que le bruit poss�ede une 
ertaine 
orr�elationspatiale.Dans 
ette th�ese, nous allons voir que 
e
i se produit �egalement pour l'�equation d'ondelin�eaire dirig�ee par un bruit gaussien 
on
entr�e sur une surfa
e, en parti
ulier la sph�ere ou leplan. Pour 
es deux 
as, nous donnons des 
onditions minimales sur la 
ovarian
e spatiale dubruit garantissant l'existen
e d'une solution �a valeurs dans un espa
e de fon
tions pour l'�equationlin�eaire.Pour le 
as d'un bruit 
on
entr�e sur une sph�ere d-dimensionnelle, nous donnons deux 
on-ditions, une n�e
essaire et une suÆsante, pour l'existen
e d'une solution de 
arr�e int�egrable del'�equation d'onde lin�eaire dans la boule d�elimit�ee par la sph�ere. Ces 
onditions sont exprim�eesen termes des 
oeÆ
ients de Fourier de la 
ovarian
e spatiale du bruit. Dans le 
as d'un bruit
on
entr�e sur un 
er
le, la 
ondition n�e
essaire peut être reformul�ee en une 
ondition expli
itesur la 
ovarian
e.Pour l'�equation d'onde lin�eaire dans l'espa
e de dimension d dirig�ee par un bruit 
on
entr�esur un k-plan (ave
 1 � k < d), nous donnons des 
onditions optimales pour l'existen
e d'unesolution �a valeurs dans un espa
e de Sobolev fra
tionnaire dans les dire
tions perpendi
ulairesau k-plan. Ces 
onditions sont exprim�ees en termes de la mesure spe
trale du bruit et peuventaussi être reformul�ees en des 
onditions expli
ites sur la 
ovarian
e.v



De plus, pour le 
as parti
ulier d'un bruit 
on
entr�e sur un hyperplan, nous donnons deux
onditions sur la mesure spe
trale garantissant l'existen
e d'une solution �a valeurs r�eelles d�e�nierespe
tivement seulement en dehors de l'hyperplan qui supporte le bruit, ou partout dansl'espa
e. Dans 
e dernier 
as, nous montrons l'existen
e et l'uni
it�e d'une solution �a valeursr�eelles pour une �equation non-lin�eaire du même type. Sous des 
onditions plus fortes 
on
er-nant la mesure spe
trale, nous montrons �egalement que la solution de l'�equation lin�eaire esth�old�erienne en dehors de l'hyperplan.Finalement, nous 
onsid�erons des questions similaires pour l'�equation de la 
haleur lin�eairedans l'espa
e de dimension d dirig�ee par un bruit 
on
entr�e sur un k-plan (ave
 1 � k < d)et nous montrons que sous une hypoth�ese peu restr
itive 
on
ernant la 
ovarian
e du bruit, ilexiste une solution �a valeurs r�eelles d�e�nie en dehors du k-plan, mais 
ette solution n'est jamaisd�e�nie sur le k-plan lui-même.
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Chapter 1Introdu
tion
Sto
hasti
 partial di�erential equations are of both mathemati
al and pra
ti
al interest. Themathemati
al aspe
ts 
on
ern the extension of the now well developed theory of partial di�eren-tial equations to similar equations with random sour
e terms, whi
h are strongly irregular, bothin time and spa
e. On the other hand, the pra
ti
al interest of these equations 
omes from thefa
t that they provide models for physi
al phenomena with temporal and spatial variations thatare too rapid to be well des
ribed by deterministi
 models. Examples of su
h phenomena are tobe found in various domains, su
h as o
eanography [3, 22℄, 
uid me
hani
s [10℄ or mathemati
al�nan
e [8℄.Many approa
hes have been developed in order to handle these new kinds of equations. Inthe present dissertation, we follow mainly the approa
h des
ribed by J. B. Walsh in [62℄, whi
h
onsiders partial di�erential equations driven by additive noises (essentially white noise). Solu-tions of su
h equations are des
ribed as random �elds indexed by the time and spa
e variables,and are expressed as generalized sto
hasti
 integrals with respe
t to a martingale measure 
on-stru
ted from the noise under 
onsideration. For the same kind of equations, one 
ould alsouse the approa
h of G. Da Prato and J. Zab
zyk des
ribed in [18, 19℄, whi
h 
onsider solutionsas pro
esses indexed by the time variable with values in some fun
tional spa
e of the spa
evariable, namely Bana
h or Hilbert spa
es. We will also use some aspe
ts of this approa
h inthe present dissertation. For di�erent approa
hes to sto
hasti
 partial di�erential equations, see[10, 27, 31, 48℄, among many others. Let us also mention here that there is another \
lass" ofsto
hasti
 partial di�erential equations with no additive noise but random 
oeÆ
ients, whi
hhas lead to di�erent types of analysis and results (see for example [47, 60℄).The �rst kind of sto
hasti
 partial di�erential equations whi
h have been studied are thosedriven by additive spa
e-time Gaussian white noise. For the linear equation, viewing the noiseas a random distribution allows to apply deterministi
 methods; see [28, 37, 63℄. In the spe
i�

ase where the spatial dimension is one, it 
an be shown that even though the noise is stronglyirregular, the solution of the equation is 
ontinuous; it is therefore possible to 
onsider non-linear1



2 Chapter 1. Introdu
tionequations of the same type: see for example [11, 12, 49, 50℄. On the other hand, the solution ofthe linear equation is no longer a fun
tion when the spa
e dimension is greater than one. Onepossible way of studying non-linear equations in higher spa
e dimension is then to de�ne thenon-linear transformation of a distribution (see [43, 44℄). Another way is to repla
e the whitenoise by a spatially homogeneous Gaussian noise whose 
ovarian
e satis�es a minimal 
onditionin order for the solution to be a fun
tion, and then to analyze non-linear equations of the sametype. This latter approa
h is reviewed in the next se
tion.The main purpose of the present dissertation is to study hyperboli
 partial di�erential equa-tions driven by Gaussian noises that are white in time and 
on
entrated in spa
e on manifoldsof lower dimension than the spa
e variable under 
onsideration; typi
ally a sphere or a plane. Itturns out that also in this 
ase, solutions are not fun
tion-valued when we 
onsider white noises
on
entrated on surfa
es and when the spa
e dimension is greater than one. Sin
e we do notwant to 
onsider non-linear transformations of distributions, we will follow the se
ond approa
hdes
ribed above, and therefore try to �nd minimal 
onditions on the 
ovarian
e of the noise inorder to obtain fun
tion-valued solutions. This allows us afterwards to study equations drivenby non-linear sto
hasti
 sour
e terms 
on
entrated on these manifolds.A typi
al example of su
h an equation is the equation des
ribing wave propagation in or-dinary three dimensional spa
e perturbed by a noise 
on
entrated on a plane. This type ofsituation might for example arise in the study of the sound wave produ
ed by the noise of therain falling on the surfa
e of a lake. This noise is 
omposed of a large number of small 
on-tributions (namely the droplets of rain); it is therefore natural to 
onsider that it is Gaussian.Moreover, it is 
on
entrated on a surfa
e (namely the lake surfa
e), so the pressure wave emittedby this noise satis�es a wave equation driven by an additive noise sour
e 
on
entrated on a plane.There have been many studies of equations driven by noises 
on
entrated on manifolds (gen-erally 
onsidered as sto
hasti
 boundary 
onditions). Most of these studies however 
on
ern the
ase where the spatial dimension is one, so the boundary noise is therefore a pointwise noise (seefor example [4, 20, 33℄). Some re
ent results have been obtained for paraboli
 equations drivenby boundary noises in higher spa
e dimension: see [34, 61℄. Among these two papers, the most
losely related to this dissertation is the paper [61℄. The methods for paraboli
 equations di�erfrom those studied here, sin
e these equations exhibit regularizing properties, whi
h is not the
ase of hyperboli
 equations. This has made it possible to analyse paraboli
 equations driven bynoises 
on
entrated on fairly general manifolds. For the 
ase of hyperboli
 equations, the analy-sis is more intri
ate, be
ause we need Fourier analysis te
hniques developed for equations drivenby spatially homogeneous noises. In the present dissertation, we therefore restri
t ourselves toequations driven by noises 
on
entrated on two 
anoni
al manifolds: the sphere and the plane.



1.1. Equations driven by spatially homogenous noises 31.1 Equations driven by spatially homogenous noisesEven though a noise 
on
entrated on a manifold is not spatially homogeneous, the te
hniquesthat we use in this dissertation are quite similar to those used for equations driven by spatiallyhomogeneous noises. The �rst 
ontributions to this subje
t are to be found in [13, 17, 21, 26, 38,39, 40℄. Afterwards, there have been many papers on the subje
t, some following the approa
hof J.B. Walsh (see [14, 15, 35, 36, 54, 55℄) and some the approa
h of G. Da Prato and J. Zab
zyk(see [30, 51, 52, 53℄).In this se
tion, we des
ribe the re
ent results obtained independently by R. C. Dalang in [15℄and A. Kar
zewska and J. Zab
zyk in [30℄ for the heat and the wave equation in Rd (d � 1) drivenby spatially homogeneous noise. The equation 
onsidered in these referen
es is the following:Lu(t; x) = _F (t; x); (t; x) 2 R+ � Rd ;where L is either the heat or the wave operator (with vanishing initial 
onditions) and _F is ageneralized 
entered Gaussian pro
ess with 
ovarian
eE ( _F (t; x) _F (s; y)) = Æ0(t� s) �(x� y);where Æ0 is the usual Dira
 measure on R and � is a non-negative and non-negative de�nitetempered Borel measure on Rd . Let us also denote by � the spe
tral measure of the noise,de�ned as the inverse Fourier transform of �.Theorems 11 and 13 in [15℄, as Theorem 1 in [30℄, state that there exists a real-valued pro
esswhi
h is the solution (in a weak sense) of the above equation if and only if the following 
onditionon � is satis�ed: ZRd �(d�)1 + j�j2 <1:The reformulation of this 
ondition into a 
ondition on � yields (see Theorem 2 in [30℄):8>>>>>>>><>>>>>>>>:
no 
ondition on �; when d=1;ZB(0;1) �(dx) ln� 1jxj� <1; when d = 2;ZB(0;1) �(dx) 1jxjd�2 <1; when d � 3:When �(dx) = f(jxj) dx, with f a 
ontinuous fun
tion on ℄0;1[, this implies the following.- When d = 2, the above 
ondition is equivalent toZ 10 dr f(r) r ln�1r� <1:



4 Chapter 1. Introdu
tion- When d � 3, the above 
ondition is equivalent toZ 10 dr f(r) r <1:Note that the 
ondition for d = 2 was previously obtained by R.C. Dalang and N. Frangos in [14℄.Moreover, Theorem 13 in [15℄ states that when d � 3, under the same assumption on � andfor globally Lips
hitz fun
tions g and h, there exists a real-valued pro
ess whi
h is the solutionof the following non-linear equation:Lu(t; x) = g(u(t; x)) + h(u(t; x)) _F (t; x):The study of the regularity of this real-valued solution has been performed by M. Sanz-Sol�e andM. Sarr�a in [54℄ for the semi-linear equation, that is, when h � 1, and the result is the following.If � 2 ℄0; 1[ and ZRd �(d�)(1 + j�j2)1�� <1;Theorems 4.1 and 4.2 in [54℄ then state that the solution of the equation is a.s. lo
ally H�older-
ontinuous with exponent 
 < � in x, and 
 < �=2 in t in the 
ase of the heat equation or
 < � ^ 12 in t in the 
ase of the wave equation. For other results on the regularity of thesolution of this kind of equations, see also [35, 36, 55℄.Finally, let us also mention that another approa
h to these non-linear equations 
an be foundin [51, 52, 53℄, where it is shown that the solution belongs to some weighted Sobolev spa
e onRd .1.2 Equations driven by boundary noisesIn this se
tion, we summarize brie
y the main results obtained in the present dissertation, fo-
using on the results 
on
erning hyperboli
 equations driven by boundary noises, whi
h is ourmain interest. We also des
ribe brie
y what are the main ideas of the proofs of these results,reviewing the 
hapters of the dissertation at the same time.Noise on a sphere (Chapters 2 and 3). Let d � 2 and 
onsider the equationLa;bu(t; x) = _F (t; x) Æ�B(0;1)(x); (t; x) 2 R+ �B(0; 1);where B(0; 1) is the unit ball in Rd and �B(0; 1) is the unit sphere in Rd , a; b 2 R and La;b isthe following linear partial di�erential operatorLa;b = �2�t2 + 2a ��t + b��;



1.2. Equations driven by boundary noises 5with homogeneous Neumann boundary 
onditions on �B(0; 1) (note that when a = b = 0, La;bis simply the wave operator). The noise _F 
onsidered here is a Gaussian 
entered noise with
ovarian
e E ( _F (t; x) _F (s; y)) = Æ0(t� s) Xl2N al Pl(x � y); x; y 2 �B(0; 1); (1.1)where the al are non-negative numbers and the Pl are the generalized Legendre polynomials.That is, _F is a boundary noise, white in time and rotationally invariant on the sphere.The result is then the following (see Theorem 3.3.3): a suÆ
ient 
ondition for the existen
eof an L2(B(0; 1))-valued pro
ess fu(t); t 2 R+g whi
h is a solution (in a weak sense) of theabove equation is Xl2N al ln(1 + l)1 + l <1;and a ne
essary 
ondition is Xl2N al1 + l <1:In order to establish this result, we 
onsider in Chapter 2 the hyperboli
 equation in a boundeddomain driven by general noise. We �rst establish a weak formulation of the equation and proveby standard te
hniques using the spe
tral de
omposition of the Lapla
ian in a bounded domain,that under a spe
i�
 
ondition on the 
ovarian
e of the noise, there exists a unique weak solutionwhi
h is a pro
ess u = fu(t); t 2 R+g with values in L2(D).In Chapter 3, we 
onsider more spe
i�
ally the 
ase where the domain is the unit ball B(0; 1)in Rd and the noise is 
on
entrated on the sphere �B(0; 1), with 
ovarian
e of the form givenin (1.1), whi
h 
an be shown to be a fairly general form. We then parti
ularize the spe
i�

ondition obtained in Chapter 2 to the present 
ase, whi
h brings us to the above mentionedresult. The proof relies mainly on estimates on the eigenvalues and eigenve
tors of the Lapla
ianin the unit ball, whi
h are expressed in terms of spheri
al harmoni
s and Bessel fun
tions.Noise on a k-plane (Chapters 4, 5 and 6). Let d > k � 1 and for x 2 Rd , write x = (x1; x2),where x1 2 Rk and x2 2 Rd�k . Consider the equationLa;bu(t; x) = _F (t; x1) Æ0(x2); (t; x) 2 R+ � Rd ; (1.2)where a; b 2 R and La;b is the following linear partial di�erential operator on Rd :La;b = �2�t2 + 2a ��t + b��:The noise _F 
onsidered here is a Gaussian 
entered noise with 
ovarian
eE ( _F (t; x1) _F (s; y1)) = Æ0(t� s) �(x1 � y1);



6 Chapter 1. Introdu
tionwhere � is a non-negative de�nite measure on Rk . That is, the noise _F is white in time, 
on-
entrated on the k-plane x2 = 0, and spatially homogeneous on this k-plane.Let � be the spe
tral measure of the noise (de�ned as the inverse Fourier transform of � inthe 
oordinate x1), � < 1 � d�k2 and H�(Rd�k ) be the fra
tional Sobolev spa
e of order � onRd�k . We then have the following result (see Theorem 6.4.3): the solution of the above equationis an H�(Rd�k )-valued pro
ess fu(t; x1); (t; x1) 2 R+ � Rkg if and only ifZRk �(d�1)1 + j�1j2 <1; when � < �d� k2 ; (1.3)ZRk �(d�1) ln �1 + j�1j2�1 + j�1j2 <1; when � = �d� k2 ;ZRk �(d�1)(1 + j�1j2)1+ d�k2 �� <1; when � 2 ℄� d� k2 ; 1� d� k2 [:One 
an noti
e that � is possibly non-negative only when k = d� 1, that is, when the noise is
on
entrated on a hyperplane.In order to obtain this result, after some preliminaries in Chapter 4, we 
onsider in Chap-ter 5 the hyperboli
 equation in Rd driven by general noise and show that under a fairly mildassumption on the 
ovarian
e of the noise, there always exists a unique weak solution whi
h isa pro
ess u = fu(t); t 2 R+g with values in some distribution spa
e. For this proof, we use theWalsh theory [62℄ of sto
hasti
 integrals with respe
t to martingale measures on Rd .In Chapter 6, we 
onsider the 
ase where the noise is 
on
entrated on a k-plane, and �rstshow that the Fourier transform of the weak solution in x2 (that is, in the dire
tions perpendi
-ular to the k-plane) is a real-valued pro
ess (rather than a distribution-valued one) if and onlyif a spe
i�
 
ondition on the spe
tral measure of the noise is satis�ed, namely 
ondition (1.3)(see Proposition 6.3.6). The s
heme that we follow for this proof is similar to that used by R.Dalang for the equation driven by spatially homogeneous noise on Rd (see [15℄). We �rst extendthe Walsh sto
hasti
 integral to distribution-valued integrands and then show that under theabove mentioned 
ondition, it is possible to de�ne a real-valued pro
ess whi
h is the sto
hasti
integral of a distribution-valued integrand (namely the Fourier transform in x2 of the Greenkernel of the equation) and whi
h is the Fourier transform of the weak solution in x2. We thenshow that if it is possible to de�ne su
h a pro
ess, then the above 
ondition is satis�ed, provingtherefore that this 
ondition is optimal.In order then to establish the above result, we use the 
lassi
al fa
t that a distribution be-longs to a fra
tional Sobolev spa
e H� if and only if its Fourier transform belongs to a weightedL2-spa
e (the weight depending on �). We then study the integrability of the square of the



1.2. Equations driven by boundary noises 7Fourier transform of the solution in x2, whi
h we found to be a real-valued pro
ess in the pre-
eding analysis. Some te
hni
al estimates are needed here, whi
h lead to the above optimal
onditions.Noise on a hyperplane (Chapters 7 and 8). Consider the same equation as above in the
ase where k = d � 1. Our �rst two results are the following: Theorem 7.2.5 states that thesolution of equation (1.2) is a real-valued pro
ess fu(t; x1; x2); (t; x1; x2) 2 R+ � Rd�1 � R�gde�ned outside the hyperplane x2 = 0 if and only ifZRd�1 �(d�1)p1 + j�1j2 <1:Theorem 7.3.3 then states that the solution of the above equation is a real-valued pro
essfu(t; x); (t; x) 2 R+ � Rdg de�ned on the whole spa
e (in
luding the hyperplane x2 = 0) if andonly if the following stronger 
ondition on � is satis�ed:ZRd�1 �(d�1) ln�p1 + j�1j2�p1 + j�1j2 <1: (1.4)The fa
t that this 
ondition is di�erent from the previous one shows that it is quite di�erent torequire that a pro
ess solution be de�ned everywhere rather that just almost everywhere, su
has for x2 6= 0.In Chapter 7, we establish the �rst two mentioned results by te
hniques similar to those ofChapter 6. We also establish some regularity properties of the solution, using te
hniques similarto those used by M. Sanz-Sol�e and M. Sarr�a in [54℄ for spatially homogeneous noises. Namely,we show (see Theorem 7.4.3) that the solution is a.s. lo
ally H�older-
ontinuous with exponent
 < � 2 ℄0; 12 [ outside the hyperplane x2 = 0 ifZRd�1 �(d�1)(1 + j�1j2) 12�� <1:Furthermore, when d � 3 and a2 � b, we also 
onsider the following non-linear equationLu(t; x) = g(u(t; x1; 0)) Æ0(x2) + h(u(t; x1; 0)) _F (t; x1) Æ0(x2):Theorem 8.1.1 states that there exists a real-valued pro
ess u whi
h is solution of this equationif g and h are globally Lips
hitz fun
tions and 
ondition (1.4) is satis�ed.In Chapter 8, we follow the approa
h of R. Dalang developed in [15℄ for non-linear equationsdriven by spatially homogeneous noises. We �rst study a mild formulation of the non-linearequation des
ribed above, restri
ted to the hyperplane x2 = 0, and show that this equation ad-mits a unique solution by the standard Pi
ard's iteration s
heme used for spatially homogeneousnoises. We then extend the solution to the whole spa
e.



8 Chapter 1. Introdu
tionLet us �nally mention the two following fa
ts. At the end of Chapter 7, we establish thatwhen k = d � 2, there does not exist a real-valued pro
ess de�ned outside the k-plane x2 = 0whi
h is the solution of the linear hyperboli
 equation driven by noise on the k-plane. On theother hand, we study in Chapter 9 the 
ase of the heat equation in Rd , whi
h is the simplestexample of a paraboli
 equation, driven by noise on a k-plane. The answers obtained for thisequation are rather di�erent than for the hyperboli
 one. The two main results (see Theorems9.2.5 and 9.2.7) state that under a fairly mild assumption on the 
ovarian
e, the solution isalways a real-valued pro
ess de�ned outside the k-plane x2 = 0, but that on the other hand, it
an never be de�ned on the k-plane itself. We then 
ompare these results with those obtainedby R. Sowers in [61℄.



Chapter 2Linear equation in a boundeddomainLet D be a bounded domain in Rd whose boundary �D is a C1 manifold and su
h that D islo
ally on one side of �D. Let also a; b 2 R. We are interested in solving the following sto
hasti
linear hyperboli
 equation:8>>>>>>>><>>>>>>>>:
�2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x)��u(t; x) = _FD(t; x); (t; x) 2 R+ �D;�u�� (t; x) = 0; (t; x) 2 R+ � �D;u(0; x) = u0(x); �u�t (0; x) = v0(x); x 2 D; (2.1)

where �u�� is the normal derivative of u at the boundary, u0, v0 are two given fun
tions on D, and_FD = f _FD(t; x); (t; x) 2 R+ �Dg is a generalized 
entered Gaussian pro
ess whose 
ovarian
eis formally given by E ( _FD (t; x) _FD(s; y)) = Æ0(t� s) �D(x; y);where Æ0 is the usual Dira
 measure on R and �D is a non-negative de�nite distribution onD �D, in a sense that will be pre
ised below.2.1 Spe
tral theoremLet us 
onsider the following spa
es:- S(D) = �' 2 C1(D) su
h that �'�� ����D = 0�, the spa
e of test fun
tions.- L2(D), the usual spa
e of measurable and square integrable fun
tions on D, equipped with thes
alar produ
t hu; vi0 = ZD dx u(x) v(x);9



10 Chapter 2. Linear equation in a bounded domainand the 
orresponding norm k � k0.- H1(D), the Sobolev spa
e of fun
tions in L2(D) whose �rst partial derivatives belong also toL2(D), equipped with the s
alar produ
thu; vi1 = hu; vi0 + hru;rvi0;and the 
orresponding norm k � k1 (note that S(D) � H1(D)).- H�1(D), the dual of H1(D), equipped with the normjjjujjj�1 = sup'2H1(D);'6=0 ju(')jk'k1Let us also denote by h�; �i�1;1 the duality produ
t between H�1(D) and H1(D), simply de�nedby hu; 'i�1;1 = u('):We will use the following theorem from 
lassi
al analysis (see [59, pp. 111-112℄), whi
h statesthe existen
e of a Hilbertian basis of L2(D) 
omposed by the eigenfun
tions of the Lapla
ianoperator on D with Neumann boundary 
onditions. Before stating it, let us write an � bn whenthere exists C 2 ℄0;1[ su
h that limn!1 anbn = C:Theorem 2.1.1. There exist two sequen
es fen; n 2 Ng � S(D) and f�n; n 2 Ng � R+ su
hthat �en + �nen = 0; 8n 2 N;fen; n 2 Ng is a Hilbertian basis of L2(D) and f�n; n 2 Ng is an in
reasing sequen
e of non-negative numbers su
h that �n � n2=d as n!1: (2.2)Note that �0 = 0 and e0(x) � 1pjDj , sin
e we 
onsider Neumann boundary 
onditions.Estimate (2.2) is known as Weyl's law. In the following, we will only use a 
onsequen
e ofthis estimate, namely that the eigenvalues of the Lapla
ian tend to in�nity as n!1.A dire
t 
onsequen
e of the above theorem is that� enp1 + �n ; n 2 N�is a Hilbertian basis of H1(D). Moreover, we have the following equalities:kuk20 = Xn2N jhu; eni0j2;kuk21 = Xn2N(1 + �n) jhu; eni0j2;



2.2. Gaussian noise 11and the norm jjj � jjj�1 on H�1(D) is equivalent tokuk2�1 =Xn2N jhu; eni�1;1j21 + �n :2.2 Gaussian noiseSin
e _FD(t; x) is not well de�ned for �xed (t; x) 2 R+ � D, we will rather 
onsider in thefollowing the pro
ess FD = fFDt ('); t 2 R+ ; ' 2 S(D)g whi
h is related to _FD by the informalrelationship FDt (') = Z t0 dsZD dx _FD(s; x) '(x); t 2 R+ ; ' 2 S(D): (2.3)In order to de�ne FD rigorously, we assume that the 
ovarian
e �D is a bilinear, symmetri
 andnon-negative de�nite form on S(D), that is,mXi;j=1 
i 
j �D('i; 'j) � 0; 8m � 1; 
1; : : : ; 
m 2 R; '1; : : : ; 'm 2 S(D):By the Kolmogorov extension theorem, (see [42, prop. 3.4℄), there exist a probability spa
e(
;G;P) and a 
entered Gaussian pro
ess FD = fFDt ('); t 2 R+ ; ' 2 S(D)g de�ned on thisspa
e, whose 
ovarian
e is given byE (FDt (') FDs ( )) = (t ^ s) �D('; ):Moreover, there exists a modi�
ation ~FD = f ~FDt ('); t 2 R+g of FD su
h that for all ' 2 S(D),the pro
ess f ~FDt ('); t 2 R+g is a P�a:s: 
ontinuous Brownian motion with 
ovarian
e parameter�D(';'). In the following, we will 
onsider impli
itely the modi�
ation ~FD.2.3 Weak formulation of the equationNow that we have a pre
ise de�nition of the Gaussian noise under 
onsideration, we also needto give a rigorous meaning to equation (2.1). Setting formally v(t; x) = �u�t (t; x), we obtain thefollowing two formal equations, after integration in t of equation (2.1):8>>>><>>>>: u(t; x) = u0(x) + Z t0 ds v(s; x);v(t; x) = v0(x) + Z t0 ds (�2a v(s; x) � b u(s; x) + �u(s; x) + _FD(s; x)):We now multiply both sides of these two equations by a test fun
tion ' 2 S(D) and integratethem in x on the domain D, with two more integrations by parts in x of the term with theLapla
ian, taking into a

ount the fa
t that �'�� ���D = 0 and the Neumann boundary 
ondition�u�� ���D = 0. Assuming that (u0; uv0) 2 L2(D)�H�1(D), 
onsidering that (u; v) takes its valuesin L2(D) �H�1(D) and using the informal relationship (2.3) gives then the following rigorous



12 Chapter 2. Linear equation in a bounded domainformulation: a weak solution of equation (2.1) is a pro
ess (u; v) = f(u(t); v(t)); t 2 R+g withvalues in L2(D)�H�1(D) su
h that for all ' 2 S(D), the map t 7! (hu(t); 'i0; hv(t); 'i�1;1) isP� a:s: 
ontinuous on R+ and satis�es, for all t 2 R+ ,8>>>><>>>>: hu(t); 'i0 = hu0; 'i0 + Z t0 ds hv(s); 'i�1;1;hv(t); 'i�1;1 = hv0; 'i�1;1 + Z t0 ds (�2a hv(s); 'i�1;1 � b hu(s); 'i0 + hu(s);�'i0) + FDt ('):(2.4)Moreover, we say that the weak solution of equation (2.1) is unique if for any two solutions(u(1); v(1)) and (u(2); v(2)), u(1)(t) = u(2)(t) and v(1)(t) = v(2)(t);for all t 2 R+ , P� a:s:Remark 2.3.1. In the following, we will often be loosely speaking of u, instead of (u; v), forthe solution of equation (2.4).Remark 2.3.2. A solution u of (2.4) is termed a \weak" solution of equation (2.1), be
ause ittakes its values in L2(D), and therefore neither �u nor �u�� ���D are de�ned. A stronger way ofde�ning a solution (u; v) of equation (2.1) is to impose that it takes its values in H1(D)�L2(D).Nevertheless, we will see in the next 
hapter that there never exists su
h a solution when thenoise is a boundary noise (see also Remark 2.5.6 in the present 
hapter). Furthermore, we willsee in Se
tion 3.2 that for this kind of noise, equation (2.4) 
an be reinterpreted as the weakformulation of an equation whi
h is di�erent from the original equation (2.1).2.4 Green kernel de
omposed in eigenmodesLet n 2 N and Gn : R ! R be the fun
tion solution ofG00n(t) + 2a G0n(t) + (b+ �n) Gn(t) = 0; Gn(0) = 0; G0n(0) = 1: (2.5)Thus, Gn is given byGn(t) = 8>>>><>>>>: e�at sin �tp�n + b� a2�p�n + b� a2 ; if �n > a2 � b;e�at t; if a2 � b � 0 and �n = a2 � b;e�at sinh �tpa2 � b� �n�pa2 � b� �n ; if a2 � b > 0 and �n < a2 � b: (2.6)Note that the �rst of these three expressions 
ontains a
tually the other two, sin
e we havelimu!0 sin(u)u = 1 and sin(iu) = i sinh(u). The following estimates are easy to obtain: for allT > 0, there exists C(T ) > 0 su
h thatjGn(t)j � C(T ); 8t 2 [0; T ℄; n 2 N; (2.7)



2.4. Green kernel de
omposed in eigenmodes 13and jG0n(t)j � C(T ); 8t 2 [0; T ℄; n 2 N: (2.8)Moreover, we have the following lemma.Lemma 2.4.1. For all t > 0, there exist C�(t); C+(t) > 0 and n0(t) 2 N su
h thatC�(t)1 + �n � Z t0 ds Gn(s)2 � C+(t)1 + �n ;for all n � n0(t).Proof. Let n0(t) 2 N be su
h that �n0(t) � 2 (a2 � b) + (1 _ 1t2 ) and n � n0(t). ThenZ t0 ds Gn(s)2 = Z t0 ds e�2as sin2 �sp�n + b� a2��n + b� a2 : (2.9)Let us 
ompute the upper bound �rst. Using the fa
t that e�2as � e2a�t, where a� denotes thenegative part of a, we obtain Z t0 ds Gn(s)2 � t e2a�t�n + b� a2Sin
e �n � 2 (a2 � b) + 1, we also have�n + b� a2 � �n + 1� �n2 � 1 + �n2 ; (2.10)so we obtain Z t0 ds Gn(s)2 � t e2a�t2 (1 + �n) :The lower bound is obtained as follows. Denote by a+ the positive part of a. Formula (2.9) thenimplies Z t0 ds Gn(s)2 � e�2a+t�n + b� a2 t2  1� sin �2tp�n + b� a2�2tp�n + b� a2 ! :Sin
e tp�n + b� a2 � 1, we have 1� sin �2tp�n + b� a2�2tp�n + b� a2 ! � 12 ;and sin
e �n + b� a2 � � 1 + �n; if b� a2 � 1;(b� a2) (1 + �n); if b� a2 � 1;� (1 _ (b� a2)) (1 + �n); (2.11)we obtain Z t0 ds Gn(s)2 � t e�2a+t4 (1 _ (b� a2)) (1 + �n) :This 
ompletes the proof.



14 Chapter 2. Linear equation in a bounded domainLet us also de�ne, for n 2 N and t 2 R, Hn(t) = G0n(t) + 2a Gn(t). We easily see that Hnsatis�es H 00n(t) + 2a H 0n(t) + (b+ �n) Hn(t) = 0; Hn(0) = 1; H 0n(0) = 0: (2.12)The equation follows dire
tly from the de�nition of Hn and equation (2.5). In order to 
he
kthe initial 
onditions, let us 
omputeHn(t) = e�at 
os�tp�n + b� a2�+ a e�at sin �tp�n + b� a2�p�n + b� a2 ; (2.13)therefore Hn(0) = 1, andH 0n(t) = �e�at p�n + b� a2 sin�tp�n + b� a2�� a2 e�at sin �tp�n + b� a2�p�n + b� a2 ;therefore H 0n(0) = 0. Moreover, the following estimates are easy to obtain: for all T > 0, thereexists C(T ) > 0 su
h that jHn(t)j � C(T ); 8t 2 [0; T ℄; n 2 N; (2.14)and jH 0n(t)j � C(T )p1 + �n; 8t 2 [0; T ℄; n 2 N: (2.15)2.5 Existen
e and uniqueness of the solutionWhat we will show is that there exists a unique weak solution to equation (2.1) under the follow-ing assumption. Let us denote 
n;m = �D(en; em) for n;m 2 N, where the en are the elementsof the Hilbertian basis of Theorem 2.1.1, and 
n = 
n;n for n 2 N.Assumption H0.(i) �D is 
ontinuous with respe
t to the H1-norm, that is, there exists C > 0 su
h that�D(';') � C k'k21; 8' 2 S(D):(ii) The following 
ondition is satis�ed:Xn2N 
n1 + �n <1:Remark 2.5.1. Part (i) of the above assumption implies that there exists QD 2 L(H1(D)), thespa
e of linear 
ontinuous operators on H1(D), su
h that�D('; ) = h';QD i1; 8'; 2 S(D):Assuming that this is true, part (ii) of assumption H0 implies moreover that QD 2 L1(H1(D)),the spa
e of tra
e-
lass linear operators on H1(D), that is,Xn2Nhfn; QDfni1 <1;where ffn; n 2 Ng is any Hilbertian basis of H1(D).



2.5. Existen
e and uniqueness of the solution 15Furthermore, note that by estimate (2.2), we 
ould make part (ii) of Assumption H0 morepre
ise, namely Xn2N 
n1 + n2=d <1;but this will not be needed in the study of the following 
hapter, sin
e we will 
onsider in therea di�erent way of ordering the eigenvalues �n.We will also need the following sto
hasti
 Fubini theorem.Theorem 2.5.2. If W = fWs; s 2 R+g is a standard Brownian motion, g : R+ � R+ ! C is
ontinuous and t 2 R+ , then P� a:s:,Z t0 ds Z s0 dWr g(r; s) = Z t0 dWr Z tr ds g(r; s):Proof. We use here the fa
t that the two square-integrable random variablesX1 = Z t0 ds Z s0 dWr g(r; s) and X2 = Z t0 dWr Z tr ds g(r; s)are equal P � a:s: if and only if E(X21 ) = E (X1X2) = E (X22 ) (that is, the varian
es and the
ovarian
e of the two terms are all equal). Let us then 
omputeE (X21 ) = Z t0 dsZ t0 dp E �Z s0 dWr g(r; s) Z p0 dWq g(q; s)�= Z t0 dsZ t0 dr Z s^p0 dr g(r; s) g(r; p);E (X22 ) = E  �Z t0 dWr Z tr ds g(r; s)�2! = Z t0 dr �Z tr ds g(r; s)�2= Z t0 dr Z tr dsZ tr dp g(r; s) g(r; p);and �nally, E(X1X2) = Z t0 ds E �Z s0 dWr g(r; s)Z t0 dWr Z tr dp g(r; p)�= Z t0 dsZ s0 dr Z tr dp g(r; s) g(r; p):Sin
e these three integrals are integrals of the same fun
tion on the same domain:((s; r; p) 2 [0; t℄3 ����� r � s and r � p) ;we obtain the desired result.Let us now state the two main theorems of this se
tion.



16 Chapter 2. Linear equation in a bounded domainTheorem 2.5.3. Let (u0; v0) 2 L2(D)�H�1(D). Under Assumption H0, the pro
ess (u; v) =f(u(t); v(t)); t 2 R+g with values in L2(D)�H�1(D) de�ned byu(t) =Xn2N(u0n(t) + pn(t)) en; and v(t) =Xn2N(v0n(t) + qn(t)) en; (2.16)where 8>>>><>>>>: u0n(t) = Hn(t) hu0; eni0 +Gn(t) hv0; eni�1;1; pn(t) = Z t0 dFDs (en) Gn(t� s);v0n(t) = H 0n(t) hu0; eni0 +G0n(t) hv0; eni�1;1; qn(t) = Z t0 dFDs (en) G0n(t� s);admits a modi�
ation (~u; ~v) whi
h is the unique weak solution of equation (2.1). Moreover,E (k~u(t)k20) <1 and E (k~v(t)k2�1) <1, for all t 2 R+ .Theorem 2.5.4. Let (u0; v0) 2 L2(D) � H�1(D). If there exists a weak solution (u; v) toequation (2.1) su
h that E (ku(t0)k20) <1, for some t0 > 0, then part (ii) of Assumption H0 issatis�ed.Remark 2.5.5. Note that these two results belong to the general theory developed by G. DaPrato and J. Zab
zyk in [18℄, but sin
e the 
ase that we 
onsider here is a simple one, we rewritethe proofs in this simple 
ase for 
larity and 
ompleteness.Proof of Theorem 2.5.3. Let us �rst show existen
e. The deterministi
 pro
ess (u0; v0) de�nedby u0(t) =Xn2N u0n(t) en and v0(t) =Xn2N v0n(t) en;takes its values in L2(D) � H�1(D) by estimates (2.7), (2.8), (2.14) and (2.15). By a dire
t
al
ulation using equations (2.5) and (2.12), we see that (u0n; v0n) satis�es, for a �xed n 2 N,8>>>><>>>>: u0n(t) = hu0; eni0 + Z t0 ds v0n(s);v0n(t) = hv0; eni�1;1 � Z t0 ds (2a v0n(s) + (b+ �n) u0n(s)):Multiplying this equation by hen; 'i0 and summing over n 2 N gives then the following equationfor (u0; v0), after some permutations of sums and integrals:8>>>><>>>>: hu0(t); 'i0 = hu0; 'i0 + Z t0 ds hv0(s); 'i�1;1;hv0(t); 'i�1;1 = hv0; 'i�1;1 + Z t0 ds (�2a hv0(s); 'i�1;1 � b hu0(s); 'i0 + hu0(s);�'i0):(2.17)for all t 2 R+ and ' 2 S(D).



2.5. Existen
e and uniqueness of the solution 17On the other hand, integrating equation (2.5) in t, then with respe
t to the Brownian motionFD(en) gives8>>>><>>>>: Z t0 dFDs (en) Gn(t� s) = Z t0 dFDs (en)Z ts dr G0n(r � s);Z t0 dFDs (en) G0n(t� s) = FDt (en)� Z t0 dFDs (en)Z ts dr (2a G0n(r � s) + (b+ �n) Gn(r � s)):Applying the sto
hasti
 Fubini theorem 2.5.2 to the integral terms, we obtain that the pro
ess(pn; qn) de�ned in the theorem satis�es8>>>><>>>>: pn(t) = Z t0 ds qn(s);qn(t) = FDt (en)� Z t0 ds (2a qn(s) + (b+ �n) pn(s)): (2.18)Let us now de�ne the pro
ess (p; q) byp(t) =Xn2N pn(t) en and q(t) =Xn2N qn(t) en:We �rst 
he
k that E (kp(t)k20 ) <1, for all t 2 R+ :E �kp(t)k20� =Xn2N E (pn(t)2) � Xn<n0(t) 
n Z t0 ds Gn(t� s)2 + C+(t) Xn�n0(t) 
n1 + �n <1;by the upper bound in Lemma 2.4.1 and part (ii) of Assumption H0. Moreover, let us 
he
kthat E (kq(t)k2�1 ) <1, for all t 2 R+ :E �kq(t)k2�1� =Xn2N E(qn(t)2)1 + �n � C(t)Xn2N 
n1 + �n <1;by estimate (2.8) and part (ii) of AssumptionH0. We then have, using the fa
t that the Lapla
ianis symmetri
 on S(D),hp(t);�'i0 = Xn2N pn(t) hen;�'i0 =Xn2N pn(t) h�en; 'i0;= �Xn2N �n pn(t) hen; 'i0;by Theorem 2.1.1. Multiplying equation (2.18) by hen; 'i0 and summing over n 2 N gives thenthe following equation for (p; q), after some permutations of sums and integrals:8>>>><>>>>: hp(t); 'i0 = Z t0 ds hq(s); 'i�1;1;hq(t); 'i�1;1 = FDt (') + Z t0 ds (�2a hq(s); 'i�1;1 � b hp(s); 'i0 + hp(s);�'i0); (2.19)



18 Chapter 2. Linear equation in a bounded domainP� a:s, for all t 2 R+ and ' 2 S(D), where we have used the fa
t thatXn2N FDr (en) hen; 'i0 = FDr (') P� a:s; 8t 2 R+ ; ' 2 S(D);by part (i) of Assumption H0. Combining �nally equations (2.17) and (2.19), and using the Kol-mogorov 
ontinuity theorem (see [29, Thm 2.8℄) shows that the pro
ess (u; v) = f(u(t); v(t)); t 2R+g de�ned by (2.16) admits a modi�
ation (~u; ~v) su
h that for all ' 2 S(D), the mapt 7! (h~u(t); 'i0; h~v(t); 'i�1;1) is P� a:s: 
ontinuous and solves equation (2.4).In order to prove uniqueness, let (u(1); v(1)) and (u(2); v(2)) be two solutions of equation (2.4)and de�ne (�u; �v) = (u(1) � u(2); v(1) � v(2)). For all ' 2 S(D), there exists a P-null set su
h thatoutside this set, the following equation satis�ed for all t 2 R+ :8>>>><>>>>: h�u(t); 'i0 = Z t0 ds h�v(s); 'i�1;1;h�v(t); 'i�1;1 = Z t0 ds (�2a h�v(s); 'i�1;1)� b h�u(s); 'i0 + h�u(s);�'i0):Fix now n 2 N and de�ne �un(t) = h�u(t); eni0 and �vn(t) = h�v(t); eni�1;1, for t 2 R+ . Repla
ing 'by en in the pre
eding equation and using the symmetry of the Lapla
ian on S(D), we obtainthat for all n 2 N, (�un; �vn) satis�es, outside a P-null set and for all t 2 R+ ,8>>>><>>>>: �un(t) = Z t0 ds �vn(s);�vn(t) = �Z t0 ds (2a �vn(s) + (b+ �n) �un(s)):Therefore, for all n 2 N, we have that �un(t) = �vn(t) = 0 for all t 2 R+ , outside a P-null set.Sin
e N is 
ountable and �u; �v are entirely determined by their 
omponents �un; �vn, the 
on
lusionfollows. �Proof of Theorem 2.5.4. Let (u; v) be a solution of equation (2.4) and let t0 > 0 be su
h thatE (ku(t0)k20) < 1. Let us then repla
e ' by en in equation (2.4) and denote un(t) = hu(t); eni0and vn(t) = hv(t); eni�1;1. By 
al
ulations similar to those of the proof of the pre
eding theorem,we obtain that un(t) = u0n(t) + pn(t) and vn(t) = v0n(t) + qn(t);where 8>>>><>>>>: u0n(t) = Hn(t) hu0; eni0 +Gn(t) hv0; eni�1;1; pn(t) = Z t0 dFDs (en) Gn(t� s);v0n(t) = H 0n(t) hu0; eni0 +G0n(t) hv0; eni�1;1; qn(t) = Z t0 dFDs (en) G0n(t� s);



2.6. Heat equation 19Sin
e, for the same reasons as before, the pro
ess (u0; v0) de�ned byu0(t) =Xn2N u0n(t) en and v0(t) =Xn2N v0n(t) en;belongs to L2(D) � H�1(D) for all t 2 R+ , the assumption made on u then implies that ifp(t) =Pn2N pn(t) en, then E(kp(t0 )k20) <1:But a dire
t 
al
ulation shows thatE(kp(t0 )k20) =Xn2N 
n Z t00 ds Gn(t� s)2 � C�(t0) Xn�n0(t0) 
n1 + �n ;by the lower bound in Lemma 2.4.1, so part (ii) of Assumption H0 must be satis�ed, and this
ompletes the proof. �Remark 2.5.6. Performing the same kind of analysis as above, we 
ould see that if there existsa solution (u; v) to equation (2.4) with values in H1(D) � L2(D), then the following 
ondition(stronger than part (ii) of Assumption H0) must be satis�ed:Xn2N 
n <1: (2.20)Nevertheless, this latter 
ondition is never satis�ed in the 
ase of a boundary noise, as we willsee in the next 
hapter, so there does not exist a solution with values in H1(D)�L2(D) in this
ase.2.6 Heat equationIf, instead of the hyperboli
 equation 
onsidered above, we rather 
onsider the following paraboli
equation: 8>>>>>>><>>>>>>>:
�u�t (t; x)� 12 �u(t; x) = _FD(t; x); (t; x) 2 R+ �D;�u�� (t; x) = 0; (t; x) 2 R+ � �D;u(0; x) = u0(x); x 2 D; (2.21)we 
an then reprodu
e the entire analysis of the pre
eding se
tions. The only di�eren
e will
onsist in the fa
t that the weak formulation is simpler to express (we only have one pro
ess utaking its values in L2(D)) and that the Gn are solutions ofG0n(t) + �n2 Gn(t) = 0; Gn(0) = 1: (2.22)They are therefore given by Gn(t) = exp(��nt2 ): (2.23)



20 Chapter 2. Linear equation in a bounded domainThe analysis is similar to that of the hyperboli
 
ase be
ause these Gn also satisfy Lemma 2.4.1,so Theorems 2.5.3 and 2.5.4 (adapted to the present situation) remain valid in the 
ase of theheat equation.Nevertheless, qualitative di�eren
es appear between the behavior of the solution of the hy-perboli
 and the heat equation in the 
ase of a boundary noise. These will be explained in thenext 
hapter.



Chapter 3Noise on a sphereLet d be a natural number greater than one, B(0; 1) the 
entered unit ball in Rd and �B(0; 1) =Sd�1 the 
entered unit sphere embedded in Rd . In this 
hapter, we would like to study theexisten
e of a weak solution to the hyperboli
 equation (2.1) (in the sense de�ned in (2.4)), inthe spe
i�
 
ase where the domain D = B(0; 1) and the noise 
onsidered is 
on
entrated on thesphere Sd�1.3.1 Eigenvalues and eigenfun
tions of the Lapla
ian in B(0; 1)Let us �rst de�ne the following Bessel fun
tions for l 2 N and d � 2:Jl(d; r) = ��d2� �r2� 2�d2 Jl+ d�22 (r); r > 0; (3.1)where � is the Euler Gamma fun
tion de�ned by�(�) = Z 10 dt t��1 e�t; � > 0; (3.2)and J� is the regular Bessel fun
tion of order � of the �rst kind (see Appendix B for a de�nition).In the following, we will also need the expression of the derivative of Jl(d; �) in r when d > 2:J 0l (d; r) = ��d2� �r2� 2�d2 �J 0l+ d�22 (r)� d� 22r Jl+ d�22 (r)� : (3.3)Let us now des
ribe pre
isely the solutions of the following eigenvalue problem:�'+ �' = 0 in B(0; 1) and �'�� ����B(0;1) = 0;whi
h exist by the spe
tral theorem 2.1.1. By standard theory (see [41, x22℄), they are of theform '(x) = f(r) Y (�), where r = jxj and � is a ve
tor of dimension d � 1 representing theangular part of x. Y is solution of the following eigenvalue problem:��Y (�) + � Y (�) = 0;where �� denotes the Lapla
e-Beltrami operator on Sd�1. The solutions of this problem arewell known and given by f�l; Y ml ; l 2 N; 1 �m � N(d; l)g;21



22 Chapter 3. Noise on a spherewhere �l = l(l+ d� 2), fY ml ; 1 � m � N(d; l)g is the list of generalized spheri
al harmoni
s oforder l on Sd�1 and N(d; l) is the number of these harmoni
s (see [41, x15℄). Note that whend = 2, N(2; l) = 2 and Y �l (�) = exp(�il�); when d = 3, N(3; l) = 2l + 1 and the Y ml are thestandard spheri
al harmoni
s on S2.For a �xed l 2 N, f is now solution of the following eigenvalue problemf 00(r) + d� 1r f 0(r) +��� l(l + d� 2)r2 � f(r) = 0; f 0(1) = 0;The solutions of this problem are also well known (see [41, x22℄) and given byf�kl; fkl; k 2 Ngwhere �kl = �2kl, with f�kl; k 2 Ng the as
ending list of zeros, for a �xed l 2 N, of the derivativeof the Bessel fun
tion Jl(d; �) de�ned by (3.1), and fkl is the fun
tion de�ned, for �xed k; l 2 N,by fkl(r) = Jl(d; �kl r)qR 10 dq qd�1 Jl(d; �kl q)2 :This gives �nally the following set of eigenvalues and eigenfun
tions of the Lapla
ian in B(0; 1):f�kl; eklm = fkl 
 Y ml ; k; l 2 N; 1 � m � N(d; l)g;the above \tensor produ
t" being understood as eklm(x) = fkl(r) Y ml (�).Note that these eigenfun
tions are normalized in L2(B(0; 1)), that is,ZB(0;1) dx jeklm(x)j2 = 1; 8k; l 2 N; 1 � m � N(d; l);and let us mention the two following fa
ts, whi
h will be used in the next se
tion.Lemma 3.1.1. For all k; l 2 N, fkl(1)2 = 2 �kl�kl � l2 � l(d� 2) :Proof. Let us �rst 
ompute the normalizing fa
tor in fkl(1)2, using formula (6.52) p.101 in [7℄:Z 10 dq q Jl(� q)2 = 12 �J 0l (�)2 +�1� l2�2� Jl(�)2� ; � > 0:When d = 2, we therefore haveZ 10 dq q Jl(�kl q)2 = 12 �1� l2�kl� Jl(�kl)2sin
e J 0l (�kl) = 0. From this, we see immediately thatfkl(1)2 = Jl(�kl)2R 10 dq qd�1 Jl(�kl q)2 = 2 �kl�kl � l2 :



3.1. Eigenvalues and eigenfun
tions of the Lapla
ian in B(0; 1) 23When d > 2, we have, by de�nition of Jl(d; �) and the above formula,Z 10 dq qd�1 Jl(d; �kl q)2 = ��d2�2 ��kl2 �2�d Z 10 dq q Jl+ d�22 (�kl q)2= 12 ��d2�2 ��kl2 �2�d  J 0l+ d�22 (�kl)2 + 1� (l + d�22 )2�kl ! Jl+ d�22 (�kl)2! :But using (3.3) and the fa
t that J 0l (d; �kl) = 0, we haveJ 0l+ d�22 (�kl) = d� 22 �kl Jl+ d�22 (�kl);so Z 10 dq qd�1 Jl(d; �kl q)2 = 12 ��kl � l2 � l(d� 2)�kl � Jl(d; �kl)2;therefore, fkl(1)2 = 2 �kl�kl � l2 � l(d� 2) ;and this 
ompletes the proof.Lemma 3.1.2. For all k; l 2 N,l + d� 22 + �(k � 2) � �kl � �2 (l + d� 22 ) + �(k + 2):Proof. Let us denote by f�0k� ; k 2 Ng the list of zeros of the standard Bessel fun
tion J� (the�rst zero being therefore indexed by k = 0); by Theorem 1 and Lemma 2 in [9℄, we have� + �(k � 1) � �0k� � �2 � + �(k + 1):Sin
e Jl(d; �) is proportional to Jl+ d�22 (�) and by the interla
ing property of the zeros of Besselfun
tions and their derivatives (that is, if �kl are the zeros of Jl(d; �), then �k�1;l < �kl < �k+1;l),we have �0k�1;l+ d�22 � �kl � �0k+1;l+ d�22 ;so we obtain that l + d� 22 + �(k � 2) � �kl � �2 (l + d� 22 ) + �(k + 2);whi
h 
ompletes the proof.Let us end this se
tion with the following 
omment. The generalized spheri
al harmoni
sfY ml ; l 2 N; 1 � m � N(d; l)gform a Hilbertian basis of L2(Sd�1) and are the eigenfun
tions of the Lapla
e-Beltrami operator�� on Sd�1, with 
orresponding eigenvalues l(l+d� 2), as mentioned before. Let us now de�neH 12 (Sd�1) as the Sobolev spa
e of order 12 on Sd�1 (that is, the domain of (I���) 14 in L2(Sd�1),



24 Chapter 3. Noise on a spheresee [59, p. 255℄). By the spe
tral de
omposition of �� in the spheri
al harmoni
s, we thereforeobtain the following 
hara
terization of H 12 (Sd�1):H 12 (Sd�1) = 8<:v =Xl2N N(d;l)Xm=1 
lm Y ml ����� Xl2N N(d;l)Xm=1 (1 + l) j
lmj2 <19=; ;and we equip this spa
e with the normkvk212 =Xl2N N(d;l)Xm=1 (1 + l) j
lmj2:Interesting to us is the following relation between H1(B(0; 1)) andH 12 (Sd�1) (see [2, Thm 7.53℄):H 12 (Sd�1) = �v = 
0u �� u 2 H1(B(0; 1))	 ;where 
0 is the tra
e operator of H1(B(0; 1)) on H 12 (Sd�1), de�ned by
0' = '��Sd�1 ; 8' 2 C1(B(0; 1));and further extended by 
ontinuity to H1(B(0; 1)). The operator 
0 is 
ontinuous with respe
tto the norm k � k1 and there also exists an appli
ation R0 : H 12 (Sd�1) ! H1(B(0; 1)) whi
h is
ontinuous with respe
t to the norm k � k 12 and su
h that
0R0v = v; 8v 2 H 12 (Sd�1):3.2 Covarian
e of the noise and S
h�onberg's theoremIn order to obtain a general form for the 
ovarian
e of a Gaussian noise 
on
entrated on thesphere Sd�1, let us �rst 
onsider the 
ase of a 
ontinuous 
ovarian
e. Let f : Sd�1 � Sd�1 ! Rbe a 
ontinuous fun
tion whi
h is assumed to be symmetri
 and non-negative de�nite on Sd�1,that is, mXi;j=1 
i 
j f(x(i); x(j)) � 0; 8m � 1; 
1; : : : ; 
m 2 R; x(1); : : : ; x(m) 2 Sd�1:This fun
tion f is then the 
ovarian
e of a 
entered Gaussian pro
ess indexed by the elementsof Sd�1. Let us moreover assume that the noise is isotropi
, that is, there exists a 
ontinuousfun
tion g : [�1;+1℄! R su
h thatmXi;j=1 
i 
j g(x(i) � x(j)) � 0; 8m � 1; 
1; : : : ; 
m 2 R; x(1); : : : ; x(m) 2 Sd�1; (3.4)and f(x; y) = g(x � y) for all x; y 2 Sd�1, where x � y is the Eu
lidean s
alar produ
t of x and yin Rd .



3.2. Covarian
e of the noise and S
h�onberg's theorem 25For d � 2, let us also de�ne the following generalized Legendre polynomials (see [41, x2,Lemma 4℄)Pl(d; t) = ��12�l �(d�12 )�(l + d�12 ) (1� t2) 3�d2 � ddt�l (1� t2)l+ d�32 ; l 2 N; t 2 [�1;+1℄;where � is the Gamma fun
tion de�ned in (3.2). Let us mention that these are simply theCheby
hev polynomials when d = 2 and the standard Legendre polynomials when d = 3.S
h�onberg's theorem (see [56, Thm 1℄) states the following.Theorem 3.2.1. Let g : [�1;+1℄! R be a 
ontinuous fun
tion. Then g is non-negative de�niteon Sd�1 (in the sense of (3.4)) if and only if there exists a sequen
e fal; l 2 Ng of non-negativenumbers su
h that Pl2N al <1 andg(t) =Xl2N al Pl(d; t); t 2 [�1;+1℄;where Pl(d; �) are the Legendre polynomials de�ned above.This theorem, similarly to the Bo
hner theorem 
on
erning non-negative de�nite fun
tionson Rd , gives us a spe
tral 
hara
terization of 
ontinuous non-negative de�nite fun
tions on thesphere Sd�1.To extend this to more general fun
tions f , let us mention that �S : C1(Sd�1)�C1(Sd�1)!R de�ned by�S('; ) = ZSd�1 d�(x)ZSd�1 d�(y) '(x) g(x � y)  (y); ';  2 C1(Sd�1);(where � is the uniform measure on the unit sphere Sd�1) is a semi-s
alar produ
t on C1(Sd�1)under assumption (3.4). Moreover, �S is isotropi
, that is,�S(R';R ) = �S('; ); 8'; 2 C1(Sd�1);for any rotation R on the sphere Sd�1 (where R'(x) = '(R�1x) by de�nition).Considering �S instead of g allows us then to remove the 
ontinuity assumption on g. Inview of the pre
eding theorem, we will therefore 
onsider in the following that the 
ovarian
e ofthe noise 
on
entrated on the sphere Sd�1 is given by�S('; ) =Xl2N al �l('; ); ';  2 C1(Sd�1);where �l('; ) = ZSd�1 d�(x)ZSd�1 d�(y) '(x) Pl(d; x � y)  (y);



26 Chapter 3. Noise on a sphereand al � 0, but the 
ondition Pl2N al <1 is repla
ed byXl2N al(1 + l)r0 <1;for some r0 > 0. Let us 
he
k that �S('; ) < 1 for ea
h '; 2 C1(Sd�1). By the Cau
hy-S
hwarz inequality, it is suÆ
ient to 
he
k that �S(';') < 1 for ea
h ' 2 C1(Sd�1). Usingthe fa
t that C1(Sd�1) � \r>0Hr(Sd�1);we obtain that a fun
tion ' in C1(Sd�1) 
an be written as' =Xl2N N(d;l)Xm=1 
lm Y ml ; with Xl2N (1 + l)2r N(d;l)Xm=1 j
lmj2 <1; 8r > 0: (3.5)Using the following additivity property (see [41, x2, Thm 2℄):Pl(d; x � y) = jSd�1jN(d; l) N(d;l)Xm=1 Y ml (x) Y ml (y); (3.6)and the orthonormality of the spheri
al harmoni
s, we 
an 
ompute�l(';') = jSd�1jN(d; l) N(d;l)Xm=1 ����ZSd�1 d�(x) '(x) Y ml (x)����2 = jSd�1jN(d; l) N(d;l)Xm=1 j
lmj2 (3.7)Sin
e (3.5) implies that for r0 > 0, there exists C > 0 su
h that j
lmj2 � C(1+l)r0 for all l;m, weobtain that �l(';') � C jSd�1j(1 + l)r0 ; 8l 2 N:This implies �nally that�S(';') =Xl2N al �l(';') � C jSd�1jXl2N al(1 + l)r0 <1;by the assumption made above, so �S is a well de�ned 
ovarian
e on C1(Sd�1).Remark 3.2.2. It would be a ni
e generalization of S
h�onberg's theorem to prove that everyisotropi
 semi-s
alar produ
t � on C1(Sd�1), with some additional 
ontinuity property, is ofthe form given above. In the 
ase of a 
ovarian
e on Rd , this extension (of the 
lassi
al Bo
hnertheorem) is the 
lassi
al theorem of L. S
hwartz (see Theorem 4.3.1).In order to relate the parti
ular 
ovarian
e �S on Sd�1 de�ned above with the general
ovarian
e �D whi
h was 
onsidered in Chapter 2 and de�ned on the entire domain D (hereequal to B(0; 1)), we de�ne �D by�D('; ) = �S �'��Sd�1 ;  ��Sd�1� ; ';  2 S(D);where S(D) is the spa
e of test fun
tions de�ned in the pre
eding 
hapter.



3.3. Expli
it 
onditions 27Remark 3.2.3. Even if the parti
ular noise de�ned in the present se
tion satis�es all therequirements of the pre
eding 
hapter, it turns out, as already mentioned in Remark 2.3.2, thatin this 
ase, equation (2.4) 
an be reinterpreted as the weak formulation of another equationthan equation (2.1). This is be
ause the noise term FDt (') 
an be formally rewritten here asFDt (') = Z t0 dsZ�B(0;1) d�(x) _F S(s; x) '(x); ' 2 S(D);where _F S is a generalized 
entered Gaussian pro
ess 
on
entrated on the sphere �B(0; 1) = Sd�1with 
ovarian
e E ( _F S (t; x) _F S(s; y)) = Æ0(t� s) �S(x; y):Therefore, the noise term 
an be reinterpreted as a sto
hasti
 boundary 
ondition and the\
lassi
al" equation 
orresponding to (2.4) would then be8>>>>>>>><>>>>>>>>:
�2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x)��u(t; x) = 0; (t; x) 2 R+ �D;�u�� (t; x) = _F S(t; x); (t; x) 2 R+ � �D;u(0; x) = u0(x); �u�t (0; x) = v0(x); x 2 D: (3.8)

This interpretation of the boundary term is the one 
onsidered by R. Sowers in [61℄, for the heatequation.Remark 3.2.4. Let us mention a qualitative di�eren
e between the behavior of the solution ofthe paraboli
 and the hyperboli
 equations, whi
h will be made more expli
it in the following
hapters 
on
erning the equation in Rd . For the heat equation, and be
ause of the regularizingproperty of the Green kernel of this equation, the solution is always regular inside the ball B(0; 1)and explodes near the boundary. On the 
ontrary, for the hyperboli
 equation, the explosion,if any, o

urs rather at the 
enter of the ball, where the in
uen
e of the boundary noise ismaximum for one parti
ular time, be
ause of the �nite speed of propagation of the equation.3.3 Expli
it 
onditionsIn the following, we give two expli
it 
onditions on the 
oeÆ
ients al, one ne
essary and onesuÆ
ient, for the existen
e of a weak solution to equation (3.8).In the present setting, part (ii) of Assumption H0 of the pre
eding 
hapter 
an be rewrittenas Xk;l2N N(d;l)Xm=1 
klm1 + �kl <1;



28 Chapter 3. Noise on a spherewhere 
klm = �D(eklm; eklm). The �rst step 
onsists therefore in rewriting the sum in the aboveexpression as Xk;l2N N(d;l)Xm=1 
klm1 + �kl =Xl2N al bl;where bl depends on the eigenvalues and eigenfun
tions of the Lapla
ian 
omputed in Se
tion3.1. This is done in the following lemma.Lemma 3.3.1. For all l 2 N, bl = jSd�1jXk2N fkl(1)21 + �kl :Proof. Let us 
ompute
klm = �D(eklm; eklm) = �S(fkl(1) Y ml ; fkl(1) Y ml )= fkl(1)2Xn2N an �n(Y ml ; Y ml ):By de�nition of �n and the additivity property (3.6), we have�n(Y ml ; Y ml ) = jSd�1jN(d; n) N(d;n)Xp=1 ����ZSd�1 d�(x) Y ml (x) Y pn (x)����2 = jSd�1jN(d; n) Ænlsin
e the spheri
al harmoni
s Y ml are orthonormalized. This implies that
klm = fkl(1)2 al jSd�1jN(d; l) ;therefore, Xk;l2N N(d;l)Xm=1 
klm1 + �kl = jSd�1jXl2N al  Xk2N fkl(1)21 + �kl! ;whi
h ends the proof.The se
ond step 
onsists in estimating the behavior of bl in l, with the help of Lemmas 3.1.1and 3.1.2.Lemma 3.3.2. There exist C1; C2 > 0 su
h that for suÆ
iently large l,C1 al1 + l � bl � C2 al ln(1 + l)1 + l :Proof. Using Lemma 3.1.1, we obtain thatXk2N fkl(1)21 + �kl = 2Xk2N �kl1 + �kl 1�kl � l2 � l(d� 2) :Sin
e �kl1 + �kl 2 [12 ; 1℄



3.3. Expli
it 
onditions 29for �kl � 1, we 
an remove this term from the pre
eding sum and study the behavior in l ofXk2N 1�kl � l2 � l(d� 2) :Let us �rst prove the lower bound. Using the right-hand side of Lemma 3.1.2, we then haveXk2N 1�kl � l2 � l(d� 2) � Xk2N 1(�2 (l + d�22 ) + �(k + 2))2= 1�2 Xk�2 1( l2 + d�24 + k)2 � 1�2 Z 12 dx 1( l2 + d�24 + x)2= 1�2 1l2 + d�24 + 2 � C1 11 + l :In order to prove the upper bound, we use the left-hand side of Lemma 3.1.2:Xk2N 1�kl � l2 � l(d� 2) � 4�20l � l2 � l(d� 2) +Xk�4 1(l + d�22 + �(k � 2))2 � l2 � l(d� 2)� 4�20l � l2 � l(d� 2) +Xk�2 1�2k2 + 2�kl� 4�20l � l2 � l(d� 2) + Z 11 dx 1�x (�x+ 2l) : (3.9)Let us 
onsider the �rst term of this expression; denoting by f�0k� ; k 2 Ng the list of zeros ofJ 0� and using (3.3), we obtain for d > 2:�0l �l!1 �00;l+ d�22 ;and �0l = �00l by de�nition when d = 2. By [1, 9.5.16℄), there exists now 
 �= 0:80861 > 0 su
hthat �00� ��!1 � + 
 � 13 ;therefore, 1�20l � l2 � l(d� 2) �l!1 1(l + d�22 + 
 (l + d�22 ) 13 )2 � l2 � l(d� 2) �l!1 Cl 43 :Computing now the se
ond term in (3.9) by simple element de
omposition givesZ 11 dx 1�x (�x+ 2l) = 12�l ln xx+ 2l� ! �����11 = ln(1 + 2l� )2�l � C2 ln(1 + l)1 + l ;whi
h dominates Cl 43 for suÆ
iently large l, so the 
on
lusion follows.We 
an now state the following theorem, whi
h is a reformulation of Theorems 2.5.3 and2.5.4 in the present setting.



30 Chapter 3. Noise on a sphereTheorem 3.3.3. Let (u0; v0) 2 L2(B(0; 1)) �H�1(B(0; 1)). IfXl2N al ln(1 + l)1 + l <1; (3.10)then there exists a unique weak solution u of equation (3.8) su
h that E (ku(t)k20 ) < 1, forall t 2 R+ . On the other hand, if there exists a weak solution u to equation (3.8) su
h thatE (ku(t0)k20) <1, for some t0 > 0, thenXl2N al1 + l <1: (3.11)Proof. Let us �rst prove the suÆ
ien
y of (3.10). By Theorem 2.5.3, we simply have to 
he
kthat this 
ondition implies parts (i) and (ii) of Assumption H0 of the pre
eding 
hapter. Bythe 
omment made at the end of Se
tion 3.1, we see that �D is 
ontinuous with respe
t to theH1-norm on B(0; 1) if and only if �S is 
ontinuous with respe
t to the H 12 -norm on Sd�1. Letus 
he
k the latter. (3.10) 
ertainly implies that there exists C > 0 su
h thatal � C (1 + l); 8l 2 N:Let then ' 2 C1(Sd�1); as already mentioned in this 
hapter, ' 
an be written as' =Xl2N N(d;l)Xm=1 
lm Y ml ; where k'k212 =Xl2N (1 + l)N(d;l)Xm=1 j
lmj2 <1:By (3.7), we have �S(';') = Xl2N al jSd�1jN(d; l) N(d;l)Xm=1 j
lmj2� C jSd�1jXl2N (1 + l)N(d;l)Xm=1 j
lmj2= C jSd�1j k'k212 ;where we have used the above estimate on al and the fa
t that N(d; l) � 1 for all l 2 N. Sopart (i) of assumption H0 is satis�ed. Part (ii) of this assumption is then a dire
t 
onsequen
eof 
ondition (3.10), Lemmas 3.3.1 and the upper bound in Lemma 3.3.2.On the other hand, in order to show the ne
essity of 
ondition (3.11), we use Theorem 2.5.4,whi
h states the ne
essity of part (ii) of AssumptionH0. By Lemma 3.3.1 and the lower bound inLemma 3.3.2, we obtain dire
tly the ne
essity of 
ondition (3.11), so the theorem is proven.Remark 3.3.4. The di�eren
e between 
onditions (3.10) and (3.11) 
omes from the estimate onthe zeros of Bessel fun
tions of Lemma 3.1.2. Sin
e this estimate seems to be the best availableamong uniform estimates in k and l, it seems diÆ
ult to �ll in the gap and de
ide whi
h of the two
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onditions (3.10) and (3.11) is optimal. Still, one 
an say something more about 
ondition (3.11).By the proof of the pre
eding theorem, we see that this 
ondition implies that �S is 
ontinuouswith respe
t to the H 12 -norm, and this in turn implies that there exists QS 2 L(H 12 (Sd�1)), thespa
e of linear 
ontinuous operators on H 12 (Sd�1), su
h that�S('; ) = h';QS i 12 ; 8'; 2 C1(Sd�1):But 
ondition (3.11) then simply says that QS 2 L1(H 12 (Sd�1)), the spa
e of tra
e-
lass linearoperators on H 12 (Sd�1), that is, Xn2Nhgn; QSgni 12 <1;where fgn; n 2 Ng is any Hilbertian basis of H 12 (Sd�1).Condition (3.11) 
an therefore be expressed in a general way whi
h 
ould be adapted to anoise 
on
entrated on a boundary with a di�erent shape. It then seems to be more natural than(3.10) (and so the lower bound in Lemma 3.1.2 is perhaps not optimal). In Appendix C, we willsee that in the 
ase of a noise 
on
entrated on one side of a hyper
ube, we obtain a ne
essaryand suÆ
ient 
ondition whi
h 
an be expressed in the same general way as 
ondition (3.11).Remark 3.3.5. Following Remark 2.5.6 of the pre
eding 
hapter, we see that if the solution uof equation (2.4) would take its values in H1(B(0; 1)), then 
ondition (2.20) would be satis�ed,whi
h 
an be rewritten in the present 
ase asXk;l2N N(d;l)Xm=1 
klm <1:By the pre
eding 
al
ulations, we haveXk;l2N N(d;l)Xm=1 
klm = jSd�1jXl2N al  Xk2N fkl(1)2! ;and sin
e the term in parentheses is never �nite, this allows us to 
on
lude that this 
ondition isnever satis�ed, so there also never exists a solution with values in H1(B(0; 1)), when the noiseunder 
onsideration is a boundary noise.Remark 3.3.6. Now that we have obtained an expli
it 
ondition whi
h guarantees the existen
eof a solution u with values in L2(B(0; 1)), we 
ould 
onsider non-linear equations of the sametype, following the general theory of G. Da Prato and J. Zab
zyk. For the heat equation, thishas been already studied in [34℄. However, note that it is impossible to 
onsider non-linearterms of the form g(u(t; x)) _F S(t; x), sin
e the noise _F S is 
on
entrated on the boundary butthe solution u is not well de�ned on that boundary.



32 Chapter 3. Noise on a sphere3.4 Reformulation of the ne
essary 
ondition in the 
ase d = 2We 
onsider here the 
ase d = 2, that is, the linear hyperboli
 equation with two spa
e dimensionsdriven by noise 
on
entrated on the unit 
ir
le S1. Sin
e S1 is a group, this 
ase is spe
ial andwe 
an therefore use Fourier analysis te
hniques to reformulate 
ondition (3.11). In order to dothis, one needs a further assumption on the 
ovarian
e �S . Let us �rst re
all that this 
ovarian
eis given by �S('; ) = Xl2N al ZS1 d�(x)ZS1 d�(y) '(x) Pl(x � y)  (y)= Xl2N al Z ��� d�x Z ��� d�y '(�x) 
os(l(�x � �y))  (�y)= Xl2N al Z ��� d� 
os(l�)Z ��� d�x '(�x)  (�x � �);by the 
hange of variable � = �x � �y. This 
an be rewritten as�S('; ) =Xl2N al Z ��� d� 
os(l�) (' � ~ )(�);where (' �  )(�) = Z ��� d�0'(�0)  (� � �0);is the 
onvolution produ
t on S1 and ~ (�) =  (��). The map' 7!Xl2N al Z ��� d� 
os(l�) '(�); ' 2 C1(S1);de�nes a distribution on S1 (see [57, Chap. VII, xI℄). Let us now assume that this distributionis non-negative. By the fundamental theorem of Radon-Riesz (see for example [32, Chap. II,Thm 2.2℄), there exists therefore a non-negative Borel measure � on S1 su
h thatZ ��� �(d�) '(�) =Xl2N al Z ��� d� 
os(l�) '(�); 8' 2 C1(S1):We now have the following reformulation of 
ondition (3.11) as a 
ondition on the measure �.Proposition 3.4.1. If 
ondition (3.11) is satis�ed, thenZ ��� �(d�) ln� 1j�j� <1: (3.12)This 
ondition is a
tually a 
ondition on the integrability of � near zero, as are the 
onditionsobtained for Gaussian noises on Rd in the following 
hapters. Note that sin
e we have proventhat (3.11) is a ne
essary 
ondition, but not that it is a suÆ
ient one, there would be littleinterest in 
onsidering the 
onverse impli
ation.



3.4. Reformulation of the ne
essary 
ondition in the 
ase d = 2 33Moreover, note that if �(d�) = f(j�j) d�, with f a 
ontinuous fun
tion on ℄0; �℄, 
ondition(3.12) simply reads Z �0 d� f(�) ln�1�� <1:Proof. Set h(�) = ln� 1j�j� = 
02 + Xl2N� 
l 
os(l�); � 2 [��; �℄nf0g:Note that sin
e h belongs to L2(��; �), the above Fourier series 
onverges also in L2(��; �).Moreover, 
omputing the 
oeÆ
ient 
l gives, for l 2 N� ,
l = 2� Z �0 d� ln�1�� 
os(l�)= 2� ln�1�� sin(l�)l ����0 + 2� Z �0 d� sin(l�)l�= 2�l Z l�0 du sin(u)u ;by integration by parts and 
hange of variable u = l�. Sin
eZ l�0 du sin(u)u !l!1 �2 ;we obtain that 
l � 1l as l!1. We therefore haveXl2N al1 + l <1 if and only if Xl2N al 
l <1:But this last 
ondition implies, by the dominated 
onvergen
e theorem, thatlimt#0 Xl2N al 
l e�lt <1: (3.13)Let us now de�ne, for t > 0, t(�) = 1� + 2� Xl2N� e�lt 
os(l�)= 1� sinh(t)
osh(t)� 
os(�) ; � 2 [��; �℄;by a dire
t 
al
ulation. It is a non-negative fun
tion on [��; �℄ and sin
e e�lt ! 1, limt#0  t = Æ0.Let us now de�ne 't(�) = (h �  t)(�); � 2 [��; �℄:By Parseval's identity, 't(�) = 
0 + 2Xl2N� 
l e�lt 
os(l�); � 2 [��; �℄;



34 Chapter 3. Noise on a sphereand belongs to C1(S1), for all t > 0, sin
e the 
oeÆ
ients 
l e�lt are rapidly de
reasing in l.Moreover,Z �0 �(d�) 't(�) =Xl2N al Z ��� d� 
os(l�) 't(�) = �  a0 
0 +Xl2N� al 
l e�lt! : (3.14)Using now (3.13), (3.14) and Fatou's lemma, we obtain that1 > limt#0 Z ��� �(d�) 't(�) � Z ��� �(d�) lim inft#0 't(�);and sin
e limt#0 't(�) = ln�1�� ; 8� 2 [��; �℄nf0g;this proves the result.3.5 Noise on a sphere of lower radiusLet us turn ba
k to the beginning of this 
hapter, but assume now that the noise is 
on
entratedon a sphere of lower radius r0 2 ℄0; 1[, therefore interior to the domain B(0; 1). The pre
edinganalysis 
an also be applied to this 
ase and the 
hanges are the following. The general formfor the 
ovarian
e of the noise is �S('; ) =Xl2N al �l('; );where �l('; ) = ZS(r0) d�(x)ZS(r0) d�(y) '(x) Pl�d; x � yr20 �  (y);and the al and Pl are the same as before and S(r0) is the sphere of radius r0. The 
ovarian
e�D is related to �S by the following:�D('; ) = �S �'��S(r0);  ��S(r0)� ; ';  2 S(D):Performing the same 
al
ulations as before, we obtain that
klm = �D(eklm; eklm) = fkl(r0)2 al jSd�1jN(d; l) ;where (see Lemma 3.1.1)fkl(r0)2 = 2 �kl�kl � l2 � l(d� 2) �Jl(d; �kl r0)Jl(d; �kl) �2 :Therefore, the following 
ondition is satis�ed:Xk;l2N N(d;l)Xm=1 
klm1 + �kl <1;



3.5. Noise on a sphere of lower radius 35if and only if Xl2N al Xk2N 1�kl � l2 � l(d� 2) �Jl(d; �kl r0)Jl(d; �kl) �2! <1:Sin
e Jl(d; r) �r!1 
os(r � l�2 � �4 )pr ;(see formula 9.2.1 in [1℄), we obtain that the term�Jl(d; �kl r0)Jl(d; �kl) �2os
illates between 0 and 1r0 as k !1. It is therefore diÆ
ult to de
ide whether or not it 
hangesthe behavior in l of the sumXk2N 1�kl � l2 � l(d� 2) �Jl(d; �kl r0)Jl(d; �kl) �2 ;
ompared to the 
ase where r0 = 1 studied before. Our guess is that the behavior in l does not
hange, and therefore that the 
on
lusion remains the same, but no expli
it 
al
ulation has beenmade in order to 
he
k this point.
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Chapter 4Preliminaries for the study in R d
4.1 Tempered distributions and Fourier transformFix d a positive natural number and let us introdu
e the following notations.- Bb(Rd) denotes the set of bounded Borel subsets of Rd .- For r > 0 and a 2 Rd , B(a; r) denotes the ball of 
enter a and radius r in Rd .- C10 (Rd) denotes the spa
e of 
omplex-valued C1 fun
tions on Rd with 
ompa
t support.- S(Rd ) denotes the spa
e of 
omplex-valued C1 fun
tions on Rd with rapid de
rease.- OM (Rd) denotes the spa
e of 
omplex-valued C1 fun
tions on Rd with polynomial growth.- E 0(Rd) denotes the spa
e of distributions with 
ompa
t support on Rd .- S 0(Rd) denotes the spa
e of tempered distributions on Rd (whi
h is the dual of S(Rd)).- O0C(Rd) denotes the spa
e of distributions with rapid de
rease on Rd (whi
h is not the dual ofOM (Rd )).- F' denotes the Fourier transform of ' 2 S(Rd), whi
h is de�ned byF'(�) = ZRd dx '(x) ei��x; � 2 Rd ;and we have the following Fourier inversion formula (
f. [57, formula (VII,2;3)℄):F�1'(�) = 1(2�)d F'(��); 8� 2 Rd : (4.1)- FT denotes the Fourier transform of T 2 S 0(Rd), whi
h is de�ned by hFT; 'i = hT;F'i for37



38 Chapter 4. Preliminaries for the study in Rd' 2 S(Rd ). By [57, Chap. VII, Thm XV℄, we haveT 2 O0C(Rd) if and only if FT 2 OM (Rd ): (4.2)- ' �  denotes the 
onvolution produ
t of '; 2 S(Rd ), whi
h is de�ned by(' �  )(x) = ZRd dy '(y)  (x� y); x 2 Rd :- S � T denotes the 
onvolution produ
t of S 2 O0C(Rd ) and T 2 S 0(Rd); it belongs in general toS 0(Rd ), and it belongs to S(Rd ) if T 2 S(Rd); moreover, by [57, Chap. VII, Thm XV℄, we havethe following property: F(S � T ) = FS � FT: (4.3)- For � 2 Rd , Æ� denotes the Dira
 measure at point � and �� the fun
tion de�ned by ��(x) = ei��x,x 2 Rd (note that FÆ� = ��, so F�� = (2�)d Æ�� by (4.1)).- Let  2 C10 (Rd) be su
h that  is non-negative, supp  � B(0; 1), RRd dx  (x) = 1 and de�ne n(x) = nd  (nx), x 2 Rd ; then ( n) is a sequen
e of (non-negative and 
ompa
tly supported)approximations of the Dira
 measure Æ0 in the sense that  n !n!1 Æ0 in S 0(Rd ). Moreover, forall � 2 Rd , F n(�) !n!1 1 and jF n(�)j � 1 for all n.Let us also mention the two following fa
ts.- If T 2 S 0(Rd) is non-negative (in the sense that T (') � 0 for all ' � 0), then it is also anon-negative measure on Rd (see [57, Chap. I, Thm V℄).- If � is a signed Borel measure on Rd with total variation measure j�j whi
h is moreover assumedto be tempered, that is, there exists r > 0 withZRd j�j(d�)(1 + j�j)r <1;then � 2 S 0(Rd ) (see [57, Chap. VII, Thm VII℄). By extension, we will 
all � itself a temperedmeasure.4.2 Sobolev spa
esFor � 2 R, let us denote by H�(Rd ) the fra
tional Sobolev spa
e of order � on Rd , whi
h is theset of u 2 S 0(Rd ) whose Fourier transform Fu belongs to L2(Rd ; (1 + j�j2)�d�) (see for example[59, p. 251℄ for an overview of the properties that follow). We de�ne the following s
alar produ
ton H�(Rd ): hu; vi� = ZRd d� (1 + j�j2)� Fu(�) Fv(�); (4.4)



4.3. Gaussian noises on Rd and their spe
tral measure 39and denote its 
orresponding norm k�k� . Note that for � = 0, H�(Rd ) is the usual spa
e L2(Rd ),whi
h we identify to its dual.Let n 2 N. We have the following in
lusions:S(Rd ) � : : : � Hn(Rd ) � : : : � L2(Rd) � : : : � H�n(Rd ) � : : : � S 0(Rd)and S(Rd ) = \n2NHn(Rd ); S 0(Rd ) = [n2NH�n(Rd ):For m > n + d2 , there is an Hilbert-S
hmidt imbedding of Hm(Rd ) into Hn(Rd ), whi
h meansthat for any a Hilbertian basis f'k; k � 1g of Hm(Rd ), we haveXk�1 k'kk2n <1: (4.5)Moreover, note that the following norm on H�n(Rd):jjjujjj�n = sup'2Hn(Rd);'6=0 jhu; 'ijk'kn ; (4.6)is equivalent to k � k�n, so H�n(Rd) is the dual spa
e of Hn(Rd ).4.3 Gaussian noises on Rd and their spe
tral measureIn this se
tion, we present some general 
onsiderations on spatially homogeneous Gaussian noiseson Rd , whi
h will be used in Chapters 6 to 8. Formally, su
h a noise is a generalized 
enteredGaussian pro
ess _F = f _F (x); x 2 Rdg whose 
ovarian
e is given byE( _F (x) _F (y)) = �(x� y); x; y 2 Rd ;where � is a non-negative de�nite distribution on Rd . Sin
e _F (x) is not well de�ned for �xedx 2 Rd , we will rather 
onsider in the following the pro
ess F = fF ('); ' 2 S(Rd )g whi
h isrelated to _F by the informal relationshipF (') = ZRd dx _F (x) '(x); ' 2 S(Rd ): (4.7)In order for F to be well de�ned, we need to assume that the 
ovarian
e � belongs to S 0(Rd)and that it is non-negative de�nite on Rd , that is,�(' � ~') � 0; 8' 2 S(Rd); (4.8)where ~'(x) = '(�x), x 2 Rd . By the Kolmogorov extension theorem (see [42, Prop. 3.4℄), thereexist a probability spa
e (
;G;P) and a 
entered Gaussian pro
ess F = fF ('); ' 2 S(Rd )gde�ned on this spa
e, whose 
ovarian
e is given byE(F (') F ( )) = �(' � ~ ); ';  2 S(Rd):



40 Chapter 4. Preliminaries for the study in RdIf one wants to analyze the properties of the 
ovarian
e �, it is often useful to refer to its spe
tralmeasure �, whi
h is de�ned in the following generalization of the Bo
hner theorem due to L.S
hwartz (see [57, Chap. VII, Thm XVIII℄):Theorem 4.3.1. Let � 2 S 0(Rd ). Then � is non-negative de�nite on Rd if and only if thereexists a non-negative tempered Borel measure � on Rd su
h that � = F�.Note moreover that when the distribution � is real-valued (in the sense that �(') 2 R forall real-valued ' 2 S(Rd )), then � is symmetri
 on Rd , and re
ipro
ally.In the present work, we 
onsider partial di�erential equations driven by noises whose spatial
omponent is a pro
ess of the form mentioned above. Our study will lead to 
onditions on thespe
tral measure of the noise whi
h ensure some regularity of the solution of the equation. Atypi
al 
ondition will be ZRd �(d�)(1 + j�j2)� <1; (4.9)where � 2 [0; 1℄. We want here to make some 
omments on this 
ondition, in order to interpretit as 
ondition on the 
ovarian
e �.4.4 Reformulation of the 
onditions on the spe
tral measureNote that 
ondition (4.9) states that � needs to de
rease suÆ
iently rapidly at in�nity (that is,there are not too many high frequen
ies in the noise), whi
h 
an be reformulated into a 
onditionon the integrability of the 
ovarian
e � near 0 (whi
h in turn means that the noise has someregularity) in the 
ase where � is a non-negative distribution on Rd (whi
h implies that it is alsoa non-negative measure on Rd ).The �rst 
ase that we 
onsider is the 
ase � = 0. In this 
ase, 
ondition (4.9) says that � isa �nite measure, and therefore, by the 
lassi
al Bo
hner theorem, it is equivalent to say that �is a uniformly 
ontinuous and bounded fun
tion on Rd .The se
ond 
ase is the 
ase � = 1. As mentioned in the intodu
tion, this 
ase has beenstudied in [30℄ and the 
on
lusion is that when � is assumed to be a non-negative distributionon Rd , (4.9) is equivalent to8>>>>>>>><>>>>>>>>:
no 
ondition on �; when d=1;ZB(0;1) �(dx) ln� 1jxj� <1; when d = 2;ZB(0;1) �(dx) 1jxjd�2 <1; when d � 3: (4.10)



4.4. Reformulation of the 
onditions on the spe
tral measure 41Let us �nally 
onsider the 
ase � 2 ℄0; 1[ and assume that � is a non-negative distribution onRd . Let us then de�ne Gd;�(x) = F�1� 1(1 + j�j2)�� (x); x 2 Rd :Sin
e FGd;� depends only on j�j, we have, by [58, (V,3;22)℄,Gd;�(x) = 1(2�) d2 jxj d�12 Z 10 dr r d�12 1(1 + r2)� pjxj r J d�22 (jxj r);where J� is the regular Bessel fun
tion of the �rst kind and of order � (see Appendix B for ade�nition). Using [46, formula I.4.23℄, we obtain that there exists a 
onstant Cd;� > 0 su
h thatGd;�(x) = Cd;� jxj�� d2 K d2��(jxj); (4.11)where K� is the modi�ed Bessel fun
tion of the se
ond kind and of order � (see also AppendixB for a de�nition). Let us moreover de�neFd;�(y) = ZRd �(dx) Gd;�(x� y); y 2 Rd :We 
an now formulate the following proposition.Proposition 4.4.1. Let us assume that � is a non-negative measure on Rd . If 
ondition (4.9)is satis�ed, then Fd;�(0) = ZRd �(dx) Gd;�(x) <1: (4.12)On the other hand, if Fd;� is a bounded fun
tion on Rd (whi
h implies that Fd;�(0) <1), then
ondition (4.9) is satis�ed.Remark 4.4.2. Note that Fd;� is non-negative de�nite, sin
e its Fourier transformFFd;� = F (� �Gd;�) = � � FGd;� ;is non-negative. Therefore, the assumption that Fd;� is a bounded fun
tion is not a parti
ularlystrong assumption, sin
e every non-negative de�nite distribution whi
h is 
ontinuous at 0 is abounded fun
tion by [57, Chap. VII, p. 276℄.Proof of Proposition 4.4.1. Suppose �rst that 
ondition (4.9) is satis�ed. We then have by thedominated 
onvergen
e theorem,1 > ZRd �(d�) 1(1 + j�j2)� = limt#0 ZRd �(d�) 1(1 + j�j2)� e�t j�j2:Let us denote pt = F�1(e�t j�j2), the heat kernel in Rd . By standard properties of the Fouriertransform, we have ZRd �(d�) 1(1 + j�j2)� e�t j�j2 = ZRd �(dx) (Gd;� � pt)(x); (4.13)



42 Chapter 4. Preliminaries for the study in Rdand Fatou's lemma tells us thatlim inft#0 ZRd �(dx) (Gd;� � pt)(x) � ZRd �(dx) Gd;�(x);sin
e (Gd;� � pt)(x) !t#0 Gd;�(x); 8x 6= 0:This proves the �rst statement of the theorem. In order to prove the se
ond one, let us assumethat Fd;� is bounded, and note that sin
e pt is a probability measure on Rd for all t 2 R+ , wehave supt2R+ ZRd dy pt(y) Fd;�(y) � supy2Rd Fd;�(y) <1:But on the other hand, ZRd dy pt(y) Fd;�(y) = ZRd �(dx) (Gd;� � pt)(x);by de�nition of Fd;� and Fubini's theorem. By (4.13), this expression is still equal toZRd �(d�) 1(1 + j�j2)� e�t j�j2 !t#0 ZRd �(d�) 1(1 + j�j2)� ;by the monotone 
onvergen
e theorem, so the theorem is proven. �Remark 4.4.3. In [54, Prop. 5.3℄, (4.9) and (4.12) were announ
ed to be equivalent. But atthe end of the proof of Lemma 5.1 in [54℄, the following equality:limt#0 ZRd �(dx) (Gd;� � pt)(x) = ZRd �(dx) Gd;�(x);was 
laimed to be true be
ause of the monotone 
onvergen
e theorem and the fa
t that the mapt 7! e�t (Gd;� � pt)(x) = C� Z 1t d� e�� (� � t)��1 p�(x)is monotone. If this map is indeed in
reasing as t # 0 when � = 1 (whi
h yields the 
hara
ter-ization (4.10)), this is no longer the 
ase for � 2 ℄0; 1[, so the proof of Proposition 5.3 in [54℄seems to be in
omplete.Let us now make (4.12) more expli
it. Sin
e � is a tempered measure on Rd and usingestimate (B.1), we see that the integral over B(0; 1)
 in (4.12) is always �nite, so we 
an omitthis part of the integral. On the other hand, using estimate (B.2), we obtain the followingequivalen
es for 
ondition (4.12).- If � > d2 , then (4.12) imposes no parti
ular restri
tion on �.- If � = d2 , then (4.12) is equivalent toZB(0;1) �(dx) ln� 1jxj� <1:



4.4. Reformulation of the 
onditions on the spe
tral measure 43- If � < d2 , then (4.12) is equivalent toZB(0;1) �(dx) 1jxjd�2� <1:Remark 4.4.4. Note when � > d2 , Gd;� is 
ontinuous at 0 and rapidly de
reasing on Rd , so itis dominated by a fun
tion ' 2 S(Rd ), and we therefore haveFd;�(y) � ZRd �(dx) '(x� y) = ZRd �(d�) F'(�) �y(�) � ZRd �(d�) F'(�); 8y 2 Rd ;whi
h in turn implies that Fd;� is bounded and therefore that (4.9) holds for all � by Proposition4.4.1.Remark 4.4.5. When � is the Lebesgue measure on Rd (whi
h is the spe
tral measure of whitenoise on Rd , that is, the noise with 
ovarian
e � = Æ0), the integral in 
ondition (4.9) is equal toZRd d�(1 + j�j2)� = C Z 10 dr rd�1(1 + r2)� ;whi
h is �nite if and only if � > d2 . From this and Remark 4.4.4, we see that if 
ondition (4.9)is satis�ed for white noise, then it is satis�ed for any noise with non-negative 
ovarian
e. Inthis sense, the white noise represents the most irregular noise among noises with non-negative
ovarian
e.Note that when �(dx) = f(jxj) dx, with f a 
ontinuous fun
tion on ℄0;1[, we have thefollowing.- If � > d2 , then (4.12) imposes no parti
ular restri
tion on f .- If � = d2 , then (4.12) is equivalent toZ 10 dr f(r) rd�1 ln�1r� <1:- If � < d2 , then (4.12) is equivalent toZ 10 dr f(r) 1r1�2� <1:In order to be 
omplete, let us �nally give a stronger but more expli
it suÆ
ient 
onditionon � whi
h implies (4.9).Proposition 4.4.6. Let us assume that � is a non-negative measure on Rd and let � � d2 . Ifthere exists 
 > d� 2� and C > 0 su
h that�(B(a; r)) � C r
 ; 8a 2 Rd ; r > 0; (4.14)then Fd;� is bounded and 
ondition (4.9) is therefore satis�ed by Proposition 4.4.1.



44 Chapter 4. Preliminaries for the study in RdProof. Let us de
ompose Fd;� in two parts:Fd;�(y) = ZB(y;1) �(dx) Gd;�(x� y) + ZB(y;1)
 �(dx) Gd;�(x� y); y 2 Rd :By (4.11) and (B.1), we haveZB(y;1)
 �(dx) Gd;�(x� y) � Xn�1Z2n�1�jx�yj�"2n �(dx) C e�jx�yj� C Xn�1�(B(y; 2n)) exp(�2n�1)� C Xn�1 2n
 exp(�2n�1) <1;and the bound does not depend on y. Let now � < d2 . Using (B.2), we obtainZB(y;1) �(dx) Gd;�(x� y) � Xn�1Z2�n�jx�yj�2�n+1 �(dx) Cjx� yjd�2�� C Xn�1�(B(y; 2�n+1)) 2n(d�2�)� C Xn�1 2(�n+1)
 2n(d�2�) <1;by the assumption made, and the bound again does not depend on y. This estimate and theprevious one prove that Fd;� is bounded when � < d2 . When � = d2 , we have, using again (B.2),ZB(y;1) �(dx) Gd;�(x� y) � Xn�1Z2�n�jx�yj�2�n+1 �(dx) C ln� 1jx� yj�� C Xn�1�(B(y; 2�n+1)) ln(2n)� C Xn�1 2(�n+1)
 ln(2n) <1;by the assumption made, so Fd;� is bounded also in this 
ase, and this 
ompletes the proof.Let us now 
onsider a 
lass of 
ovarian
es for whi
h 
ondition (4.9) gives an optimal 
riterion.Consider that � is of the form �(dx) = dxjxj� ;where 0 < � < d (in order for � to be a well de�ned 
ovarian
e). Let us �rst make expli
it asuÆ
ient 
ondition whi
h implies 
ondition (4.9) by means of Proposition 4.4.6. For all r > 0,we have �(B(0; r)) = C Z r0 du ud�1�� = Cd� � rd��:For a 2 Rd su
h that jaj � 2r, we have by the triangle inequality,�(B(a; r)) � �(B(0; 3r)) = C 3d��d� � rd��:



4.4. Reformulation of the 
onditions on the spe
tral measure 45Finally, for a 2 Rd su
h that jaj > 2r, we have�(B(a; r)) = ZB(a;r) dxjxj� � jB(a; r)j(jaj � r)� � ~C rdr� = ~C rd��:Therefore, if � < 2� (whi
h is a restri
tion only when � < d2), then (4.14) is satis�ed, hen
e(4.9) by Proposition 4.4.6. On the other hand, if � � 2�, then by estimate (B.2), we haveZRd �(dx) Gd;�(x) � C ZB(0;1) dxjxj� jxjd�2� � C Z 10 drr =1;so (4.12) is not satis�ed, and neither is (4.9) by Proposition 4.4.1. For this simple 
lass of
ovarian
es, we have therefore obtained a 
ondition (� < 2�) equivalent to 
ondition (4.9).
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Chapter 5Linear hyperboli
 equation in R d
Let a; b 2 R. We are interested in solving the following sto
hasti
 linear hyperboli
 equation:8>>><>>>: �2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x)��u(t; x) = _F 0(t; x); (t; x) 2 R+ � Rd ;u(0; x) = u0(x); �u�t (0; x) = v0(x); x 2 Rd ; (5.1)where u0, v0 are two given distributions on Rd and _F 0 = f _F 0(t; x); (t; x) 2 R+ � Rdg is ageneralized 
entered Gaussian pro
ess whose 
ovarian
e is formally given byE ( _F 0(t; x) _F 0(s; y)) = Æ0(t� s) �0(x; y);where Æ0 is the usual Dira
 measure on R and �0 is a non-negative de�nite measure on Rd �Rd ,in a sense that will be pre
ised below.Note that there are three interesting parti
ular 
ases of this general equation. When a = b =0, this is simply the wave equation. When a � 0 and b = 0, this equation is the wave equationwith attenuation, also 
alled the telegraph equation when d = 1. And �nally, when a = 0, thisis the Klein-Gordon equation. What will appear in the following is that the values of a and bhave no impa
t on the hyperboli
 nature of the equation (that is, the singularity of the Greenkernel and the �nite speed of propagation of the equation), therefore on the problems studiedin the following. On the other hand, Appendix D gives an example of a higher order equationwhose nature 
hanges depending on the 
oeÆ
ients.For te
hni
al reasons (see Remark A.1.1), we will restri
t ourselves to the two 
ases whereeither d � 3 and a, b are any real numbers, or d is any positive natural number and a = b = 0.5.1 Gaussian noiseSin
e _F 0(t; x) is not well de�ned for �xed (t; x) 2 R+ �Rd , we will pro
eed as in Se
tion 4.3 andrather 
onsider in the following the pro
ess F 0 = fF 0t ('); t 2 R+ ; ' 2 S(Rd)g whi
h is related47



48 Chapter 5. Linear hyperboli
 equation in Rdto _F 0 by the informal relationshipF 0t (') = Z t0 dsZRd dx _F 0(s; x) '(x); t 2 R+ ; ' 2 S(Rd): (5.2)In order to de�ne F 0 rigorously, we need some pre
ise assumptions on the 
ovarian
e �0: weassume that it is a signed Borel measure on Rd � Rd (with total variation measure j�0j) whi
his also non-negative de�nite on Rd � Rd , that is,mXi;j=1 
i 
j �0(Ai �Aj) � 0; 8m � 1; 
1; : : : ; 
m 2 C ; A1; : : : ; Am 2 Bb(Rd);whi
h implies that �0(�; �) is hermitian (see [6, p. 68℄), hen
e symmetri
, sin
e it is a real-valuedmeasure. Furthermore, we assume that there exists a non-negative Borel measure �0 on Rd�Rd ,whi
h is also non-negative de�nite, whi
h dominates j�0j, that is,j�0j(A�B) � �0(A�B); 8A;B 2 Bb(Rd );and whi
h is moreover tempered, that is, there exists r > 0 su
h thatZRd�Rd �0(dx; dy)(1 + jxj+ jyj)r <1:Note that in general, j�0j is not non-negative de�nite, even if �0 is; that is why we need anon-negative de�nite dominating measure �0. These assumptions are used in the de�nition ofthe sto
hasti
 integral with respe
t to the noise F 0 (see Se
tion 5.3). In Chapter 6, we will seeexamples of 
ovarian
es whi
h satisfy su
h assumptions.By the Kolmogorov extension theorem (see [42, Prop. 3.4℄), there exist a probability spa
e(
;G;P) and a 
entered Gaussian pro
ess F 0 = fF 0t ('); t 2 R+ ; ' 2 S(Rd )g de�ned on thisspa
e, whose 
ovarian
e is given byE (F 0t (') F 0s ( )) = (t ^ s)ZRd�Rd �0(dx; dy) '(x)  (y); 8t; s 2 R+ ; ';  2 S(Rd ): (5.3)We study now the joint regularity in time and spa
e of this pro
ess. For this, we need thefollowing two lemmas.Lemma 5.1.1. For all t 2 R+ , F 0t (�) is a random linear fun
tional on S(Rd ), that is, for all� 2 R and '; 2 S(Rd ), we haveF 0t (�'+  ) = � F 0t (') + F 0t ( ); P� a:s: (5.4)and for all T > 0, there exists CT > 0 and n 2 N su
h thatE(jF 0t (')� F 0s (')j2) � CT k'k2n jt� sj; 8s; t 2 [0; T ℄; ' 2 S(Rd); (5.5)where k � kn is the Sobolev norm de�ned by (4.4).



5.1. Gaussian noise 49Proof. The �rst statement follows from formula (5.3) and the fa
t that the two 
omplex-valuedsquare integrable random variables Z1 = F 0t (�' +  ) and Z2 = � F 0t (') + F 0t ( ) are equalP � a:s: if and only if E(jZ1 j2) = E(Z1Z2) = E (jZ2 j2). For the se
ond, note that sin
e �0 is asigned tempered Borel measure on Rd � Rd , it is in S 0(Rd � Rd) and sin
eS 0(Rd � Rd ) = [n2NH�n(Rd � Rd );there exist n 2 N and C > 0 su
h thatZRd�Rd �0(dx; dy) '(x) '(y) � C k'
 'kn; 8' 2 S(Rd):Moreover, using de�nition (4.4), we see thatk'
 'k2n = ZRd�Rd d� d� (1 + j�j2 + j�j2)n jF'(�)j2 jF'(�)j2� ZRd d� (1 + j�j2)n jF'(�)j2 ZRd d� (1 + j�j2)n jF'(��)j2= k'k4n:Therefore, ZRd�Rd �0(dx; dy) '(x) '(y) � C k'k2n: (5.6)This implies thatE (jF 0t (') � F 0s (')j2) = jt� sj ZRd�Rd �0(dx; dy) '(x) '(y) � C k'k2n jt� sj;whi
h 
ompletes the proof.In parti
ular, the pre
eding lemma implies that for all T > 0, there exists CT > 0 and n 2 Nsu
h that E (jF 0t (')j2) � CT k'k2n; 8t 2 [0; T ℄; ' 2 S(Rd ): (5.7)Remark 5.1.2. The 
onstant CT does a
tually not depend on T in the present 
ase. However,in the following, we will refer to properties (5.4) and (5.5) for more general pro
esses. That iswhy we keep the possibility for the 
onstant to depend on T .The following lemma is an adaptation of [62, Thm 4.1℄ in the present simple setting.Lemma 5.1.3. Let F 0 = fF 0t ('); t 2 R+ ; ' 2 S(Rd )g be a 
entered Gaussian pro
ess satisfyingproperties (5.4) and (5.5) of Lemma 5.1.1. Then there exists m 2 N and a modi�
ation ~F 0 ofF 0 su
h that for all t 2 R+ , ~F 0t (�) 2 H�m(Rd).Proof. Fix t 2 R+ , m > n+ d2 and let f'k; k � 1g be a Hilbertian basis of Hm(Rd ). By (5.7)and (4.5), we obtain thatE 0�Xk�1 jF 0t ('k)j21A =Xk�1 E (jF 0t ('k)j2) � CtXk�1 k'kk2n <1;



50 Chapter 5. Linear hyperboli
 equation in Rdso the set 
1 de�ned by 
1 = 8<:! 2 
 :Xk�1 jF 0t ('k)j2 <19=;has probability one. Therefore, let us de�ne, for ' 2 S(Rd),~F 0t (') = 8>><>>: Xk�1F 0t ('k)h'k; 'im; on 
1;0; on 

1:This is well de�ned, sin
e by the Cau
hy-S
hwarz inequality, we have on 
1,������Xk�1F 0t ('k)h'k; 'im������2 �Xk�1 jF 0t ('k)j2 Xk�1 jh'k; 'imj2 =Xk�1 jF 0t ('k)j2 k'k2m <1: (5.8)It remains to show that ~F 0t satis�es the required properties. Let us therefore de�ne, for N � 1,'(N) = NXk=1'k h'k; 'im:By (5.4), we have F 0t ('(N)) = NXk=1F 0t ('k) h'k; 'im; P� a:s:;so we obtain thatE 0������F 0t (')� NXk=1F 0t ('k) h'k; 'im�����21A = E (jF 0t ('� '(N))j2)� Ct k'� '(N)k2n;by (5.7). Sin
e k'� '(N)k2n � k'� '(N)k2m !N!1 0;we have proven that F 0t (') =Xk�1F 0t ('k) h'k; 'im; P� a:s:This equality and the fa
t that P(
1) = 1 imply that ~F 0 is a modi�
ation of F 0. Moreover, ~F 0takes its values in H�m(Rd) sin
e by (4.6) and (5.8), we havejjj ~F 0t jjj2�m = sup'2Hm(Rd);'6=0 j ~F 0t (')j2k'k2m �Xk�1 jF 0t ('k)j2 1
1 <1;whi
h 
ompletes the proof.This allows us to establish the following theorem.



5.1. Gaussian noise 51Proposition 5.1.4. Let F 0 = fF 0t ('); t 2 R+ ; ' 2 S(Rd )g be a 
entered Gausssian pro
esssatisfying properties (5.4) and (5.5) of Lemma 5.1.1. Then F 0 admits a modi�
ation F̂ 0 su
hthat F̂ 0t (�) 2 S 0(Rd ) for all t 2 R+ and P � a:s:, for all ' 2 S(Rd), the map t 7! F̂ 0t (') is
ontinuous from R+ to C .Proof. The �rst statement is a dire
t 
onsequen
e of the pre
eding lemma, sin
e H�m(Rd ) �S 0(Rd ). In order to prove the se
ond, let us 
onsider again f'k; k � 1g, the Hilbertian basis ofH�m(Rd ) used in the proof of the pre
eding lemma. What we will use here is the Kolmogorovtest for Gaussian pro
esses with values in a Hilbert spa
e (see [18, Prop. 3.15℄). First note that~F 0, being the modi�
ation of a Gaussian pro
ess, is itself a Gaussian pro
ess. Moreover, it 
analso be seen as a Gaussian pro
ess with values in H�m(Rd), with tra
e-
lass 
ovarian
e operatorQ(t), sin
e the following 
ondition is satis�ed:Tr(Q(t)) =Xk�1 E(jF 0t ('k)j2) � CtXk�1 k'kk2n <1;by (5.7) and (4.5). Moreover, we have by (4.6) and a slight adaptation of (5.8),jjj ~F 0t � ~F 0s jjj2�m = sup'2Hm(Rd);'6=0 j ~F 0t (')� ~F 0s (')j2k'k2m� Xk�1 jF 0t ('k)� F 0s ('k)j2 1
1 :Therefore, for �xed T > 0 and s; t 2 [0; T ℄, we also haveE (jjj ~F 0t � ~F 0s jjj2�m) � Xk�1 E (jF 0t ('k)� F 0s ('k)j2)� CT Xk�1 k'kk2n jt� sj;by (5.5). Sin
e the above sum is �nite by (4.5), Proposition 3.15 of [18℄ states that there existsa modi�
ation F̂ 0 of ~F 0 su
h that for all 
 < 12 , there exists CT;
 > 0 whi
h satis�es P� a:s:jjjF̂ 0t � F̂ 0s jjj�m � CT;
 jt� sj
 ; 8s; t 2 [0; T ℄;so jF̂ 0t (')� F̂ 0s (')j � CT;
 k'km jt� sj
 ; 8s; t 2 [0; T ℄; ' 2 S(Rd ):In parti
ular, this implies that P � a:s:, for all ' 2 S(Rd), the map t 7! F̂ 0t (') is 
ontinuousfrom R+ to C , whi
h ends the proof.Remark 5.1.5. The pre
eding proposition has been expressed in a general way whi
h will beused later on. Note however that the pro
ess F̂ 0 has the more spe
i�
 property that P�a:s:, forall ' 2 S(Rd ), the pro
ess fF̂ 0t ('); t 2 R+g is a 
ontinuous Brownian motion with 
ovarian
eparameter ZRd�Rd �0(dx; dy) '(x) '(y):In the following, we will 
onsider impli
itely the modi�
ation F̂ 0.



52 Chapter 5. Linear hyperboli
 equation in Rd5.2 Weak formulation of the equationNow that we have a pre
ise de�nition of the Gaussian noise under 
onsideration, we also needto give a rigorous meaning to equation (5.1). We therefore pro
eed as in Se
tion 2.3. Settingformally v(t; x) = �u�t (t; x), we obtain the following two formal equations, after integration in tof equation (5.1):8>>>><>>>>: u(t; x) = u0(x) + Z t0 ds v(s; x);v(t; x) = v0(x) + Z t0 ds (�2a v(s; x)� b u(s; x) + �u(s; x) + _F 0(s; x)):We now multiply both sides of these two equations by a test fun
tion ' 2 S(Rd ) and integratethem in x, with two more integrations by parts in x of the term with the Lapla
ian. Assumingthat (u0; v0) 2 S 0(Rd) � S 0(Rd ), 
onsidering that (u; v) takes its values in S 0(Rd ) � S 0(Rd)and using the informal relationship (5.2) gives then the following rigorous formulation: a weaksolution of equation (5.1) is a pro
ess (u; v) = f(u(t); v(t)); t 2 R+g with values in S 0(Rd) �S 0(Rd ) su
h that P � a:s:, for all ' 2 S(Rd ), the map t 7! (hu(t); 'i; hv(t); 'i) is 
ontinuous onR+ and satis�es, for all t 2 R+ ,8>>>><>>>>: hu(t); 'i = hu0; 'i + Z t0 ds hv(s); 'i;hv(t); 'i = hv0; 'i+ Z t0 ds (�2a hv(s); 'i � b hu(s); 'i + hu(s);�'i) + F 0t ('): (5.9)Moreover, we say that the weak solution of equation (5.1) is unique if for any two solutions(u(1); v(1)) and (u(2); v(2)),hu(1)(t); 'i = hu(2)(t); 'i and hv(1)(t); 'i = hv(2)(t); 'i;for all t 2 R+ and ' 2 S(Rd), P� a:s:Remark 5.2.1. As for the solution of equation (2.4), we will often be loosely speaking of u,instead of (u; v), for the solution of equation (5.9).5.3 Sto
hasti
 integralIn order to obtain an expli
it expression for the solution of (5.9), we shall de�ne a sto
hasti
integral with respe
t to the noise F 0. This se
tion refers dire
tly to [62, Chap. 2℄, so somedetails will be omitted. Consider the augmented natural �ltration of the noise, de�ned byG0t = �fF 0s ('); s 2 [0; t℄; ' 2 S(Rd )g _N ; t 2 R+ ;where N is the 
lass of P-null sets in 
. The noise F 0 extends to a worthy martingale measureM0 = fM0t (A); G0t ; t 2 R+ ; A 2 Bb(Rd )g (see [62, Chap. 2℄ for a pre
ise de�nition; in short,M0



5.3. Sto
hasti
 integral 53is a martingale in t and a random measure in A) with 
ovariation measure Q0 and dominatingmeasure K0 given respe
tively byQ0([0; t℄ �A�B) = t �0(A�B) and K0([0; t℄ �A�B) = t �0(A�B);for t 2 R+ and A;B 2 Bb(Rd ). Note that the existen
e of the dominating measure K (\domi-nating" in the sense that jQ0([0; t℄ �A�B)j � K0([0; t℄ �A�B)) is a ne
essary 
ondition forthe sto
hasti
 integral to be well de�ned (and also the reason why we say that M0 is a \worthy"martingale measure).We 
an now de�ne the spa
e E0 of elementary integrands byE0 = (� : R+ � Rd � 
! C ����� �(t; x; !) = 1℄a; b℄(t) 1A(x) X(!); where 0 � a � b;A 2 Bb(Rd ) and X is a bounded G0a-measurable random variable):For an element of E0, its sto
hasti
 integral with respe
t to the martingale measureM0 is de�nedby (� �M0)t(B) = X (M0t^b(A \B)�M0t^a(A \B)); t 2 R+ ; B 2 B(Rd):We have the following isometry:E ((� �M0)t(B) ( �M0)t(C)) = h� 1B ;  1Cit;0; 8�;  2 E0; B;C 2 B(Rd); (5.10)where h� 1B ;  1Cit;0 = E �Z t0 dsZB�C �0(dx; dy) �(s; x)  (s; y)� : (5.11)Let us moreover denote by k � kt;0 the semi-norm indu
ed by the semi-s
alar produ
t h�; �it;0.We extend now the sto
hasti
 integral (� �M0)t(B) to more general integrands. Let us �rst
onsider linear 
ombinations of elementary integrands. For� = mXi=1 
i �i; where n � 1; 
1; : : : ; 
m 2 C ; �1; : : : ; �m 2 E0;we de�ne (� �M0)t(B) = mXi=1 
i (�i �M0)t(B); t 2 R+ ; B 2 B(Rd):One 
an 
he
k that this de�nition is 
orre
t, sin
e it does not depend on the de
omposition
hosen for �. Moreover, the sto
hasti
 integral is a random linear fun
tional in � (in the senseof (5.4)) and the isometry property (5.10) remains satis�ed. Let then P0 be the predi
table�-�eld generated by the fun
tions of E0, and term predi
table fun
tions the fun
tions whi
h are
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 equation in RdP0-measurable (note that any Borel-measurable fun
tion � : R+ � Rd ! C is a deterministi
predi
table fun
tion). For t 2 R+ and predi
table � : [0; t℄ � Rd � 
! C , let us de�nek�k2t;+;0 = E �Z t0 dsZRd�Rd �0(dx; dy) j�(s; x) �(s; y)j� :Moreover, setHt;+;0 = (� : [0; t℄ � Rd � 
! C ����� � is predi
table and k�kt;+;0 <1):By 
lassi
al arguments (see [62, Chap. 2℄), the sto
hasti
 integral (� �M0)t(B) 
an be extendedto elements of Ht;+;0. Furthermore, both the a.s. linearity and the isometry property (5.10)remain satis�ed. In the following, we will adopt the notation (� �M0)t = (� �M0)t(Rd ).Note also that the sto
hasti
 integral (� �M0)t of a deterministi
 integrand, being the limitin L2(
) of Gaussian variables, is itself Gaussian, and that in a similar manner, the pro
ess(� �M0) = f(� �M0)t; t 2 R+g is a Gaussian pro
ess. Furthermore, we have the followingisometry for deterministi
 integrands � and  :E ((� �M0)t ( �M0)t) = Z t0 dsZRd�Rd �0(dx; dy) �(s; x)  (s; y): (5.12)The following sto
hasti
 Fubini theorem will be used to show the existen
e of a solution toequation (5.9); a similar theorem 
an be found in [62, Chap. 2℄. The present version is givenhere only for 
ontinuous deterministi
 integrands, sin
e this is all we need in the following. For� : R+ � R+ � Rd ! C and s 2 R+ , let us de�ne �s(r; x) = �(s; r; x), r 2 R+ , x 2 Rd .Theorem 5.3.1. If � : R+ � R+ � Rd ! C is 
ontinuous, t 2 R+ andZ t0 dsZ t0 dr ZRd�Rd �0(dx; dy) j�(s; r; x) �(s; r; y)j <1;then Z t0 ds (�s �M0)t = ( t �M0)t; P� a:s:; (5.13)where  (t; r; x) = Z t0 ds �(s; r; x).Proof. Let us introdu
e the following notation:h�1; �2it;+;0 = Z t0 dsZRd�Rd �0(dx; dy) �1(s; x) �2(s; y);Sin
e �0 is non-negative de�nite, this is a semi-s
alar produ
t and the following Cau
hy-S
hwarzinequality is satis�ed: h�1; �2it;+;0 � k�1kt;+;0 k�2kt;+;0: (5.14)



5.3. Sto
hasti
 integral 55Let us then show that  t belongs to Ht;+;0: it is 
learly 
ontinuous sin
e � is, andk tk2t;+;0 = Z t0 dsZRd�Rd �0(dx; dy) j t(s; x)j j t(s; y)j� Z t0 dsZRd�Rd �0(dx; dy)Z t0 dr Z t0 dq j�(r; s; x)j j�(q; s; y)j= Z t0 dr Z t0 dq hj�rj; j�qjit;+;0� �Z t0 dr k�rkt;+;0�2� t Z t0 dr k�rk2t;+;0= t Z t0 dr Z t0 dsZRd�Rd �0(dx; dy) j�(r; s; x)j j�(r; s; y)j <1:In order to show that both sides of (5.13) are equal P � a:s:, let us pro
eed as in the proof ofTheorem 2.5.2 and 
omputeE  ����Z t0 dr (�r �M0)t����2! = Z t0 dr Z t0 dq E �(�r �M0)t (�q �M0)t�= Z t0 dr Z t0 dq Z t0 dsZRd�Rd �0(dx; dy) �(r; s; x) �(q; s; y)= Z t0 dsZRd�Rd �0(dx; dy)  (t; s; x)  (t; s; y)= E ���( t �M0)t��2� :Furthermore,E �Z t0 dr (�r �M0)t ( t �M0)t� = Z t0 dr E �(�r �M0)t ( t �M0)t�= Z t0 dr Z t0 dsZRd�Rd �0(dx; dy)  (t; s; y) �(r; s; y)= Z t0 dsZRd�Rd �0(dx; dy)  (t; s; y)  (t; s; y)= E ���( t �M0)t��2� :Sin
e this 
ovarian
e is equal to the two varian
es above, the proof is 
omplete.We will use the following spe
ial 
ase of the pre
eding theorem.Corollary 5.3.2. Let D = f(s; r; x) 2 R+ � R+ � Rd : s � rg (for � : D ! C , s 2 R+ , notethat �s is de�ned on [0; s℄� Rd ). If � : D ! C is Borel-measurable, t 2 R+ andZ t0 dsZ s0 dr ZRd�Rd �0(dx; dy) j�(s; r; x) �(s; r; y)j <1;
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 equation in Rdthen Z t0 ds (�s �M0)s = ( t �M0)t; P� a:s:;where  (t; r; x) = Z tr ds �(s; r; x).Proof. Repla
e �(s; r; x) by �(s; r; x) � 1s�r in Theorem 5.3.1.5.4 Properties of the Green kernelLet G be the solution of�2G�t2 + 2a �G�t + b G��G = 0; G(0) = 0; �G�t (0) = Æ0: (5.15)G is 
alled the Green kernel of equation (5.1). We need to study 
arefully its properties beforestudying equation (5.1). Note that in the following, the dependen
e on a or b of any fun
tion(like the Green kernel or a \
onstant") will be omitted in order to simplify the notation.From the expli
it expressions of G listed in Appendix A, we dedu
e that for d � 3 andarbitrary a, b, or arbitrary d � 1 and a = b = 0, G satis�es the following property: forall t 2 R+ , G(t; �) is a �nite order distribution with 
ompa
t support on Rd and there existK(t) > 0 and N 2 N su
h thatsups2[0;t℄ jG(s; ')j � K(t) Xjnj�N supx2B(0;t) j�n'(x)j; 8' 2 S(Rd ); (5.16)where n = (n1; : : : ; nd) denotes a multi-index in Nd and jnj = n1 + � � �+ nd.On the other hand, we dedu
e easily from (5.15) that the Fourier transform of G in x satis�es8>>><>>>: �2FG�t2 (t; �) + 2a �FG�t (t; �) + (b+ j�j2) FG(t; �) = 0; t 2 R; � 2 Rd ;FG(0; �) = 0; �FG�t (0; �) = 1; � 2 Rd : (5.17)Solving this ordinary di�erential equation in t gives the following expression for FG, whi
h isvalid for every positive natural number d:FG(t; �) = 8>>>>>>><>>>>>>>: e�at sin�tpj�j2 + b� a2�pj�j2 + b� a2 ; if j�j2 > a2 � b;e�at t; if a2 � b � 0 and j�j2 = a2 � b;e�at sinh�tpa2 � b� j�j2�pa2 � b� j�j2 ; if a2 � b > 0 and j�j2 < a2 � b: (5.18)Note that, as for (2.6), the �rst of these three expressions 
ontains the other two. From these,we also dedu
e that FG is a real-valued and 
ontinuous fun
tion on R�Rd , whi
h is symmetri




5.4. Properties of the Green kernel 57and in�nitely di�erentiable in �, sin
e for all t 2 R, FG(t; �) is an analyti
 fun
tion on Rd , whoseTaylor series is given byFG(t; �) = e�at Xn2N (�1)n t2n+1(2n+ 1)! (j�j2 + b� a2)n; 8� 2 Rd ;and sin
e FG(t; �) and all its derivatives vanish at in�nity, FG(t; �) 2 OM (Rd ). Moreover, FGsatis�es the following properties: for all T > 0, there exits C0(T ) > 0 su
h thatjFG(t; �)j � C0(T ); 8t 2 [0; T ℄; � 2 Rd ; (5.19)and jFG(t; �) �FG(s; �)j � C0(T ) jt� sj; 8s; t 2 [0; T ℄; � 2 Rd : (5.20)Furthermore, we have the following estimates, whi
h will be used in the next 
hapter.Lemma 5.4.1. For all t > 0, there exists C1(t) > 0 su
h thatFG(s; �)2 � C1(t)1 + j�j2 ; 8s 2 [0; t℄; � 2 Rd :Proof. If j�j2 � 2(a2 � b) + 1, then (2.10) implies that we obtain thatj�j2 + b� a2 � 1 + j�j22 ; (5.21)so we have FG(s; �)2 = e�2as sin2 �spj�j2 + b� a2�j�j2 + b� a2 � e2a�t 21 + j�j2 :If 2(a2 � b) + 1 � 0 and a2 � b � j�j2 � 2(a2 � b) + 1, thenFG(s; �)2 = e�2as s2 sin2 �spj�j2 + b� a2�s2 (j�j2 + b� a2) � e2a�t t2;sin
e r�2 sin2(r) � 1 for all r � 0. Finally, if a2 � b � 0 and j�j2 � a2 � b, thenFG(s; �)2 = e�2as s2 sinh2 �spa2 � b� j�j2�s2 (a2 � b� j�j2) � e2a�t t2 
osh(pa2 � b t)2;sin
e r�2 sinh2(r) � 
osh(r)2 for all r � 0 and 
osh is an in
reasing fun
tion. Summing upthese estimates, we obtain �nally that there exist R;K1(t);K2(t) > 0 su
h thatFG(s; �)2 � K1(t)1 + j�j2 ; 8s 2 [0; t℄; j�j � R;and FG(s; �)2 � K2(t) � K2(t) 1 +R21 + j�j2 ; 8s 2 [0; t℄; j�j � R:De�ning C1(t) = max(K1(t);K2(t) (1 +R2)) gives the desired result.
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 equation in RdThe above lemma will be used for rather te
hni
al purposes; as a 
onsequen
e, we 
an dire
tlyobtain the following upper bound, whi
h we list separately for later referen
e, and whi
h is alsosatis�ed by the Green kernel of the heat equation, while Lemma 5.4.1 is not.Lemma 5.4.2. For all t > 0, there exists C2(t) > 0 su
h thatZ t0 ds FG(s; �)2 � C2(t)1 + j�j2 ; 8� 2 Rd :Proof. We obtain this inequality by a simple integration in s of the result of Lemma 5.4.1.The following lemma gives a 
orresponding lower bound.Lemma 5.4.3. For all t > 0, there exists C3(t) > 0 su
h thatZ t0 ds FG(s; �)2 � C3(t)1 + j�j2 ; 8� 2 Rd :Proof. If j�j2 � a2 � b+ 1t2 , then (2.11) implies thatj�j2 + b� a2 � (1 _ (b� a2)) (1 + j�j2); (5.22)so we obtain thatZ t0 ds FG(s; �)2 = Z t0 ds e�2as sin2 �spj�j2 + b� a2�j�j2 + b� a2� e�2a+t1 _ (b� a2) 11 + j�j2 Z t0 ds sin2 �spj�j2 + b� a2� :This implies thatZ t0 ds sin2 �spj�j2 + b� a2� = t2 0�1� sin�2tpj�j2 + b� a2�2tpj�j2 + b� a2 1A � t4 ;sin
e tpj�j2 + b� a2 � 1 and j sin(r)j � 1 for all r � 0. So we obtain �nally thatZ t0 ds FG(s; �)2 � e�2a+t(1 _ (b� a2)) t4 11 + j�j2If a2 � b+ 1t2 � 0 and a2 � b � j�j2 � a2 � b+ 1t2 , thenZ t0 ds FG(s; �)2 = Z t0 ds e�2as s2 sin2 �spj�j2 + b� a2�s2 (j�j2 + b� a2) � e�2a+t t33 sin2(1);sin
e spj�j2 + b� a2 � 1 for all s 2 [0; t℄ and r�2 sin2(r) � sin(1)2 > 0 for all r 2 [0; 1℄. Finally,if a2 � b � 0 and j�j2 � a2 � b, thenZ t0 ds FG(s; �)2 = Z t0 ds e�2as s2 sinh2 �spa2 � b� j�j2�s2 (a2 � b� j�j2) � e�2a+t t33 ;



5.5. Existen
e and uniqueness of the weak solution 59sin
e r�2 sinh2(r) � 1 for all r � 0. Summing up these estimates, we obtain �nally that thereexist R(t);K1(t);K2(t) > 0 su
h thatZ t0 ds FG(s; �)2 � K1(t)1 + j�j2 ; 8j�j � R(t);and Z t0 ds FG(s; �)2 � K2(t) � K2(t)1 + j�j2 ; 8j�j � R(t):De�ning C3(t) = min(K1(t);K2(t)) gives the desired result.As for the linear hyperboli
 equation in a bounded domain, let us also de�ne H = �G�t +2a G.We easily see that H satis�es�2H�t2 + 2a �H�t + b H ��H = 0; H(0) = Æ0; �H�t (0) = 0: (5.23)The equation follows dire
tly from the de�nition of H and equation (5.15). In order to 
he
kthe initial 
onditions, let us 
omputeFH(t; �) = e�at 
os�tpj�j2 + b� a2�+ a e�at sin�tpj�j2 + b� a2�pj�j2 + b� a2 ; (5.24)therefore FH(0; �) = 1, and�FH�t (t; �) = �e�at pj�j2 + b� a2 sin�tpj�j2 + b� a2�� a2 e�at sin�tpj�j2 + b� a2�pj�j2 + b� a2 ;therefore �FH�t (0; �) = 0.5.5 Existen
e and uniqueness of the weak solutionTo show the existen
e of a solution to equation (5.9), we will need the following three lemmas.Lemma 5.5.1. For t 2 R+ and ' 2 S(Rd), the fun
tions �t;';  t;' : [0; t℄! S(Rd) de�ned by�t;'(s; x) = (G(t � s) � ')(x) and  t;'(s; x) = ��G�t (t� s) � '� (x); s 2 [0; t℄; x 2 Rd ;belong to Ht;+;0.Proof. The argument is the same for �t;' and  t;'. Let us then 
onsider only �t;'. We �rstshow that the map (s; x) 7! (G(t � s) � ')(x) is 
ontinuous, therefore Borel-measurable. The
ontinuity in x is a 
onsequen
e of the fa
t that for �xed s 2 [0; t℄, the map x 7! (G(t�s)�')(x)belongs to S(Rd); it remains then to show that the map s 7! (G(t� s) � ')(x) is 
ontinuous on[0; t℄, uniformly in x 2 Rd . Using the identity F�1 Æ F = Id, we obtain by (4.1) and (4.3) thatj(G(t � (s+ h)) � ')(x)� (G(t� s) � ')(x)j= ���� 1(2�)d ZRd d� (FG(t � s� h; �)�FG(t� s; �)) F'(�) ��x(�)����� 1(2�)d ZRd d� jFG(t � s� h; �) �FG(t � s; �)j jF'(�)j:
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 equation in RdSin
e FG is 
ontinuous by (5.18), F' 2 S(Rd) and using (5.20), we 
an apply the dominated
onvergen
e theorem to 
on
lude that the above expression, whi
h does not depend on x, tendsto 0 as h! 0, so the 
ontinuity in s is proven and it is uniform in x.Se
ondly, for all s 2 [0; t℄, we haveZRd�Rd �0(dx; dy) j�t;'(s; x) �t;'(s; y)j <1;sin
e �t;'(s; �) = G(t� s) � ' 2 S(Rd ) and �0 is a tempered measure on Rd � Rd . To show thatk�t;'kt;+;0 <1, it suÆ
es then to show that for all r > 0, there exists C > 0 su
h thatsups2[0;t℄ j�t;'(s; x)j � C(1 + jxj)r ; 8x 2 Rd : (5.25)By (5.16), we obtain thatsups2[0;t℄ j�t;'(s; x)j = sups2[0;t℄ jG(t� s; '(x� �))j � K(t) Xjnj�N supz2B(0;t) j�n'(x� z)j:But sin
e ' 2 S(Rd), for all r > 0, there exists K > 0 su
h thatsupjnj�N j�n'(x)j � K(1 + jxj)r :Using the fa
t that jx� zj � jxj � t for all z 2 B(0; t), we obtainsups2[0;t℄ j�t;'(s; x)j � K(t) (N + 1)d K � 1(1 + jxj � t)r ^ 1� ;so (5.25) is satis�ed with C = K(t) (N + 1)d K 2r. This 
ompletes the proof.Let us now de�ne the pro
ess P = fPt('); t 2 R+ ; ' 2 S(Rd )g byPt(') = ((G(t � �) � ') �M0)t:By the pre
eding lemma, this pro
ess is well de�ned. Moreover, it will turn out to be the �rst
omponent u of the solution of equation (5.9), with vanishing initial 
onditions. It is a 
enteredGaussian pro
ess with the following 
ovarian
e, whi
h 
an be easily dedu
ed from (5.12):E(Pt (') Ps( )) = Z t^s0 dr ZRd�Rd �0(dx; dy) (G(t � r) � ')(x) (G(s� r) �  )(y): (5.26)Furthermore, it satis�es the following properties.Lemma 5.5.2. For all t 2 R+ , � 2 R and '; 2 S(Rd ), we havePt(�'+  ) = � Pt(') + Pt( ); P� a:s:and there exists n 2 N su
h that for all T > 0, there exists CT > 0 su
h thatE(jPt (')� Ps(')j2) � CT k'k2n jt� sj; 8s; t 2 [0; T ℄; ' 2 S(Rd);where k � kn is the Sobolev norm de�ned by (4.4).



5.5. Existen
e and uniqueness of the weak solution 61Proof. The �rst statement follows from the a.s. linearity of the sto
hasti
 integral. In order toprove the se
ond one, we use (5.6), whi
h states that there exist n 2 N and C > 0 su
h thatZRd�Rd �0(dx; dy) '(x) '(y) � C k'k2n:Fix now T > 0. By formula (5.26), we have for all s; t 2 [0; T ℄,E(jPt (')� Ps(')j2)= Z s0 dr ZRd�Rd �0(dx; dy) ((G(t � r)�G(s� r)) � ')(x) ((G(t � r)�G(s� r)) � ')(y)+Z ts dr ZRd�Rd �0(dx; dy) (G(t� r) � ')(x) (G(t� r) � ')(y)� C �Z s0 dr k(G(t � r)�G(s� r)) � 'k2n + Z ts dr kG(t� r) � 'k2n� :Using now (4.4) and properties (5.19) and (5.20), we obtain thatk(G(t� r)�G(s� r)) � 'k2n = ZRd d� (1 + j�j2)n jFG(t � r; �)�FG(t� s; �)j2 jF'(�)j2� C0(T )2 k'k2n jt� sj2and kG(t � r) � 'k2n = ZRd d� (1 + j�j2)n jFG(t � r; �)j2 jF'(�)j2 � C0(T ) k'k2n:This implies �nally thatE (jPt (')� Ps(')j2) � C T C0(T )2 k'k2n jt� sj2 +C0(T ) k'k2n jt� sj � CT k'k2n jt� sj;where CT = 2 C T 2 C0(T )2 + C0(T ). This 
ompletes the proof.A dire
t 
onsequen
e of this lemma 
ombined with Proposition 5.1.4 is that the pro
ess Padmits a modi�
ation P̂ su
h that P̂t(�) 2 S 0(Rd ) for all t 2 R+ and P� a:s:, for all ' 2 S(Rd ),the map t 7! P̂t(') is 
ontinuous from R+ to C . We will impli
itely 
onsider this modi�
ationin the following.Note that the entire pre
eding analysis gives rise to the same 
on
lusions for the pro
essQ = fQt('); t 2 R+ ; ' 2 S(Rd)g de�ned byQt(') = ���G�t (t� �) � '� �M0�t ;whi
h will turn out to be the se
ond 
omponent v of the solution of equation (5.9) with vanishinginitial 
onditions.The last lemma is a 
lassi
al one 
on
erning the determisti
 equation.



62 Chapter 5. Linear hyperboli
 equation in RdLemma 5.5.3. For �;  2 S(Rd), t0 2 R, the fun
tions p; q : R � Rd ! R de�ned byp(t; x) = (H(t� t0) � �)(x) + (G(t � t0) �  )(x)and q(t; x) = ��H�t (t� t0) � �� (x) +��G�t (t� t0) �  � (x)for (t; x) 2 R � Rd , satisfy the following two equations:8>>>><>>>>: p(t; x) = �(x) + Z tt0 dr q(r; x);q(t; x) =  (x) + Z tt0 dr (�2a q(r; x)� b p(r; x) + �p(r; x)); (5.27)Moreover, p(t; �) and q(t; �) belong to S(Rd ), for all t 2 R.Proof. These equations simply follow from the de�nition of p and q and equations (5.15) and(5.23).We 
an now state the existen
e and uniqueness theorem.Theorem 5.5.4. Let (u0; u1) 2 S 0(Rd ) � S 0(Rd) and de�ne v0 = u1 + 2a u0. The pro
ess(u; v) = f(u(t); v(t)); t 2 R+g with values in S 0(Rd)� S 0(Rd ) de�ned byu(t) = u0(t) + Pt and v(t) = v0(t) +Qt; (5.28)where 8>><>>: u0(t) = H(t) � u0 +G(t) � v0; Pt(') = ((G(t � �) � ') �M0)t;v0(t) = �H�t (t) � u0 + �G�t (t) � v0; Qt(') = ���G�t (t� �) � '� �M0�t ;admits a modi�
ation (û; v̂) whi
h is the unique weak solution of equation (5.1).Proof. Let us �rst show existen
e. Using Lemma 5.5.3, we see that for a �xed ' 2 S(Rd), thefun
tions p and q de�ned byp(t; x) = (u0(t) � ~')(x) and q(t; x) = (v0(t) � ~')(x);where ~'(x) = '(�x), satisfy equation (5.27) with t0 = 0 and initial 
onditions �(x) = (u0� ~')(x)and  (x) = (v0 � ~')(x). Evaluating this equation in x = 0 gives8>>>><>>>>: hu0(t); 'i = hu0; 'i+ Z t0 ds hv0(s); 'i;hv0(t); 'i = hv0; 'i + Z t0 ds (�2a hv0(s); 'i � b hu0(s); 'i + hu0(s);�'i): (5.29)



5.5. Existen
e and uniqueness of the weak solution 63for all t 2 R+ and ' 2 S(Rd).On the other hand, �x now t 2 R+ , ' 2 S(Rd ), and de�ne8>>>>>>>>>>>><>>>>>>>>>>>>:
�t;'(s; x) = (G(t� s) � ')(x) � Z ts dr ��G�t (r � s) � '� (x);�t;'(s; x) = ��G�t (r � s) � '� (x)� Z ts dr  � 2a ��G�t (r � s) � '� (x)�b (G(r � s) � ')(x) + (G(r � s) ��')(x)!+ '(x);Using the fa
t that for �xed s 2 R+ and ' 2 S(Rd ), the fun
tions p and q de�ned byp(t; x) = (G(t� s) � ')(x) and q(t; x) = ��G�t (t� s) � '� (x); t � s; x 2 Rd ;satisfy equation (5.27) with t0 = s, � � 0, and  = ', we obtain that �t;' � �t;' � 0. Moreover,by Lemma 5.5.1 (slightly adapted for the integral terms), all the 
omponents of �t;' and �t;'belong to Ht;+;0. So we 
an write that (�t;' �M0)t = 0 and (�t;' �M0)t = 0, whi
h gives, by thelinearity of the sto
hasti
 integral,8>>>>>>>>>><>>>>>>>>>>:

((G(t� �) � ') �M0)t = ��Z t� dr �G�t (r � �) � '� �M0�t ;���G�t (t� �) � '� �M0�t = �2a ��Z t� dr �G�t (r � �) � '� �M0�t�b ��Z t� dr G(r � �) � '� �M0�t + ��Z t� dr G(r � �) ��'� �M0�t + F 0t ('):Applying then Corollary 5.3.2 to ea
h integral term leads to the 
on
lusion that the pro
essesP and Q de�ned in the theorem satisfy the following equation:8>>>><>>>>: Pt(') = Z t0 ds Qs(');Qt(') = Z t0 ds (�2a Qs(')� b Ps(') + Ps(�')) + F 0t ('); (5.30)P�a:s, for all t 2 R+ and ' 2 S(Rd). Using now Proposition 5.1.4 for all the terms of the aboveequation (whi
h are shown to satisfy (5.4) and (5.5) by the same arguments as those in Lemma5.5.2), we obtain that there exist modi�
ations P̂ and Q̂ of P and Q whi
h satisfy the aboveequation for all t 2 R+ and ' 2 S(Rd ), P � a:s: Combining �nally equations (5.29) and (5.30)shows that the pro
ess (u; v) = f(u(t); v(t)); t 2 R+g de�ned by (5.28) admits a modi�
ation(û; v̂) su
h that P � a:s:, for all ' 2 S(Rd ), the map t 7! (hû(t); 'i; hv̂(t); 'i) is 
ontinuous and



64 Chapter 5. Linear hyperboli
 equation in Rdsolves equation (5.9).In order to prove uniqueness, we follow a 
lassi
al deterministi
 argument. Let (u(1); v(1))and (u(2); v(2)) be two solutions of equation (5.9) and de�ne (�u; �v) = (u(1) � u(2); v(1) � v(2)).The pro
ess (�u; �v) then satis�es the following equation:8>>>><>>>>: h�u(t); 'i = Z t0 ds h�v(s); 'i;h�v(t); 'i = Z t0 ds (�2a h�v(s); 'i � b h�u(s); 'i + h�u(s);�'i): (5.31)for all t 2 R+ and ' 2 S(Rd ), P�a:s: Let now p and q satisfy equation (5.27) with t0 = T 2 R+and �,  arbitrary. Set moreoverA(t) = h�u(t); q(t)i � h�v(t); p(t)i:Combining equations (5.27) and (5.31) gives for t1; t2 2 R+ ,A(t2)�A(t1) = Z t2t1 ds (h�u(s);�2a q(s)� b p(s) + �p(s)i+ h�v(s); q(s)i)�Z t2t1 ds (h�v(s); q(s)i � 2a h�v(s); p(s)i � b h�u(s); p(s)i + h�u(s);�p(s)i)= �2aZ t2t1 ds (h�u(s); q(s)i � h�v(s); p(s)i)= �2aZ t2t1 ds A(s):Therefore, A(T ) = e�2aT A(0) = e�2aT (h�u(0); q(0)i � h�v(0); p(0)i = 0;sin
e �u(0) = �v(0) = 0. Using now the terminal 
onditions p(T ) = � and q(T ) =  and
onsidering su

essively the 
ases (�;  ) = ('; 0) and (�;  ) = (0; '), we obtain thath�u(T ); 'i = h�v(T ); 'i = 0;for arbitrary T 2 R+ and ' 2 S(Rd ), P� a:s:, so the 
on
lusion follows.



Chapter 6Noise on a k-planeLet d be a natural number greater than 1 and �x k 2 f1; :::; d � 1g. Let us also introdu
e thefollowing notations.- For x 2 Rd �= Rk � Rd�k , write x = (x1; x2) where x1 2 Rk and x2 2 Rd�k .- For r > 0 and a 2 Rk , let B1(a; r) denote the ball of 
enter a and radius r in Rk .- For ' 2 S(Rd ), let F1' (resp. F2') denote the Fourier transform of ' in the 
oordinatesparallel to the k-plane Rk � f0g (resp. in the perpendi
ular ones): these are de�ned byF1'(�1; x2) = ZRk dx1 '(x1; x2) ��1(x1)and F2'(x1; �2) = ZRd�k dx2 '(x1; x2) ��2(x2);where we re
all that ��i(xi) = ei�i�xi . These Fourier transforms extend to T 2 S 0(Rd ) and notethat F = F1 Æ F2 = F2 Æ F1.The aim of this 
hapter and the next one is to study the regularity of the weak solution ofequation (5.1) when the measure �0 is formally given by�0(x; y) = �(x1 � y1) Æ0(x2) Æ0(y2);whi
h 
an be rigorously written asZRd�Rd �0(dx; dy) �(x)  (y) = ZRk �(dz1) (�(�; 0) �1 ~ (�; 0))(z1); 8�;  2 S(Rd); (6.1)where �1 denotes the 
onvolution produ
t in Rk and ~'(x1) = '(�x1) for x1 2 Rk . This situation
orresponds to a noise 
on
entrated on the k-plane Rk �f0g and spatially homogeneous on this65



66 Chapter 6. Noise on a k-planek-plane. The \
lassi
al" equation 
orresponding to equation (5.9) is then8>>><>>>: �2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x)��u(t; x) = _F (t; x1) Æ0(x2); (t; x) 2 R+ � Rd ;u(0; x) = u0(x); �u�t (0; x) = v0(x); x 2 Rd : (6.2)Our aim here is to relate the regularity of the weak solution u of this equation to expli
it
onditions on the 
ovarian
e of the noise de�ned above. By the nature of the noise itself, the be-havior of the solution will 
ertainly be di�erent along the dire
tions parallel to the k-plane (x1)and along the perpendi
ular ones (x2). Sin
e the noise is spatially homogenous in the 
oordinatex1, one should not expe
t a solution with an L2-type behavior in x1 (unless we 
onsider someweighted L2-spa
e as in [51℄). On the 
ontrary, this seems quite plausible for the 
oordinate x2.To be pre
ise, what we are going to show in this 
hapter is that for � < 1� d�k2 and undersome optimal 
ondition B� on the the spe
tral measure of the noise (whi
h 
an be reformulatedafterwards into a 
ondition on the 
ovarian
e: see se
tion 6.6), the weak solution of (6.2) is apro
ess U = fU(t; x1); (t; x1) 2 R+ � Rkg indexed by the time variable and the 
oordinatesof the k-plane, with values in some fra
tional Sobolev spa
e H�(Rd�k ) (see Se
tion 4.2 for ade�nition of this spa
e).This analysis prepares for the study of the following question: when is the weak solutionu of equation (6.2) a real-valued pro
ess, and not a distribution-valued one? We will see inChapter 7 that in the 
ase of a noise 
on
entrated on a hyperplane (that is, when k = d � 1),the optimal 
ondition B0 obtained here for the pro
ess U to be L2(R)-valued is also the optimal
ondition for the weak solution u of (6.2) to be a real-valued pro
ess outside the hyperplanex2 = 0. What we shall also observe in that 
hapter is that the solution of equation (5.9) 
annotbe a real-valued pro
ess in the 
ase where k = d � 2, in 
on
ordan
e with the result obtainedhere that in this 
ase, the pro
ess U , if it exists, has to take its values in some fra
tional Sobolevspa
e H�(Rd�k ) with � stri
tly negative.6.1 Chapter 5 revisitedThough the general results of the pre
eding 
hapter apply dire
tly to the parti
ular noise 
on-sidered here, we prefer to rephrase them somewhat, in order to simplify the analysis later on.Let us �rst make pre
ise the assumptions made on the 
ovarian
e �: � is assumed to be asigned Borel measure on Rk , whi
h is non-negative de�nite on Rk in the sense of (4.8), that is,ZRk �(dz1) (' �1 ~')(z1) � 0; 8' 2 S(Rk ): (6.3)



6.1. Chapter 5 revisited 67This implies that � is hermitian (
f. [57, Chap. VII, Thm XVII℄), hen
e symmetri
, sin
e it isa real-valued measure. Moreover, we assume that there exists a tempered non-negative Borelmeasure � on Rk whi
h is non-negative de�nite and whi
h dominates j�j, that is,j�j(A) � �(A); 8A 2 Bb(Rk ):We give here some examples of 
ovarian
es that satisfy these 
onditions. Clearly, when � isa non-negative, tempered and non-negative de�nite Borel measure on Rd , then � = � satis�esthe required assumptions. This non-negativity assumption was taken as a basi
 assumption in[15, 54℄ (in the 
ase of a spatially homogeneous noise on Rd) and will be needed in our 
ase forthe analysis of non-linear equations (see Chapter 8). Among this 
lass of 
ovarian
es, we 
an
onsider 
ovarian
es of the form �(dx1) = f(jx1j) dx1, where f is a non-negative 
ontinuousfun
tion on ℄0;1[, and examples of su
h f aref(r) = 1r
 ; where 
 2 ℄0; k[:We 
an also show the following. Let � be the Lebesgue measure on Rk ; if � is a non-negativede�nite tempered Borel measure on Rd su
h that there exists C > 0 where� + C� is a non-negative measure on Rk ; (6.4)then � = �+2C� satis�es the required assumptions: � is non-negative de�nite, being the 
onvex
ombination of two non-negative de�nite measures, andj�j = j� + C�� C�j � j� + C�j+ jC�j = �+ 2C� = �:Note that (6.4) was taken as a basi
 assumption in [51, 52, 53℄ (in the 
ase of a spatially homo-geneous noise on Rd).Let us now 
onsider the 
entered Gaussian pro
ess F = fFt('); t 2 R+ ; ' 2 S(Rk )g whose
ovarian
e is given byE (Ft (') Fs( )) = (t ^ s)ZRk �(dz1) (' �1 ~ )(z1); 8t; s 2 R+ ; ';  2 S(Rk ):This pro
ess is well de�ned (see Se
tion 4.3), and (6.1) implies thatF 0t (�) d= Ft(�(�; 0)); 8t 2 R+ ; � 2 S(Rd);where d= stands for equality in distribution. This gives an expression for the last term of equation(5.9). Moreover, sin
e we would like to study the regularity of the solution in relation to theregularity of the noise, we restri
t ourselves here to the 
ase where u0 = v0 = 0, and so equation(5.9) be
omes8>>>><>>>>: hu(t); 'i = Z t0 ds hv(s); 'i;hv(t); 'i = Z t0 ds (�2a hv(s); 'i � b hu(s); 'i + hu(s);�'i) + Ft('(�; 0); (6.5)



68 Chapter 6. Noise on a k-planefor all t > 0 and ' 2 S(Rd ), P� a:s:Remark 6.1.1. When k = d � 1 (that is, when the noise is 
on
entrated on a hyperplane),and as mentioned in Remark 3.2.3 for the 
ase of a noise on a sphere, we 
ould intepret thenoise term as a boundary term, and therefore 
onsider that (6.5) is the weak formulation of thefollowing 
lassi
al equation in the upper half spa
e:�2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x) ��u(t; x) = 0; (t; x) 2 R+ � Rd�1 � R+ ;with the sto
hasti
 boundary 
ondition�u�x2 (t; x1; 0) = _F (t; x1):Let us now follow the analysis of Chapter 5 and denote by fGtg the natural augmented�ltration of the noise, E the spa
e of elementary integrands and P the predi
table �-�eld; thenoise F extends naturally to a worthy martingale measureM and we 
an de�ne a 
orrespondingsto
hasti
 integral (� �M)t for integrands belonging toHt;+ = (� : [0; t℄ � Rk � 
! C predi
table su
h thatk�k2t;+ = E �Z t0 dsZRk �(dz1) (j�(s; �)j �1 j~�(s; �)j)(z1)� <1);using the isometryE ((� �M)t ( �M)t) = h�;  it = E �Z t0 dsZRk �(dz1) (�(s; �) �1 ~ (s; �))(z1)� : (6.6)Let us also denote by k�kt the semi-norm indu
ed by the semi-s
alar produ
t h�; �it. The sto
has-ti
 Fubini Theorem 5.3.1 
an be adapted to the present situation, and the rest of the analysis isidenti
al to the one of the pre
eding 
hapter.For 
larity, we will adopt the following notation for the sto
hasti
 integral of a predi
tableintegrand � : [0; t℄� Rk � Rd�k � 
! C restri
ted to the k-plane x2 = 0:(�(�; �; 0) �M)t = Z[0;t℄�Rk M(ds; dx1) �(s; x1; 0):In parti
ular, the unique solution u of equation (6.5) will be given byhu(t); 'i = Z[0;t℄�Rk M(ds; dx1) (G(t � s) � ')(x1; 0); t 2 R+ ; ' 2 S(Rd); (6.7)where G is the solution of equation (5.15), whose properties are listed in Se
tion 5.4.With these modi�
ations in hand, we 
an pro
eed further.



6.2. Extension of the sto
hasti
 integral 696.2 Extension of the sto
hasti
 integralThe �rst te
hni
al step towards the study of the regularity of the solution 
onsists in extendingthe sto
hasti
 integral to distribution-valued integrands, sin
e the pro
esses that will appear inthe following will be expressed as sto
hasti
 integrals of su
h integrands.Following [15℄, we �rst 
onsider a more general 
lass of martingale measures, in order to in-
lude dire
tly the treatment of non-linear equations in our analysis. Let Z = fZ(t; x1); (t; x1) 2R+ � Rkg be a real-valued predi
table pro
ess su
h that for all T > 0,sup(t;x1)2[0;T ℄�Rk E(Z(t; x1)2) <1: (6.8)By [62, Chap. 2℄, MZ = f(Z � M)t(B); Gt; t 2 R+ ; B 2 Bb(Rk )g de�nes also a worthymartingale measure with 
ovariation measureQZ([0; t℄ �A�B) = E �Z t0 dsZRk �(dz1) ((Z(s; �) 1A) �1 ( ~Z(s; �) ~1B))(z1)�and dominating measureKZ([0; t℄ �A�B) = E �Z t0 dsZRk �(dz1) ((jZ(s; �)j 1A) �1 (j ~Z(s; �)j ~1B))(z1)� :This implies that we 
an de�ne the sto
hasti
 integral (� �MZ)t of a Borel-measurable fun
tion� : [0; t℄� Rk ! C su
h thatk�k2t;+;Z = E �Z t0 dsZRk �(dz1) (j�(s; �) Z(s; �)j �1 j~�(s; �) ~Z(s; �)j)(z1)� <1;and let us denote by Ht;+;Z the spa
e of su
h (deterministi
) integrands. Note that if � 2 Ht;+and � is deterministi
, thenk�k2t;+;Z � sup(s;x1)2[0;t℄�Rk E(Z(s; x1)2) k�k2t;+ <1;so � 2 Ht;+;Z . Moreover, the following isometry property holds:E ((� �MZ)t ( �MZ)t) = h�;  it;Z ;where h�;  it;Z = E �Z t0 dsZRk �(dz1) ((�(s; �) Z(s; �)) �1 ( ~ (s; �) ~Z(s; �)))(z1)� : (6.9)Let us also denote by k � kt;Z the semi-norm indu
ed by the semi-s
alar produ
t h�; �it;Z .We 
an now pro
eed to the extension of the sto
hasti
 integral. If we assume that Z satis�esE (Z(t; x1 ) Z(t; y1)) = E(Z(t; 0) Z(t; x1 � y1)); 8t 2 R+ ; x1; y1 2 Rk ; (6.10)



70 Chapter 6. Noise on a k-planethen the fun
tion 
 : R+ � Rk ! R de�ned by
(t; z1) = E(Z(t; 0) Z(t; z1)); (t; z1) 2 R+ � Rk ;is symmetri
 in z1 and for �;  2 Ht;+;Z , (6.9) 
an be rewritten ash�;  it;Z = Z t0 dsZRk �(dz1) 
(s; z1) (�(s; �) �1 ~ (s; �))(z1): (6.11)Therefore, for s 2 [0; t℄, the measure �Zs de�ned by�Zs (dz1) = �(dz1) 
(s; z1)is a non-negative de�nite measure on Rk , sin
eZRk �Zs (dz1) (' �1 ~')(z1) = E �ZRk �(dz1) (' Z(s; �) �1 ~' ~Z(s; �))(z1)� � 0; 8' 2 S(Rk );by (6.3). Moreover, sin
e for all s 2 [0; t℄, �Zs is a signed tempered Borel measure on Rk , itbelongs to S 0(Rk ). The Bo
hner-S
hwartz theorem 4.3.1 then implies that there exists a non-negative tempered Borel measure �Zs on Rk su
h that �Zs = F1�Zs . Moreover, �Zs is symmetri
on Rk sin
e �Zs is real-valued. Let us now 
onsider the following subspa
e of Ht;+, 
omposed byregular deterministi
 integrands:Ht;0 = (� : [0; t℄� Rk ! C Borel-measurable su
h thatk�kt;+ <1 and �(s; �) 2 S(Rk ); 8s 2 [0; t℄):If �;  2 Ht;0, then F1�, F1 are Borel-measurable fun
tions and we obtain the followingexpression for (6.11), using basi
 properties of the Fourier transform:h�;  it;Z = Z t0 dsZRk �Zs (d�1) F1�(s; �1) F1 (s; �1): (6.12)With this expression in hand, we 
an �nally de�ne a larger spa
e, whi
h 
ontains (deterministi
)distribution-valued integrands:Ht;Z = (� : [0; t℄! O0C(Rk ) ����� (s; �1) 7! F1�(s; �1) is Borel-measurable,k�kt;Z <1 and 9(�n) � Ht;0 su
h that k�� �nkt;Z !n!1 0);where k�kt;Z is de�ned here byk�k2t;Z = Z t0 dsZRk �Zs (d�1) jF1�(s; �1)j2:



6.3. Fourier transform of the solution in 
oordinates perpendi
ular to the k-plane 71The sto
hasti
 integral (� �MZ)t extends then by isometry to elements of Ht;Z . Note that asbefore, the linearity and the isometry property remain satis�ed. We will on
e again adopt thefollowing notation for the sto
hasti
 integral of � : [0; t℄ � Rk � Rd�k ! C restri
ted to thek-plane x2 = 0: (�(�; �; 0) �MZ)t = Z[0;t℄�Rk M(ds; dx1) Z(s; x1) �(s; x1; 0);even in the 
ase where �(s; �; 0) is a distribution in x1.Note that for the linear equation, we will only need the de�nition of the sto
hasti
 integralwhen Z � 1, in whi
h 
ase we denote the spa
e of integrands by Ht and the isometry (6.6)be
omes E ((� �M)t ( �M)t) = h�;  it = Z t0 dsZRk �(d�1) F1�(s; �1) F1 (s; �1): (6.13)Moreover, one 
an noti
e that sin
e the integrand 
onsidered here is deterministi
, the pro
ess(� �M) = f(� �M)t; t 2 R+g is a Gaussian pro
ess.The following theorems will also be useful (
f. [15, Thms 2 and 3℄ and [16℄ for proofs).Before stating them, let us denote by O0C(Rk )+ the spa
e of non-negative distributions withrapid de
rease on Rk .Theorem 6.2.1. Let Z be a pro
ess satisfying (6.8) and (6.10). If � is a non-negative measureon Rk , � : [0; t℄ ! O0C(Rk )+ is su
h that F1� is a Borel-measurable fun
tion and k�kt < 1,then � 2 Ht;Z andE (j(� �MZ)tj2) = Z t0 ds ZRk �Zs (d�1) jF1�(s; �1)j2� Z t0 ds supx12Rk E (Z(s; x1 )2)ZRk �(d�1) jF1�(s; �1)j2:Theorem 6.2.2. If � : [0; t℄! O0C(Rk ) is su
h that F1� is a Borel-measurable fun
tion, k�kt <1 and limh#0 Z t0 dsZRk �(d�1) sups<r<s+h jF1�(r; �1)�F1�(s; �1)j2 = 0; (6.14)then � 2 Ht.6.3 Fourier transform of the solution in 
oordinates perpendi
-ular to the k-planeLet u be the solution of equation (6.5), for whi
h we have an expli
it formula given by (6.7). Inorder to study when this solution is a pro
ess U = fU(t; x1); (t; x1) 2 R+ �Rkg indexed by thetime variable and the 
oordinates of the k-plane, with values in some fra
tional Sobolev spa
e



72 Chapter 6. Noise on a k-planeH�(Rd�k ), we �rst need to 
onsider the Fourier transform of the solution in the 
oordinate x2perpendi
ular to the k-plane and see when it is a real-valued pro
ess. The reason for this 
omesfrom the de�nition of H�(Rd�k ), whi
h states (see Se
tion 4.2) thatv 2 H�(Rd�k ) if and only if F2v 2 L2(Rd�k ; (1 + j�2j2)� d�2):Therefore, F2U(t; x1; �) needs at least to be fun
tion-valued if one wants U(t; x1; �) to belong toH�(Rd�k ).We will see here that under an expli
it 
ondition on the spe
tral measure �, whi
h will beshown to be optimal, there exists a real-valued pro
ess Y whi
h is the Fourier transform in x2of the distribution-valued solution u of equation (6.5), that is,hu(t);F2'i = ZRk dx1 ZRd�k d�2 Y (t; x1; �2) '(x1; �2); P� a:s:; 8t 2 R+ ; ' 2 S(Rd ):(Note that by de�nition, hu(t);F2'i = hF2u(t); 'i for all ' 2 S(Rd )). The 
ondition is thefollowing.Assumption A0. ZRk �(d�1)1 + j�1j2 <1:Remark 6.3.1. This 
ondition is the same as that obtained for the existen
e of a real-valuedpro
ess whi
h is the solution of a hyperboli
 equation in Rk driven by spatially homogeneousnoise with spe
tral measure � (see [15, 30℄). It 
an be reformulated into an expli
it 
onditionon the 
ovarian
e �: see Se
tion 6.6.In order to show the suÆ
ien
y of Assumption A0, we begin by establishing the followingthree lemmas.Lemma 6.3.2. Under Assumption A0 and for (t; x1; �2) 2 R+�Rk�Rd�k , the fun
tion �t;x1;�2 :[0; t℄! O0C(Rk ) de�ned by�t;x1;�2(s; �) = F2G(t� s; x1 � �; �2); s 2 [0; t℄;belongs to Ht.Before proving this lemma, let us note that the above de�nition means thath�t;x1;�2(s); 'i = hF2G(t� s; �; �2); '(x1 � �)i; s 2 [0; t℄; ' 2 S(Rk ):Proof. Fix (t; x1; �2) 2 R+�Rk�Rd�k . It is suÆ
ient to prove that �t;x1;�2 satis�es the 
onditionsof Theorem 6.2.2. First note that for all s 2 [0; t℄, �1 2 Rk ,F1�t;x1;�2(s; �1) = FG(t � s;��1; �2) �x1(�1);



6.3. Fourier transform of the solution in 
oordinates perpendi
ular to the k-plane 73so F1�t;x1;�2(s; �) 2 OM (Rk ) (see Se
tion 5.4) and this implies by (4.2) that �t;x1;�2(s; �) 2O0C(Rk ). Moreover, F1�t;x1;�2 is a 
ontinuous and therefore Borel-measurable fun
tion, andformula (6.13) gives k�t;x1;�2k2t = Z t0 dsZRk �(d�1) FG(t� s;��1; �2)2� ZRk �(d�1) C2(t)1 + j�1j2 + j�2j2� C2(t)ZRk �(d�1)1 + j�1j2< 1;by Lemma 5.4.2 and Assumption A0. We now 
he
k 
ondition (6.14), that is,limh#0 Z t0 dsZRk �(d�1) sups<r<s+h jF1�t;x1;�2(r; �1)�F1�t;x1;�2(s; �1)j2 = 0:Sin
e FG(�; �1; �2) is a 
ontinuous fun
tion, it is uniformly 
ontinuous in s on [0; t℄, so we obtainthat for all (s; �1) 2 [0; t℄ � Rk ,limh#0 sups<r<s+h jFG(t� r;��1; �2) �x1(�1)�FG(t� s;��1; �2) �x1(�1)j2 = 0:Moreover, by Lemma 5.4.1,sups<r<s+h jFG(t� r;��1; �2) �x1(�1)�FG(t � s;��1; �2) �x1(�1)j2� 4 C1(t)1 + j�1j2 + j�2j2 � 4 C1(t)1 + j�1j2 ; (6.15)so we obtain that 
ondition (6.14) is ful�lled, using again Assumption A0 and the dominated
onvergen
e theorem.Lemma 6.3.3. Let M be the worthy martingale measure de�ned in Se
tion 6.1. Under As-sumption A0, the real-valued pro
ess Y = fY (t; x1; �2); (t; x1; �2) 2 R+ � Rk � Rd�kg de�nedbyY (t; x1; �2) = Z[0;t℄�Rk M(ds; dy1) F2G(t� s; x1 � y1; �2); (t; x1; �2) 2 R+ � Rk � Rd�k ;is a 
entered Gaussian pro
ess whose 
ovarian
e is given byE (Y (t; x1; �2) Y (s; y1; �2))= ZRk �(d�1)Z t^s0 dr FG(t� r;��1; �2) FG(s� r;��1; �2) �x1�y1(�1); (6.16)and is su
h that the map (t; x1; �2) 7! Y (t; x1; �2) is 
ontinuous from R+ �Rk �Rd�k to L2(
).Remark 6.3.4. By [42, Prop. 3.6 and Cor. 3.8℄, this result implies that the pro
ess Y admitsa modi�
ation ~Y su
h that the map (t; x1; �2; !) 7! ~Y (t; x1; �2; !) is jointly measurable. We willimpli
itely 
onsider this modi�
ation in the following.



74 Chapter 6. Noise on a k-planeProof of Lemma 6.3.3. By Lemma 6.3.2, the pro
ess Y is well de�ned. The fa
t that it is a
entered Gaussian pro
ess with the 
ovarian
e given above follows easily from (6.13) and theremark following it. Moreover, sin
e � and FG are symmetri
 in �1, (6.16) is equal toZRk �(d�1)Z t^s0 dr FG(t� r;��1; �2) FG(s� r;��1; �2) 
os(�1 � (x1 � y1));and this implies that Y is real-valued.In order to show that the map (t; x1; �2) 7! Y (t; x1; �2) is 
ontinuous from R+ � Rk � Rd�kto L2(
), we will show that for all T > 0, it is 
ontinuous from [0; T ℄ � Rk � Rd�k to L2(
).We do this in three steps, showing �rst that the map �2 7! Y (t; x1; �2) is 
ontinuous in L2(
)uniformly in (t; x1) 2 [0; T ℄ � Rk , then that for �xed �2 2 Rd�k , the map x1 7! Y (t; x1; �2) is
ontinuous in L2(
) uniformly in t 2 [0; T ℄ and �nally that for �xed (x1; �2) 2 Rd , the mapt 7! Y (t; x1; �2) is 
ontinuous in L2(
). These three properties 
learly imply joint L2-
ontinuityof the map (t; x1; �2) 7! Y (t; x1; �2) on [0; T ℄� Rk � Rd�k .Let �2, �2 2 Rd�k . Using (6.16), we obtain thatsup(t;x1)2[0;T ℄�Rk E ((Y (t; x1; �2)� Y (t; x1; �2))2)= sup(t;x1)2[0;T ℄�Rk ZRk �(d�1)Z t0 ds (FG(t� s;��1; �2)�FG(t� s;��1; �2))2 j�x1(�1)j2= supt2[0;T ℄ZRk �(d�1)Z t0 dr (FG(r;��1; �2)�FG(r;��1; �2))2;where we have used the 
hange of variable r = t � s and the fa
t that j�x1(�1)j2 = 1, so theintegrand does not depend on x1 and the supremum over x1 disappears. Sin
e the integrand isalso non-negative, the supremum is attained at t = T , so we obtain thatsup(t;x1)2[0;T ℄�Rk E((Y (t; x1; �2)� Y (t; x1; �2))2)= ZRk �(d�1)Z T0 dr (FG(r;��1; �2)�FG(r;��1; �2))2: (6.17)Sin
e FG is 
ontinuous, the integrand in (6.17) 
onverges to 0 as �2 ! �2. Moreover, by Lemma5.4.1, we obtain, as in (6.15), that for all (r; �1) 2 [0; T ℄ � Rk ,(FG(r;��1; �2)�FG(r;��1; �2))2 � 4 C1(T )1 + j�1j2 ;so by Assumption A0 and the dominated 
onvergen
e theorem, (6.17) 
onverges to 0 as �2 ! �2.



6.3. Fourier transform of the solution in 
oordinates perpendi
ular to the k-plane 75Now, let x1, y1 2 Rk and �2 2 Rd�k . Using (6.16), we �nd thatsupt2[0;T ℄ E((Y (t; y1; �2)� Y (t; x1; �2))2)= supt2[0;T ℄ 2ZRk �(d�1)Z t0 ds FG(t� s;��1; �2)2 (1� 
os(�1 � (y1 � x1)))= 2ZRk �(d�1)Z T0 dr FG(r;��1; �2)2 (1� 
os(�1 � (y1 � x1))); (6.18)where we have used the 
hange of variable r = t� s and the fa
t that 1 � 
os(�1 � (y1 � x1)) isnon-negative to remove the supremum in t. By 
ontinuity of the 
osine fun
tion, the integrandin (6.18) 
onverges to 0 as y1 ! x1, and by Lemma 5.4.1,FG(r;��1; �2)2 (1� 
os(�1 � (y1 � x1)) � 2 C1(T )1 + j�1j2 :Therefore, Assumption A0 and the dominated 
onvergen
e theorem imply, as before, that ex-pression (6.18) 
onverges to 0 as y1 ! x1.Finally, let t; h 2 R+ , x1 2 Rk and �2 2 Rd�k . By (6.16),E ((Y (t+ h; x1; �2)� Y (t; x1; �2))2)= ZRk �(d�1)Z t0 ds (FG(t+ h� s;��1; �2)�FG(t� s;��1; �2))2+ZRk �(d�1)Z t+ht ds FG(t+ h� s;��1; �2)2= ZRk �(d�1)Z t0 dr (FG(r + h;��1; �2)�FG(r;��1; �2))2 (6.19)+ZRk �(d�1)Z h0 dq FG(q;��1; �2)2: (6.20)In the above, we have used the 
hanges of variable r = t� s and q = t+ h� s. Sin
e(FG(r + h;��1; �2)�FG(r;��1; �2))2 !h!0 0and, by Lemma 5.4.1 and as in (6.15),(FG(r + h;��1; �2)�FG(r;��1; �2))2 � 4 C1(T + h0)1 + j�1j2for all h � h0, we obtain that the term in (6.19) 
onverges to 0 as h! 0 by Assumption A0 andthe dominated 
onvergen
e theorem. Moreover, by Lemma 5.4.1, for all h � h0,ZRk �(d�1)Z h0 dq FG(q;��1; �2)2 � ZRk �(d�1)Z h0 dq C1(h0)1 + j�1j2 + j�2j2� h C1(h0)ZRk �(d�1)1 + j�1j2 ;



76 Chapter 6. Noise on a k-planeso by Assumption A0, (6.20) also 
onverges to 0 as h ! 0, and this establishes the right-
ontinuity in t of the pro
ess Y (in L2(
)).To show the left-
ontinuity, let us 
omputeE ((Y (t� h; x1; �2)� Y (t; x1; �2))2)= ZRk �(d�1)Z t�h0 ds (FG(t � h� s;��1; �2)�FG(t � s;��1; �2))2+ZRk �(d�1)Z tt�h ds FG(t� s;��1; �2)2= ZRk �(d�1)Z t�h0 dr (FG(r;��1; �2)�FG(r + h;��1; �2))2+ZRk �(d�1)Z h0 dq FG(q;��1; �2)2:In the above, we have again used the 
hanges of variable r = t� h� s and q = t� s. But thislast expression is less than or equal toZRk �(d�1)�Z t0 dr (FG(r + h;��1; �2)�FG(r;��1; �2))2 + Z h0 dq FG(q;��1; �2)2� ;whi
h 
onverges to 0 as h! 0 by same arguments as above. This 
ompletes the proof. �Lemma 6.3.5. Let us make Assumption A0, let Y be the pro
ess de�ned in Lemma 6.3.3 andlet u be the solution of equation (6.5). Then for all t 2 R+ and ' 2 S(Rd ),hu(t);F2'i = ZRk dx1 ZRd�k d�2 Y (t; x1; �2) '(x1; �2); P� a:s:Proof. By Lemma 6.3.3 and Remark 6.3.4, the integral on the right-hand side of the aboveequation is well de�ned. We show that both sides of the above equation are equal P-a.s. by
omputing their varian
es and 
ovarian
e, as in the proof of Theorem 5.3.1. By (6.7) and (6.13),we obtain thatE(jhu(t);F2'ij2) = E 0������Z[0;t℄�Rk M(ds; dx1) (G(t� s) � F2')(x1; 0)�����21A= ZRk �(d�1)Z t0 ds jF1(G(t� s) � F2'))(�1; 0)j2Sin
e F1 = F�12 F and F(G �H) = FG � FH, we 
an write thatF1(G(t� s) � F2')(�1; 0) = F�12 (FG(t � s) � FF2')(�1; 0):Now, sin
e by (4.1), F�12  (�1; 0) = 1(2�)d�k ZRd�k d�2  (�1; �2)and FF2'(�1; �2) = F1F22'(�1; �2) = (2�)d�k F1'(�1;��2);



6.3. Fourier transform of the solution in 
oordinates perpendi
ular to the k-plane 77we obtain thatF1(G(t � s) � F2')(�1; 0) = ZRd�k d�2 FG(t� s; �1; �2) F1'(�1;��2); (6.21)so E (jhu(t);F2'ij2) = ZRk �(d�1)Z t0 ds ����ZRd�k d�2 FG(t� s; �1; �2) F1'(�1;��2)����2 : (6.22)On the other hand, by Fubini's theorem and (6.16),E  ����ZRk dx1 ZRd�k d�2 Y (t; x1; �2) '(x1; �2)����2!= ZRk dx1 ZRd�k d�2 ZRk dy1 ZRd�k d�2 E(Y (t; x1; �2) Y (t; y1; �2)) '(x1; �2) '(y1; �2)= ZRk �(d�1)Z t0 ds ����ZRk dx1 ZRd�k d�2 FG(t� s;��1; �2) �x1(�1) '(x1; �2)����2= ZRk �(d�1)Z t0 ds ����ZRd�k d�2 FG(t� s;��1; �2) F1'(�1; �2)����2 : (6.23)Using the 
hange of variables �2 ! ��2, we see that (6.22) and (6.23) are equal, sin
e FG issymmetri
 in �.Let us now 
ompute, using Fubini's theorem and (6.13),E �hu(t);F2'i � ZRk dx1 ZRd�k d�2 Y (t; x1; �2) '(x1; �2)�= ZRk dx1 ZRd�k d�2 E Z[0;t℄�Rk M(ds; dy1) (G(t� s) � F2')(y1; 0)�Z[0;t℄�Rk M(ds; dy1) F2G(t� s; x1 � y1; �2)! '(x1; �2)= ZRk dx1 ZRd�k d�2 ZRk �(d�1)Z t0 ds F1(G(t� s) � F2')(�1; 0)�FG(t � s;��1; �2) �x1(�1) '(x1; �2):By (6.21) and Fubini's theorem, this last expression is equal toZRk �(d�1)Z t0 ds  ZRd�k d�2 FG(t� s; �1; �2) F1'(�1;��2)�ZRd�k d�2 FG(t� s;��1; �2) F1'(�1; �2)!;whi
h is also equal to (6.22) and (6.23). This 
ompletes the proof.With these three lemmas in hand, we now prove the following proposition, whi
h tells usthat Assumption A0 is a ne
essary and suÆ
ient 
ondition for the existen
e of the pro
ess Y .



78 Chapter 6. Noise on a k-planeProposition 6.3.6. Let u be the solution of equation (6.5). There exists a square integrable real-valued pro
ess Y = f Y (t; x1; �2); (t; x1; �2) 2 R+ � Rk � Rd�kg su
h that the map (t; x1; �2) 7!Y (t; x1; �2) is 
ontinuous from R+ � Rk � Rd�k to L2(
) andhu(t);F2'i = ZRk dx1 ZRd�k d�2 Y (t; x1; �2) '(x1; �2); P� a:s:;for all t 2 R+ and ' 2 S(Rd ) if and only if Assumption A0 is satis�ed. Moreover, when Yexists, it is a 
entered Gaussian pro
ess whose 
ovarian
e is given by formula (6.16).Proof. The suÆ
ien
y of Assumption A0 is a dire
t 
onsequen
e of the three pre
eding lemmas.To show the ne
essity, �x (t; x1; �2) 2 R+ � Rk � Rd�k and let '(n)x1;�2 = Æ(x1;�2) �  n, where( n) is a sequen
e of non-negative and 
ompa
tly supported approximations of Æ0 in Rd , so'(n)x1;�2 2 S(Rd ) for ea
h n. The assumptions made on Y and Fubini's theorem imply thatE (jhu(t);F2'(n)x1;�2ij2) = E  ����ZRk dy1 ZRd�k d�2 Y (t; y1; �2) '(n)x1;�2(y1; �2)����2!= ZRk dy1 ZRd�k d�2 ZRk dz1 ZRd�k d�2 E (Y (t; y1; �2) Y (t; z1; �2)) '(n)x1;�2(y1; �2) '(n)x1;�2(z1; �2)!n!1 E (Y (t; x1; �2)2) <1: (6.24)On the other hand, repla
ing ' by '(n)x1;�2 in (6.22) givesE(jhu(t);F2'ij2) = ZRk �(d�1)Z t0 ds ����ZRd�k d�2 FG(t � s; �1; �2) F1'(n)x1;�2(�1;��2)����2 :Sin
e ZRd�k d�2 FG(t� s; �1; �2) F1'(n)x1;�2(�1;��2)= ZRk dy1 ZRd�k d�2 FG(t� s; �1; �2) ��1(y1) '(n)x1;�2(y1;��2)!n!1 FG(t� s; �1;��2) ��1(x1);for all (s; �1) 2 [0; t℄ � Rk , Fatou's lemma and Lemma 5.4.3 imply thatlimn!1 E(jhu(t);F2'(n)x1;�2ij2) � ZRk �(d�1)Z t0 ds FG(t � s; �1;��2)2� C3(t)ZRk �(d�1)1 + j�1j2 + j�2j2 :Sin
e the above limit exists and is �nite for all �2 2 Rd�k by (6.24), it holds in parti
ular for�2 = 0, so Assumption A0 is satis�ed and this 
ompletes the proof.6.4 Regularity of the solution in the 
oordinates perpendi
ularto the k-planeBy the 
omment made at the beginning of Se
tion 6.3, Assumption A0 is the minimal 
onditionfor the solution of equation (6.5) to be a pro
ess U with values in some Sobolev spa
e H�(Rd�k )



6.4. Regularity of the solution in the 
oordinates perpendi
ular to the k-plane 79in the 
oordinate x2. We study thereafter more pre
isely this regularity, whi
h is linked to theintegrability in x2 of the square of the pro
ess Y , namely the Fourier transform of the solutionin x2.To this end, let us �rst de�ne, for � < 1� d�k2 and z � 1,
��(z) = 8>>>>>>>>><>>>>>>>>>:

1z2 ; if � < �d�k2 ;ln(z2)z2 ; if � = �d�k2 ;1z2(1� d�k2 ��) ; if � 2 ℄� d�k2 ; 1� d�k2 [:Let us then �x � < 1� d�k2 and make the following assumption on �.Assumption B�. ZRk �(d�1) �� �p1 + j�1j2� <1:For 
larity, we 
an rewrite this assumption in the separate three 
ases 
onsidered in the de�ni-tion of the fun
tion ��.1) When � < �d�k2 , Assumption B� is equivalent to Assumption A0, namelyZRk �(d�1)1 + j�1j2 <1:2) When � = �d�k2 , Assumption B� is equivalent to what we will term Assumption A00:ZRk �(d�1) ln �1 + j�1j2�1 + j�1j2 <1:3) When � 2 ℄� d�k2 ; 1� d�k2 [, Assumption B� is equivalent to what we will term AssumptionA�, where � = � + d�k2 2 ℄0; 1[: ZRk �(d�1)(1 + j�1j2)1�� <1:Note that, as for A0, these assumptions 
an be reformulated into 
onditions on the 
ovarian
e �when the latter is non-negative (see Se
tion 6.6). One 
an already noti
e that when � tends to1, Assumption A� looks more and more like \� is a �nite measure", whi
h says, by the 
lassi
alBo
hner theorem, that the measure � admits a density whi
h is a uniformly 
ontinuous andbounded fun
tion.



80 Chapter 6. Noise on a k-planeBefore stating the main result, we establish a te
hni
al lemma; for � < 1 � d�k2 and z � 1,let us de�ne L�(z) = ZRd�k d�2 (1 + j�2j2)� 1z2 + j�2j2= !d�k�1 Z 10 dr rd�k�1 (1 + r2)� 1z2 + r2 ;where !n denotes the area of the unit sphere Sn. Note that L�(�) is a well de�ned and 
ontinuousfun
tion sin
e � < 1� d�k2 . The following lemma tells us that L�(z) behaves like ��(z) as z !1.Lemma 6.4.1. Let � < 1� d�k2 . There exists R � 1 and 0 < K1 < K2 <1 su
h thatK1 ��(z) � L�(z) � K2 ��(z) 8z � R:Proof. We 
onsider separately the three 
ases: � < �d�k2 , � = �d�k2 and � 2 ℄� d�k2 ; 1� d�k2 [.1) � < �d�k2 :L�(z)��(z) = !d�k�1 Z 10 dr f�(r; z); where f�(r; z) = rd�k�1 (1 + r2)� z2z2 + r2 :Sin
e limz!1 f�(r; z) = rd�k�1 (1 + r2)�, jf�(r; z)j � rd�k�1 (1 + r2)� andZ 10 dr rd�k�1 (1 + r2)� � Z 10 dr rd�k�1 + Z 11 dr (2r)2�+d�k�1 <1;(be
ause 2� + d� k � 1 < �1), we 
on
lude by the dominated 
onvergen
e theorem thatlimz!1 L�(z)��(z) = !d�k�1 Z 10 dr rd�k�1 (1 + r2)� = K 2 (0;1);and this implies the result.2) � = �d�k2 :L�(z)��(z) = !d�k�1 Z 10 dr g�(r; z); where g�(r; z) = rd�k�1 (1 + r2)� z2z2 + r2 1ln(z2) :Here we have 0 � Z 10 dr g�(r; z) � Z 10 dr rd�k�1 1ln(z2) !z!1 0:Let now ~K(z) = Z 11 drr z2z2 + r2 1ln(z2) = ln �1 + z2�2 ln(z2)(for this last 
al
ulation, write 1r z2z2 + r2 = 1r � rr2 + z2 and integrate). Then2� ~K(z) � Z 11 dr g�(r; z) � ~K(z):



6.4. Regularity of the solution in the 
oordinates perpendi
ular to the k-plane 81So the result follows, sin
eln(z2) � ln �1 + z2� � 2 ln(z2); 8z � p2:3) � 2 ℄� d�k2 ; 1 � d�k2 [ :L�(z)��(z) = !d�k�1 Z 10 dr rd�k�1 (1 + r2)� z2�(d�k)�2�z2 + r2 = !d�k�1 Z 10 du h�(u; z);where we have used the 
hange of variable r = zu andh�(u; z) = ud�k�1 ( 1z2 + u2)� 11 + u2 :We see that limz!1h�(u; z) = ud�k�1+2�1 + u2 . In order to apply the dominated 
onvergen
e theorem,we need to 
onsider two sub-
ases:3a) � < 0: jh�(u; z)j � ud�k�1+2�1 + u2 andZ 10 du ud�k�1+2�1 + u2 � Z 10 du ud�k�1+2� + Z 11 du ud�k�3+2� <1;sin
e d� k � 1 + 2� > �1 and d� k � 3 + 2� < �1, by the assumptions made on �.3b) � � 0: jh�(u; z)j � ud�k�1 (1 + u2)��1 andZ 10 du ud�k�1 (1 + u2)��1 � Z 10 du ud�k�1 + Z 11 du (2u)d�k�3+2� <1:Thanks to these etimates, we 
an apply the dominated 
onvergen
e theorem in both 
ases to
on
lude that limz!1 L�(z)��(z) = !d�k�1 Z 10 du ud�k�1+2�1 + u2 = K̂ 2 (0;1);and this 
ompletes the proof.We are now able to study the link between the regularity of the noise and the integrabilityin x2 of the square of the pro
ess Y de�ned in Proposition 6.3.6, whi
h in turn will give us anindi
ation on the regularity of the solution in the same 
oordinate x2.Lemma 6.4.2. Let � < 1 � d�k2 . Under Assumption B�, the pro
ess Y de�ned in Proposition6.3.6 satis�esE �ZRd�k d�2 (1 + j�2j2)� Y (t; x1; �2)2� <1; 8(t; x1) 2 R+ � Rk :



82 Chapter 6. Noise on a k-planeProof. First note that if Assumption B� is satis�ed for � < 1� d�k2 , then Assumption A0 is, sothe pro
ess Y is well de�ned by Proposition 6.3.6. Using Fubini's theorem and (6.16) givesE �ZRd�k d�2 (1 + j�2j2)� Y (t; x1; �2)2�= ZRd�k d�2 (1 + j�2j2)� ZRk �(d�1)Z t0 ds FG(t� s;��1; �2)2� C2(t)ZRk �(d�1)ZRd�k d�2 (1 + j�2j2)�1 + j�1j2 + j�2j2= C2(t)ZRk �(d�1) L� �p1 + j�1j2� ;by Lemma 5.4.2 and the de�nition of L�. We now use Lemma 6.4.1 and Assumption B� to
on
lude thatE �ZRd�k d�2 (1 + j�2j2)� Y (t; x1; �2)2�� C2(t) �(B1(0; R)) L�(1) +K2 ZB1(0;R)
 �(d�1) �� �p1 + j�1j2�! <1;whi
h 
ompletes the proof.This allows us to establish the following result, whi
h states the suÆ
ien
y and the ne
essityof Assumption B� for the existen
e of a pro
ess with values in H�(Rd�k ) in the 
oordinate x2,whi
h is the solution of equation (6.5).Theorem 6.4.3. Let u be the solution of equation (6.5) and let � < 1 � d�k2 . There exists asquare integrable pro
ess U = fU(t; x1); (t; x1) 2 R+ � Rkg with values in H�(Rd�k ) su
h thatthe map (t; x1; �2) 7! F2U(t; x1; �2) is 
ontinuous from R+ � Rk � Rd�k to L2(
) andhu(t); 'i = ZRk dx1 ZRd�k d�2 F2U(t; x1; �2) F�12 '(x1; �2); P� a:s:; 8t 2 R+ ; ' 2 S(Rd);if and only if Assumption B� is satis�ed.Remark 6.4.4. When � � 0, U(t; x1; �) 2 L2(R), so the above equality 
an be rewritten in amore natural way: hu(t); 'i = ZRd�1 dx1 ZR dx2 U(t; x1; x2) '(x1; x2):Note that we still do not know if U(t; x1; x2) is a well de�ned random variable for every x2 2 R,sin
e we only know that U(t; x1; �) takes its values in L2(R). This point will be 
lari�ed in thenext 
hapter where we will see that the only problemati
 point is the point x2 = 0.Proof of Theorem 6.4.3. Let us �rst prove the suÆ
ien
y of Assumption B� ; sin
e it impliesAssumption A0, let Y be the pro
ess whose existen
e is aÆrmed by Proposition 6.3.6. De�nethe pro
ess U = fU(t; x1); (t; x1) 2 R+ � Rkg byU(t; x1; �) = F�12 Y (t; x1; �); (t; x1) 2 R+ � Rk :



6.5. Summary 83By Lemma 6.4.2, this is a square integrable pro
ess whi
h takes its values inH�(Rd�k ) and satis-�es all the desired properties, by Proposition 6.3.6 and the fa
t that F2U(t; x1; �2) = Y (t; x1; �2).In order to prove now the ne
essity of Assumption B�, note that by Proposition 6.3.6, theexisten
e of a pro
ess F2U whi
h satis�es the above properties implies that Assumption A0 issatis�ed, so the pro
ess Y de�ned in the same theorem is well de�ned and the above assumptionstell us thatY (t; x1; �2) = F2U(t; x1; �2); P� a:s:; 8(t; x1; �2) 2 R+ � Rk � Rd�k ;and that E �ZRd�k d�2 (1 + j�2j2)� Y (t; x1; �2)2� = E �kU(t; x1)k2�� <1:But on the other hand, by (6.16), Lemmas 5.4.3 and 6.4.1,E �ZRd�k d�2 (1 + j�2j2)� Y (t; x1; �2)2�= ZRd�k d�2 (1 + j�2j2)� ZRk �(d�1)Z t0 ds FG(t� s;��1; �2)2� ZRd�k d�2 (1 + j�2j2)� C3(t)ZRk �(d�1)1 + j�1j2 + j�2j2= C3(t)ZRk �(d�1) L� �p1 + j�1j2�� C3(t) K1 ZB1(0;R)
 �(d�1) �� �p1 + j�1j2� ;so Assumption B� is satis�ed and this 
ompletes the proof. �Remark 6.4.5. We need here to make 
lear in what sense Assumption B� is optimal. In thepre
eding theorem, we have shown that Assumption B� is ne
essary under the assumption thatthere exists a real-valued pro
ess whi
h is the Fourier transform of the solution in x2. But thislatter assumption is quite strong, sin
e it implies that the solution has some L2-type behaviorin x2 (that is, belongs to some H�(Rd�k )), whi
h is a priori not satis�ed by any real-valuedfun
tion. Nevertheless, the results of the next 
hapter will 
on�rm that this assumption is nota restri
tion and that Assumption B� is optimal in the 
ase of the hyperboli
 equation. On the
ontrary, Assumption B� is not optimal in the 
ase of the heat equation, sin
e in this 
ase, evenfor rough noises (like white noise) on a k-plane, there exists a real-valued pro
ess whi
h is thesolution of the equation and whi
h has a strongly singular behavior near the k-plane x2 = 0 (seeChapter 9).6.5 SummaryUsing the above rewriting of Assumption B� into three separate 
ases, we 
an make Theorem6.4.3 more expli
it.



84 Chapter 6. Noise on a k-plane1) The solution of equation (6.5) is a pro
ess U = fU(t; x1); (t; x1) 2 R+ � Rkg with values inH� d�k2 �"(Rd�k ), for some " > 0, if and only if Assumption A0 is satis�ed.Remark 6.5.1. As mentioned in Remark 6.3.1, Assumption A0 is also the ne
essary and suf-�
ient 
ondition for the existen
e of a real-valued pro
ess whi
h is the solution of a hyperboli
equation in Rk driven by spatially homogeneous noise with spe
tral measure �. In the present
ase, the equation is the hyperboli
 equation in Rd driven by the noise term _F (t; x1) Æ0(x2).Noting that Æ0 2 H� d�k2 �"(Rd�k ), for any " > 0, allows us to see the 
lear 
onne
tion betweenthese two reults.2) The solution is a pro
ess U = fU(t; x1); (t; x1) 2 R+ � Rkg with values in H� d�k2 (Rd�k ) ifand only if Assumption A00 is satis�ed.3) For � 2 ℄0; 1[, the solution is a pro
ess U = fU(t; x1); (t; x1) 2 R+ � Rkg with values inH�� d�k2 (Rd�k ) if and only if Assumption A� is satis�ed.Remark 6.5.2. The exponent � = �� d�k2 of the Sobolev spa
e in whi
h the pro
ess U takesits values 
an be non-negative (that is, the solution 
an be a fun
tion-valued pro
ess) only whenk = d�1 (that is, in the 
ase of a noise 
on
entrated on a hyperplane), in whi
h 
ase AssumptionB� be
omes ZRd�1 �(d�1)(1 + j�1j2) 12�� <1;for � 2 [0; 12 [. In the next 
hapter, we will see that this assumption implies another kind ofregularity of the solution.6.6 Reformulation of the 
onditions on the spe
tral measureLet us now assume that � is a non-negative measure on Rk . We will give here 
onditions on the
ovarian
e � whi
h are (almost) equivalent to 
ondition A� for � 2 [0; 1[, using the results ofSe
tion 4.4.First note that Assumption A� is 
ondition (4.9) with d repla
ed by k and � repla
ed by1� �. Using then (4.10) and Proposition 4.4.1, we obtain that Assumption A� is equivalent toZRk �(dx1) Gk;1��(x1) <1; (6.25)modulo the boundedness assumption of Proposition 4.4.1 for the 
ase � 6= 0. Following theargument of Se
tion 4.4, let us now make this last 
ondition more expli
it.- If k = 1 and � < 12 , then (6.25) imposes no restri
tion on the 
ovarian
e �.



6.6. Reformulation of the 
onditions on the spe
tral measure 85- If k = 1 and � = 12 , or k = 2 and � = 0, then (6.25) is satis�ed if and only ifZB1(0;1) �(dx1) ln� 1jx1j� <1:- Otherwise, (6.25) is satis�ed if and only ifZB1(0;1) �(dx1) 1jx1j2�+k�2 <1:In the 
ase where �(dx1) = f(jx1j) dx1, with f a 
ontinuous fun
tion on ℄0;1[, this impliesthe following.- If k = 1 and � < 12 , then (6.25) imposes no restri
tion on f .- If k = 1 and � = 12 , then (6.25) is satis�ed if and only ifZ 10 dr f(r) ln�1r� <1:- If k = 2 and � = 0, then (6.25) is satis�ed if and only ifZ 10 dr f(r) r ln�1r� <1:- Otherwise, (6.25) is satis�ed if and only ifZ 10 dr f(r) 1r2��1 <1:Finally, the reformulation of 
ondition A00, though not established be
ause of te
hni
al diÆ-
ulties, is 
onje
tured to give the following.- If k = 1, then Assumption A00 imposes no restri
tion on the 
ovarian
e � (this is 
lear be
auseassumption A00 implies Assumption A0 and is implied by Assumption A 14 , for example).- If k = 2, we expe
t that Assumption A00 is satis�ed (perhaps modulo a boundedness assump-tion) if and only if ZB1(0;1) �(dx1) ln� 1jx1j�2 <1:- If k > 2, we expe
t that Assumption A00 is satis�ed (perhaps modulo a boundedness assump-tion) if and only if ZB1(0;1) �(dx1) 1jx1jk�2 ln� 1jx1j� <1:
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Chapter 7Existen
e of a real-valued solutionA �rst remark 
on
erns the expression: \real-valued solution". It is intended here to be opposedto \distribution-valued solution" (not to \
omplex-valued solution"). To be pre
ise, a real-valued solution is a real-valued pro
ess X whi
h represents the weak solution u of equation (6.2)in the sense thathu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:; 8t 2 R+ ; ' 2 S(Rd):In this 
hapter, we answer two questions: when is the weak solution of equation (6.2) a real-valued pro
ess? How regular then is this pro
ess? In the 
ase of a noise on a hyperplane (thatis, when k = d�1), we will see that the answer to the �rst question is positive when AssumptionB� of Se
tion 6.4 is satis�ed for � 2 [0; 12 [ and that the regularity of the solution depends on �,whereas in the 
ase of a noise on a lower dimensional plane (that is, when k < d�1), there doesnot exist a real-valued pro
ess whi
h is the weak solution of equation (6.2).We begin with the 
ase of a noise on a hyperplane (that is, when k = d� 1). The te
hniquesthat we use are similar to those of Se
tion 6.3. However, we �rst need to establish some proper-ties of F1G, the Fourier transform in the �rst d� 1 
oordinates of x of the solution of equation(5.15), sin
e this term will appear in the expe
tation of the square of the real-valued pro
esswhi
h is the weak solution of equation (6.2).For the same kind of te
hni
al reasons as in Chapter 5, we now restri
t ourselves to the 
asewhere either d 2 f2; 3g and a, b are any real numbers, or d 2 f4; 5g and a = b = 0 (see RemarkA.2.1).7.1 Fourier transform of the Green kernel in x1Using (4.1), (5.18) and [45, formulas I.5.83 and I.7.61℄, we obtain the Fourier transform of G inthe �rst d� 1 
oordinates of x: for (t; �1; x2) 2 R+ � Rd�1 � R, we have87



88 Chapter 7. Existen
e of a real-valued solutionF1G(t; �1; x2) = F�12 (FG(t; �1; �))(x2) = 12� ZR d�2 FG(t; �1; �2) ��x2(�2)= 8>>><>>>: e�at2 J0 �p(j�1j2 + b� a2) (t2 � x22)� 1fjx2j < tg; if j�1j2 � a2 � b;e�at2 I0 �p(a2 � b� j�1j2) (t2 � x22)� 1fjx2j < tg; if a2 � b > 0 and j�1j2 < a2 � b;(7.1)where J0 and I0 are the zero order regular and modi�ed Bessel fun
tions of the �rst kind (seeAppendix B for an overview of their basi
 properties whi
h will be used below).F1G is a real-valued and Borel-measurable fun
tion, whi
h is bounded on [0; T ℄� Rd�1 � Rfor all T > 0, and it is symmetri
 and in�nitely di�erentiable in �1, sin
e for all t 2 R+ andx2 2 R, F1G(t; �; x2) is an analyti
 fun
tion on Rd�1 , whose Taylor series is given byF1G(t; �1; x2) = 12 Xn2N (�1)n (t2 � x22)n22n (n!)2 (j�1j2 + b� a2)n 1fjx2j < tg; 8�1 2 Rd�1 :Moreover, sin
e F1G(t; �; x2) and all its derivatives in �1 vanish at in�nity, F1G(t; �; x2) 2OM (Rd�1), so G(t; �; x2) 2 O0C(Rd�1) by (4.2).From the expli
it expressions of G listed in Appendix A, we also dedu
e that for all t 2 R+and x2 2 R, G(t; �; x2) is a �nite order distribution with 
ompa
t support on Rd�1 ; furthermore,for all t 2 R+ , there exist K1(t) > 0 and N1 2 N su
h thatsups2[0;t℄; x22R jG(s; '; x2)j � K1(t) Xjn1j�N1 supx12B1(0;t) j�n1'(x1)j; 8' 2 S(Rd�1 ); (7.2)where n1 denotes a multi-index in Nd�1 .F1G has also the following properties, whi
h will be used in the next se
tion.Lemma 7.1.1. For all t > 0, there exists C4(t) > 0 su
h thatF1G(s; �1; x2)2 � C4(t)p1 + j�1j2 1ps2 � x22 1fjx2j < sg; 8s 2 [0; t℄; �1 2 Rd�1 ; x2 2 R:Proof. If j�1j2 � 2(a2 � b) + 1, then sin
e J0(r)2 � Cr for all r > 0 and (5.21) implies thatpj�1j2 + b� a2 �r1 + j�1j22 ; (7.3)we obtain thatF1G(s; �1; x2)2 = e�2as4 J20 �q(j�1j2 + b� a2) (s2 � x22)� 1fjx2j < sg� e2a�t4 C p2p1 + j�1j2 1ps2 � x22 1fjx2j < sg:



7.1. Fourier transform of the Green kernel in x1 89If 2(a2 � b) + 1 � 0 and a2 � b � j�1j2 � 2(a2 � b) + 1, then sin
e J0(r)2 � 1 for all r � 0, weobtain F1G(s; �1; x2)2 = e�2as4 J20 �q(j�1j2 + b� a2) (s2 � x22)� 1fjx2j < sg� e2a�t4 1fjx2j < sg� e2a�t4 tps2 � x22 1fjx2j < sg;sin
e ps2 � x22 � s � t. Finally, if a2 � b � 0 and j�1j2 � a2 � b, then sin
e I0(r)2 � C e2r forall r � 0, we haveF1G(s; �1; x2)2 = e�2as4 I20 �q(a2 � b� j�1j2) (s2 � x22)� 1fjx2j < sg� e2a�t4 C e2pa2�b t 1fjx2j < sg� e2a�t4 C e2pa2�b t tps2 � x22 1fjx2j < sg;sin
e ps2 � x22 � s � t as before. The proof now ends as the proof of Lemma 5.4.1.The pre
eding lemma, as Lemma 5.4.1, will be used for rather te
hni
al purposes. A dire
t
onsequen
e is the following upper bound.Lemma 7.1.2. For all t > 0, there exists C5(t) > 0 su
h thatZ t0 ds F1G(s; �1; x2)2 � C5(t)p1 + j�1j2 ar

osh� tjx2j� 1fjx2j < tg; 8�1 2 Rd�1 ; x2 2 R� :Proof. We obtain this inequality by a simple integration in s of the result of Lemma 7.1.1.As Lemma 5.4.3, the following lemma gives a 
orresponding lower bound.Lemma 7.1.3. For all t > 0 and x2 2 R su
h that 0 < jx2j < t, there exists C6(t; x2) > 0 su
hthat Z t0 ds F1G(s; �1; x2)2 � C6(t; x2)p1 + j�1j2 ; 8�1 2 Rd�1 :Proof. If j�1j2 � a2 � b+ 1t2�x22 (re
all that 0 < jx2j < t by assumption), thenZ t0 ds F1G(s; �1; x2)2 = Z t0 ds e�2as4 J20 �q(j�1j2 + b� a2) (s2 � x22)� 1fjx2j < sg� e�2a+t4 Z tjx2j ds J20 �q(j�1j2 + b� a2) (s2 � x22)� :Use the 
hange of variables r =p(j�1j2 + b� a2) (s2 � x22), so thatds = r drs (j�1j2 + b� a2) � r drt (j�1j2 + b� a2) ;



90 Chapter 7. Existen
e of a real-valued solutionand set R =p(j�1j2 + b� a2) (t2 � x22) to see thatZ t0 ds F1G(s; �1; x2)2 � e�2a+t4t 1j�1j2 + b� a2 Z R0 dr r J0(r)2:Sin
e R � 1 and using Lemma B.2.1, we obtain thatZ t0 ds F1G(s; �1; x2)2 � C e�2a+t4t p(j�1j2 + b� a2) (t2 � x22)j�1j2 + b� a2 :Moreover, by (5.22), pj�1j2 + b� a2 � (1 _pb� a2)p1 + j�1j2; (7.4)so Z t0 ds F1G(s; �1; x2)2 � C e�2a+t pt2 � x224t 11 _pb� a2 1p1 + j�1j2 :If a2 � b+ 1t2�x22 � 0 and a2 � b � j�1j2 � a2 � b+ 1t2�x22 , thenZ t0 ds F1G(s; �1; x2)2 = Z tjx2j ds e�2as4 J0�q(j�1j2 + b� a2) (s2 � x22)�2� e�2a+t (t� jx2j) J0(1)2;sin
e p(s2 � x22) (j�1j2 + b� a2) � 1 for all s 2 [0; t℄ and J0(r)2 � J0(1)2 > 0 for all r 2 [0; 1℄.Finally, if a2 � b � 0 and j�1j2 � a2 � b, thenZ t0 ds F1G(s; �1; x2)2 = Z tjx2j ds e�2as4 I0�q(a2 � b� j�1j2) (s2 � x22)�2� e�2a+t (t� jx2j)sin
e I0(r)2 � 1 for all r � 0, and the proof ends as the proof of Lemma 5.4.3.7.2 Optimal 
ondition on the spe
tral measureSimilarly to Se
tion 6.3, we will see here that there exists a real-valued pro
ess de�ned outsidethe hyperplane x2 = 0 whi
h is the weak solution of equation (6.2) if and only if AssumptionB0 of the pre
eding 
hapter is satis�ed, namelyZRd�1 �(d�1)p1 + j�1j2 <1:Note that be
ause of the square root, this 
ondition is stronger than the one obtained for theequation driven by spatially homogeneous noise (see [15, 30℄), but this is quite normal sin
e thenoise 
onsidered here, being 
on
entrated on a hyperplane, is by nature more singular than aspatially homogeneous one.In Se
tion 7.5, we give a reformulation of Assumption B0 into a 
ondition on the 
ovarian
e�, when the latter is non-negative. One 
an already noti
e that the Lebesgue measure on Rd�1



7.2. Optimal 
ondition on the spe
tral measure 91(whi
h is the spe
tral measure of white noise on Rd�1) does not satisfy this 
ondition for anydimension d greater than 1. This result is then 
ompletely di�erent from the one obtained forthe heat equation, for whi
h there always exists a real-valued solution outside the hyperplanex2 = 0 (see Chapter 9).We now prove the suÆ
ien
y of Assumption B0 through the following three lemmas.Lemma 7.2.1. Under Assumption B0 and for (t; x1; x2) 2 R+�Rd�1�R� , the fun
tion �t;x1;x2 :[0; t℄! O0C(Rd�1 ) de�ned by�t;x1;x2(s; �) = G(t� s; x1 � �; x2); s 2 [0; t℄;belongs to Ht.Proof. Theorem 6.2.2 does not apply here (
ondition (6.14) is not satis�ed, mainly be
ause F1Gis not 
ontinuous in s), so we need to show dire
tly that �t;x1;x2 2 Ht, using the de�nition of thisspa
e (see Se
tion 6.2). Fix therefore (t; x1; x2) 2 R+ � Rd�1 � R� . Note that for all s 2 [0; t℄,�1 2 Rd�1 , F1�t;x1;x2(s; �1) = F1G(t� s;��1; x2) �x1(�1):Thus, for all s 2 [0; t℄, F1�t;x1;x2(s; �) 2 OM (Rd�1) (see Se
tion 7.1) and this implies that�t;x1;x2(s; �) 2 O0C(Rd�1), by (4.2). Moreover, F1�t;x1;x2 is a Borel-measurable fun
tion andusing Lemma 7.1.2 and Assumption B0, we obtain thatk�t;x1;x2k2t = ZRd�1 �(d�1)Z t0 ds F1G(t� s;��1; x2)2� C5(t) ZRd�1 �(d�1)p1 + j�1j2 ar

osh� tjx2j� 1fjx2j < tg <1; (7.5)sin
e x2 6= 0 by the assumption made above. Let us now de�ne�(n)t;x1;x2(s; y1) = (�t;x1;x2(s) �1  n) (y1); s 2 [0; t℄; y1 2 Rd�1 ; (7.6)where ( n) is a sequen
e of non-negative and 
ompa
tly supported approximations of Æ0 in Rd�1 ,whi
h satis�es ZRd�1 dx1  n(x1) = 1; so jF1 n(�1)j � 1; 8�1 2 Rd�1 :For ea
h n, we have F1�(n)t;x1;x2(s; �1) = F1�t;x1;x2(s; �1) F1 n(�1);whi
h implies thatk�t;x1;x2 � �(n)t;x1;x2k2t = Z t0 dsZRd�1 �(d�1) jF1�t;x1;x2(s; �1)j2 j1�F1 n(�1)j2:Using the dominated 
onvergen
e theorem together with the following fa
ts:F1 n(�1) !n!1 1; j1�F1 n(�1)j � 2 and k�t;x1;x2kt <1;



92 Chapter 7. Existen
e of a real-valued solutionwe 
on
lude that k�t;x1;x2 � �(n)t;x1;x2kt !n!1 0:It remains to 
he
k that �(n)t;x1;x2 2 Ht;0 for ea
h n. By (7.6) and de�nition of �(n)t;x1;x2 , �(n)t;x1;x2is a Borel-measurable fun
tion and for all s 2 [0; t℄, �(n)t;x1;x2(s; �) 2 S(Rd�1 ), sin
e �t;x1;x2(s; �) 2O0C(Rd�1). The last 
ondition to verify is that k�(n)t;x1 ;x2kt;+ <1.We also dedu
e from the de�nition of �(n)t;x1;x2 that for all s 2 [0; t℄, �(n)t;x1;x2(s; �) is 
ompa
tlysupported, and therefore belongs to C10 (Rd�1 ) and so does �(n)t;x1;x2(s; �)�1�(n)t;x1;x2(s; �). Moreover,by estimate (7.2), there exists R1 > 0 su
h thatsups2[0;t℄(j�(n)t;x1;x2(s; �)j �1 j�(n)t;x1;x2(s; �)j)(z1) = 0; 8z1 2 Rd�1 with jz1j > R1:This implies thatk�(n)t;x1;x2k2t;+ = Z t0 dsZRd�1 �(dz1) (j�(n)t;x1;x2(s; �)j �1 j�(n)t;x1;x2(s; �))j(z1) <1;whi
h 
ompletes the proof.Lemma 7.2.2. Let M be the worthy martingale measure de�ned in Se
tion 6.1 in the 
asek = d � 1. Under Assumption B0, the real-valued pro
ess X = fX(t; x1; x2); (t; x1; x2) 2R+ � Rd�1 � R�g de�ned byX(t; x1; x2) = Z[0;t℄�Rd�1 M(ds; dy1) G(t� s; x1 � y1; x2); (t; x1; x2) 2 R+ � Rd�1 � R� ;is a 
entered Gaussian pro
ess whose 
ovarian
e is given byE(X(t; x1 ; x2) X(s; y1; y2))= ZRd�1 �(d�1)Z t^s0 dr F1G(t� r;��1; x2) F1G(s� r;��1; y2) �x1�y1(�1); (7.7)and su
h that the map (t; x1; x2) 7! X(t; x1; x2) is 
ontinuous from R+ � Rd�1 � R� to L2(
).Remark 7.2.3. This result and [42, Prop. 3.6 and Cor. 3.8℄ imply that the pro
ess X admits amodi�
ation ~X su
h that the map (t; x1; x2; !) 7! ~X(t; x1; x2; !) is jointly measurable. We willimpli
itely 
onsider this modi�
ation in the following.Proof of Lemma 7.2.2. First note that the proof follows exa
tly the same s
heme as the proofof Lemma 6.3.3, but the estimates are quite di�erent.By Lemma 7.2.1, the pro
ess X is well de�ned. The fa
t that X is a 
entered Gaussianpro
ess with the 
ovarian
e given above follows easily from the isometry (6.13), and sin
e � andF1G are symmetri
 in �1, (7.7) is equal toZRd�1 �(d�1)Z t^s0 dr F1G(t� r;��1; x2) F1G(s� r;��1; y2) 
os(�1 � (x1 � y1));



7.2. Optimal 
ondition on the spe
tral measure 93so X is real-valued.In order to show that the map (t; x1; x2) 7! X(t; x1; x2) is 
ontinuous from R+ � Rd�1 � R�to L2(
), we show that for all T > 0, it is 
ontinuous from [0; T ℄�Rd�1 �R� to L2(
), showing�rst that the map x2 7! X(t; x1; x2) is 
ontinuous in L2(
) uniformly in (t; x1) 2 [0; T ℄� Rd�1 ,then that for �xed x2 2 R� , the map x1 7! X(t; x1; x2) is 
ontinuous in L2(
) uniformly int 2 [0; T ℄ and �nally that for �xed (x1; x2) 2 Rd�1 � R� , the map t 7! X(t; x1; x2) is 
ontinuousin L2(
).Therefore, let x2, y2 2 R� . Using (7.7) and arguments similar to those that led to (6.17), weobtain that sup(t;x1)2[0;T ℄�Rd�1 E((X(t; x1 ; y2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z T0 dr (F1G(r;��1; y2)�F1G(r;��1; x2))2: (7.8)We will show in two steps that this expression 
onverges to 0 as y2 ! x2. First note that forea
h �1 2 Rd�1 and r 6= jx2j,(F1G(r;��1; y2)�F1G(r;��1; x2))2 !y2!x2 0:Moreover, sin
e F1G is bounded on [0; T ℄�Rd�1�R, we obtain from the dominated 
onvergen
etheorem that Z T0 dr (F1G(r;��1; y2)�F1G(r;��1; x2))2 !y2!x2 0:But for " 2 ℄0; jx2j[ and jy2 � x2j < ", we obtain by Lemma 7.1.2 thatZ T0 dr (F1G(r;��1; y2)�F1G(r;��1; x2))2� 2 C5(T )p1 + j�1j2 �ar

osh� Tjy2j� 1fjy2j < Tg + ar

osh� Tjx2j� 1fjx2j < Tg�� 2 C5(T )p1 + j�1j2 �ar

osh� Tjx2j � "� 1fjx2j � " < Tg + ar

osh� Tjx2j� 1fjx2j < Tg� ;sin
e jy2j > jx2j � �. So by Assumption B0 and the dominated 
onvergen
e theorem, (7.8)
onverges to 0 as y2 ! x2.Now, let x1, y1 2 Rd�1 and x2 2 R� . As in the proof of (6.18), (7.7) leads tosupt2[0;T ℄ E((X(t; y1 ; x2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z T0 dr F1G(r;��1; x2)2 2 (1� 
os(�1 � (y1 � x1))): (7.9)



94 Chapter 7. Existen
e of a real-valued solutionBy 
ontinuity of the 
osine fun
tion, the integrand in (7.9) 
onverges to 0 as y1 ! x1 and byLemma 7.1.1,F1G(r;��1; x2)2 2 (1� 
os(�1 � (y1 � x1)) � 4 C4(T )p1 + j�1j2 1pr2 � x22 1fjx2j < rg;so using again Assumption B0, the fa
t that, sin
e x2 6= 0,Z T0 dr 1pr2 � x22 1fjx2j < rg = ar

osh� Tjx2j� 1fjx2j < Tg <1;and the dominated 
onvergen
e theorem, we obtain that the expresssion in (7.9) 
onverges to 0as y1 ! x1.Finally, let t; h 2 R+ , x1 2 Rd�1 and x2 2 R� . As in (6.19) and (6.20), (7.7) leads toE ((X(t + h; x1; x2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z t0 dr (F1G(r + h;��1; x2)�F1G(r;��1; x2))2 (7.10)+ZRd�1 �(d�1)Z h0 dq F1G(q;��1; x2)2: (7.11)Using the same te
hnique as above for the 
ontinuity in x2, we show that (7.10) 
onverges to 0as h ! 0. First, note that the integrand 
onverges to 0 for all r in [0; t℄ su
h that r 6= t� jx2j,and that it is bounded on [0; t℄� Rd�1 � R, so by the dominated 
onvergen
e theorem,Z t0 dr (F1G(r + h;��1; x2)�F1G(r;��1; x2))2 !h!0 0:But sin
e for all h � h0,Z t0 dr (F1G(r + h;��1; x2)�F1G(r;��1; x2))2� 2�Z t0 dr F1G(r + h;��1; x2)2 + Z t0 dr F1G(r;��1; x2))2�� 4Z t+h00 dr F1G(r;��1; x2)2� 4 C5(t+ h0)p1 + j�1j2 ar

osh� t+ h0jx2j � 1fjx2j < t+ h0g;by Lemma 7.1.2, we obtain that the expression (7.10) 
onverges to 0 as h ! 0 by AssumptionB0 and the dominated 
onvergen
e theorem. On the other hand, Lemma 7.1.1 implies that forall h � h0, ZRd�1 �(d�1)Z h0 dq F1G(q;��1; x2)2� ZRd�1 �(d�1)Z h0 dq C4(h0)p1 + j�1j2 1pq2 � x22 1fjx2j < qg� C4(h0)ZRd�1 �(d�1)p1 + j�1j2 ar

osh� hjx2j� 1fjx2j < hg;



7.2. Optimal 
ondition on the spe
tral measure 95so by Assumption B0, the integral in (7.11) 
onverges also to 0 as h ! 0, and this shows theright-
ontinuity in t of the pro
ess X (in L2(
)). The left-
ontinuity follows in the same way asin the proof of Lemma 6.3.3, and this 
ompletes the proof. �Lemma 7.2.4. Let u be the solution of equation (6.5) (with k = d� 1). Under Assumption B0,the pro
ess X de�ned in Lemma 7.2.2 satis�eshu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:;for all t 2 R+ and ' 2 S(Rd ) su
h that supp ' � Rd�1 � R� .Proof. By Lemma 7.2.2 and Remark 7.2.3, the integral on the right-hand side of the aboveequation is well de�ned, sin
e supp ' � Rd�1 � R� . To show that both sides are equal P-a.s.,we pro
eed as in the proof of Lemma 6.3.5. By (6.7) and (6.13), we obtain thatE (jhu(t); 'ij2) = E 0������Z[0;t℄�Rd�1 M(ds; dx1) (G(t� s) � ')(x1; 0)�����21A= ZRd�1 �(d�1)Z t0 ds jF1(G(t� s) � ')(�1; 0)j2:Sin
e F1 = F�12 F and F(G �H) = FG � FH, we 
an write thatF1(G(t� s) � ')(�1; 0) = F�12 (FG(t� s) � F')(�1; 0)= 12� ZR d�2 FG(t � s; �1; �2) F'(�1; �2); (7.12)where we have used (4.1), soE (jhu(t); 'ij2) = ZRd�1 �(d�1)Z t0 ds ���� 12� ZR d�2 FG(t� s; �1; �2) F'(�1; �2)����2 : (7.13)On the other hand, by Fubini's theorem and (7.7),E  ����ZRd dx X(t; x) '(x)����2!= ZRd dxZRd dy E (X(t; x) X(t; y)) '(x) '(y)= ZRd�1 �(d�1)Z t0 ds ����ZRk dx1 ZRd�k dx2 F1G(t� s;��1; x2) ��1(x1) '(x1; x2)����2 :(7.14)Using now the de�nitions of F1 and F2, we obtain thatZRk dx1 ZRd�k dx2 F1G(t� s;��1; x2) ��1(x1) '(x1; x2)= ZR dx2 F1G(t� s;��1; x2) F1'(�1; x2)= 12� ZR d�2 FG(t� s;��1;��2) F'(�1; �2); (7.15)



96 Chapter 7. Existen
e of a real-valued solutionwhi
h is equal to (7.12), by symmetry of FG in �, so (7.13) and (7.14) are equal. Following theproof of Lemma 6.3.5, it remains to 
ompute, using Fubini's theorem and (6.13),E �hu(t); 'i � ZRd dx X(t; x) '(x)�= ZRd�1 �(d�1)Z t0 ds  F1(G(t� s) � ')(�1; 0)�ZRd dx F1G(t� s;��1; x2) ��1(x1) '(x)!:Using 
al
ulations (7.12) and (7.15), we obtain that this last expression is equal toZRd�1 �(d�1)Z t0 ds  12� ZR d�2 FG(t� s; �1; �2) F'(�1; �2)� 12� ZR d�2 FG(t� s;��1;��2) F'(�1; �2)!:whi
h is also equal to (7.13) and (7.14). This 
ompletes the proof.With these three lemmas in hand, we 
an now prove the following theorem, whi
h showsmoreover that Assumption B0 is optimal, as already mentioned in Remark 6.4.5 in the pre
eding
hapter.Theorem 7.2.5. Let u be the solution of equation (6.5)(with k = d� 1). There exists a squareintegrable real-valued pro
ess X = f X(t; x1; x2); (t; x1; x2) 2 R+ � Rd�1 � R�g su
h that themap (t; x1; x2) 7! X(t; x1; x2) is 
ontinuous from R+ � Rd�1 � R� to L2(
) andhu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:;for all t 2 R+ and ' 2 S(Rd ) su
h that supp ' � Rd�1�R� if only if Assumption B0 is satis�ed.Moreover, when X exists, it is a 
entered Gaussian pro
ess whose 
ovarian
e is given by formula(7.7).Proof. This proof follows the same s
heme as the proof of Proposition 6.3.6 in Se
tion 6.3.The suÆ
ien
y of 
ondition B0 follows dire
tly from the three pre
eding lemmas, so let usnow 
are about the ne
essity: �x (t; x1; x2) 2 R+ � Rd�1 � R su
h that 0 < jx2j < t andlet '(n)x1;x2 = Æ(x1;x2) �  n 2 S(Rd), where ( n) is a sequen
e of non-negative and 
ompa
tlysupported approximations of Æ0 in Rd . Sin
e supp '(n)x1;x2 � Rd�1 � R� for n suÆ
iently large,the assumptions made on X and Fubini's theorem imply thatE(jhu(t); '(n)x1 ;x2ij2) = E  ����ZRd dy1 dy2 X(t; y1; y2) '(n)x1;x2(y1; y2)����2!= ZRd dy1 dy2 ZRd dz1 dz2 E (X(t; y1 ; y2) X(t; z1; z2)) '(n)x1;x2(y1; y2) '(n)x1;x2(z1; z2)!n!1 E(X(t; x1 ; x2)2) <1: (7.16)



7.3. A stronger 
ondition 97On the other hand, repla
ing ' by '(n)x1;x2 in (7.13) givesE (jhu(t); '(n)x1 ;x2ij2) = ZRd�1 �(d�1)Z t0 ds ���� 12� ZR d�2 FG(t� s; �1; �2) F'(n)x1;x2(�1; �2)����2 :Let us then 
ompute12� ZR d�2 FG(t � s; �1; �2) F'(n)x1;x2(�1; �2)= ZR dy2 F1G(t� s; �1;�y2) F1'(n)x1;x2(�1; y2)= ZRd dy1 ZR dy2 F1G(t� s; �1;�y2) ��1(y1) '(n)x1;x2(y1; y2)!n!1 F1G(t� s; �1;�x2) �x1(�1);for all (s; �1) 2 [0; t℄� Rd�1 su
h that s 6= t� jx2j. Fatou's lemma and Lemma 7.1.3 then implythat limn!1 E (jhu(t); '(n)x1 ;x2ij2) � ZRd�1 �(d�1)Z t0 ds F1G(t� s; �1;�x2)2� C6(t; x2)ZRd�1 �(d�1)p1 + j�1j2 :Sin
e the above limit exists and is �nite by (7.16), Assumption B0 is satis�ed and this 
ompletesthe proof.Remark 7.2.6. From estimate (7.5) in the proof of Lemma 7.2.1, one sees that under Assump-tion B0 and for �xed t 2 R+ , there exists C(t) > 0 su
h thatE (X(t; x1 ; x2)2) � C(t) ar

osh� tjx2j� 1fjx2j < tg �x2!0 ln� 1jx2j� :This estimate implies that ZR dx2 E(X(t; x1 ; x2)2) <1;so by Fubini's theorem, the map x2 7! X(t; x1; x2) belongs P � a:s: to L2(R), in 
on
ordan
ewith Theorem 6.4.3 of the pre
eding 
hapter (in the 
ase k = d � 1 and � = 0). On the otherhand, the behavior in ln( 1jx2j) is the reason why the pro
ess X is not de�ned on the hyperplanex2 = 0. In the following se
tion, we shall see that under a stronger assumption on the spe
tralmeasure �, the pro
ess X 
an be de�ned also on the hyperplane x2 = 0.7.3 A stronger 
onditionBy Theorem 7.2.5, Assumption B0 only guarantees that the solution of equation (6.5) is a real-valued pro
ess X de�ned outside the hyperplane x2 = 0. We are going to show here that thepro
ess X is de�ned on the whole spa
e under the following slightly stronger 
ondition on �(whi
h does not belong to the set of assumptions of the pre
eding 
hapter).



98 Chapter 7. Existen
e of a real-valued solutionAssumption B00. ZRd�1 �(d�1) ln�p1 + j�1j2�p1 + j�1j2 <1:Note that there is only an extra logarithmi
 fa
tor in this assumption 
ompared to AssumptionB0. At the end of this se
tion, we give an example of a spe
tral measure � whi
h does notsatisfy Assumption B00 but satis�es Assumption B0.One 
an also noti
e that the situation is on
e again 
ompletely di�erent in the 
ase of theheat equation, sin
e there never exists a real-valued solution de�ned on the whole spa
e for thisequation; see Chapter 9.We will now prove the optimality of the above 
ondition through the following two estimates,whi
h are slightly more deli
ate to establish than Lemmas 7.1.2 and Lemmas 7.1.3, but givebounds valid for x2 = 0.Lemma 7.3.1. For all t > 0, there exists C7(t) > 0 su
h thatZ t0 ds F1G(s; �1; x2)2 � C7(t) 1 + ln�p1 + j�1j2�p1 + j�1j2 ; 8�1 2 Rd�1 ; x2 2 R:Proof. If j�1j2 � 2(a2 � b) + 1, then sin
eJ0(r)2 � Cp1 + r2 ; 8r � 0;we obtain thatZ t0 ds F1G(s; �1; x2)2 = Z t0 ds e�2as4 J0�q(j�1j2 + b� a2) (s2 � x22)�2 1fjx2j < sg� C e2a�t4 Z tjx2j ds 1p1 + (j�1j2 + b� a2) (s2 � x22) 1fjx2j < tg:Computing the integral givesC e2a�t4pj�1j2 + b� a2 ln s+s 1j�1j2 + b� a2 + s2 � x22!�����s=ts=jx2j 1fjx2j < tg� p2 C e2a�t4p1 + j�1j2 ln0�t+q 1j�1j2+b�a2 + t2 � x22jx2j+ 1pj�1j2+b�a2 1A 1fjx2j < tg;using (7.3). This last expression is maximum when x2 = 0, in whi
h 
ase it is equal top2 C e2a�t4p1 + j�1j2  ln�pj�1j2 + b� a2�+ ln t+s 1j�1j2 + b� a2 + t2!! :



7.3. A stronger 
ondition 99Morevoer, using (7.4) and the fa
t that 1j�1j2+b�a2 � 2, we obtain thatZ t0 ds F1G(s; �1; x2)2� p2 C e2a�t4p1 + j�1j2 �ln�p1 + j�1j2�+ ln�p1 _ (b� a2)�+ ln�t+p2 + t2�� :If 2(a2 � b) + 1 � 0 and a2 � b � j�1j2 � 2(a2 � b) + 1, then sin
e J0(r)2 � 1 for all r � 0, weget thatZ t0 ds F1G(s; �1; x2)2 = Z t0 ds e�2as4 J0�q(j�1j2 + b� a2) (s2 � x22)�2 1fjx2j < sg� e2a�t4 t:Finally, if a2 � b � 0 and j�1j2 � a2 � b, then sin
e I0(r)2 � C e2r for all r � 0, we get thatZ t0 ds F1G(s; �1; x2)2 = Z t0 ds e�2as4 I0�q(a2 � b� j�1j2) (s2 � x22)�2 1fjx2j < sg� e2a�t4 C e2pa2�b t t;and the proof ends as the proof of Lemma 5.4.1.Lemma 7.3.2. For all t > 0, there exist C8(t), C 08(t) and R(t) > 0 su
h thatZ t0 ds F1G(s; �1; 0)2 � C8(t) ln�p1 + j�1j2��C 08(t)p1 + j�1j2 ; 8�1 2 Rd�1 with j�1j � R(t):Proof. Let R(t)2 = 2(a2 � b) + (�2t2 _ 1) and j�1j � R(t). We then 
omputeZ t0 ds F1G(s; �1; 0)2 = Z t0 ds e�2as4 J0 �spj�1j2 + b� a2�2� e�2a+t4 Z t0 ds J0 �spj�1j2 + b� a2�2= e�2a+t4pj�1j2 + b� a2 Z tpj�1j2+b�a20 dr J0(r)2;by the 
hange of variable r = spj�1j2 + b� a2. Using now (7.4), we obtain thatZ t0 ds F1G(s; �1; 0)2 � e�2a+t4p1 _ (b� a2)p1 + j�1j2 Z tpj�1j2+b�a21 dr J0(r)2� e�2a+t4p1 _ (b� a2)p1 + j�1j2 0� ln�tpj�1j2 + b� a2�� � C1A ;by Lemma B.2.2. Using (7.3), we moreover haveln�tpj�1j2 + b� a2� � ln�p1 + j�1j2�+ ln� tp2� ;so the 
on
lusion follows.



100 Chapter 7. Existen
e of a real-valued solutionWe 
an now state the theorem.Theorem 7.3.3. Let u be the solution of equation (6.5) (with k = d� 1). There exists a squareintegrable real-valued pro
ess X = fX(t; x); (t; x) 2 R+�Rdg su
h that the map (t; x) 7! X(t; x)is 
ontinuous from R+ � Rd to L2(
) andhu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:; 8t 2 R+ ; ' 2 S(Rd);if and only if Assumption B00 is satis�ed. Moreover, when X exists, it is a 
entered Gaussianpro
ess whose 
ovarian
e is given by formula (7.7).Proof. The proof is similar to that of Theorem 7.2.5. Let us �rst show the suÆ
ien
y of As-sumption B00, 
onsidering what needs to be modi�ed in Lemmas 7.2.1, 7.2.2 and 7.2.4.In Lemma 7.2.1, we simply use Lemma 7.3.1 and Assumption B00 instead of Lemma 7.1.2 andAssumption B0 in order to estimate k�t;x1;x2kt, whi
h gives us the �niteness of this expressionfor all (t; x1; x2) 2 R+ � Rd�1 � R.For Lemma 7.2.2, we need some slightly di�erent estimates of the L2-in
rements of thepro
ess. Let us �rst 
onsider x2, y2 2 R. We have, following the proof of this lemma,sup(t;x1)2[0;T ℄�Rd�1 E((X(t; x1 ; y2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z T0 dr (F1G(r;��1; y2)�F1G(r;��1; x2))2:Using twi
e the dominated 
onvergen
e theorem as in the proof of Lemma 7.2.2, jointly withLemma 7.3.1 and AssumptionB00, we obtain that the above expression 
onverges to 0 as y2 ! x2.Now, let x1, y1 2 Rd�1 and x2 2 R. As above, we havesupt2[0;T ℄ E((X(t; y1 ; x2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z T0 dr F1G(r;��1; x2)2 2 (1� 
os(�1 � (y1 � x1))):On
e again, using twi
e the dominated 
onvergen
e theorem joinlty with Lemma 7.3.1 and As-sumption B00, we obtain that the above expression 
onverges to 0 as y1 ! x1.Finally, let t; h 2 R+ , x1 2 Rd�1 and x2 2 R. ThenE ((X(t + h; x1; x2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z t0 dr (F1G(r + h;��1; x2)�F1G(r;��1; x2))2 (7.17)+ZRd�1 �(d�1)Z h0 dq F1G(q;��1; x2)2: (7.18)



7.3. A stronger 
ondition 101Using the same arguments as above, we obtain that (7.17) 
onverges to 0 as h ! 0. For these
ond term, note that as F1G is bounded on [0; h℄ � Rd�1 � R,Z h0 dq F1G(q;��1; x2)2 !h!0 0; 8�1 2 Rd�1 :Moreover, by Lemma 7.3.1,Z h0 dq F1G(q;��1; x2)2 � C7(h0) 1 + ln�p1 + j�1j2�p1 + j�1j2 ;for all h � h0. So the dominated 
onvergen
e theorem allows us to 
on
lude that the pro
ess Xis L2-right-
ontinous in t, and an argument similar to that of the proof of Lemma 6.3.3 allowsus to to prove the left-
ontinuity. Summing up these results gives us the L2-
ontinuity of thepro
ess X on R+ � Rd , then the existen
e of a jointly measurable modi�
ation.The proof of Lemma 7.2.4 remains un
hanged, ex
ept that the 
ondition supp ' � Rd�1�R�disappears. This 
ompletes the proof of the suÆ
ien
y.In order to prove the ne
essity, let us also follow the proof of Theorem 7.2.5. Assuming thatthe pro
ess X exists, we therefore have1 > E (X(t; x1 ; 0)2) = limn!1 E(jhu(t); '(n)x1 ;0ij2; (7.19)where '(n)x1;0 !n!1 Æx1;0 in S 0(Rd ). Using (7.13), we obtainE (jhu(t); '(n)x1 ;0ij2) = ZRd�1 �(d�1)Z t0 ds ���� 12� ZR d�2 FG(t� s; �1; �2) F'(n)x1;0(�1; �2)����2 :So by the same 
al
ulations as in the proof of Theorem 7.2.5 and Fatou's lemma, we havelimn!1 E (jhu(t); '(n)x1 ;0ij2 � ZRd�1 �(d�1)Z t0 ds F1G(t� s; �1; 0)2:But sin
e by Lemma 7.3.2,ZRd�1 �(d�1)Z t0 ds F1G(t� s; �1; 0)2 � ZB1(0;R(t))
 �(d�1)Z t0 ds F1G(t� s; �1; 0)2� ZB1(0;R(t))
 �(d�1) C8(t) ln�p1 + j�1j2�� C 08(t)p1 + j�1j2 ;we obtain, using (7.19) and the fa
t that �(B1(0; R(t))) <1,ZRd�1 �(d�1) C8(t) ln�p1 + j�1j2�� C 08(t)p1 + j�1j2 <1:



102 Chapter 7. Existen
e of a real-valued solutionNow we use Theorem 7.2.5 whi
h tells us that under the assumptions made in the presenttheorem, Assumption B0 is satis�ed, therefore,C8(t)ZRd�1 �(d�1) ln�p1 + j�1j2�p1 + j�1j2 = ZRd�1 �(d�1) C8(t) ln�p1 + j�1j2�� C 08(t)p1 + j�1j2+ C 08(t)ZRd�1 �(d�1)p1 + j�1j2 <1;so Assumption B00 is satis�ed, and this 
ompletes the proof.This proves that under 
ondition B00, the weak solution u of equation (6.2) does not explodenear x2 = 0. Let us now give an example of a spe
tral measure � whi
h satis�es B0 but not B00,and for whi
h there is therefore an explosion near x2 = 0, by the ne
essity of 
ondition B00. We
onsider the 
ase d = 2 (that is, the 
ase where � is a measure on the real line) and des
ribe �by its density � given by �(r) = 8>>><>>>: 3� 2re ; if r 2 [0; e[;1ln(r)2 if r 2 [e;1[;and �(r) = �(�r) for r < 0. One 
an easily 
he
k that�(r)p1 + r2 �r!1 1ln(r)2 r ; so ZR dr �(r)p1 + r2 <1:On the other hand,�(r) ln(p1 + r2)p1 + r2 �r!1 1ln(r) r ; so ZR dr �(r) ln(p1 + r2)p1 + r2 =1:Let us now 
he
k that the 
orresponding 
ovarian
e � = F1� satis�es all the required as-sumptions. Clearly, � is a non-negative tempered Borel measure on R, so � is a temperednon-negative de�nite distribution by the Bo
hner-S
hwartz theorem 4.3.1. It remains to showthat � is a measure on R. For this, let us note that � is de
reasing and 
onvex on [0;1[, so byPolya's 
riterion (see for example [23, x2.3.d℄), � is a (symmetri
) non-negative de�nite fun
tionon R. By the 
lassi
al Bo
hner theorem, this implies that � is a non-negative �nite measure onR. We therefore have 
onstru
ted a relevant example.7.4 H�older-
ontinuity of the solutionIn this se
tion, we show that when � is positive, Assumption B� of the pre
eding 
hapter impliesa stronger regularity of the solution than the one obtained in that 
hapter. Namely, we 
an showhere H�older-regularity of the solution. The te
hniques that we use are similar to those used in[54℄ for the solution of the hyperboli
 equation driven by spatially homogeneous noise.



7.4. H�older-
ontinuity of the solution 103For the 
larity of the 
al
ulations, we assume in this se
tion that the 
oeÆ
ients a and b ofequation (6.5) are both equal to 0 and that the spa
e dimension d belongs to f2; :::; 5g (be
auseof the pre
eding restri
tion). Let then � 2 ℄0; 12 [ and suppose that Assumption B� of thepre
eding 
hapter is satis�ed, whi
h 
an be written when k = d� 1 asZRd�1 �(d�1)(1 + j�1j2) 12�� <1:Note that this 
ondition is always stronger than B0 and B00, and that when � tends to 12 , itlooks more and more like \� is a �nite measure", as it was the 
ase for the 
ondition A� of thepre
eding 
hapter, with � tending to 1.We will now prove that under this assumption, the pro
ess X admits a modi�
ation whi
his P � a:s: lo
ally H�older-
ontinuous outside the hyperplane x2 = 0, with exponent 
 < � ^ 14 .For this, we need the following two lemmas.Lemma 7.4.1. Fix � 2 ℄0; 12 [. For all T > 0 and R > " > 0, there exists C9(T;R; ") > 0 su
hthat Z t0 ds (F1G(s; �1; y2)�F1G(s; �1; x2))2 � C9(T;R; ") jy2 � x2j2�^ 12(1 + j�1j2) 12�� ;for all t 2 [0; T ℄, �1 2 Rd�1 and " � jx2j; jy2j � R.Proof. Let us �rst re
all that we have assumed that a = b = 0, so the Fourier transform of G inthe 
oordinate x1 simply reads (see (7.1))F1G(t; �1; x2) = 12 J0�j�1jqt2 � x22� 1fjx2j < tg; 8(t; �1; x2) 2 R+ � Rd�1� 2 R:Let us �x t 2 [0; T ℄, �1 2 Rd�1 , " � jx2j; jy2j � R and assume, without loss of generality, that" � x2 � y2 � R. Let us then 
omputeZ t0 ds (F1G(s; �1; y2)�F1G(s; �1; x2))2= 14 Z t0 ds �J0�j�1jqs2 � y22� 1fy2 < sg � J0�j�1jqs2 � x22� 1fx2 < sg�2 :(7.20)Adding and substra
ting the term J0 �j�1jps2 � x22� 1fy2 < sg inside the parentheses, weobtain that (7.20) is less than or equal to12 1fy2 < tg Z ty2 ds �J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2 (7.21)+ 12 Z y2x2 ds J0�j�1jqs2 � x22�2 : (7.22)



104 Chapter 7. Existen
e of a real-valued solutionWe now need to bound these two terms. We begin with (7.22). Sin
e J0(r)2 � Cr for all r > 0,we obtain that when j�1j � 1,Z y2x2 ds J0�j�1jqs2 � x22�2� Cj�1j Z y2x2 ds 1ps2 � x22 = Cj�1j Z y2x2 ds 1p(s+ x2) (s� x2)� Cj�1j p2x2 Z y2x2 ds 1p(s� x2) � 2Cp2" py2 � x2j�1j ;sin
e s+ x2 � 2x2 � 2". On the other hand, when j�1j � 1,Z y2x2 ds J0�j�1jqs2 � x22�2 � y2 � x2 � p2R py2 � x2;sin
e J0(r)2 � 1 for all r � 0 and 0 � x2 � y2 � R. So there exists C(R; �) > 0 su
h that (7.22)is less than or equal to C(R; ") py2 � x2p1 + j�1j2 :We now turn to (7.21). If j�1j � 1, then sin
e J 00(r) = �J1(r) for all r � 0, where J1 is the �rstorder regular Bessel fun
tion of the �rst kind (see Appendix B), we have�J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2=  Z j�1jps2�x22j�1jps2�y22 dr J1(r)!2� �J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2(1��) :Using the fa
t that jJ1(r)j � Cpr for all r > 0, we obtain Z j�1jps2�x22j�1jps2�y22 dr J1(r)!2� � (2C)2� j�1j� �(s2 � x22) 14 � (s2 � y22) 14�2� :Sin
e x2 � y2 and for all v � u � 0,v 14 � u 14 = pv �puv 14 + u 14 � v � u2u 14 (pv +pu) � v � u4u 34 ;we get that  Z j�1jps2�x22j�1jps2�y22 dr J1(r)!2� � (2C)2� j�1j� (y22 � x22)2�4(s2 � y22) 3�2� (2CR)2� j�1j� (y2 � x2)2�(s2 � y22) 3�2 ;



7.4. H�older-
ontinuity of the solution 105where we have used the fa
t that y22 � x22 = (y2 + x2) (y2 � x2) � 2R (y2 � x2). On the otherhand, sin
e J0(r)2 � Cr for all r > 0 and y2 � x2,�J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2(1��)�  2 J0�j�1jqs2 � y22�2 + 2 J0�j�1jqs2 � x22�2!1��� (4C)1��j�1j1�� (s2 � y22) 1��2 :Combining the above estimates gives1fy2 < tg Z ty2 ds �J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2� C R2� 1fy2 < tg Z ty2 ds 1(s2 � y22) 12+� (y2 � x2)2�j�1j1�2� :Sin
e � 2 ℄0; 12 [, supt2[0;T ℄;y22[";R℄ 1fy2 < tg Z ty2 ds 1(s2 � y22) 12+� <1; (7.23)so we have obtained the desired bound for (7.21) when j�1j � 1. On the other hand, whenj�1j � 1, �J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2=  Z j�1jps2�x22j�1jps2�y22 dr J1(r)!2 � �qs2 � x22 �qs2 � y22�2 ;sin
e J1(r)2 � 1 for all r � 0 and j�1j � 1. Moreover,qs2 � x22 �qs2 � y22 � y22 � x222ps2 � y22 � R y2 � x2ps2 � y22� R (2R)1�2� (y2 � x2)2�ps2 � y22 ;so we obtain that 1fy2 < tg Z ty2 ds �J0�j�1jqs2 � y22�� J0�j�1jqs2 � x22��2� R (2R)1�2� 1fy2 < tg Z ty2 ds 1ps2 � y22 (y2 � x2)2�:Sin
e supt2[0;T ℄;y22[";R℄ 1fy2 < tg Z ty2 ds 1ps2 � y22 <1; (7.24)



106 Chapter 7. Existen
e of a real-valued solutionwe 
on
lude that there exists C(T;R; ") > 0 su
h that (7.21) is less than or equal toC(T;R; ") (y2 � x2)2�(1 + j�1j2) 12�� :Combining the two bounds obtained for (7.21) and (7.22) gives the desired result.Lemma 7.4.2. Fix � 2 ℄0; 12 [. For all T > 0 and R > " > 0, there exists C10(T;R; ") > 0 su
hthat Z t0 ds (F1G(s+ h; �1; x2)�F1G(s; �1; x2))2 � C10(T;R; ") h2�^ 12(1 + j�1j2) 12�� ;for all t 2 [0; T ℄, h 2 [0; T � t℄, �1 2 Rd�1 and " � jx2j � R.Proof. The proof is quite similar to the pre
eding one. Fix t 2 [0; T ℄, h 2 [0; T � t℄, �1 2 Rd�1 ," � x2 � R and 
omputeZ t0 ds (F1G(s+ h; �1; x2)�F1G(s; �1; x2))2= 14 Z t0 ds �J0�j�1jq(s+ h)2 � x22� 1fx2<s+hg � J0�j�1jqs2 � x22� 1fx2<sg�2� 12 1fx2 < tg Z tx2 ds �J0�j�1jq(s+ h)2 � x22�� J0�j�1jqs2 � x22��2 (7.25)+12 Z x2x2�h ds J0�j�1jq(s+ h)2 � x22�2 : (7.26)Let us �rst bound the term in (7.26), using arguments similar to those used to bound (7.22).When j�1j � 1,Z x2x2�h ds J0�j�1jq(s+ h)2 � x22�2 � Cj�1j Z x2x2�h ds 1p(s+ h+ x2) (s+ h� x2)� 2Cp2" phj�1j ;sin
e s+ h+ x2 � 2x2 � 2". On the other hand, when j�1j � 1,Z x2x2�h ds J0�j�1jqs2 � x22�2 � h � pT ph;so there exists C(T; ") > 0 su
h that (7.26) is less than or equal toC(T; ") php1 + j�1j2 :For the term (7.25), an argument analogous to that used for (7.21) gives, when j�1j � 1,1fx2 < tg Z tx2 ds �J0�j�1jq(s+ h)2 � x22�� J0�j�1jqs2 � x22��2� C T 2� 1fx2 � tg Z tx2 ds 1(s2 � x22) 12+� h2�j�1j1�2� ;



7.4. H�older-
ontinuity of the solution 107and when j�1j � 1,1fx2 < tg Z tx2 ds �J0�j�1jq(s+ h)2 � x22�� J0�j�1jqs2 � x22��2� T (2T )1�2� 1fx2 � tg Z tx2 ds 1ps2 � x22 h2� :(7.23) and (7.24) then allow us to 
on
lude that there exists C(T;R; ") > 0 su
h that (7.25) isless than or equal to C(T;R; ") h2�(1 + j�1j2) 12�� ;and 
ombining the two bounds obtained for (7.25) and (7.26) gives the result.Let us now state the theorem.Theorem 7.4.3. Let � 2 ℄0; 12 [, let us make Assumption B� and let X be the pro
ess de�nedin Theorem 7.3.3. There exists then a modi�
ation ~X of the pro
ess X su
h that the map(t; x1; x2) 7! ~X(t; x1; x2) is P-a.s. lo
ally H�older-
ontinuous on R+ � Rd�1 � R� with exponent
 < � ^ 14 , that is, for all T > 0 and R > " > 0, there exists a P� a:s: positive random variableÆ(!) and a 
onstant K(T;R; ") > 0 su
h thatP supju�vj<Æ; u;v2B(T;R;"); j ~X(u)� ~X(v)jju� vj
 � K(T;R; ")! = 1;where B(T;R; ") = [0; T ℄ � Rd�1 � ([�R;�"℄ [ [";R℄)and juj =qt2 + jx1j2 + x22 for u = (t; x1; x2) 2 B(T;R; "):Note that this theorem implies that if Assumption B� is satis�ed for any � 2 ℄0; 12 [, then themodi�
ation ~X of the pro
ess X is 
ontinuous outside the hyperplane x2 = 0, and in parti
ularon the set jx2j = t, whi
h was not 
lear a priori.We point out that in the study of the heat equation, this question of regularity of the solutionoutside the hyperplane x2 = 0 is answered in a simple manner through the regularizing propertyof the Green kernel: see Chapter 9.Proof. We want to apply here the Kolmogorov 
ontinuity theorem, so we need �rst to study
arefully the 
ontinuity in L2(
) of the pro
ess X. Therefore, let T > 0 and R > " > 0. Wewould like to estimate the L2-in
rementE((X(t + h; y1; y2)�X(t; x1; x2))2)



108 Chapter 7. Existen
e of a real-valued solutionwhen t 2 [0; T ℄, h 2 [0; T � t℄, x1; y1 2 Rd�1 and " � jx2j; jy2j � R. To this end, note that thisin
rement is less than or equal to3 (E ((X(t + h; y1; y2)�X(t; y1; y2))2)+E((X(t; y1 ; y2)�X(t; x1; y2))2) (7.27)+E((X(t; x1 ; y2)�X(t; x1; x2))2)):Let us 
onsider the three terms separately, beginning by the last one. Using (7.7) and Lemma7.4.1, we obtain thatE((X(t; x1 ; y2)�X(t; x1; x2))2)= ZRd�1 �(d�1)Z t0 ds (F1G(t� s;��1; y2)�F1G(t� s;��1; x2))2� C9(T;R; ")ZRd�1 �(d�1)(1 + j�1j2) 12�� jy2 � x2j2�^ 12 ;the integral in �1 being �nite by Assumption B�. For the se
ond term in (7.27), we have by(7.7), E((X(t; y1 ; y2)�X(t; x1; y2))2)= ZRd�1 �(d�1)Z t0 ds F1G(t� s;��1; y2)2 j�y1(�1)� �x1(�1)j2:Sin
e j�x1(�1)� �y1(�1)j2 � 4 j�x1(�1)� �y1(�1)j2� = 4 ����Z y1��1x1��1 dr eir����2�� 4 j�1j2� jy1 � x1j2� ;we obtain by Lemma 7.1.2 thatE ((X(t; y1 ; y2)�X(t; x1; y2))2)� 4 C5(T ) ar

osh� tjy2j� 1fjy2j < tg ZRd�1 �(d�1)(1 + j�1j2) 12�� jx1 � y1j2�� 4 C5(T ) ar

osh�T" � 1f" < Tg ZRd�1 �(d�1)(1 + j�1j2) 12�� jx1 � y1j2�:Finally, let us 
onsider the �rst term in (7.27), whi
h is equal toE((X(t + h; y1; y2)�X(t; y1; y2))2)= ZRd�1 �(d�1)Z t0 dr (F1G(r + h;��1; y2)�F1G(r;��1; y2))2 (7.28)+ZRd�1 �(d�1)Z h0 dq F1G(q;��1; y2)2; (7.29)by (7.10) and (7.11) in the proof of Lemma 7.2.2. By Lemma 7.4.2, (7.28) is now less than orequal to C10(T;R; ")ZRd�1 �(d�1)(1 + j�1j2) 12�� h2�^ 12 :



7.5. Reformulation of the 
onditions on the spe
tral measure 109Moreover, F1G(q; �1;�y2) = 0 when q � jy2j, so (7.29) is equal to 0 when h � ", and by Lemma7.1.2, it is also bounded byC(T; ") = C5(T ) ar

osh�T" � 1f" < Tg ZRd�1 �(d�1)p1 + j�1j2 ;so (7.29) is less than or equal to C(T; ") h" . Summing up all these bounds gives the followingresult: there exists C(T;R; ") > 0 su
h thatE ((X(t + h; y1; y2)�X(t; x1; x2))2)� C(T;R; ") �h2�^ 12 + jy1 � x1j2� + jy2 � x2j2�^ 12�� 3 C(T;R; ") (h2 + jy1 � x1j2 + (y2 � x2)2)�^ 14 :Sin
e X is a Gaussian pro
ess, this implies that for all m � 1, there exists C(m)(T;R; ") > 0su
h thatE ((X(t + h; y1; y2)�X(t; x1; x2))2m) � C(m)(T;R; ") (h2 + jy1 � x1j2 + (y2 � x2)2)(�^ 14 )m:By the Kolmogorov 
ontinuity theorem (see for example [29, Problem 2.2.9℄), we obtain thatthere exists a modi�
ation ~X of X su
h that the map (t; x1; x2) 7! ~X(t; x1; x2) is P-a.s. lo
allyH�older-
ontinuous on R+ � Rd�1 � R� with exponent 
 < � ^ 14 .Moreover, one 
an noti
e that by the proof of the pre
eding theorem and under AssumptionB�, the pro
ess X admits a modi�
ation whi
h is P � a:s: lo
ally H�older in x1 with exponent
 < �, whi
h is an improvement when � > 14 .7.5 Reformulation of the 
onditions on the spe
tral measureFollowing the s
heme of Se
tion 6.6, let us assume that the 
ovarian
e � is non-negative andnote that Assumption B� is 
ondition (4.9) with d repla
ed by d � 1 and � repla
ed by 12 � �.Using then (4.10) and Proposition 4.4.1, we obtain that Assumption B� is equivalent toZRd�1 �(dx1) Gd�1; 12��(x1) <1; (7.30)modulo the boundedness assumption of Proposition 4.4.1. As before, let us now make this last
ondition more expli
it.- If d = 2 and � = 0, then (7.30) is satis�ed if and only ifZB1(0;1) �(dx1) ln� 1jx1j� <1:- If d > 2 or � 2 ℄0; 12 [, then (7.30) is satis�ed if and only ifZB1(0;1) �(dx1) 1jx1j2�+d�2 <1:



110 Chapter 7. Existen
e of a real-valued solutionIn the 
ase where �(dx1) = f(jx1j) dx1, with f a 
ontinuous fun
tion on ℄0;1[, this impliesthat:- If d = 2 and � = 0, then (7.30) is satis�ed if and only ifZ 10 dr f(r) ln�1r� <1:-Iif d > 2 or � 2 ℄0; 12 [, then (7.30) is satis�ed if and only ifZ 10 dr f(r) 1r2� <1:Finally, the reformulation of 
ondition B00, though not established be
ause of te
hni
al diÆ-
ulties, is 
onje
tured to give the following.- If d = 2, we expe
t that Assumption B00 is satis�ed (perhaps modulo a boundedness assump-tion) if and only if ZB1(0;1) �(dx1) ln� 1jx1j�2 <1:- If d > 2, we expe
t that Assumption B00 is satis�ed (perhaps modulo a boundedness assump-tion) if and only if ZB1(0;1) �(dx1) 1jx1jd�2 ln� 1jx1j� <1:7.6 Noise on a lower dimensional planeLet us �rst 
onsider the 
ase where the noise is 
on
entrated on a k-plane, with k = d�2. Using(4.1), (7.1) and [45, formulas I.14.16, I.14.55 and I.18.31℄, we 
an 
ompute the Fourier transformof G in the �rst d� 2 
oordinates of x. For (t; �1; x2) 2 R+ � Rd�2 � R2 ,F1G(t; �1; x2)= 8>>>>>>><>>>>>>>: e�at2� 
os�p(j�1j2 + b� a2) (t2 � jx2j2)�pt2 � jx2j2 1fjx2j < tg; if j�1j2 � a2 � b;e�at2� 
osh�p(a2 � b� j�1j2) (t2 � jx2j2)�pt2 � jx2j2 1fjx2j < tg; if � a2 � b > 0 andj�1j2 < a2 � b: (7.31)The next theorem shows that when k = d� 2, the distribution-valued solution u of equation(6.5) 
annot be a real-valued pro
ess, even outside the k-plane x2 = 0.Theorem 7.6.1. Let u be the solution of equation (6.5) with k = d � 2. Then there does notexist a real-valued square integrable pro
ess X = fX(t; x1; x2); (t; x1; x2) 2 R+�Rk�Rd�knf0gg



7.6. Noise on a lower dimensional plane 111su
h that the map (t; x1; x2) 7! X(t; x1; x2) is 
ontinuous from R+ � Rk � Rd�knf0g to L2(
)and hu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:;for all t 2 R+ and ' 2 S(Rd ) su
h that supp ' � Rk � Rd�knf0g.Proof. Suppose that there exists a pro
ess X satisfying the above 
onditions. As in the proof ofTheorem 7.2.5, �x (t; x1; x2) 2 R+ �Rd�2 �R2 su
h that 0 < jx2j < t and let '(n)x1;x2 = Æ(x1;x2) � n 2 S(Rd ), where ( n) is a sequen
e of non-negative and 
ompa
tly supported approximationsof Æ0 in Rd . By the assumptions made on X, we obtain thatlimn!1 E (jhu(t); '(n)x1 ;x2ij2) = E (X(t; x1 ; x2)2) <1; (7.32)and also thatE (jhu(t); '(n)x1 ;x2ij2) = ZRd�2 �(d�1)Z t0 ds ���F1(G(t � s) � '(n)x1;x2)(�1; 0)���2= ZRd�2 �(d�1)Z t0 ds ���F1(G(s) � '(n)x1;x2)(�1; 0)���2 :Moreover, by arguments similar to those used in the proof of Theorem 7.2.5, we obtain that forall s 6= jx2j and �1 2 Rd�2 ,F1(G(s) � '(n)x1;x2)(�1; 0) !n!1 F1G(s; �1;�x2) �x1(�1);where F1G is given by (7.31). So Fatou's lemma tells us thatlimn!1 E(jhu(t); '(n)x1 ;x2ij2) � ZRd�2 �(d�1)Z tjx2j ds F1G(s; �1;�x2)2: (7.33)For a �xed �1 2 Rd�2 su
h that j�1j2 � a2 � b:Z tjx2j ds F1G(s; �1;�x2)2 � e�2at4�2 Z tjx2j ds 
os�p(s2 � jx2j2) (j�1j2 + b� a2)�2s2 � jx2j2 =1;be
ause for " 2 ℄0; 1[ �xed, there exists Æ > 0 su
h that
os2 �p(s2 � jx2j2) (j�1j2 + b� a2)� � 1� "; 8s 2 [jx2j; jx2j+ Æ℄;and Z jx2j+Æjx2j ds 1� "s2 � jx2j2 =1:The right-hand side of (7.33) is therefore in�nite, but this is a 
ontradi
tion sin
e the limit onthe left-hand side of (7.33) exists and is �nite by (7.32). We thus have proven that a pro
ess Xsatisfying all the 
onditions of the theorem 
annot exist.



112 Chapter 7. Existen
e of a real-valued solutionWhen k < d� 2, F1G is no longer a fun
tion, but a distribution in �1. We therefore expe
tthat the following limitlimn!1 E (jhu(t); '(n)x1 ;x2ij2) = ZRd�k �(d�1)Z t0 ds ���F1(G(t� s) � '(n)x1;x2)(�1; 0)���2is also in�nite in this 
ase, independently of any 
ondition on �, so that there never exists areal-valued solution. Nevertheless, this fa
t has not been proven analyti
ally.We will show in Chapter 9 that the situation is on
e again 
ompletely di�erent in the 
aseof the heat equation, for whi
h there always exists a real-valued solution outside the k-planex2 = 0 for any k 2 f1; :::; d � 1g.



Chapter 8Non-linear hyperboli
 equation in R ddriven by noise on a hyperplaneIn the pre
eding 
hapter, we have obtained pre
ise 
onditions whi
h guarantee the existen
eof a real-valued weak solution u of the linear hyperboli
 equation (6.2) in the 
ase of a noise
on
entrated on the hyperplane x2 = 0, and also some regularity of this solution. With theseresults in hand, we are now able to treat non-linear equations of the same type.For te
hni
al reasons, we make the following assumption.Assumption C0.(i) The 
ovarian
e � of the noise is a non-negative measure on Rd�1 .(ii) d 2 f2; 3g (so the \hyperplane" x2 = 0 be
omes either a straight line or a plane) and a2 � b.From the expressions of G listed in Appendix A, we see that part (ii) of this assumptionimplies that for all t 2 R+ and x2 2 R, the Green kernel G(t; �; x2) is a non-negative measureon Rd�1 . These non-negativity assumptions are ne
essary in Theorem 6.2.1, whi
h we shall userepeatedly in the following.8.1 Non-linear term restri
ted to the hyperplaneLet us 
onsider the following formal non-linear equation:8>>>>>>><>>>>>>>:
�2u�t2 (t; x) + 2a �u�t (t; x) + b u(t; x) ��u(t; x)= g(u(t; x1; 0)) Æ0(x2) + h(u(t; x1; 0)) _F (t; x1) Æ0(x2); t 2 R+ ; x 2 Rd ;u(0; x) = �u�t (0; x) = 0; x 2 Rd ; (8.1)where g and h are real-valued fun
tions and _F is the noise 
on
entrated on the hyperplanex2 = 0 
onsidered in Chapter 6 (with k = d� 1). Note that we 
onsider null initial 
onditions,113



114 Chapter 8. Non-linear hyperboli
 equation in Rd driven by noise on a hyperplanebut this 
ould be improved; see Remark 8.1.3.The non-linear term in this equation is restri
ted to the hyperplane x2 = 0 and 
omposed bya deterministi
 part g(u) and a sto
hasti
 one h(u) _F . If we 
onsider that it is a given fun
tionof (t; x), we 
an then write formally what should be the solution of this \linear" equation, usingthe extended de�nition of the sto
hasti
 integral of Se
tion 6.2:u(t; x1; x2) = Z t0 dsZRd�1 G(s; dz1; x2) g(u(t� s; x1 � z1; 0))+Z[0;t℄�Rd�1 M(ds; dz1) h(u(s; z1; 0)) G(t� s; x1 � z1; x2); (8.2)P-a.s., for all (t; x1; x2) 2 R+�Rd�1�R, where G is the solution of equation (5.15) andM is theworthy martingale measure de�ned in Se
tion 6.1. A
tually, sin
e the non-linear term 
ontainsthe unknown u, what we have obtained here is a rigorous formulation of equation (8.1); a mildsolution of equation (8.1) is a predi
table pro
ess u = fu(t; x); (t; x) 2 R+ �Rdg whi
h satis�esthe above equation.Note that when g � 0 and h � 1, the solution of the above \equation" is pre
isely thereal-valued solution of equation (6.5), whi
h is well de�ned on the whole spa
e (see Theorem7.3.3) when Assumption B00 is satis�ed, namely whenZRd�1 �(d�1) ln�p1 + j�1j2�p1 + j�1j2 <1:The following theorem states that under this assumption, there still exists a real-valued solutionto equation (8.2) when g and h are globally Lips
hitz fun
tions.Theorem 8.1.1. Under Assumptions B00 and C0, and if g and h are globally Lips
hitz fun
tions,then there exists a unique mild solution u = fu(t; x); (t; x) 2 R+ � Rdg to equation (8.1).Moreover, the map (t; x) 7! u(t; x) is 
ontinuous from R+ � Rd to L2(
) and for all T > 0,sup(t;x)2[0;T ℄�Rd E(u(t; x)2) <1: (8.3)Before proving this theorem, let us mention that the Green kernel restri
ted to the hyperplanex2 = 0 plays a 
ru
ial role here; in parti
ular, we will need the following lemma on the behaviorof F1G evaluated in x2 = 0.Lemma 8.1.2. For all t > 0, there exists C11(t) > 0 su
h thatjF1G(s; �1; 0)j � C11(t)(1 + (j�1js)2) 14 ; 8(s; �1) 2 [0; t℄ � Rd�1 :Proof of Lemma 8.1.2. If j�1j2 � 2 (a2 � b), then sin
ejJ0(r)j � C(1 + r2) 14 ; 8r � 0;



8.1. Non-linear term restri
ted to the hyperplane 115we obtain by (7.1) thatjF1G(s; �1; 0)j = e�as2 ���J0 �p(j�1j2 + b� a2) s���� � ea�t2 C(1 + (j�1j2 + b� a2) s2) 14 :But j�1j2 + b� a2 � j�1j22 , sojF1G(s; �1; 0)j � C ea�t2 �1 + (j�1js)22 �� 14 � C ea�t 1(1 + (j�1js)2) 14 :If now a2 � b � j�1j2 � 2 (a2 � b), then sin
e jJ0(r)j � 1 for all r � 0,jF1G(s; �1; 0)j = e�as2 ���J0 �p(j�1j2 + b� a2) s���� � ea�t2 :Finally, if j�1j2 � a2 � b, then sin
e jI0(r)j � C er for all r � 0,jF1G(s; �1; 0)j = e�as2 ���I0 �p(a2 � b� j�1j2) s����� ea�t2 C epa2�b�j�1j2 s � ea�t2 C epa2�b t;and the proof ends as the proof of Lemma 5.4.1. �With this tool in hand, we 
an now prove the theorem.Proof of Theorem 8.1.1. Let us 
onsider v(t; x1) = u(t; x1; 0), (t; x1) 2 R+ � Rd�1 . Equation(8.2) evaluated in x2 = 0 gives the following (
losed) equation for v:v(t; x1) = Z t0 dsZRd�1 G(s; dz1; 0) g(v(t� s; x1 � z1))+Z[0;t℄�Rd�1 M(ds; dz1) v(s; z1) G(t� s; x1 � z1; 0): (8.4)Although G(�; �; 0) is not the Green kernel of any \standard" equation in R+ � Rd�1 , the aboveequation is of the type of the ones studied in [15℄. We 
an therefore apply Theorem 13 of thatpaper; in order to do this, we need to verify (see [16℄) that for all t 2 R+ , G(t; �; 0) 2 O0C(Rd�1)+(whi
h is 
lear from the de�nition of G and the assumptions made on d, a and b), that for all�1 2 Rd�1 , the map t 7! F1G(t; �1; 0) is 
ontinuous (whi
h is also 
lear from the expression ofF1G(t; �1; 0) in (7.1)) and �nally that for all t > 0, there exists h0 > 0 and k : [0; t℄! O0C(Rd�1)+su
h that for all s 2 [0; t℄, h 2 [0; h0℄ and �1 2 Rd�1 ,jF1G(s+ h; �1; 0)�F1G(s; �1; 0)j � F1k(s; �1); (8.5)and Z t0 dsZRd�1 �(d�1) F1k(s; �1)2 <1: (8.6)By Lemma 8.1.2, the distribution-valued fun
tion k whose Fourier transform is de�ned byF1k(s; �1) = 2 C11(t)(1 + (j�1js)2) 14 ;



116 Chapter 8. Non-linear hyperboli
 equation in Rd driven by noise on a hyperplanesati�es (8.5). Note also that for all s 2 [0; t℄, F1k(s; �) 2 OM (Rd�1), so k(s; �) 2 O0C(Rd�1)by (4.2); moreover, k(s; �) is a non-negative distribution on Rd�1 sin
e when s = 0, k(s; �) =2 C11(t) Æ0(�) whi
h is non-negative, and when s > 0, we have by [45, formulas I.2.7 and I.18.29℄:k(s; x1) = ~C C11(t)ps jx1j 14 K 14 � jx1js � ; when d = 2;and k(s; x1) = Ĉ C11(t)s jx1j 34 K 34 � jx1js � ; when d = 3;where K� is the modi�ed Bessel fun
tion of order � of the se
ond kind, whi
h is non-negativeon R+ (see Appendix B). By estimates analogous to those in the proof of Lemma 7.3.1, we alsoobtain thatZ t0 dsZRd�1 �(d�1) F1k(s; �1)2 = Z t0 dsZRd�1 �(d�1) 4 C11(t)2p1 + (j�1js)2� 4 C11(t)2 C7(t)ZRd�1 �(d�1) 1 + ln�p1 + j�1j2�p1 + j�1j2 ;whi
h is �nite by Assumption B00, so (8.6) is proven. Theorem 13 of [15℄ then states that thereexists a unique predi
table pro
ess v whi
h satis�es (8.4). Moreover, the distribution of v(t; x1)is stationnary in x1, the map (t; x1) 7! v(t; x1) is 
ontinuous from R+ � Rd�1 to L2(
) (notethat the 
ontinuity in t is uniform in x1 2 Rd�1) and for all T > 0,sup(t;x1)2[0;T ℄�Rd�1 E(v(t; x1)2) <1: (8.7)So u(t; x1; 0) = v(t; x1) gives the solution of equation (8.2) on the hyperplane x2 = 0. Forx2 6= 0, let us now de�ne u(t; x1; x2) byu(t; x1; x2) = Z t0 dsZRd�1 G(s; dz1; x2) g(v(t� s; x1 � z1)) + (G(t � �; x1 � �; x2) �Mh(v))t;whi
h is not anymore an equation, sin
e v is now a given pro
ess (note that sin
eG(t��; x1��; x2)is non-negative, kG(t � �; x1 � �; x2)kt < 1 and Z = h(v) satis�es 
onditions (6:8) and (6:10),the sto
hasti
 integral is well de�ned by Theorem 6.2.1). This shows dire
tly that u satis�esequation (8.2) and moreover that it is the unique pro
ess to do so. Moreover, it admits a jointlymeasurable modi�
ation sin
e it is 
ontinuous in L2(
), what we now prove. To this end, writeu(t; x1; x2) = A(t; x1; x2) +B(t; x1; x2);where A(t; x1; x2) = Z t0 dsZRd�1 G(s; dz1; x2) g(v(t � s; x1 � z1))and B(t; x1; x2) = (G(t� �; x1 � �; x2) �Mh(v))t:



8.1. Non-linear term restri
ted to the hyperplane 117We �rst verify the L2-
ontinuity of the pro
ess B, following the s
heme of the proof of Lemma7.2.2 and using the pre
ise estimates of Theorem 7.3.3. Let us therefore 
onsider x2, y2 2 R;sup(t;x1)2[0;T ℄�Rd�1 E((B(t; x1 ; y2)�B(t; x1; x2))2)= sup(t;x1)2[0;T ℄�Rd�1 Z t0 dsZRd�1 �h(v)s (d�1) (F1G(t� s;��1; y2)�F1G(t� s;��1; x2))2� sup(t;x1)2[0;T ℄�Rd�1 Z t0 ds supz12Rd�1 E(h(v(s; z1 ))2)�ZRd�1 �(d�1) (F1G(t� s;��1; y2)�F1G(t� s;��1; x2))2;by Theorem 6.2.1. Using the global Lips
hitz property of h (whi
h implies linear growth), we�nd that this expression is less than or equal tosup(s;z1)2[0;T ℄�Rd�1K2 E (1 + v(s; z1)2) �sup(t;x1)2[0;T ℄�Rd�1 ZRd�1 �(d�1)Z t0 ds (F1G(t� s;��1; y2)�F1G(t� s;��1; x2))2;whi
h 
onverges to 0 as y2 ! x2, by (8.7) and the same argument as in proof of Theorem 7.3.3.For x1, y1 2 Rd�1 and x2 2 R, we havesupt2[0;T ℄ E ((B(t; y1 ; x2)�B(t; x1; x2))2)= supt2[0;T ℄Z t0 dsZRd�1 �h(v)s (d�1) F1G(t� s;��1; x2)2 2 (1� 
os(�1 � (y1 � x1)))� supt2[0;T ℄Z t0 ds supz12Rd�1 E (h(v(s; z1))2)�ZRd�1 �(d�1) F1G(t� s;��1; x2)2 2 (1� 
os(�1 � (y1 � x1)))� sup(s;z1)2[0;T ℄�Rd�1K2 E(1 + v(s; z1)2)� supt2[0;T ℄ ZRd�1 �(d�1)Z t0 ds F1G(t� s;��1; x2)2 2 (1� 
os(�1 � (y1 � x1)));whi
h 
onverges to 0 as y1 ! x1.



118 Chapter 8. Non-linear hyperboli
 equation in Rd driven by noise on a hyperplaneConsidering �nally t; h 2 R+ , x1 2 Rd�1 and x2 2 R, we obtainE((B(t + h; x1; x2)�B(t; x1; x2))2)= Z t0 dsZRd�1 �h(v)s (d�1) (F1G(t+ h� s;��1; x2)�F1G(t� s;��1; x2))2+Z t+ht dsZRd�1 �h(v)s (d�1) F1G(t+ h� s;��1; x2)2� sup(s;z1)2[0;t℄�Rd�1 K2 E (1 + v(s; z1)2)�ZRd�1 �(d�1)Z t0 ds (F1G(t+ h� s;��1; x2)�F1G(t� s;��1; x2))2+ sup(s;z1)2[t;t+h0℄�Rd�1 K2 E (1 + v(s; z1)2)�ZRd�1 �(d�1)Z t+ht ds F1G(t+ h� s;��1; x2)2;for all h � h0, and this expression 
onverges to 0 as h ! 0. Sin
e a similar estimate holds forh � 0, we have shown the L2-
ontinuity of the pro
ess B.We now prove the L2-
ontinuity of the pro
ess A following a di�erent order: we �rst showthat the map t 7! A(t; x) is 
ontinuous in L2(
) uniformly in x 2 Rd , then that for �xed t 2 R+ ,the map x1 7! A(t; x1; x2) is 
ontinuous in L2(
) uniformly in x2 2 R and �nally that for �xed(t; x1) 2 R+ � Rd�1 , the map x2 7! A(t; x1; x2) is 
ontinuous in L2(
).Let therefore t; h 2 R+ ;sup(x1;x2)2Rd�1�R E ((A(t + h; x1; x2)�A(t; x1; x2))2)= sup(x1;x2)2Rd�1�R E �Z t+h0 dsZRd�1 G(s; dz1; x2) g(v(t + h� s; x1 � z1))�Z t0 dsZRd�1 G(s; dz1; x2) g(v(t � s; x1 � z1))�2!� 2 sup(x1;x2)2Rd�1�R E �Z t0 dsZRd�1 G(s; dz1; x2)�(g(v(t + h� s; x1 � z1))� g(v(t� s; x1 � z1)))�2!+ 2 sup(x1;x2)2Rd�1�R E �Z t+ht dsZRd�1 G(s; dz1; x2) g(v(t+ h� s; x1 � z1)�2!:Using the Cau
hy-S
hwarz inequality and the Lips
hitz property of g, we �nd that this last



8.1. Non-linear term restri
ted to the hyperplane 119expression is less than or equal to2 sup(x1;x2)2Rd�1�R Z t0 ds G(s;Rd�1 ; x2)�Z t0 dsZRd�1 G(s; dz1; x2) K2 E((v(t + h� s; x1 � z1)� v(t� s; x1 � z1))2)+ 2 sup(x1;x2)2Rd�1�R Z t+ht ds G(s;Rd�1 ; x2)�Z t+ht dsZRd�1 G(s; dz1; x2) K2 E (1 + v(t+ h� s; x1 � z1)2):Note thatG(s;Rd�1 ; x2) = F1G(s; 0; x2) = e�as2 I0�pa2 � bqs2 � x22� 1fjx2j < sg� ea�s2 C epa2�b s = Cs; (8.8)sin
e I0(r) � C er for all r � 0, by (B.3). So after introdu
ing the supremum over x1 under theintegral sign in the above expression, we obtain that it is less than or equal to2 Ct K2 t supx22R Z t0 dsZRd�1 G(s; dz1; x2) supx12Rd�1 E((v(t + h� s; x1)� v(t� s; x1))2)+ 2 Ct+h0 K2 h supx22R Z t+ht dsZRd�1 G(s; dz1; x2) supx12Rd�1 E(1 + v(t+ h� s; x1)2)� 2 C2t K2 tZ t0 ds supx12Rd�1 E ((v(t + h� s; x1)� v(t� s; x1))2)+ 2 C2t+h0 K2 h2 sup(s;x1)2[0;h0℄�Rd�1 E(1 + v(s; x1)2);for all h � h0. By the dominated 
onvergen
e theorem, the �rst term of this expression 
onvergesto 0 as h ! 0, sin
e the pro
ess v is L2-
ontinuous in t, uniformly in x1 2 Rd�1 (see [15℄ and[16℄) and for all h � h0,sup(s;x1)2[0;t℄�Rd�1 E ((v(t + h� s; x1)� v(t� s; x1))2) � 2 sup(s;x1)2[0;t+h0℄�Rd�1 E(v(s; x1 )2) <1;by (8.7). The same 
on
lusion is immediate for the se
ond term: similar estimates give the
onvergen
e to 0 for h � 0.Let now t 2 R+ and x1, y1 2 Rd�1 ;supx22R E ((A(t; y1 ; x2)�A(t; x1; x2))2)= supx22R E �Z t0 dsZRd�1 G(s; dz1; x2) (g(v(t � s; y1 � z1))� g(v(t � s; x1 � z1)))�2!:



120 Chapter 8. Non-linear hyperboli
 equation in Rd driven by noise on a hyperplaneUsing, as before, the Cau
hy-S
hwarz inequality and the Lips
hitz property of g, we �nd thatthis last expression is less than or equal tosupx22RZ t0 ds G(s;Rd�1 ; x2)�Z t0 dsZRd�1 G(s; dz1; x2) K2 E ((v(t � s; y1 � z1)� v(t� s; x1 � z1))2):By (8.8) and the stationnarity of the distribution of v in x1, this expression is less than or equalto Ct K2 t supx22R Z t0 dsZRd�1 G(s; dz1; x2) E((v(t � s; y1)� v(t� s; x1))2)� C2t K2 t Z t0 ds E((v(t � s; y1)� v(t� s; x1))2):Now, sin
e the pro
ess v is L2-
ontinuous in x1 and satis�es (8.7), we 
on
lude by the dominated
onvergen
e theorem that the above expression 
onverges to 0 as y1 ! x1.Finally, let t 2 R+ , x1 2 Rd�1 and x2, y2 2 R;E ((A(t; x1 ; y2)�A(t; x1; x2))2)= E �Z t0 dsZRd�1 G(s; dz1; y2) g(v(t � s; x1 � z1))�Z t0 dsZRd�1 G(s; dz1; x2) g(v(t� s; x1 � z1))�2!:At this point, we need to 
onsider separately the two 
ases d = 2 and d = 3. Let us begin bythe 
ase d = 2: using (A.12) and the 
hange of variable z1 = ps2 � x22 w1, we obtain for ameasurable fun
tion h de�ned on R,ZRG(s; dz1; x2) h(z1)= 1fjx2j < sg e�as2� Zjz1j<ps2�x22 dz1 
osh�p(a2 � b) (s2 � x22 � z21)�ps2 � x22 � z21 h(z1)= 1fjx2j < sg e�as2� Zjw1j<1 dw1 
osh�p(a2 � b) (s2 � x22) jw1j�p1� w21 h�qs2 � x22 w1� :So ZRG(s; dz1; y2) h(z1)� ZRG(s; dz1; x2) h(z1)= e�as2� Zjw1j<1 dw1p1� jw1j2 (H(s; w1; y2)�H(s; w1; x2)):where H(s; w1; x2) = 
osh�q(a2 � b) (s2 � x22) jw1j� h�qs2 � x22 w1� 1fjx2j < sg:



8.1. Non-linear term restri
ted to the hyperplane 121Using the above equality with h(z1) = g(v(t � s; x1 � z1)) and the Cau
hy-S
hwarz inequality,we obtain E ((A(t; x1 ; y2)�A(t; x1; x2))2) � Z t0 ds e�as2� Zjw1j<1 dw1p1� jw1j2� Z t0 ds e�as2� Zjw1j<1 dw1p1� jw1j2 E((H(s; w1 ; y2)�H(s; w1; x2))2):Sin
e E ((H(s; w1 ; y2)�H(s; w1; x2))2) !y2!x2 0;for s 6= jx2j and w1 2 B1(0; 1), by the 
ontinuity of 
osh, the Lips
hitz property of g and theL2-
ontinuity of v; sin
e moreover H is bounded by the Lips
hitz property of g and (8.7), andsin
e �nally Z t0 ds e�as2� Zjw1j<1 dw1p1� jw1j2 <1;we obtain by the dominated 
onvergen
e theorem that when d = 2,E ((A(t; x1 ; y2)�A(t; x1; x2))2) !y2!x2 0:When d = 3, using (A.13) and the 
hange of variable z1 = ps2 � x22 w1, we obtain for ameasurable fun
tion h de�ned on R2 ,ZR2 G(s; dz1; x2) h(z1)= 1fjx2j < sg e�as4�  1ps2 � x22 Zjz1j=ps2�x22 d�(z1) h(z1)+pa2 � b Zjz1j<ps2�x22 dz1 I1 �p(a2 � b) (s2 � x22 � jz1j2)�ps2 � x22 � jz1j2 h(z1)!= 1fjx2j < sg e�as4�  Zjw1j=1 d�(w1) h�qs2 � x22 w1�+q(a2 � b) (s2 � x22) Zjw1j<1 dw1 I1 �p(a2 � b) (s2 � x22) jw1j�p1� jw1j2 h�qs2 � x22 w1�!;where I1 is the �rst order modi�ed Bessel fun
tion of the �rst kind (see Appendix B). SoZR2 G(s; dz1; y2) h(z1)� ZR2 G(s; dz1; x2) h(z1)= e�as4�  Zjw1j=1 d�(w1) ( ~H(s; w1; y2)� ~H(s; w1; x2))+Zjw1j<1 dw1p1� jw1j2 (Ĥ(s; w1; y2)� Ĥ(s; w1; x2))!;where ~H(s; w1; x2) = h�qs2 � x22 w1� 1fjx2j < sg



122 Chapter 8. Non-linear hyperboli
 equation in Rd driven by noise on a hyperplaneand Ĥ(s; w1; x2) = I1�q(a2 � b) (s2 � x22) jw1j� h�qs2 � x22 w1� 1fjx2j < sg:Applying the same te
hnique as before, we 
on
lude thatE((A(t; x1 ; y2)�A(t; x1; x2))2) !y2!x2 0also in the 
ase d = 3. So we have shown the L2-
ontinuity of the pro
esses A and B, thereforethat of the pro
ess u. Let us now 
he
k that u satis�es (8.3), verifying separately that bothpro
esses A and B do:E(A(t; x1 ; x2)2) = E  �Z t0 dsZRd�1 G(s; dz1; x2) g(v(t� s; x1 � z1))�2!� Z t0 ds G(s;Rd�1 ; x2)�Z t0 dsZRd�1 G(s; dz1; x2) K2 E (1 + v(t� s; x1 � z1)2);by the Cau
hy-S
hwarz inequality and the global Lips
hitz property of g. By estimates (8.7)and (8.8), this expression is less than or equal toC2t K2 t2 sup(s;x1)2[0;t℄�Rd�1 E (1 + v(s; x1)2);so sup(t;x)2[0;T ℄�Rd E (A(t; x)2) � C2T K2 T 2 sup(t;x1)2[0;T ℄�Rd�1 E (1 + v(t; x1)2) <1:On the other hand, we haveE (B(t; x1 ; x2)2) = Z t0 dsZRd�1 �h(v)s (d�1) F1G(t� s;��1; x2)2� Z t0 ds supy12Rd�1 E(1 + v(s; y1)2)ZRd�1 �(d�1) F1G(t� s;��1; x2)2;by Theorem 6.2.1 and the global Lips
hitz property of h. But this last expression is also lessthan or equal to sup(s;x1)2[0;t℄�Rd�1 E(1 + v(s; x1)2) ZRd�1 �(d�1)Z t0 ds F1G(t� s;��1; x2)2:So �nally, sup(t;x)2[0;T ℄�Rd E (B(t; x)2)� sup(t;x1)2[0;T ℄�Rd�1 E (1 + v(t; x1)2) C7(T )ZRd�1 �(d�1) 1 + ln�p1 + j�1j2�p1 + j�1j2 <1;by Lemma 7.3.1 and Assumption B00. The pro
ess u sati�es then (8.3) and we 
an applyProposition 2 of [14℄ to 
on
lude that u is predi
table. This 
ompletes the proof. �



8.2. Global semi-linear equation 123Remark 8.1.3. From the pre
eding proof, we see that the solution u(t; x1; 0) of the equationrestri
ted to the hyperplane x2 = 0 is spatially homogeneous in x1 (that is, its statisti
alproperties do not depend on x1). Moreover, it turns out also from the pre
eding proof that ifwe want to add initial 
onditions to the equation, we need to assume that they do not dependon x1 if we want to leave the proof un
hanged.8.2 Global semi-linear equationWe study here the following formal semi-linear equation:8>>>>>>><>>>>>>>:
�2u�t2 (t; x) + 2a �u�t (t; x)��u(t; x)= g(u(t; x)) + _F (t; x1) Æ0(x2); t 2 R+ ; x 2 Rd ;u(0; x) = �u�t (0; x) = 0; x 2 Rd ; (8.9)

where g is a real-valued fun
tion and _F is the noise 
on
entrated on the hyperplane x2 = 0
onsidered in Chapter 6 (with k = d� 1).The solution of this equation represents a wave generated by a non-linear sour
e g distributedon the whole spa
e with an additive noise term on the hyperplane x2 = 0.Note that the 
oeÆ
ient b of equation (6.5) is equal here to 0. The reason for this is that theterm bu 
an be in
luded in the term g(u). So part (ii) of Assumption C0 made at the beginningof this 
hapter only imposes here that d 2 f2; 3g.Following the argument of the pre
eding se
tion, a mild solution of equation (8.9) is then apredi
table pro
ess u = fu(t; x); (t; x) 2 R+ � Rdg whi
h satis�esu(t; x) = Z t0 dsZRd G(s; dz) g(u(t� s; x� z))+Z[0;t℄�Rd�1 M(ds; dz1) G(t� s; x1 � z1; x2); (8.10)P-a.s., for all (t; x) 2 R+ �Rd , where G is the solution of equation (5.15) with parameter b = 0.We 
an now state the following existen
e and uniqueness theorem.Theorem 8.2.1. Under Assumptions B00 and C0, and if g is a globally Lips
hitz fun
tion, thereexists a unique mild solution u = fu(t; x); (t; x) 2 R+ � Rdg to equation (8.9). Moreover, themap (t; x) 7! u(t; x) is 
ontinuous from R+ � Rd to L2(
) and for all T > 0,sup(t;x)2[0;T ℄�Rd E(u(t; x)2) <1:



124 Chapter 8. Non-linear hyperboli
 equation in Rd driven by noise on a hyperplaneProof. Following the s
heme of the proof of Theorem 13 in [15℄, let us de�ne re
ursively thesequen
eu(0)(t; x) = 0; u(n+1)(t; x) = Z t0 dsZRd G(s; dz) g(u(n)(t� s; x� z))+Z[0;t℄�Rd�1 M(ds; dz1) G(t� s; x1 � z1; x2):From this, we have the following re
urren
e relation for n � 1:u(n+1)(t; x)� u(n)(t; x) = Z t0 dsZRd G(s; dz) (g(u(n)(t� s; x� z))� g(u(n�1)(t� s; x� z)));sin
e the sto
hasti
 term in the above de�nition does not depend on n. We 
an therefore applythe argument of [15℄ to 
on
lude that the sequen
e (u(n)) 
onverges to the solution of equation(8.10). The only di�eren
e 
omes in the evaluation of the �rst term of the sequen
e:u(1)(t; x) = Z t0 dsZRd G(s; dz) g(0) + Z[0;t℄�Rd�1 M(ds; dz1) G(t� s; x1 � z1; x2):To show that the re
urren
e in [15℄ works, we need to show thatsup(t;x)2[0;T ℄�Rd E(u(1) (t; x)2) <1: (8.11)Let us 
omputesup(t;x)2[0;T ℄�Rd E (u(1)(t; x)2) � 2 sup(t;x)2[0;T ℄�Rd�Z t0 ds G(s;Rd) g(0)�2+ 2 sup(t;x)2[0;T ℄�Rd E 0� Z[0;t℄�Rd�1 M(ds; dz1) G(t� s; x1 � z1; x2)!21A :Sin
e when a = 0, Z t0 ds G(s;Rd) = Z t0 ds FG(s; 0) = Z t0 ds s = t22 ;and when a 6= 0, Z t0 ds G(s;Rd) = Z t0 ds e�as sinh jajsjaj � t (1 ^ e2jajt)jaj ;we obtain that sup(t;x)2[0;T ℄�Rd�Z t0 ds G(s;Rd) g(0)�2 <1:On the other hand, using the isometry (6.13) and Lemma 7.3.1, we havesup(t;x)2[0;T ℄�Rd E 0� Z[0;t℄�Rd�1 M(ds; dz1) G(t� s; x1 � z1; x2)!21A= sup(t;x2)2[0;T ℄�RZ t0 dsZRd�1 �(d�1) F1G(t� s; �1; x2)2� C7(T ) ZRd�1 �(d�1) 1 + ln�p1 + j�1j2�p1 + j�1j2 <1;by Assumption B00, so estimate (8.11) is satis�ed and the theorem is proven.



8.2. Global semi-linear equation 125Note �nally that be
ause of te
hni
al diÆ
ulties, the equation8>>>>>>><>>>>>>>:
�2u�t2 (t; x) + 2a �u�t (t; x) ��u(t; x)= g(u(t; x)) + h(u(t; x)) _F (t; x1) Æ0(x2); t 2 R+ ; x 2 Rd ;u(0; x) = �u�t (0; x) = 0; x 2 Rd ;has not been studied. Contrary to the 
ase of a non-linear term restri
ted to the hyperplanex2 = 0, the Pi
ard's iteration s
heme used in [15℄ 
ould not be applied, mainly be
ause thefollowing term sup(t;x)2[0;T ℄�Rd E((u(n+1) (t; x)� u(n)(t; x))2)
ould not be estimated with respe
t to the pre
eding term in the sequen
e, without the strongassumption that � is �nite (that is, � is regular). The problem 
omes essentially from thesupremum, whi
h has in parti
ular to be taken over all x2 2 R.
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 equation in Rd driven by noise on a hyperplane



Chapter 9Linear heat equation in R d driven bynoise on a k-planeLet us 
onsider the following paraboli
 equation:8><>: �u�t (t; x)� 12 �u(t; x) = _F (t; x1) Æ0(x2); t 2 R+ ; x 2 Rd ;u(0; x) = 0; x 2 Rd ; (9.1)where _F is the spatially homogeneous noise on the k-plane Rk � f0g 
onsidered in Chapter 6.Let us re
all that in the 
ase of a spatially homogeneous noise in Rd , the optimal 
onditionon the spe
tral measure � of the noise whi
h guarantees the existen
e of a real-valued solutionis the same for both paraboli
 and hyperboli
 equations (see [15, 30℄). We shall see in this 
hap-ter that the situation is 
ompletely di�erent in the 
ase of a noise 
on
entrated on a k-plane,be
ause it is the regularity of the Green kernel that plays a 
ru
ial role, whi
h was not the 
asefor a spatially homogeneous noise on Rd .Let us go �rst over some key points from Chapter 5.9.1 Existen
e of a weak solutionThe �rst step of our analysis 
onsists, as before, in giving a weak formulation to equation (9.1);a weak solution of equation (9.1) is a pro
ess u = fu(t); t 2 R+g with values in S 0(Rd ) su
hthat P� a:s:, for all ' 2 S(Rd ), the map t 7! hu(t); 'i is 
ontinuous on R+ and satis�es, for allt 2 R+ , 8>><>>: hu(t); 'i � 12 Z t0 ds hu(s);�'i = Ft('(�; 0));hu(0); 'i = 0: (9.2)
127



128 Chapter 9. Linear heat equation in Rd driven by noise on a k-planeRemark 9.1.1. As for the hyperboli
 equation, this equation 
an also be interpreted whenk = d� 1 as the weak formulation of the following 
lassi
al equation in the upper half spa
e:�u�t (t; x)� 12�u(t; x) = 0; (t; x) 2 R+ � Rd�1 � R+ ;with the sto
hasti
 boundary 
ondition�u�x2 (t; x1; 0) = _F (t; x1):We then 
onsider the Green kernel of this equation, whi
h is the solution of�G�t � 12 �G = 0; G(0) = Æ0: (9.3)Its Fourier transform in x satis�es�FG�t (t; �) + j�j22 FG(t; �) = 0; FG(0; �) = 1; (9.4)so FG(t; �) = e� j�j2 t2 ; t 2 R+ ; � 2 Rd ; (9.5)or equivalently, G(t; x) = 1(2�t) d2 e� jxj22t ; t > 0; x 2 Rd ; (9.6)and this implies that for all t > 0, G(t; �) 2 S(Rd )+ (that is, the spa
e of non-negative fun
tionsin S(Rd)).Certain properties of the Green kernel of the hyperboli
 equation de�ned by equation (5.15)are also satis�ed by the present Green kernel. In parti
ular, Lemmas 5.4.2 and 5.4.3 are satis�ed,as mentioned before. This explains why the 
ondition on the spe
tral measure � whi
h guaran-tees the existen
e of a real-valued solution is the same for hyperboli
 and paraboli
 equationsin the 
ase of a spatially homogeneous noise.Following the development in Chapter 5, whi
h led to Theorem 5.5.4, one 
an show theexisten
e of a solution to equation (9.2), whi
h is given byhu(t); 'i = Z[0;t℄�Rk M(ds; dx1) (G(t � s) � ')(x1; 0); t 2 R+ ; ' 2 S(Rd); (9.7)where M is the worthy martingale measure de�ned in Se
tion 6.1. The question of uniquenessis more deli
ate. For the hyperboli
 equation, we used Lemma 5.5.3 for proving uniqueness, andmore spe
i�
ally the fa
t that for a given smooth initial or terminal 
ondition, there exists aunique 
lassi
al solution to equation (5.27). This time-reversal property of the solution of thehyperboli
 equation does not hold in the 
ase of the heat equation. Moreover, it is a well knownfa
t that even for the 
lassi
al heat equation, one needs to impose some restri
tion on the growthof the solution in order to obtain uniqueness (see for example [24℄).



9.2. Existen
e of a real-valued solution 1299.2 Existen
e of a real-valued solutionBefore going into an analysis similar to that made in Chapter 7 for the hyperboli
 equation, letus note that the analysis of Chapter 6 
an be performed with a few modi�
ations (sin
e Lemma5.4.1 is not satis�ed, some estimates must be 
hanged), but the results obtained are exa
tly thesame as those obtained for the hyperboli
 equation (6.5). We are going to see that, 
ontraryto the 
ase of the hyperboli
 equation, these results are absolutely not optimal for the heatequation (9.2). The reason for this di�eren
e is that the solution of the heat equation does notbelong in general to some Sobolev spa
e H�(Rd�k ) in the 
oordinate x2, even when there existsa real-valued solution.Let us then 
onsider the Fourier transform of G in the �rst k 
oordinates of x, whi
h 
an beeasily dedu
ed from (9.5): F1G(t; �1; x2) = e� j�1 j2 t2 1(2�t) d�k2 e� jx2j22t : (9.8)We will need the following estimate on F1G.Lemma 9.2.1. For all T > 0 and " > 0, there exist C(T; ") > 0 and a fun
tion P withpolynomial growth su
h thatZ t0 ds F1G(s; �1; x2)2 � C(T; ") P (�1) e�2 " j�1j;for all t 2 [0; T ℄, �1 2 Rk and x2 2 Rd�k su
h that jx2j � ".Proof. If j�1j � 1, thenZ t0 ds F1G(s; �1; x2)2 = Z t0 ds e�j�1j2 s 1(2�s)d�k e� jx2j2s� Z 10 ds e�j�1j2 s 1(2�s)d�k e� jx2j2s :Using now [5, formula I.5.34℄, we obtain that this last expression is equal to1(2�)d�k 2 � j�1jjx2j�d�k�1 Kd�k�1(2 jx2j j�1j);where K� is the modi�ed Bessel fun
tion of the se
ond kind and of order � (see Appendix B).By estimates (B.1) and (B.2), there exists C > 0 su
h that for all r > 0,K�(r) � 8>><>>: C e�r ln �1r� if � = 0;C e�rrj�j if � 6= 0;so we obtain that for j�1j � 1 and jx2j � ",Z t0 ds F1G(s; �1; x2)2 � 1(2�)d�k 2 C e�2" j�1j ln� 12"� ;



130 Chapter 9. Linear heat equation in Rd driven by noise on a k-planewhen k = d� 1, andZ t0 ds F1G(s; �1; x2)2 � 1(2�)d�k 2 � j�1j" �d�k�1 C e�2" j�1j(2")d�k�1 ;when k < d� 1. If j�1j � 1, thenZ t0 ds F1G(s; �1; x2)2 � Z t0 ds 1(2�s)d�k e� jx2j2s � Z T0 ds 1(2�s)d�k e� "2s <1;and the proof ends like the proof of Lemma 5.4.1.We are going to prove now, following the s
heme of Se
tion 7.2, that without any additionalassumption on the spe
tral measure � of the noise, there exists a real-valued pro
ess X de�nedoutside the k-plane x2 = 0 whi
h is the weak solution of equation (9.2). The only restri
tionhere is that we assume that the 
ovarian
e � is non-negative on Rk , in order to use Theorem6.2.1. Note the strong di�eren
e with the 
ase of the hyperboli
 equation, for whi
h there neverexists a real-valued solution when k < d � 1, and even in the 
ase k = d � 1, the existen
e ofsu
h a real-valued solution is subje
t to an important restri
tion (namely Assumption B0).We �rst have the following two lemmas.Lemma 9.2.2. For (t; x1; x2) 2 R+ � Rk � Rd�knf0g �xed, the fun
tion �t;x1;x2 : [0; t℄ !O0C(Rk )+ de�ned by �t;x1;x2(s; �) = G(t� s; x1 � �; x2); s 2 [0; t℄;belongs to Ht.Proof. We use here Theorem 6.2.1; sin
e �t;x1;x2(s; �) 2 O0C(Rk )+ for a �xed s 2 [0; t℄ andF1�t;x1;x2(s; �1) = F1G(t� s;��1; x2) �x1(�1)is a Borel-measurable fun
tion, it suÆ
es then to 
he
k that k�t;x1;x2kt <1:k�t;x1;x2k2t = ZRk �(d�1)Z t0 ds F1G(t� s;��1; x2)2� C(t; jx2j) ZRk �(d�1) P (�1) e�2 jx2j j�1j;by Lemma 9.2.1. Sin
e � is a tempered measure and P has polynomial growth, the aboveexpression is �nite for all x2 6= 0, so the lemma is proven.Lemma 9.2.3. Let M be the worthy martingale measure de�ned in Se
tion 6.1. The real-valuedpro
ess X = fX(t; x1; x2); (t; x1; x2) 2 R+ � Rk � Rd�knf0gg de�ned byX(t; x1; x2) = Z[0;t℄�Rk M(ds; dz1) G(t� s; x1 � z1; x2); (t; x1; x2) 2 R+ � Rk � Rd�knf0g;



9.2. Existen
e of a real-valued solution 131is a 
entered Gaussian pro
ess whose 
ovarian
e is given byE(X(t; x1 ; x2) X(s; y1; y2))= ZRk �(d�1)Z t^s0 dr F1G(t� r;��1; x2) F1G(s� r;��1; y2) �x1�y1(�1); (9.9)and su
h that the map (t; x1; x2) 7! X(t; x1; x2) is 
ontinuous from R+ � Rk � Rd�knf0g toL2(
).Remark 9.2.4. This result and [42, prop. 3.6 and 
or. 3.8℄ imply that the pro
ess X admits amodi�
ation ~X su
h that the map (t; x1; x2; !) 7! ~X(t; x1; x2; !) is jointly measurable. We willimpli
itely 
onsider this modi�
ation in the following.Proof of Lemma 9.2.3 By Lemma 9.2.2, the pro
ess X is well de�ned. As in the 
ase of thehyperboli
 equation, the fa
t that X is a 
entered Gaussian pro
ess with the 
ovarian
e givenabove follows easily from the isometry (6.13) and sin
e � and F1G are symmetri
 in �1, (9.9) isequal toZRd�1 �(d�1)Z t^s0 dr F1G(t� r;��1; x2) F1G(s� r;��1; y2) 
os(�1 � (x1 � y1));so X is real-valued.In order to show that the map (t; x1; x2) 7! X(t; x1; x2) is 
ontinuous from R+�Rk�Rd�knf0gto L2(
), we show that for all T > 0 and R > " > 0, it is 
ontinuous from [0; T ℄�Rk �K(R; ")to L2(
), where K(R; ") = fx2 2 Rd�k su
h that R � jx2j � "g:And we do this in two steps, showing �rst that there exists C(T;R; ") > 0 su
h thatE ((X(t; y1 ; y2)�X(t; x1; x2))2) � C(T;R; ") (jy1 � x1j2 + jy2 � x2j2); (9.10)for all t 2 [0; T ℄, x1; y1 2 Rk and x2; y2 2 K(R; "), whi
h implies that the map (x1; x2) 7!X(t; x1; x2) is L2-
ontinuous in Rk � K(R; "), uniformly in t 2 [0; T ℄. The se
ond step 
on-sists simply in showing that for �xed (x1; x2) 2 Rk � K(R; "), the map t 7! X(t; x1; x2) isL2-
ontinuous.We begin by establishing (9.10). We haveE ((X(t; y1 ; y2)�X(t; x1; x2))2)� 2 (E ((X(t; y1 ; y2)�X(t; x1; y2))2) + E((X(t; x1 ; y2)�X(t; x1; x2))2); (9.11)so we 
an handle the two terms separately. Let us then 
omputeE ((X(t; y1 ; y2)�X(t; x1; y2))2)= ZRk �(d�1)Z t0 ds F1G(t� s;��1; y2)2 j�y1(�1)� �x1(�1)j2:



132 Chapter 9. Linear heat equation in Rd driven by noise on a k-planeSin
e j�y1(�1)� �x1(�1)j2 = ����Z y1��1x1��1 dr eir����2 � j�1j2 jy1 � x1j2;we obtain by Lemma 9.2.1 thatE ((X(t; y1 ; y2)�X(t; x1; y2))2) � C(T; ")ZRk �(d�1) P (�1) j�1j2 e�2 " j�1j jy1 � x1j2;whi
h gives the desired result for the �rst term of (9.11), sin
eZRk �(d�1) P (�1) j�1j2 e�2 " j�1j <1:Let us now 
onsider the se
ond term:E((X(t; x1 ; y2)�X(t; x1; x2))2)= ZRk �(d�1)Z t0 ds (F1G(t� s;��1; y2)�F1G(t� s;��1; x2))2= ZRk �(d�1)Z t0 ds e�j�1j2 s 1(2�s)d�k �e� jx2j22s � e� jy2j22s �2 :Suppose without loss of generality that jy2j � jx2j. Then�e� jy2j22s � e� jy2j22s �2 = e� jx2j2s �e� jy2j2�jx2j22s � 1�2 :Sin
e 0 � 1� e�x � x; 8x � 0;and jy2j2 � jx2j22s = (jy2j+ jx2j) (jy2j � jx2j)2s � Rs jy2 � x2j;we obtain that E((X(t; x1 ; y2)�X(t; x1; x2))2)= ZRk �(d�1)Z t0 ds e�j�1j2 s 1(2�s)d�k e� jx2j2s R2s2 jy2 � x2j2:By estimates similar to those 
arried out in the proof of Lemma 9.2.1, we obtain that there exist~C(T; ") > 0 and a fun
tion ~P with polynomial growth su
h thatZ t0 ds e�j�1j2 s 1(2�s)d�k e� jx2j2s 1s2 � ~C(T; ") ~P (�1) e�2 " j�1j; 8t 2 [0; T ℄; �1 2 Rk ; jx2j � ";so we have the bound that we wanted for the se
ond term of (9.11), be
auseZRk �(d�1) ~P (�1) e�2 " j�1j <1:



9.2. Existen
e of a real-valued solution 133Finally, we need to prove the L2-
ontinuity in t; 
onsider (t; x1; x2) 2 [0; T ℄�Rk �K(R; ") �xedand h � 0: E ((X(t + h; x1; x2)�X(t; x1; x2))2)= ZRk �(d�1)Z t0 ds (F1G(s+ h;��1; x2)�F1G(s;��1; x2))2 (9.12)+ZRk �(d�1)Z h0 ds F1G(s;��1; x2)2: (9.13)Sin
e for �1 2 Rk and jx2j � " �xed,F1G(s+ h;��1; x2)�F1G(s;��1; x2) !h!0 0for all s 2 [0; t℄ and sin
e for all h � h0,sups2[0;t℄ (F1G(s+ h;��1; x2)�F1G(s;��1; x2))2� 2 sups2[0;t℄ �e�j�1j2(s+h) 1(2�(s+ h))d�k e� jx2j2s+h + e�j�1j2s 1(2�s)d�k e� jx2j2s �� 4 sups2[0;t+h0℄ 1(2�s)d�k e� "2s <1;we obtain by the dominated 
onvergen
e theorem thatZ t0 ds (F1G(s+ h;��1; x2)�F1G(s;��1; x2))2 !h!0 0:Moreover, for all h � h0, Z t0 ds (F1G(s+ h;��1; x2)�F1G(s;��1; x2))2� 4 Z t+h0 ds F1G(s;��1; x2)2� 4 C(t+ h0; ") P (�1) e�2 " j�1j;by Lemma 9.2.1, so using on
e again the dominated 
onvergen
e theorem together with the fa
tthat ZRk �(d�1) P (�1) e�2 " j�1j <1;we obtain that (9.12) 
onverges to 0 as h! 0. Consider now (9.13):Z h0 ds F1G(s;��1; x2)2 = Z h0 ds e�j�1j2 s 1(2�s)d�k e� jx2j2s� Z h0 ds e�j�1j2 s 1(2�s)d�k e� jx2j22s e� jx2j22h� C(h0; "p2) P (�1) e�p2 " j�1j e� "22h



134 Chapter 9. Linear heat equation in Rd driven by noise on a k-planefor all h � h0 by Lemma 9.2.1. So (9.13) is less than or equal toC(h0; "p2)ZRk �(d�1) P (�1) e�p2 " j�1j e� "22hwhi
h 
onverges to 0 as h! 0, sin
eZRk �(d�1) P (�1) e�p2 " j�1j <1:This shows the right-
ontinuity in t of the pro
ess X (in L2(
)). The left-
ontinuity followsfrom the same argument as in the proof of Lemma 6.3.3, and this 
ompletes the proof. �We 
an now state the following existen
e theorem.Theorem 9.2.5. Let u be the solution of equation (9.2). There exists then a real-valued 
enteredGaussian pro
ess X = fX(t; x1; x2); (t; x1; x2) 2 R+�Rk �Rd�knf0gg whose 
ovarian
e is givenby formula (9.9), su
h that the map (t; x1; x2) 7! X(t; x1; x2) is 
ontinuous from R+ � Rk �Rd�knf0g to L2(
) and hu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:;for all t 2 R+ and ' 2 S(Rd ) su
h that supp ' � Rk � Rd�knf0g.Proof. The �rst part of the theorem follows dire
tly from Lemmas 9.2.2 and 9.2.3. The proof ofthe last equality follows then exa
tly the argument of the proof of Lemma 7.2.4.Remark 9.2.6. This theorem implies in parti
ular that there exists a fun
tion-valued solutioneven when the noise is white, whi
h was the 
ase studied in [61℄ (for k = d�1). It is therefore 
learthat the results obtained in Chapters 2 and 3 are not optimal for the existen
e of a real-valuedweak solution of the heat equation driven by boundary noise in a bounded domain: 
on
erningthis subje
t, see the extended analysis in [61℄ of paraboli
 partial di�erential equations drivenby white boundary noises.One question now remains: under some additional assumption on �, does there exist a real-valued solution of equation (9.2) whi
h is de�ned for all (t; x) 2 R+ � Rd? The next theoremshows that the answer is negative.Theorem 9.2.7. Let u be the solution of equation (9.2). There does not exist then a real-valuedsquare integrable pro
ess X = fX(t; x); (t; x) 2 R+ � Rdg su
h that the map (t; x) 7! X(t; x) is
ontinuous from R+ � Rd to L2(
) andhu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:; 8t 2 R+ ; ' 2 S(Rd):Proof. Suppose that there exists a pro
ess X satisfying the above 
onditions. As in the proofof Theorem 7.2.5, let us de�ne, for t 2 R+ and x1 2 Rk , '(n)x1;0 = Æ(x1;0) �  n 2 S(Rd ), where



9.2. Existen
e of a real-valued solution 135( n) is a sequen
e of non-negative and 
ompa
tly supported approximations of Æ0 in Rd . By theassumptions made on X, we obtain thatlimn!1 E (jhu(t); '(n)x1 ;0ij2) = E (X(t; x1 ; 0)2) <1: (9.14)On the other hand,E(jhu(t); '(n)x1 ;0ij2) = ZRk �(d�1)Z t0 ds ���F1(G(t� s) � '(n)x1;0)(�1; 0)���2= ZRk �(d�1)Z t0 ds ���F1(G(s) � '(n)x1;0)(�1; 0)���2 :Moreover, by arguments similar to those used in the proof of Theorem 7.2.5,F1(G(s) � '(n)x1;0)(�1; 0) !n!1 F1G(s; �1; 0) �x1(�1);for all (s; �1) 2 ℄0; t℄ � Rk . So Fatou's lemma tells us thatlimn!1 E(jhu(t); '(n)x1 ;0ij2) � ZRk �(d�1)Z t0 ds F1G(s; �1; 0)2:But sin
e we have, for a �xed �1 2 Rk ,Z t0 ds F1G(s; �1; 0)2 = Z t0 ds e�j�1j2 s 1(2�s)d�k =1;the above expression is also in�nite, whi
h 
ontradi
ts (9.14), so the theorem is proven.This theorem implies, among other things, that we will not be able to 
onsider non-linearequations of the form�u�t (t; x)� 12 �u(t; x) = f(u(t; x1; 0)) Æ0(x2) + g(u(t; x1; 0)) _F (t; x1) Æ0(x2):On the other hand, it is possible to analyze equations of the form�u�t (t; x)� 12 �u(t; x) = h(u(t; x)) + _F (t; x1) Æ0(x2);be
ause the solution u does not need to be de�ned on the k-plane in this 
ase. Sin
e this studyhas been performed quite extensively in [61℄ in the 
ase of a white noise 
on
entrated on a hy-perplane (and even more generally on a C1 boundary), we will not go deeper into this analysis(remember that the boundary noise in [61℄ was interpreted as a sto
hasti
 boundary 
ondition).One 
ould also noti
e that we have skipped the question of the H�older regularity of the so-lution in the pre
eding se
tion. A
tually, looking at the proof of Lemma 9.2.3, one 
an alreadynoti
e that (9.11) implies that the pro
ess X is P � a:s: lo
ally H�older-
ontinuous in x withexponent 
 < 1 on Rk � Rd�knf0g. But the regularizing property of the Green kernel impliesmu
h more, that is, the pro
essX is P�a:s: C1 on R+�Rk�Rd�knf0g; see [61℄ for more details.



136 Chapter 9. Linear heat equation in Rd driven by noise on a k-planeFinally, note that in the 
ase of a white noise 
on
entrated on a k-plane (that is, when�(d�1) = d�1), we 
an estimate the behavior in x2 of E(X(t; x1 ; x2)2) near the k-plane x2 = 0:E (X(t; x1 ; x2)2)= Z t0 dsZRk d�1 F1G(s; �1; x2)2 = Z t0 ds 1(2�s)d�k e� jx2j2s ZRk d�1 e�j�1j2s= Z t0 ds 1(2�s)d�k e� jx2j2s �4�s �k2 = C Z t0 ds 1sd� k2 e� jx2j2s ;where C = 22k�d � 3k2 �d. Making now the 
hange of variable u2 = jx2j2s , we obtainE (X(t; x1 ; x2)2) = 2 Cjx2j2d�2�k Z 1jx2jpt du u2d�3�k e�u2 �jx2j!0 1jx2j2d�2�k :This generalizes the estimate obtained in the 
ase of a noise on an hyperplane in [61℄ to the 
aseof a noise on a lower-dimensional plane, and shows that the solution has not an L2-behaviornear the k-plane x2 = 0.



Chapter 10Perspe
tives
Let us �rst make a general 
omment and observe the relationships between some results obtainedin this dissertation. In parti
ular, let us look simultaneously at 
onditions (3.11) and B0. On
ewe realize that the sequen
e (al) of Chapter 3 is nothing but the \spe
tral measure" of the noisein a dis
rete 
ase (be
ause the al are the Fourier 
oeÆ
ients of the 
ovarian
e �), the similaritybetween these two 
onditions be
omes evident. Apart from this, Theorems 3.3.3 and 6.4.3 statethat these are both ne
essary (and nearly suÆ
ient) 
onditions for the existen
e of an L2-typesolution of the heat or the wave equation driven by a boundary noise term with su
h a spe
tralmeasure. Moreover, their reformulation into a 
ondition on the 
ovarian
e gives the same resultwhen d = 2: see Se
tions 3.4, 7.5 and below. On the other hand, one 
an also appre
iate thesimilarity between 
onditions (3.10) and B00. This gives us the intuition that there should besome generalization of the results obtained in this dissertation for equations driven by noises
on
entrated on manifolds of various shapes.A �rst possible generalization of the results obtained in Chapter 3 and Appendix C shouldbe the following: for the heat or the wave equation in a bounded domain D driven by noise
on
entrated on a manifold S whi
h is part of the boundary of the domain, there exists a uniqueweak solution to the equation (in the sense given in (2.4)) with values in L2(D) if and only ifthe 
ovarian
e �S of the noise 
an be represented by a tra
e-
lass linear operator QS on theSobolev spa
e H 12 (S). The question is: does there exist a general argument for this (perhapsusing the general theory developed by G. Da Prato and J. Zab
zyk in [18℄) and what is theintuition behind it? One 
ould also ask if the situation remains the same when the manifoldS is part of the interior of the domain (beginning by studying, as in Se
tion 3.5, the equationdriven by noise 
on
entrated on a sphere of radius r0 less than 1, interior to the ball B(0; 1)).Let us now give a possible generalization of the results obtained in Chapter 7. For this,we �rst make more expli
it the 
onne
tions between the results obtained for the wave equationdriven by noise on a sphere in Chapter 3 and that driven by noise on a hyperplane in Chapter 7.In Chapter 3, we have seen that if there exists an L2-valued solution to the hyperboli
 equation137



138 Chapter 10. Perspe
tivesin the unit dis
 driven by noise 
on
entrated on the unit 
ir
le S1 with isotropi
 
ovarian
e f ,then the following 
ondition is satis�ed:Z �0 d� f(�) ln�1�� <1;and this 
ondition was shown to be nearly suÆ
ient. A �rst improvement of this result would beto 
onsider when there exists a real-valued solution to this equation and see if the same 
ondi-tion appears, whi
h seems plausible. Note however that as already mentioned in Remark 3.2.4,the solution of the equation probably explodes at the 
enter of the sphere, be
ause the entirein
uen
e of the noise on the sphere rea
hes this point at the same time. If we want thereforethe solution to be real-valued in the general setting of a noise 
on
entrated on a manifold, weshould not expe
t this to be true for every point in spa
e (and we will also probably have todistinguish the two 
ases where the solution is de�ned only outside the manifold or also on themanifold itself, as in the 
ase of a noise on a hyperplane).On the other hand, in Chapter 7, we have seen that if there exists a real-valued pro
essde�ned outside the line x2 = 0 whi
h is the weak solution of the wave equation in R2 drivenby noise 
on
entrated on this line with spatially homogenous 
ovarian
e f on the line, then thefollowing 
ondition is satis�ed: Z 10 dr f(r) ln�1r� <1;whose similarity with the above 
ondition has not to be proven. For the equation in Rd (withd � 3) driven by noise on a hyperplane, the above 
ondition simply be
omesZ 10 dr f(r) <1:Although it has not been established that the same kind of 
ondition appears in the 
ase of anoise on a sphere, this is also quite plausible.Moreover, the analysis of Chapter 7 shows that there never exists a real-valued solutionwhen the noise is 
on
entrated on a k-plane of dimension k = d�2, and seemingly neither whenk < d� 2.One 
lear improvement of this work would then be to generalize these results to hyperboli
equations in Rd driven by noise 
on
entrated on a general manifold. The �rst problem is thefollowing: our results are expressed for noises with some rotational or spatial homogeneity. Ona general manifold, su
h a homogeneity does not exist. Nevertheless, we 
an restri
t ourselvesto noises 
on
entrated on a manifold S with 
ovarian
e �S given by�S('; ) = ZS d�(x)ZS d�(y) '(x) f(�(x; y))  (y); ';  2 S(Rd);



139where � is the uniform measure on S (indu
ed by the Lebesgue measure on Rd ), �(x; y) is thegeodesi
 distan
e between two points x and y on the manifold S and f is a 
ontinuous fun
tion on℄0;1[. We 
onje
ture then that there exists a real-valued pro
ess de�ned outside the manifoldS and up to a given time de�ned as the mininum of the radii of 
urvature of the manifold S,whi
h is the solution of the hyperboli
 equation in Rd driven by noise 
on
entrated on S with
ovarian
e of the form given above, only if S is of dimension d� 1 and the following 
onditionis satis�ed: 8>>>><>>>>: Z 10 dr f(r) ln�1r� <1; when d = 2;Z 10 dr f(r) <1; when d � 3:Moreover, this 
ondition should be shown to be nearly suÆ
ient, in a sense to be made pre
ise.We believe that this is a
hievable sin
e the 
onditions obtained are all lo
al, and therefore shouldnot depend on the parti
ular shape of the manifold 
onsidered.
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tives



Appendix AGreen kernel of the hyperboli
equation in R d
A.1 Expressions for the Green kernelFrom (5.18) and by 
al
ulations similar to (7.1) and (7.31), we obtain the following expli
itexpressions for G when d � 3 and a, b are any real numbers. If a2 � b, then:when d = 1:G(t; x) = e�at2 I0 �p(a2 � b) (t2 � x2)� 1fjxj < tg; t 2 R+ ; x 2 R; (A.1)when d = 2:G(t; x) = e�at2� 
osh�p(a2 � b) (t2 � jxj2)�pt2 � jxj2 1fjxj < tg; t 2 R+ ; x 2 R2 ; (A.2)when d = 3:G(t; dx) = e�at4�  1t Æfjxj = tg(dx)+pa2 � b I1 �p(a2 � b) (t2 � jxj2)�pt2 � jxj2 1fjxj < tg dx!; t 2 R+ ; (A.3)and if a2 < b, then:when d = 1:G(t; x) = e�at2 J0 �p(b� a2) (t2 � x2)� 1fjxj < tg; t 2 R+ ; x 2 R; (A.4)when d = 2:G(t; x) = e�at2� 
os�p(b� a2) (t2 � jxj2)�pt2 � jxj2 1fjxj < tg; t 2 R+ ; x 2 R2 ; (A.5)141



142 Appendix A. Green kernel of the hyperboli
 equation in Rdwhen d = 3:G(t; dx) = e�at4�  1t Æfjxj = tg(dx)�pb� a2 J1 �p(b� a2) (t2 � jxj2)�pt2 � jxj2 1fjxj < tg dx!; t 2 R+ ; (A.6)where J� and I� are the regular and modi�ed Bessel fun
tions of the �rst kind and of order �(see Appendix B). For the 
al
ulation in the 
ase d = 3, see [45, formulas I.14.46 and I.18.33℄for the regular part of G; the singular part 
an be 
omputed separately in the 
ase a = b = 0.Note moreover that in the 
ase where a = 0 (namely the 
ase of the Klein-Gordon equation),(A.4) and (A.6) are formulas (7.3.88) and (11.1.19) in [25℄, respe
tively.On the other hand, when d is any positive natural number and a = b = 0, we also have thefollowing expressions for G (see [37, p.281℄):when d = 1: G(t; x) = 12 1fjxj < tg; t 2 R+ ; x 2 R; (A.7)when d is even:G(t; ') = 1(2�) d2 �1t ��t� d�22  td�1 Zjxj<1 dx '(tx)p1� jxj2! ; t 2 R+ ; ' 2 S(Rd); (A.8)when d is odd and d � 3:G(t; ') = 12 1(2�) d�12 �1t ��t� d�32  td�2 Zjxj=1 d�(x) '(tx)! ; t 2 R+ ; ' 2 S(Rd): (A.9)Let us write these expressions more expli
itely when d = 4:G(t; ') = 14�2t2 Zjxj<t dx 3'(x) +r'(x) � xpt2 � jxj2 ; t 2 R+ ; ' 2 S(R4); (A.10)and when d = 5:G(t; ') = 18�2t2 Zjxj=t d�(x) (3'(x) +r'(x) � x) ; t 2 R+ ; ' 2 S(R5): (A.11)From all these expressions, one 
an observe that G(t; �) is a non-negative distribution on Rd forall t 2 R+ if and only if d � 3 and a2 � b. Moreover, it is a measure if and only if d � 3.Remark A.1.1. The reason for whi
h we restri
ted our study in Chapter 5 to the two 
aseswhere either a and b are any real numbers and d � 3, or d is any positive natural number anda = b = 0, is that we need the above expli
it expressions in order to verify property (5.16).Nevertheless, expli
it expressions 
an 
ertainly be 
omputed in the general 
ase and property(5.16) is likely to remain satis�ed.



A.2. Green kernel restri
ted to a hyperplane 143A.2 Green kernel restri
ted to a hyperplaneFrom (A.2), (A.3), (A.5) and (A.6), we dedu
e the following expressions for G(t; �; x2) whend 2 f2; 3g and a; b are any real numbers. Fix t 2 R+ and x2 2 ℄� t; t[. If a2 � b, then:when d = 2: G(t; x1; x2) = e�at2� 
osh�p(a2 � b) (t2 � x22 � x21)�pt2 � x22 � x21 1njx1j<pt2�x22o; (A.12)when d = 3:G(t; dx1; x2) = e�at4�  1pt2 � x22 Ænjx1j=pt2�x22o(dx1)+pa2 � b I1 �p(a2 � b) (t2 � x22 � jx1j2)�pt2 � x22 � jx1j2 1njx1j<pt2�x22o dx1!;(A.13)and if a2 < b, then:when d = 2: G(t; x1; x2) = e�at2� 
os�p(b� a2) (t2 � x22 � x21)�pt2 � x22 � x21 1njx1j<pt2�x22o; (A.14)when d = 3:G(t; dx1; x2) = e�at4�  1pt2 � x22 Ænjx1j=pt2�x22o(dx1)+pb� a2 J1 �p(b� a2) (t2 � x22 � jx1j2)�pt2 � x22 � jx1j2 1njx1j<pt2�x22o dx1!:(A.15)On the other hand, from (A.10) and (A.11), we dedu
e the following expressions for G(t; �; x2)when d = 4 and a = b = 0:G(t; '1; x2) = H �qt2 � x22; '1� 1fjx2j < tg; (A.16)where H(s; '1) = 14�2s2 Zjx1j<s dx1 2'1(x1) +r1'1(x1) � x1ps2 � jx1j2 ; s 2 R+ ; '1 2 S(R3);and when d = 5:G(t; '1; x2) =  H �qt2 � x22; '1�� 18�2t2 Zjx1j=pt2�x22 d�(x1) '1(x1)! 1t 1fjx2j < tg;(A.17)



144 Appendix A. Green kernel of the hyperboli
 equation in RdwhereH(s; '1) = 18�2s2 Zjx1j=s d�(x1) (3'1(x1) +r1'1(x1) � x1) ; s 2 R+ ; '1 2 S(R4 ):As before, we dedu
e from these expressions that G(t; �; x2) is a non-negative measure on Rd�1for all t 2 R+ and x2 2 R if and only if d 2 f2; 3g and a2 � b. Moreover, it is a measure if andonly if d 2 f2; 3g.Remark A.2.1. The reason for whi
h we restri
ted our study in Chapter 7 to the two 
aseswhere either d 2 f2; 3g and a, b are any real numbers, or d 2 f4; 5g and a = b = 0, is thatwe need the above expli
it expressions in order to verify property (7.2). Nevertheless, expli
itexpressions 
an 
ertainly be 
omputed in the general 
ase and property (7.2) is likely to remainsatis�ed.



Appendix BBessel fun
tionsB.1 De�nitionsLet � 2 R. We have the following de�nitions. The regular Bessel funtions of the �rst kind andof order � are given by (see formula 9.1.10 in [1℄):J�(r) = �r2��Xn2N (� r24 )nn! �(� + n+ 1) ; r 2 R+ ;where � is the Gamma fun
tion de�ned in (3.2). The modi�ed Bessel funtions of the �rst kindand of order � are given by (see formula 9.6.10 in [1℄):I�(r) = �r2��Xn2N ( r24 )nn! �(� + n+ 1) ; r 2 R+ :Finally, for � 2 R+ , the modi�ed Bessel funtions of the se
ond kind and of order � are given by(see formula 9.6.23 in [1℄):K�(r) = p��(� + 12) �r2�� Z 11 dt e�rt (t2 � 1)�� 12 ; r 2 R+ ;and K��(r) = K�(r) by formula 9.6.6 in [1℄.Remark B.1.1. From these de�nitions, we dire
tly see that I� and K� are non-negative fun
-tions, independently of the order � 
onsidered. This fa
t is used repeatedly in this dissertation.B.2 EstimatesWe present here some estimates on J0, I0 and K� , with �xed � 2 R. First note that all thesefun
tions are 
ontinuous, ex
ept K� at the point r = 0.Let us begin with K� : by formula 9.7.2 in [1℄, there exists C > 0 su
h that����K�(r)�r �2r e�r���� � Cr 32 ; 8r � 1;145



146 Appendix B. Bessel fun
tionsso there exists C > 0 su
h that K�(r) � C e�r; 8r � 1: (B.1)On the other hand, when r! 0, we have by formulas 9.6.8 and 9.6.9 in [1℄:K�(r) � 8><>: ln �1r � if � = 0;1rj�j if � 6= 0; (B.2)Let us now 
onsider I0. By formula 9.6.16 in [1℄, I0 admits the following integral representationfor r 2 R+ : I0(r) = 1� Z �0 
osh(r 
os(t)) dt;so I0(0) = 1 and I0 is in
reasing on R+ . By formula 9.7.1 in [1℄, there also exists C > 0 su
hthat ����I0(r)� erp2�r ���� � Cr3=2 ; 8r > 0;so there exists C > 0 su
h that I0(r) � C er; 8r � 0: (B.3)Let us �nally 
onsider J0. By formula 9.1.18 in [1℄, J0 admits the following integral representationfor r 2 R+ : J0(r) = 1� Z �0 
os(r sin(t)) dt;so jJ0(r)j � 1 for all r 2 R+ , J0(0) = 1 and J0 is de
reasing on [0; 1℄. By formula 9.1.28 in [1℄,J 00(r) = �J1(r), and by formula 9.2.1 in [1℄, there also exists C > 0 su
h that�����J0(r)�r 2�r 
os�r � �4������ � Cr3=2 ; 8r > 0; (B.4)so there exists C > 0 su
h that J0(r)2 � Cp1 + r2 ; 8r � 0; (B.5)whi
h implies that J0(r)2 � Cr ; 8r > 0: (B.6)Let us also mention the two following useful estimates.Lemma B.2.1. There exists C > 0 su
h that1R Z R0 dr r J0(r)2 � C; 8R � 1:



B.2. Estimates 147Proof. Let us �rst prove the following:limR!1 1R Z R0 dr r J0(r)2 = 1� : (B.7)To see this, note that����r J0(r)2 � 2� 
os��4 � r�2����= �����pr J0(r)�r 2� 
os��4 � r������ �����pr J0(r) +r 2� 
os��4 � r������� C1 + r ; (B.8)by estimates (B.4) and (B.5). This implies that����Z R0 dr r J0(r)2 � 2� Z R0 dr 
os��4 � r�2���� � C ln(1 +R);But sin
e Z R0 dr 
os��4 � r�2 = R2 + 1� sin(�2 � 2R)4 ;we obtain that (B.7) is true, whi
h implies that for all " > 0, there exists R0 > 0 su
h that1R Z R0 dr r J0(r)2 � 1� � "; 8R � R0:Suppose now that R0 > 1 (otherwise, there is nothing left to prove). On [1; R0℄, the abovefun
tion of R is greater than 0, so by the 
ompa
tness of this interval, there exists Æ > 0 su
hthat 1R Z R0 dr r J0(r)2 � Æ; 8R 2 [1; R0℄:The lemma is then satis�ed with C = ( 1� � ") ^ Æ.Lemma B.2.2. There exists C > 0 su
h that for all R � �,Z R1 dr J0(r)2 � ln(R)� � C:Proof. For proving this, we use again (B.8) and obtain that there exists C > 0 su
h that for allr � 1, ����J0(r)2 � 2�r 
os��4 � r�2���� � Cr2 :From this, we dedu
e that for R � �,����Z R1 dr J0(r)2 � 2� Z R1 dr 1r 
os��4 � r�2���� � C (1� 1R ) � C; (B.9)Let us now 
ompute Z R1 dr 
os ��4 � r�2r ;



148 Appendix B. Bessel fun
tionsobserving �rst that Z R1 dr 
os ��4 � r�2r + Z R1 dr sin ��4 � r�2r = ln(R);but that on the other hand,�����Z R1 dr 
os ��4 � r�2r � Z R1 dr sin ��4 � r�2r ����� = �����Z R��41��4 dr 
os(r)2r + �4 � Z R+�41+�4 dr 
os(r)2r � �4 ����� :Dividing these two integrals in three parts, we obtain that the above expression is less than orequal to Z 1+�41��4 dr 1r + �4 + Z R��41+�4 dr � 1r � �4 � 1r + �4 �+ Z R+�4R��4 dr 1r � �4= ln(1 + �2 ) + ln(R� �2 )� ln( R1 + �2 ) + ln( RR� �2 ) = 2 ln(1 + �2 ):Therefore, Z R1 dr 
os ��4 � r�2r � Z R1 dr sin ��4 � r�2r � 2 ln(1 + �2 );and this implies thatZ R1 dr 
os ��4 � r�2r � 12  Z R1 dr 
os ��4 � r�2r + Z R1 dr sin ��4 � r�2r � 2 ln(1 + �2 )!= ln(R)2 � ln(1 + �2 ):So �nally, by (B.9), Z R1 dr J0(r)2 � 2� Z R1 dr 1r 
os��4 � r�2 �C� ln(R)� � C � ln(1 + �2 );whi
h proves the lemma.



Appendix CLinear equation driven by noise onone side of a hyper
ubeLet d be a natural number greater than 1, D = [0; �℄d and K = [0; �℄d�1 �f0g be the \bottom"side of the hyper
ube D (when d = 3, K is the square at the base of the 
ube D). In this
hapter, we would like to study the existen
e of a weak solution to the hyperboli
 equation (2.1)(in the sense de�ned in (2.4)), in the spe
i�
 
ase where the domain D is the hyper
ube de�nedabove and the noise 
onsidered is 
on
entrated on K. For this, we follow an analysis similar tothat of Chapter 3.Let us �rst de�ne the noise 
on
entrated on K, 
onsidering a quite general 
ovarian
e. Fol-lowing an argument similar to that of Se
tion 3.2, let us begin with a 
ontinuous and symmetri
fun
tion h : [��; �℄d�1 ! R being non-negative de�nite on K, that is,mXi;j=1 
i 
j h(x(i) � x(j)) � 0; 8m � 1; 
1; : : : ; 
m 2 C ; x(1); : : : ; x(m) 2 K:This fun
tion represents then the 
ovarian
e of a Gaussian pro
ess indexed by the elements ofK, whi
h is moreover spatially homogeneous, that is, the 
ovarian
e between two points x and ydepends only on the ve
tor y�x. Belonging to this 
lass of fun
tions are the following fun
tionsh:h(x1; : : : ; xd�1) = Xn1;:::;nd�12N an1;:::;nd�1 
os(n1x1) � � � 
os(nd�1xd�1); (x1; : : : ; xd�1) 2 K;where an1;:::;nd�1 � 0 and Xn1;:::;nd�12N an1;:::;nd�1 <1:Note that we 
annot apply here the 
lassi
al Bo
hner theorem to 
on
lude that any 
ovari-an
e h has the pre
eding form, be
ause K is not a group. Nevertheless, one 
an 
he
k thatsu
h h satis�es the required properties (using the formula 
os(m(x � y)) = 
os(mx) 
os(my) +sin(mx) sin(my)). 149



150 Appendix C. Linear equation driven by noise on one side of a hyper
ubeFollowing now the idea of Se
tion 3.2, let us 
onsider that the 
ovarian
e of the noise 
on-
entrated on K is given by�K('; ) = Xn1;:::;nd�12N an1;:::;nd�1 �n1;:::;nd�1('; ); ';  2 C1(K);where an1;:::;nd�1 � 0 and�n1;:::;nd�1('; ) = ZK dx1 � � � dxd�1 ZK dy1 � � � dyd�1� '(x1; : : : ; xd�1) 
os(n1(x1 � y1)) � � � 
os(nd�1(xd�1 � yd�1))  (y1; : : : ; yd�1);with the 
ondition Pn1;:::;nd�12N an1;:::;nd�1 < 1 repla
ed by another one, whi
h will be madeexpli
it below (see (C.1)), and under whi
h we 
an easily 
he
k that �K('; ) is well de�ned forea
h '; 2 C1(K).Let us �nally de�ne the 
ovarian
e �D by�D('; ) = �K �'��K ;  ��K� ; ';  2 S(D):where S(D) is the spa
e de�ned in Chapter 2.We are going to show that there exists a weak solution to equation (2.1) if and only if thefollowing 
ondition is satis�ed: Xn1;:::;nd�12N an1;:::;nd�1q1 + n21 + � � �+ n2d�1 <1: (C.1)Let us now state the theorem (note that a similar result was already obtained in [19, Thm 13.3.1℄for the heat equation).Theorem C.0. 1. Let (u0; v0) 2 L2(D) � H�1(D). There exists a unique weak solution uof equation (2.1) su
h that E(ku(t)k20 ) < 1, for all t 2 R+ , if and only if 
ondition (C.1) issatis�ed.Proof. Let us �rst 
ompute the eigenvalues and eigenfun
tions of the Lapla
ian in D. Note thatsin
e the boundary of the domain is not C1, we 
annot apply dire
tly the spe
tral theorem2.1.1. Still, the solutions of the eigenvalue problem�'+ �' = 0 in D and �'�� ����D = 0;are easy to 
ompute here. They have the following simple expressions:en(x) = � 2�� d2 
os(n1x1) � � � 
os(ndxd); �n = n21 + � � �+ n2d;



151where n = (n1; : : : ; nd) denotes a multi-index in Nd . One 
an noti
e that the en are C1, evenif �D is not.Let us now 
ompute the 
oeÆ
ients 
n = �D(en; en):
n = Xm1;:::;md�12N am1;:::;md�1�m1;:::;md�1 �en��K ; en��K� :Sin
e en��K(x1; : : : ; xd�1) = � 2��d2 
os(n1x1) � � � 
os(nd�1xd�1);and using again the formula 
os(m(x � y)) = 
os(mx) 
os(my) + sin(mx) sin(my), we obtainsimply that 
n = 2� an1;:::;nd�1 :In order to 
he
k now that 
ondition (C.1) is suÆ
ient, we simply need to 
he
k that itimplies that Assumption H0 of Chapter 2 is satis�ed, whi
h in turn implies the desired result byTheorem 2.5.3. To see that part (i) of Assumption H0 is satis�ed, that is, that the 
ovarian
e�D is 
ontinuous with respe
t to the H1-norm on D, we follow the proof of Theorem 2.5.3 andverify that �K is 
ontinuous with respe
t to the H 12 -norm on K de�ned byk'k212 = Xn1;:::;nd�12N q1 + n21 + : : :+ n2d�1 j
n1;:::;nd�1 j2;for '(x1; : : : ; xd�1) = Xn1;:::;nd�12N 
n1;:::;nd�1 
os(n1x1) � � � 
os(nd�1xd�1):Let us then 
ompute �K(';') = Xm1;:::;md�12N am1;:::;md�1 ��
m1;:::;md�1 ��2 :Under 
ondition (C.1), there exists C > 0 su
h thatam1;:::;md�1 � C q1 +m21 + : : : +m2d�1;therefore, �K(';') � C k'k212 :Let us now verify part (ii) of Assumption H0 and 
omputeXn2Nd 
n1 + �n = 2� Xn1;:::;nd2N an1;:::;nd�11 + n21 + � � � + n2d= 2� Xn1;:::;nd�12N an1;:::;nd�10�Xnd2N 11 + n21 + � � �+ n2d1A : (C.2)



152 Appendix C. Linear equation driven by noise on one side of a hyper
ubeSin
e Xnd2N 1a2 + n2d � 1a2 + Z 10 dx 1a2 + x2 = 1a2 + �2a � C1a ; a � 1;we see that (C.1) implies AssumptionH0, therefore the existen
e of a weak solution u of equation(2.1) su
h that E (ku(t)k20) <1, for all t 2 R+ , by Theorem 2.5.3. On the other hand, if su
h asolution exists, then by Theorem 2.5.4, part (ii) of Assumption H0 is satis�ed, and sin
eXnd2N 1a2 + n2d � Z 10 dx 1a2 + x2 = 1a ar
tan�xa� ���10 = �2a � C2awe obtain by (C.2) that 
ondition (C.1) is satis�ed, whi
h proves that the latter is a ne
essary
ondition, therefore the theorem.Note that we have obtained here a ne
essary and suÆ
ient 
ondition, whi
h was not the 
asefor the noise on a sphere. Performing the same analysis as in Remark 3.3.4, we 
an show thatthis 
ondition is equivalent to the existen
e of a tra
e-
lass linear operator QK on H 12 (K) su
hthat �K('; ) = h';QK i 12 ; 8'; 2 C1(K):



Appendix DHigher order hyperboli
 linearequation in R d
Let 
 2 R+ and let us 
onsider the following fourth order linear partial di�erential operator:L
 = �2�t2 � 2
 ���t +�2What is interesting with this operator is that when 
 = 0, it is given byL0 = �2�t2 +�2;whi
h is a truly hyperboli
 operator, but when 
 = 1, L is given byL1 = �2�t2 � 2���t +�2 = � ��t ���2 ;whi
h is rather a paraboli
 operator. Therefore, the analysis will be di�erent in ea
h 
ase.In the following two se
tions, we give suÆ
ient 
onditions whi
h guarantee the existen
e of areal-valued weak solution u (in the sense de�ned in Chapter 7) of the following (formal) 
lassi
alequation: L
u(t; x) = _F (t; x);in both 
ases where _F is either a spatially homogeneous noise or a noise 
on
entrated on ahyperplane. Sin
e 
omputations are similar to those made in Chapters 7 and 9, we omit (mostof) the details in the following.D.1 Spatially homogeneous noiseLet us 
onsider the following equation:8>>><>>>: �2u�t2 (t; x)� 2
 ��u�t (t; x) + �2u(t; x) = _F (t; x); t 2 R+ ; x 2 Rd ;u(0; x) = �u�t (0; x) = 0; x 2 Rd ; (D.1)153



154 Appendix D. Higher order hyperboli
 linear equation in Rdwhere the noise _F is a spatially homogeneous noise on Rd with non-negative 
ovarian
e �.We do not present here what kind of weak formulation 
an be given to equation (D.1), butwe simply give the expression for its distribution-valued solution:hu(t); 'i = Z[0;t℄�Rd M(ds; dx) (G(t� s) � ')(x); t 2 R+ ; ' 2 S(Rd);where G is the Green kernel of equation (D.1) and M is the martingale measure 
onstru
tedfrom the spatially homogeneous noise _F .Moreover, we have the following expli
it expression for the Fourier transform in x of theGreen kernel G of equation (D.1):FG(t; �) = 8>>>>><>>>>>: e�
j�j2t sin(tp1� 
2 j�j2)p1� 
2 j�j2 ; if 
 2 [0; 1[;e�
j�j2t t; if 
 = 1;e�
j�j2t sinh(tp
2 � 1 j�j2)p
2 � 1 j�j2 ; if 
 > 1: (D.2)We have the following upper bounds for FG.Lemma D.1.1. Let 
 = 0. Then for all t > 0, there exists C(t) > 0 su
h thatZ t0 ds FG(s; �)2 � C(t)(1 + j�j2)2 ; 8� 2 Rd :Proof. If j�j � 1, then Z t0 ds FG(s; �)2 = Z t0 ds sin2(sj�j2)j�j4 � tj�j4 ;and if j�j < 1, then Z t0 ds FG(s; �)2 = Z t0 ds sin2(sj�j2)j�j4 � t3;sin
e r�2 sin(r)2 � 1 for all r � 0. The proof now ends as the proof of Lemma 5.4.1.Lemma D.1.2. Let 
 > 0. Then for all t > 0, there exists C(t) > 0 su
h thatZ t0 ds FG(s; �)2 � C(t)(1 + j�j2)3 ; 8� 2 Rd :Proof. Let us �rst 
onsider the 
ase where 
 2 ℄0; 1[. We haveZ t0 ds FG(s; �)2 = Z t0 ds e�2
j�j2s sin2(sp1� 
2 j�j2)(1� 
2) j�j4 :If j�j � 1, then Z t0 ds FG(s; �)2 � 1j�j4  1� e�2
j�j2t2
j�j2 ! � 12
j�j6 ;



D.1. Spatially homogeneous noise 155and if j�j < 1, then sin
e r�2 sin(r)2 � 1 for all r � 0,Z t0 ds FG(s; �)2 � Z t0 ds e�2j�j2s s2 � t3;For the 
ase 
 = 1, we have, by su

essive integrations by parts,Z t0 ds FG(s; �)2 = Z t0 ds e�2j�j2s s2= �e�2j�j2t2j�j2 t2 + 2Z t0 ds e�2j�j2s2j�j2 s= �e�2j�j2t2
j�j2 t2 + e�2j�j2t2j�j4 t+ 14j�j4  1� e�2j�j2t2j�j2 !� C(t)j�j6 ;if j�j � 1, and if j�j < 1, thenZ t0 ds FG(s; �)2 = Z t0 ds e�2j�j2s s2 � t3:Finally, 
onsider the 
ase 
 > 1. We haveZ t0 ds FG(s; �)2 = Z t0 ds e�2
j�j2s sinh2(sp
2 � 1 j�j2)(
2 � 1) j�j4 :If j�j � 1, then sin
e sinh2(r) � e2r for all r � 0 and 
�p
2 � 1 > 0,Z t0 ds FG(s; �)2 � 1(
2 � 1) j�j4 Z t0 ds e�2(
�p
2�1)j�j2s � 1(
2 � 1) 2(
 �p
2 � 1)j�j6 :On the other hand, if j�j < 1, then sin
e r�2 sinh2(r) � 
osh(r)2 for all r � 0,Z t0 ds FG(s; �)2 � Z t0 ds e�2
j�j2s 
osh2(sp
2 � 1 j�j2) � t;sin
e 
osh2(r) � e2r for all r � 0 and p
2 � 1 � 
.For these three 
ases, the proof ends as the proof of Lemma 5.4.1.We address now the following question: under whi
h 
ondition on the 
ovarian
e � (orequivalently the spe
tral measure �) of the noise does there exist a real-valued pro
ess X su
hthat hu(t); 'i = ZRd dx X(t; x) '(x); P� a:s:; 8t 2 R+ ; ' 2 S(Rd )?The answer to this question is given in the following theorem.Theorem D.1.3. If 
 = 0 and ZRd �(d�)(1 + j�j2)2 <1; (D.3)or 
 > 0 and ZRd �(d�)(1 + j�j2)3 <1; (D.4)then there exists a real-valued pro
ess X whi
h is the weak solution of equation (D.1).



156 Appendix D. Higher order hyperboli
 linear equation in RdProof. We 
an use here the result in [15℄, whi
h states that there exists a real-valued pro
esswhi
h is the weak solution of (D.1) if the following 
ondition on � is satis�ed:ZRd �(d�) Z T0 ds FG(s; �)2 <1;for all T > 0. The theorem then follows dire
tly from Lemmas D.1.1 and D.1.2.Note that when � is the Lebesgue measure on Rd (that is, the spe
tral measure of whitenoise), 
ondition (D.3) is satis�ed if and only if d < 4 and 
ondition (D.4) is satis�ed if and onlyif d < 6.D.2 Noise on a hyperplaneWe now 
onsider the following equation8>>><>>>: �2u�t2 (t; x)� 2
 ��u�t (t; x) +�2u(t; x) = _F (t; x1) Æ0(x2); (t; x) 2 R+ � Rd ;u(0; x) = �u�t (0; x) = 0; x 2 Rd ; (D.5)where _F is the noise 
on
entrated on the hyperplane x2 = 0 
onsidered in Chapter 6 (withk = d� 1), with non-negative 
ovarian
e �.As in the pre
eding se
tion, we do not present here what kind of weak formulation 
an begiven to equation (D.5), but we simply give the expression for its distribution-valued solution:hu(t); 'i = Z[0;t℄�Rd�1 M(ds; dx1) (G(t� s) � ')(x1; 0); t 2 R+ ; ' 2 S(Rd );where G is the Green kernel of equation (D.1) and M is the martingale measure 
onstru
tedfrom the noise _F .The expression of F1G is given by (4.1):F1G(t; �1; x2) = 12� ZR d�2 FG(t; �1; �2) ��x2(�2); (D.6)and we will not 
ompute it sin
e its expli
it expression is too intri
ate. On the other hand, wehave the two following upper bounds. We restri
t ourselves to the two 
ases where either 
 = 0or 
 = 1 for simpli
ity.Lemma D.2.1. Let 
 = 0. Then for all t > 0, there exists C(t) > 0 su
h thatZ t0 ds F1G(s; �1; x2)2 � C(t)1 + j�1j2 8(�1; x2) 2 Rd�1 � R:



D.2. Noise on a hyperplane 157Proof. We have F1G(t; �1; x2) = 12� ZR d�2 sin((j�1j2 + �22)s)j�1j2 + �22 e�ix2�2 ;therefore, when j�j � 1, jF1G(t; �1; x2)j � 12� ZR d�2 1j�1j2 + �22 = 12j�1j ;so Z t0 ds F1G(s; �1; x2)2 � t4j�1j2 :When j�1j < 1, we have, sin
e r�2 sin(r)2 � C(1 + r2)�1 for all r � 0,jF1G(t; �1; x2)j � 12� ZR d�2 C1 + �22 = C2 ;therefore, Z t0 ds F1G(s; �1; x2)2 � C2t4 ;and the proof ends as the proof of Lemma 5.4.1.Lemma D.2.2. Let 
 = 1. Then for all t > 0, there exists C(t) > 0 su
h thatZ t0 ds F1G(s; �1; x2)2 � C(t)(1 + j�1j2)2 8(�1; x2) 2 Rd�1 � R:Proof. When 
 = 1, we 
an 
ompute F1G expli
itely:F1G(t; �1; x2) = 12� ZR d�2 e�(j�1j2+�22)t t e�ix2�2= e�j�1j2t tZR d�2 e��22t e�ix2�2= e�j�1j2t r t4� e�x224t : (D.7)We therefore obtain, for all x2 2 R,Z t0 ds F1G(s; �1; x2)2 = 14� Z t0 ds e�2j�1j2s s e�x222s � 14� Z t0 ds e�2j�1j2s s:By integration by parts, we haveZ t0 ds F1G(s; �1; x2)2 = e�2j�1j2t8�j�1j2 + 1� e�2j�1j2t16�j�1j4 � C(t)j�1j4 ;when j�1j � 1, and when j�1j < 1, we haveZ t0 ds F1G(s; �1; x2)2 � 14� Z t0 ds e�2j�1j2s s � t24� :The proof now ends as the proof of Lemma 5.4.1.



158 Appendix D. Higher order hyperboli
 linear equation in RdThe following upper bound shows moreover the analogy between equation (D.1) with 
 = 1and the heat equation (9.1).Lemma D.2.3. Let 
 = 1. Then for all T > 0 and " > 0, there exist C(T; ") > 0 and P afun
tion with polynomial growth su
h thatZ t0 ds F1G(s; �1; x2)2 � C(T; ") P (�1) e�2 " j�1j;for all t 2 [0; T ℄, �1 2 Rd�1 and x2 2 R su
h that jx2j � ".Proof. From the expli
it expression (D.7) of F1G and following an argument entirely similar tothat of the proof of Lemma 9.2.1, we obtain the result.These estimates lead to the following theorem.Theorem D.2.4. If 
 = 0 and ZRd�1 �(d�1)1 + j�1j2 <1; (D.8)or 
 = 1 and ZRd�1 �(d�1)(1 + j�1j2)2 <1; (D.9)then there exists a real-valued pro
ess X whi
h is solution of equation (D.5). Moreover, if 
 = 1,there always exists a real-valued pro
ess de�ned outside the hyperplane x2 = 0 whi
h is solutionof equation (D.5), without any spe
i�
 assumption on �.Proof. The proof follows the same s
heme as the proof for the se
ond order hyperboli
 equationin Chapter 7. We will therefore not go into the details of this proof. Just note that LemmasD.2.1, D.2.2 and D.2.3 are the essential ingredients of the argument (as was Lemma 7.1.2 forTheorem 7.2.5).Note that when � is the Lebesgue measure on Rd�1 (that is, the spe
tral measure of whitenoise), 
ondition (D.8) is satis�ed if and only if d < 3 (3 being a limiting 
ase) and 
ondition(D.9) is satis�ed if and only if d < 4.For a further analysis, we 
ould also study the 
ase 
 6= 0; 1 in this se
tion (for whi
h theanswer is not 
lear a priori) and see if all the 
onditions obtained in this appendix are optimal.
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