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Abstract—We consider a wireless network with n users dis-
tributed over a square area A = n. Under line-of-sight propaga-
tion, this network has Θ(

√
n) degrees of freedom. At high SNR,

these degrees of freedom can be readily achieved by multi-hop
relaying between nodes. At low SNR however, the performance is
determined by the power transfer in the network. We show that
none of the existing architectures can achieve optimal capacity
scaling. We develop a beamforming architecture where signals
are relayed by coherent combining over multiple clusters. The
key ingredient is an analysis of the beamforming gain achievable
between two clusters of nodes under the line-of-sight propagation
model. This result reveals a new regime for large two-dimensional
wireless networks, where beamforming techniques are needed to
achieve capacity.

I. INTRODUCTION

Multi-hop is the traditional communication architecture for
wireless adhoc networks. Information is routed from source
nodes to destinations via multiple point-to-point transmissions
between intermediate nodes acting as relays. Is multi-hop fun-
damentally good for wireless adhoc networks or can we design
new cooperation architectures that significantly outperform
multi-hop? This question has been extensively studied in the
large network regime, following the scaling law approach first
introduced in [2] and followed in [3], [6], [7], [8], [10].

The current progress shows that the answer depends on
the operating regime of the network. The operating regime
of a large wireless network is determined by the average SNR
between neighboring nodes, the spatial degrees of freedom of
the network, dictated by the area and the carrier wavelength,
and by the power path loss exponent of the environment [7],
[9]. When there are sufficient spatial degrees of freedom in
the network (this is, for example, the case when the pairwise
channels are subject to i.i.d. fading), a hierarchical cooperation
architecture based on distributed MIMO transmission can
exploit these degrees of freedom [8]. This provides significant
capacity gain over multi-hop both in the high and the low SNR
regimes. When the spatial degrees of freedom in a wireless
network are limited by physical constraints, however, these
few degrees of freedom can be readily achieved by multi-hop.
Multi-hop becomes scaling optimal for such networks in the
high SNR regime, where the capacity is degrees-of-freedom
-limited [1].

The situation is more delicate for networks at low SNR
and with limited spatial degrees of freedom. Multi-hop is
not anymore optimal, as the performance is limited by the
power transfer in the network, and not the degrees of freedom
achieved. Earlier in [4], we considered the extremal case when

there is only a single degree of freedom for communication in
the network: a one-dimensional wireless network. We showed
that a hierarchical beamforming architecture can significantly
outperform existing strategies in this case, providing an n-fold
capacity increase over multi-hop in a network with n users.
Here, nodes first broadcast their information to a small cluster
around them. In a second step, nodes in this cluster beamform
this information to a larger cluster. Continuing in a hierarchical
fashion, the information of each source node is broadcasted to
the whole network, including the destination node.

It is non-trivial to extend this architecture to two-
dimensional networks. A two-dimensional network with n
users distributed uniformly over an area A has at least

√
n

degrees of freedom [9]. Therefore, transmissions can not
coherently combine simultaneously at many destination nodes
providing large beamforming gains as in the one-dimensional
case. We analyze the beamforming gain achievable between
two clusters of nodes under the line-of-sight propagation
model, and show that it critically depends on the shape,
orientation and distance between the two-dimensional clusters.
We develop a communication architecture that uses bursty
amplify-and-forward between successive clusters, with clus-
ter sizes and shapes chosen carefully to ensure maximum
beamforming gain at each step. The architecture allows to
achieve a throughput significantly larger than that achieved by
multi-hop cooperation (n6/7 SNRs versus

√
nSNRs for multi-

hop, where SNRs is the typical nearest neighbor SNR in the
network and SNRs � 0 dB in the low-SNR regime). It has a
small gap to the information theoretic upper bound nSNRs.
Achieving the exact capacity remains work in progress.

II. MODEL

There are n nodes uniformly and independently distributed
in a square of area A = n (so the node density ρ = A/n = 1).
Every node is both a source and a destination, and the sources
and destinations are randomly paired up one-to-one. All source
nodes want to communicate to their destination node at the
same rate R(n). The aggregate throughput of the network is
defined as T (n) = nR(n).

We assume that communication takes place over a flat
channel with bandwidth W and that the received signal Yk[m]
by node k at time m is given by

Yj [m] =
∑
k∈K

hjkXk[m] + Zj [m]

where K is the set of transmitting nodes, Xk[m] is the signal



sent at time m by node k and Zj [m] is additive white circularly
symmetric Gaussian noise (AWGN) of power spectral density
N0/2 Watts/Hz. In a line-of-sight environment, the complex
baseband-equivalent channel gain hjk between transmit node
k and receive node j is given by

hjk =
√
G

exp(2πirjk/λ)

rjk
(1)

where G is Friis’ constant, λ is the carrier wavelength and
rjk is the distance between node k and node j. This line-
of-sight model clearly departs from the classical i.i.d. phase
assumption: it implies in particular that the channel matrix
between two clusters of nodes is not necessarily full-rank.
Finally, we assume full channel state information at both the
transmitters and receivers (which is a reasonable assumption
in a static line-of-sight environment), as well as a common
average power budget per node P .

III. MAIN RESULT

Let us denote by SNRs the signal-to-noise ratio over the
typical nearest neighbor distance in the network. In our setup,
the typical nearest neighbor distance is 1, therefore, the short-
distance SNR is

SNRs =
GP

N0W
.

In this paper, we are interested in the low SNR regime,
where SNRs = n−γ for some γ > 1. We will use the
notation SNRs � 0 dB to denote this condition1. This models
the scenario when the pairwise channels between nearest
neighbors are in the low SNR regime. Note that since SNRs is
jointly determined by system parameters P and W , this can
be the case when the available power per node is small or
when the bandwidth is large.

In the low SNR regime and under the line-of-sight model
described above, the multi-hop scheme proposed in [2]
achieves an aggregate throughput of order

T (n) = Ω
(

SNRs

√
n/ log n

)
with high probability as n gets large. While multi-hop can be
shown to be order optimal at high SNR (see [1]), the best
known information theoretic upper bound on the throughput
scaling at low SNR is of order

T (n) = O
(

SNRs n log n
)

This is obtained by showing that every source node in the
network cannot transmit more than O(SNRs log n) bits to the
rest of network, therefore the aggregate throughput can not
exceed n times this number. The question therefore remains
whether a more sophisticated strategy would allow to achieve
higher throughput scaling than multi-hop at low SNR. We an-
swer this question by the affirmative in the following theorem.

1The extension of our results to the intermediate SNR regime 0 ≤ γ ≤ 1
is not trivial. Here the capacity is both power and degrees-of-freedom limited
and the beamforming techniques considered in this paper become suboptimal.

Theorem 1. Let us assume that SNRs � 0 dB (i.e. SNRs =
n−γ for some γ > 1). Then there exists a communication
scheme (referred to as “telescopic beamforming” in the se-
quel) that achieves the following aggregate throughput scaling
with high probability as n gets large:

T (n) = Ω
(

SNRs n
6/7−ε

)
(2)

for every ε > 0.

At low SNR, the telescopic beamforming scheme achieves
therefore a throughput scaling close to the best known upper
bound and clearly outperforms classical multi-hop. Before
giving a description of this scheme, we present in the next
section a simple scheme, whose throughput scaling is lower
than that of the telescopic beamforming scheme, but already
higher than that of the multi-hop scheme.

IV. TWO-CLUSTER SCHEME

In this section, we first describe a simple three-stage re-
laying scheme that allows to enhance communication rates at
low SNR in the network, and then proceed to its performance
analysis.

In the low SNR regime, the performance is not degrees-of-
freedom but power-limited, so we can handle the communica-
tion between the source-destination pairs one at a time. Let us
therefore consider a single source-destination pair. Here is the
basic structure of the scheme: the source node s communicates
its signal to the destination node d with the help of two clusters
of relay nodes, each of size M , one surrounding s and the
other surrounding d, as illustrated on Fig. 1. The first cluster
amplifies and forwards the signals received from the source to
the second cluster, where the signals are again amplified and
forwarded to the destination.

M

M

s

d

Fig. 1: Two-cluster scheme.

Notice that in the low SNR regime, the signal power is much
smaller than the noise power; a pure amplify-and-forward
strategy would therefore mostly amplify noise. This can be
compensated by using a bursty amplify-and-forward scheme,
following [5], where the nodes operate only a small fraction of
time with increased power and stay silent the rest of the time.
A second key ingredient of the scheme is the beamforming
gain achieved by letting the relay nodes coherently combine



their signals at each retransmission. The performance of the
scheme is stated in the theorem below.

Theorem 2. In the low SNR regime, the following throughput
scaling is achievable:

T (n) = Ω
(

SNRs n
2/3
)

with high probability as n gets large. The scheme achiev-
ing this throughput scaling is a bursty amplify-and-forward
scheme employing two clusters of M relay nodes with M
chosen such that

n1/3 ≤M � n1/2. (3)

Before going into the details of the proof, let us briefly ex-
plain the trade-off behind condition (3). On the one hand, it is
desirable to have many nodes participating to the transmission
(and therefore a large cluster size M ) in order to combat noise
amplification via coherent combining of the signals. On the
other hand, we will see that under the line-of-sight propagation
model (1), coherent combination of the signals can only take
place when the cluster size M is smaller than the inter-cluster
distance

√
n. We elaborate on this fact in Section V, as it plays

an important role for the extensions of the scheme described
in later sections.

Proof sketch. In order to simplify notation, we assume in
the following, without loss of generality, a choice of units such
that SNRs = P .

We consider that all nodes operate only a fraction of
time 1/a, with a being some constant greater than 1. This
compensates for low power by providing a power gain factor
a at each transmission. We also assume that s-d pairs operate
one at a time in the network, so that we may focus on a single
s-d pair.

Equivalent end-to-end channel model. The source node s
communicates a signal X to the destination node d in 3 steps:
• It first broadcasts the signal X to a square cluster of M

neighboring nodes. The signal received by node k in the
cluster is given by

Y
(1)
k =

e2πirks/λ

rks
X + Z

(1)
k ,

where rks is the distance between the source node and
node k, and Z(1)

k is additive white Gaussian noise.
• The received signals are then amplified and forwarded

to the square cluster around the destination, containing
also M nodes and located at a distance of order

√
n. The

signal received by node j in this cluster is given by

Y
(2)
j =

M∑
k=1

e2πirjk/λ

rjk
X

(1)
k + Z

(2)
j ,

where rjk is the distance between transmit node k and
receive node j, Z(2)

j is additive white Gaussian noise
and X

(1)
k = Ck Y

(1)
k is the signal emitted by node k,

amplified to meet the power constraint.

• The nodes in the cluster around the destination finally
retransmit, after amplification, the received signals to the
destination node d. The signal received by the destination
node is given by

Y =

M∑
j=1

e2πirdj/λ

rdj
X

(2)
j + Z,

where rdj is the distance between node j in the cluster
and the destination node d, Z is additive white Gaussian
noise and X(2)

j = Dj Y
(2)
j is the signal emitted by node

j, amplified to meet the power constraint.
At the end of the three steps, the signal received at the

destination node d is therefore given by

Y = F X + Z̃, (4)

where

F =

M∑
j,k=1

e2πirdj/λ

rdj
Dj

e2πirjk/λ

rjk
Ck

e2πirks/λ

rks
(5)

and Z̃ is the noise accumulated at the destination:

Z̃ = Z +
M∑
j=1

e2πirdj/λ

rdj
Dj Z

(2)
j

+

M∑
j,k=1

e2πirdj/λ

rdj
Dj

e2πirjk/λ

rjk
Ck Z

(1)
k .

Power constraints and amplifying coefficients Ck and Dj .
Since s-d pairs operate one at a time in the network and all
of them operate only a fraction 1/a of the time, the power
constraint at the source node is E(|X|2) ≤ anP .

The relay nodes are busier, as they need to relay the
transmissions for M different s-d pairs, so the power constraint
at each relay node is E(|X(1)

k |2) ≤ anP/M in the first
cluster and E(|X(2)

j |2) ≤ anP/M in the second cluster. The
amplifying coefficients Ck and Dj should be chosen so as to
satisfy these power constraints. Assuming that the amplifying
factor a is chosen such that the incoming signal power does
not exceed the noise power at each stage (which will indeed
turn out to be an optimal choice at low SNR), we obtain

|Ck|, |Dj | '
√
anP/M. (6)

The phases of Ck and Dj should also be chosen so as
to compensate for the phase shifts arising from the line-of-
sight propagation in equation (5), in order to maximize the
beamforming gain. Let therefore the phases φk of Ck be

φk = −2πi(rks + xk)/λ

where xk denotes the horizontal coordinate of the transmit
node k (i.e. xk is the coordinate along the main direction of
transmission to the other cluster: see Fig. 2). The first term
−2πirks/λ cancels exactly the phase shift arising from the
first transmission, while the second term −2πixk/λ aims to
compensate for the phase shifts 2πirjk/λ arising in the second
transmission.
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Fig. 2: Compensating factor xk for phase shits.

As this second transmission is intended for multiple receive
nodes j, it is a priori not guaranteed that compensating
simultaneously for all phase shifts is doable. Using a second
order Taylor expansion of the square root appearing in the
expression for the inter-node distances rjk, it can actually
be shown that when the cluster size M is much smaller
than the inter-cluster distance

√
n (strictly speaking, when

M ≤ n1/2−ε for some ε > 0) , the following holds:

E

(
M∑
k=1

e2πi(rjk−xk)/λ

)
= Θ(M), (7)

where the expectation is taken over the node positions in
the receive cluster. An optimal beamforming gain is therefore
ensured in this case. Similarly, it can be shown that under the
same condition M �

√
n, the phases ψj of the coefficients

Dj can be chosen so as to ensure a full beamforming gain for
the last transmission towards the destination.

Back-of-the-envelop computation of the end-to-end SNR.
Since all nodes operate only a fraction of time 1/a, where
a > 1, the aggregate throughput of the above two-cluster
scheme is given by2

T (n) =
1

a
log(1 + SNRtot),

where the end-to-end SNR is the one resulting from equation
(4):

SNRtot =
|F |2E(|X|2)

E(|Z̃|2)
. (8)

In order to operate the system the most efficiently, we should
tune the amplifying factor a and the cluster size M so as
to obtain an end-to-end SNR of order 1. As seen above,
the condition M �

√
n is needed in order to allow for an

(approximate) compensation of all phase shifts. A back-of-
the-envelop computation of the numerator in (8) then gives

|F |2E(|X|2) ' 1

M2n

 M∑
j,k=1

|Ck| |Dj |

2

anP

' M4

M2n
(anP/M)2 (anP ) =

(anP )3

n
,(9)

where we have used successively the approximations
rsk, rdj '

√
M , rjk '

√
n and the approximation (6).

Similarly, the noise Z̃ accumulated at the destination can be
approximated as

Z̃ ' Z +

√
anP/M√
M

M∑
j=1

Z
(2)
j +

anP/M√
Mn

M

M∑
k=1

Z
(1)
k ,

2Notice indeed that as s-d pairs operate one at a time, T (n) represents the
total number of bits per second that travel in the network.

so by the independence of the random variables Z(2)
j and Z(1)

k ,
the denominator in (8) is of order

E(|Z̃|2) ' 1 +
anP

M
+

(anP )2

n
. (10)

From equations (8), (9) and (10), we see that in order to ensure
an end-to-end SNR of order 1, the optimal choice for a and
M is

a =
1

n2/3 P
and M ≥ anP = n1/3,

which luckily does not contradict the condition M �
√
n

found previously. This finally implies that the two-cluster
scheme achieves an aggregate throughput scaling

T (n) ' 1

a
= n2/3 P

and concludes the proof sketch of Theorem 2. �

V. BEAMFORMING GAIN

In the two-cluster scheme presented in the previous section,
it was stated in equation (7) that the maximal beamforming
gain between two square clusters of size M separated by
distance

√
n can be achieved when M �

√
n, by using a

proper compensation of the phase shifts at the transmit side.
This claim can be generalized to the case of two rectangular
clusters separated by arbitrary distance d.
Claim 1. Consider two clusters placed on the same horizontal
line, of sizes M1 = d1 × e1 and M2 = d2 × e2, respectively,
and separated by distance d, as illustrated on Fig. 3. Provided
the following relationship holds:

e1 e2 � max(d, d1, d2) (11)

the maximum beamforming gain between cluster M1 and
cluster M2 can be achieved by using a proper compensation
of the phase shifts at the transmit side, that is,

E

(
M1∑
k=1

e2πi(rjk−xk)/λ

)
= Θ(M1).

where xk denotes the horizontal position of node k and the
expectation is taken over the node positions in the receive
cluster.

M1 M2

e1 e
2

d d d
1 2

Fig. 3: Two rectangular clusters separated by distance d.

Remark 1. It is interesting to notice that condition (11) is also
the condition under which the number of spatial degrees of
freedom between the two clusters is minimal, that is, of order
1 (see [9]). At the other extreme, when the channel coefficients
are i.i.d., for example, the spatial degrees of freedom are
many, but no significant beamforming gain can be achieved by
aligning the phases at the relays. We see here an interesting
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Fig. 4: Telescopic beamforming.

duality between the maximum achievable beamforming gain
and the number of spatial degrees of freedom between the two
clusters.

VI. FOUR-CLUSTER SCHEME

We would like now to iterate the idea of the two-cluster
scheme, so as to further enhance the throughput scaling. A
natural idea seems to increase the number of relay stages, so
as to:

1) reach larger and larger clusters of nodes and therefore
increase the beamforming gain of transmissions;

2) take advantage at the same time of the burstiness of trans-
missions, and increase the transmit power with the number of
stages.

However, given the restriction imposed by the claim made
in the previous section, it is not trivial how to proceed. The
difficulty lies in the fact that in order to remain optimal (within
this type of scheme), transmissions should only occur between
clusters that satisfy condition (11). It turns out in this case that
taking clusters of rectangular shape allows to achieve higher
beamforming gain and therefore higher end-to-end SNR.

This leads us to propose the following four-cluster scheme
depicted in Fig. 5:

s

d

Fig. 5: Four-cluster scheme.

We assume here that the source node s communicates to
the destination node d in five steps:
• It first broadcasts its signal to a square cluster of

√
M ×√

M = M neighboring nodes around itself.
• The received signals are then amplified and retransmitted

to an adjacent rectangular cluster of size
√
M ×M =

M3/2 nodes; this ensures that the full beamforming gain
can be achieved during the transmission.

• Similarly, the nodes in the rectangular cluster simultane-
ously rescale and retransmit their signals to a rectangular
cluster of the same size at distance of order

√
n. During

this transmission, the full beamforming gain can again
be attained, as long as M �

√
n, according to condition

(11). Notice that the condition is the same as in the two-
cluster case, but the number of nodes in each cluster is
now M3/2.

• Finally, the reverse of steps 1 and 2 takes place in the
last two steps, as illustrated on Fig. 5.

By computations similar to those made in the two-cluster
scheme, one can show that an aggregate throughput scaling of
order

T (n) = Ω
(

SNRs n3/4
)

is achieved in this case by taking M = n1/4.

VII. TELESCOPIC BEAMFORMING

The idea of a telescopic beamforming strategy is coming
from a further iteration of the four-cluster scheme. The scheme
is illustrated on Fig. 4. In this scheme, multiple retransmissions
of the source signal are performed via many clusters increasing
in size (notice however that the number of clusters remains
fixed compared to the number of nodes n in the network). In
order for this scheme to work, the following two conditions
should be satisfied:

1) The first ingredient is that for every transmission from
one cluster to the next, condition (11) should be satisfied.

2) The second ingredient is that the overall noise amplifica-
tion should be kept at its minimum level all the way, so that
the end-to-end SNR remains of order 1.

Imposing these two conditions, the optimal cluster sizes can
be computed via a MATLAB program for a given number
of clusters on each side. From this, we deduce that the best
throughput scaling achieved with this strategy can be made as
large as

T (n) = Ω
(

SNRs n
6/7−ε

)
.

for every ε > 0.
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