
Effects of colonization asymmetries1

on metapopulation persistence2

Séverine Vuilleumier∗,1, Benjamin M. Bolker2, Olivier Lévêque3
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Abstract1

Ocean currents, prevailing winds, and the hierarchical structures of river networks are2

known to create asymmetries in re-colonization between habitat patches. The impacts of3

such asymmetries on metapopulation persistence are seldom considered, especially rarely4

in theoretical studies. Considering three classical models (the island, the stepping stone5

and the distance-dependent model), we explore how metapopulation persistence is af-6

fected by (i) asymmetry in dispersal strength, in which the colonization rate between7

two patches differs in direction, and (ii) asymmetry in connectivity in which the overall8

colonization pattern displays asymmetry (circulating or dendritic networks). Viability9

can be drastically reduced when directional bias in dispersal strength is higher than 25%.10

Re-colonization patterns that allow for strong local connectivity provide the highest per-11

sistence compared to systems that allow circulation. Finally, asymmetry has relatively12

weak effects when metapopulations maintain strong general connectivity.13

14

Keywords: Asymmetric dispersal, colonization, persistence, metapopulation capacity of15

a fragmented landscape, model.16

2



1. Introduction1

Most models of metapopulation dynamics assume that dispersal between patches is2

symmetric — i.e., that for any pair of patches, the probability of interpatch dispersal and3

hence the recolonization probability is the same in both directions. Most of the literature4

on dispersal asymmetry focuses on source-sink metapopulation dynamics, which arise5

from variation in productivity of populations (Pulliam, 1988; Morris, 1991; Kawecki and6

Stearns, 1993; Kawecki, 1995; Holt, 1996; Saether et al., 1999; Kawecki and Holt, 2002).7

Directional dispersal resulting from heterogeneity (due to environmental gradients such8

as prevailing winds, ocean and river currents) is also well known to affect the symmetry9

of colonization processes between populations (Largier, 2003; Schooley and Wiens, 2003;10

Levin, 2006; Thorrold, 2006; Cheal et al., 2007; Bay et al., 2008). In particular, ecologists11

have documented asymmetric dispersal patterns for freshwater fish populations (Bolnick12

et al., 2008) for marine and riverine invertebrates (Lutscher et al., 2007; Bay et al., 2008;13

Young et al., 2008), and for various plant species (Friedman and Stein, 1980; Keddy,14

1981; Watkinson, 1985; Gornall et al., 1998; Imbert and Lefèvre, 2003).15

Spatial heterogeneity can also create asymmetric patterns in the spatial distribution of16

connectivity among populations, as well as asymmetries in re-colonization rates between17

pairs of patches. For example, the fractal and hierarchical structure of river networks18

creates sub-structures (tributaries) that are strongly locally connected through river seg-19

ments that allows only colonization in some direction. Such dendritic networks are found20

in watersheds and cave ecosystems as well as in river networks (Fagan, 2002; Benda et21

al., 2004; Finn et al., 2006; Labonne et al., 2008). Similarly, marine species are expected22

to disperse under the influence of ocean currents or depending on current bifurcations23

and large scale movement of water (Caley et al., 1996). Studies of a variety of empirical24

systems have shown that island and isolation-by distance metapopulation models with25

homogeneous re-colonization patterns cannot capture the dynamics, nor the genetic struc-26

ture, of such metapopulations (Gaines et al., 2003; Bode et al., 2006; Bay et al., 2008;27

Labonne et al., 2008; Muneepeerakul et al., 2008; Chaput-Bardy et al., 2009; Hughes et28

al., 2009). Although there is considerable evidence for various forms of asymmetry in29

re-colonization, the properties of metapopulation persistence under these conditions have30
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been poorly explored. The few models that have considered asymmetric re-colonization1

pattern make the simplifying assumption that the number of patches is very small, usu-2

ally two (Pulliam and Danielson, 1991; Kawecki and Holt, 2002; Amarasekare, 2004), or3

that the asymmetry is either very weak (Ovaskainen, 2003) or complete (Vuilleumier and4

Possingham, 2006).5

We consider here two types of asymmetries: asymmetry in dispersal strength and asym-6

metry in connectivity. Asymmetry in dispersal strength describes the situation where the7

colonization rate from a patch i to a patch j and the colonization rate in the reverse8

direction, from patch j to patch i, differ in strength. These differences could be due9

to environmental gradients (e.g. wind, ocean currents) that favor dispersal in one di-10

rection. We define an asymmetry factor 0 ≤ d ≤ 1/2 that characterizes the fraction of11

colonization that occurs in the unfavored direction. Under asymmetry in connectivity,12

the re-colonization rate in either direction between any two connected patches is either13

identical or perfectly asymmetric, but the global arrangement of connections has a di-14

rectional bias that ranges from 0 (all asymmetric connections are oriented in the same15

direction, “downwind”) to 1/2 (asymmetric connections are oriented at random).16

These two variants of re-colonization asymmetries are applied to three classical models:17

the island model, where re-colonization probabilities are identical between any two given18

habitat patches; the stepping stone model; where empty habitat patches can only be19

re-colonized by neighboring occupied patches; and the distance-dependent model, where20

re-colonization probabilities are assumed to decay exponentially with the inter-patch21

distance.22

We first define the connectivity matrix resulting from the various colonization models23

considered. Second, following Ovaskainen and Hanski (2001), we estimate the metapop-24

ulation capacity, which corresponds to the leading eigenvalue of the connectivity matrix,25

for each case considered. Analytical solutions are presented when possible (for most cases26

of asymmetry in dispersal strength); otherwise we compute eigenvalues numerically. We27

then run stochastic simulations in order to estimate extinction probabilities and to ex-28

plore the relationship between metapopulation capacity and extinction when the number29

of habitat patches is finite and environmental stochasticity affects the rate of extinction30

and colonization.31
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We demonstrate that asymmetries can drastically affect metapopulation capacity and1

persistence and provide recommendations on the use of metapopulation models to esti-2

mate persistence when asymmetry in recolonization pattern is expected.3

2. Methods4

2.1. Metapopulation models5

Metapopulation persistence depends on the balance between the probability of local6

population extinction and the re-colonization of empty habitat patches (Levin, 1969;7

Hanski, 1999). The dynamics of a metapopulation were first described by Levins (1969,8

1970) in a continuous-time, deterministic island model, which considers n equivalent9

patches having an equal probability of colonizing any of the n − 1 other patches. The10

change in expected fraction of occupied patches p is determined by the local extinction11

rate (e) and the colonization rate (c). It follows that12

dp

dt
= cp(1 − p) − ep, (1)

which has a globally stable fixed point when13

p∗ = 1 − e

c
> 0 (2)

This model assumes a uniform re-colonization pattern in which each habitat patch has14

the same probability of re-colonization. A variant of the Levins model proposed by Hanski15

and Gyllenberg (1997) considers the re-colonization pattern as the product cM , where c16

is the colonization rate of the focal species and the matrix M describes the re-colonization17

pattern. In this n×n matrix, the element mij characterizes the probability of colonization18

from habitat patch i to habitat patch j. Under the island model, mij = 1 for all i 6= j. If19

we instead assume that colonization can only occur to and from neighboring patches, we20

obtain a stepping stone model (Kimura and Weiss, 1964) and the element of the matrix21

M , mij will be different from zero only if |i− j| = 1. In this case, a metapopulation can22

persist if23

(1 − e)Rc > e (3)
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(Durrett and Levin, 1994), where R is the number of neighboring populations. This1

condition also applies to a two-dimensional lattice model (Durrett and Levin, 1994).2

Considering spatially distributed populations in which colonization decreases exponen-3

tially with distance, we have (Hanski, 1999):4

mij =





exp(−α dij) if i 6= j

0 if i = j
(4)

where dij is the distance between the habitat patches and α = 1/h sets the migration5

range of the focal species with h its mean dispersal distance. As α increases, the species6

dispersal range decreases.7

The deterministic equation describing the evolution of the state of the system is given8

in Ovaskainen and Hanski (2001) for a discrete-time model:9

pj(t + 1) − pj(t) = c

(
∑

i

mij pi(t)

)
(1 − pj(t)) − e pj(t) (5)

where pj(t) denotes the probability that patch j is occupied at time t. Note that equa-10

tion (5) is only accurate if the occupancy probabilities in different patches are temporally11

uncorrelated. For a system with a large number of patches, in which each habitat patch12

contributes equally to the dynamics of the system, equation (1) provides a good approx-13

imation to equation (5).14

Ovaskainen and Hanski (2001) show that in the case where the matrix M is irreducible,15

an equilibrium solution p∗ > 0 to the above equation exists if and only if16

λM >
e

c
(6)

where λM is the largest eigenvalue of the matrix M .17

Our main object of investigation in the following is twofold. First, we will study in18

detail, for the various models considered, the behavior of the largest eigenvalue of the19

landscape matrix M . Second, we will compare the viability threshold (6), obtained with20

the deterministic model of Ovaskainen and Hanski (2001), to that obtained numerically21

with a simple stochastic model of extinctions and colonizations.22
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2.2. Defining patterns of asymmetry1

2.2.1. Asymmetry in dispersal strength2

We characterize the asymmetry in dispersal strength by a factor d, varying from 03

(complete asymmetry) to 1/2 (complete symmetry). If c is the total colonization rate from4

a given patch, then c(1 − d) represents the total colonization rate in the main direction5

of colonization and cd represents the total colonization rate in the other direction.6

To allow comparison of the impact of asymmetry in the island model, the stepping7

stone model and the distance-dependent model, we normalize the largest eigenvalue of8

the adjacency matrix M . Thus, we assume that the largest row-sum of the matrix M9

approaches 1 for large system size (and also that mii = 0 for all i). Under this normal-10

ization condition, the largest eigenvalue of M also approaches 1 in the symmetric case.11

In practically all the situations considered in this section, the matrix M is irreducible, so12

condition (6) applies. The only exception arises in extreme cases where the matrix M is13

completely asymmetric (i.e. there is no cycle in the graph of patch connections), in which14

case extinction occurs with probability one, regardless of the system parameters.15

In the remainder of this section (except for the grid stepping stone model) we assume16

that the landscape matrix M has a Toeplitz structure, that is, mij = f(i − j) for some17

function f (see Gray 2006). The choice of the function f depends on the model considered18

(stepping stone, island or distance-dependent model) and the asymmetry introduced in19

the model. In order to investigate the impact of asymmetry, we further assume that20

mij =





f+(|i − j|) if j > i

0 if i = j

f−(|i − j|) if i > j

(7)

where f+, f− are non-negative and decreasing functions on the set of positive integers21

obeying the following normalization conditions:22

lim
n→∞

n/2∑

k=1

f+(k) = d and lim
n→∞

n/2∑

k=1

f−(k) = 1 − d (8)

where d is the asymmetry factor of the model. Notice that as d ∈ [0, 1/2], the main23

direction of colonization under this model is the direction associated with the decay24
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function f−. Condition (8) ensures that the largest row-sum of the matrix M for large1

system size n tends to 1.2

Island model. In the island model, assuming that all habitat patches can be re-colonized3

from any other occupied habitat patch, we set4

f+(k) = d/Z ∀k ≥ 1 and f−(k) = (1 − d)/Z ∀k ≥ 1 (9)

where the normalization constant Z is taken to be Z = n/2, which ensures that condition5

(8) is satisfied. This leads to the matrix model6

mij =





d/Z if j > i

0 if i = j

(1 − d)/Z if i > j

(10)

Stepping stone model. In the stepping stone model, assuming that only neighboring habi-7

tat patches can be re-colonized, we have8

f+(k) = d if k = 1 and f+(k) = 0 otherwise (11)

and9

f−(k) = 1 − d if k = 1 and f−(k) = 0 otherwise (12)

which leads to the matrix model10

mij =





d if j = i + 1

1 − d if i = j + 1

0 otherwise

(13)

Distance-dependent models. To investigate the distance-dependent model, we focus on a11

model in which the colonization rate decreases exponentially with the ratio of the distance12

between habitat patches |i − j| normalized by the average colonization distance h of the13

species in focus, as suggested by Hanski (1999). Additionally, for this model, we apply14

two forms of asymmetry: weak and strong asymmetry, that differ in the following sense:15
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while the first model only favors the dispersal strength in one direction, the second one1

also creates a bias in the average colonization distances (see Figure 1).2

Under the weakly asymmetric distance-dependent model, the asymmetry factor d only3

enters into the matrix M as a weighting factor, as in the previously studied models.4

Asymmetry translates into a shift in the strength of colonization in one direction compare5

to the other. More precisely, we have6

f+(k) = d exp(−α k)/Z ∀k ≥ 1 and f−(k) = (1 − d) exp(−α k)/Z ∀k ≥ 1 (14)

where α = 1/h > 0 and the normalization constant Z is given by7

Z =
∞∑

k=1

exp(−αk) =
e−α

1 − e−α
(15)

in order to ensure that condition (8) is satisfied. This leads the following matrix model8

mij =





d exp(−α |i − j|)/Z if j > i

0 if i = j

(1 − d) exp(−α |i − j|)/Z if i > j

(16)

In this case, it should be noted that the average colonization distance h is the same in9

both directions; only the strength of the dispersal changes from one direction to the other.10

Under the strongly asymmetric distance-dependent model, the asymmetry is much stronger11

in the sense that the asymmetry factor d enters into the exponential decay of the col-12

onization rate. Asymmetry mirrors a weighting of the strength of colonization in one13

direction compared to the other, as well as an asymmetry in the average colonization14

distance. This creates a much stronger bias than in the previous case, as illustrated on15

Figure 1. More precisely, we have16

f+(k) = dαk/Z+ ∀k ≥ 1 and f−(k) = (1 − d)αk/Z− ∀k ≥ 1 (17)

Now, the two normalization constants Z+ and Z− depend on d and are given respectively17

by18

Z+ = 1/(d(d−α − 1)) and Z− = 1/((1 − d)((1 − d)−α − 1)) (18)

in order to ensure again condition (8). This leads to the following matrix model:19

mij =






dα |i−j|/Z+ if j > i

0 if i = j

(1 − d)α |i−j|/Z− if i > j

(19)
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Notice that in this case, the average colonization distances are1

h− =
1

α log(1/(1 − d))
, in the main direction of colonization (20)

and2

h+ =
1

α log(1/d)
, in the opposite direction. (21)

Therefore, h− > h+ and the difference increases as d approaches zero.3

Grid stepping stone models. We now consider models where the habitat patches are lo-4

cated on a regular two-dimensional grid. The asymmetry factor d has to be interpreted5

with some caution in this case, thus we will focus our attention on the simple situation6

where only the four nearest neighbors of a given habitat patch can be re-colonized (i.e.,7

assuming a von Neumann neighborhood of range 1). Thus, four directions of colonization8

are allowed: north, south, east and west. In this context, habitat patches are indexed9

by two numbers that indicate their positions, ik, so we index the matrix elements of10

M so that element mik,jl characterizes the re-colonization probability from a patch at11

coordinate ik, to a patch at coordinate jl. As above, the asymmetry factor d ∈ [0, 1/2]12

may be interpreted as follows: c(1−d) is the total colonization rate in the main direction13

of colonization and cd is is the total colonization rate in the opposite direction. We con-14

sider then two forms of asymmetry; diagonal and horizontal. The first case characterizes15

a situation where an environmental gradient (such as wind, altitude, or ocean current)16

favors two directions of dispersal (in this case, south and west) equally with respect to17

the other two (north and east). The second case differs from the first in assuming that18

dispersal in two directions (south and north) is unaffected by the environmental gradient.19

For the diagonal asymmetry, we assume that the main direction of the impact of asym-20

metry points toward the south-west, i.e. that the south and west directions of colonization21

are characterized by a colonization rate of (1 − d)/2, and the north and east directions22

each have a colonization rate of d/2. The matrix M therefore reads23

mik,jl =






d/2 if j = i + 1, k = l or j = i, l = k + 1

(1 − d)/2 if i = j + 1, k = l or j = i, k = l + 1

0 otherwise

(22)
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For the horizontal asymmetry, we assume that the main direction of colonization points1

toward the east; from a given habitat patch, colonization occurs to the west with a rate2

d/2, to the east with a rate (1−d)/2, while colonization in the north and south direction3

is unaffected by asymmetry and occurs at a rate 1/4. Thus, the matrix M is given by4

mik,jl =





d/2 if j = i + 1, k = l

1/4 if i = j, |k − l| = 1

(1 − d)/2 if i = j + 1, k = l

0 otherwise

(23)

We could consider other patterns of dispersal, but we will restrict our analysis to these5

two cases. They will allow us to differentiate the situation where only two (opposite)6

directions are affected by asymmetry from the situation where all directions are affected.7

2.2.2. Asymmetry in connectivity8

In our second set of analyses, we consider two types of global asymmetry in connectivity.9

The first case, called circulating asymmetry, allows only asymmetrically connected pairs10

of patches (colonization probability proportional to c from i to j and 0 from j to i). The11

second case, called bidirectional asymmetry, allows symmetric re-colonization between12

some fraction of the pairs of patches (colonization probability proportional to c in each13

direction). Starting from the so-called cascade model where all asymmetries point towards14

the same direction, we gradually reverse the direction of connections in a symmetric or15

asymmetric way. This procedure leads either to a circulating re-colonization pattern16

within the metapopulation, as observed for example in ocean systems, or mimics the17

pattern observed in river networks, where bidirectional movement is possible along some18

segments. We introduce the following parameters to characterize the asymmetry of the19

model: TC =
∑

ij mij denotes the total number of connections in the system, TS =20

∑
i>j mij mji denotes the total number of symmetric (or bidirectional) connections and21

LD =
∑

i>j mij denotes the level of directionality, that is, the number of connections in22

the upper triangular part of the matrix M (i.e., in the direction opposite to the main23

direction of colonization).24

We characterize the level of circulating asymmetry via the ratio ac = LD/TC , which is25

11



0 for the cascade model and increases to 1/2 when asymmetric connections are randomly1

distributed. Here, we only consider values of ac < 1/2; if ac > 1/2, we can get identical2

results by setting the asymmetry parameter to 1−ac and reversing the orientation of the3

whole system. Bidirectional asymmetry is characterized via the parameter ab = TS/TC ,4

which is zero for the cascade model and can be as large as 1/2 in the bidirectional model.5

In either case (circulating or bidirectional asymmetry), we start from the cascade model,6

either based on an island model (mij = 1 for j < i and 0 otherwise: TC = n(n − 1)/2),7

or on a two-dimensional grid model (pattern of connections as in (22), with d = 1/2:8

TC = 2(n − √
n)). We then sample f = acTC (or f = abTC) connections, without9

replacement, from these connections, and reassign them as follows.10

Circulating model : keep the connections asymmetric but switch their direction:11

{mij = 1, mji = 0} → {mij = 0, mji = 1} (24)

Bidirectional model : break the asymmetric connections and create bidirectional connec-12

tions elsewhere in the system, then sample f connections without replacement from the13

(TC−f) connections that were not chosen in the first sample and make them bidirectional:14

{mij = mkl = 1, mji = mlk = 0} → {mij = mji = 0, mkl = mlk = 1} (25)

Figure 2 shows these two models.15

Finally, we rescale the connectivity matrix so that the average per-patch connectivity16

is c (by dividing the binary connection matrix by the average number of neighbors,17

n/2 in the island case and 2 in the stepping-stone case). Asymmetry in connectivity is18

investigated only under the island and the stepping stone model. As in the distance-19

dependent model, connections have a weight that depends on their position and thus do20

not have conservative properties when permuted through the processes described above.21
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2.3. Computing metapopulation capacity and extinction probability1

2.3.1. Metapopulation capacity (λM)2

In the case where the matrix M is symmetric (i.e. when d = 1/2 and f+ = f−), it is3

a direct consequence of the spectral theory of large Toeplitz matrices (Gray, 2006) that4

λM approaches the largest row-sum of the matrix M for large system size, i.e. that5

λM ≃
n/2∑

k=1

f+(k) +

n/2∑

k=1

f−(k) →
n→∞

d + (1 − d) = 1 (26)

Many methods are known in the mathematical literature for analyzing the largest eigen-6

value (and more generally the whole spectrum) of large symmetric Toeplitz matrices (see7

Gray (2006) for a detailed account on this subject). Nevertheless, no general method is8

known for analyzing the largest eigenvalue of asymmetric Toeplitz matrices, which are9

encountered here.10

In the asymmetric dispersal strength case we can usually compute the metapopulation11

capacity λM analytically, either for particular values of system size (n) or in the limit of12

large system size. Indeed, when d < 1/2, the Perron-Frobenius theorem implies that λM13

is non-negative and smaller than or equal to the largest row-sum of the matrix, i.e. smaller14

than 1 for large system size. Furthermore, λM approaches 0 when d approaches 0. When15

no analytical formula can be provided, we compute the largest eigenvalue λM numerically.16

In the asymmetric connectivity case, there is no analytical expression for the largest17

eigenvalue λM , so we estimate it by numerical simulation. Note also that in this situ-18

ation, unlike in the asymmetric dispersal strength case, the irreducibility condition of19

Ovaskainen and Hanski (2001) is not guaranteed, as random reconnections do not neces-20

sarily create full connectivity in the network. This is particularly true when the number21

of reconnections is small, as well as when the grid stepping stone model is considered. In22

the latter case, we consider only real leading eigenvalues λM .23

2.3.2. Extinction probability (pE)24

In order to contrast the theoretical results on metapopulation capacity obtained with25

the deterministic model, we use numerical simulations to study the corresponding stochas-26
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tic model. The model is a Markovian stochastic model that describes the evolution of1

habitat patch occupancy, using Monte Carlo simulation methods. We are interested in2

the behavior of the extinction probability pE of the whole system with respect to the3

main parameters of the model, namely c, d and e. But now we consider a finite num-4

ber of patches, n = 100, evolving according to the following stochastic process. At the5

beginning, all patches are occupied. Each time step is divided into an extinction phase,6

during which extinction occurs independently at each patch with probability e, and a7

colonization phase, during which each empty patch i is recolonized with probability c mji8

from patch j, given that this patch is occupied. We then evaluate the extinction proba-9

bility pE as the average proportion of empty habitat patches after g = 1000 generations.10

We say that the system is stable if its survival probability is larger than 0. The average11

is taken over s = 1000 independent simulations. Contrasting the relationship between12

the time and the extinction probability in stochastic and deterministic metapopulation13

models appears to be strongly sensitive to the way the process is truncated (Cairns and14

Pollett, 2005). Indeed, if one were to let g grow arbitrarily large, while maintaining n15

fixed, then the extinction probability would tend to 1, independently of the system pa-16

rameters. On the contrary, letting g fixed while increasing n arbitrarily leads to a strictly17

positive survival probability in all cases. The arbitrary values of the number of patches18

n and the number of generation g considered here allow us to disentangle the impact of19

various asymmetric patterns under similar conditions.20

We consider four different models for the asymmetric dispersal strength case (the island21

model, the strongly asymmetric distance-dependent model with α = 1, the linear stepping22

stone model and the grid stepping stone model with horizontal asymmetry) and four23

different models for the asymmetric connectivity case (island and grid stepping stone24

models with circulating and bidirectional asymmetry).25

Ovaskainen and Hanski (2001) show that this system is well approximated by the system26

given in (5). According to (6), the latter system is stable if and only if λM(d) > e/c.27

Below, we explore the validity of this condition for the simulated system, in the context28

of metapopulations with asymmetric dispersal strength.29
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3. Results1

3.1. Metapopulation capacity λM2

3.1.1. Asymmetry in dispersal strength3

Figure 3a shows the behavior of the metapopulation capacity λM with respect to the4

asymmetry parameter d for the island model and for the stepping stone model. For the5

island model the slope of the curve is infinite at d = 0, and λM converges quickly to6

the value 1 as d approaches 1/2 (i.e., the symmetric case). Remembering condition (6),7

this translates into a stabilization of the system, as soon as the colonization rate in the8

direction opposite to the main direction of colonization is greater than 0. Fitting a curve9

to the results in Figure 3a gives10

λM(d) ≈ (4d(1 − d))0.3 (27)

for large system size n.11

Under the stepping stone model, the metapopulation capacity λM is shown to behave12

as13

λM(d) ≈
√

4d(1 − d) (28)

for large system size n (this result is proved analytically in Appendix Appendix A.1).14

The results from this model are similar to those from the island model above (slope +∞15

in d = 0, rapid convergence to 1 as d approaches 1/2), although the stability region where16

λM(d) > e/c is smaller than in the previous case, as Figure 3a shows.17

The value of λM remains relatively constant and displays the same value under both the18

island and the stepping stone model when d is above 0.36. However, below this value, the19

trajectories differentiate between the island and the stepping stone model. Following (6),20

viability is therefore predicted to decrease and to be the most affected by the asymmetry21

factor d under the stepping stone model. As expected, when the asymmetry is complete,22

both models predict extinction.23

For the case of weak asymmetry and distance-dependent colonization (eq. 16), whether24

dispersal range is restricted (α = 10) or not (α = 1) (Figure 3b), the behavior of λM25
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resembles that of the stepping stone model in Figure 3a for large values of α (i.e. when1

the average colonization distance h is small). When α is small (i.e. when the average2

colonization distance h is large), the behavior of λM resembles that of the island model3

in Figure 3a. Small changes occur for λM when the asymmetry factor d is above 0.36.4

Similar to the results shown in Figure 3a, viability increases with dispersal ability.5

Under strong asymmetry, viability quickly decreases with the asymmetry factor d6

(Fig. 1c). A decrease in dispersal ability buffers this effect for intermediate values of d.7

Interestingly, the shape of the relationship between d and λM differs from the previously8

studied cases (Fig. 3a and 3b) and depends on dispersal range α. When the asymmetry9

is strong (i.e. d is close to zero), the metapopulation capacity converges linearly to zero,10

at a rate increasing with a decrease in the dispersal range α. In the particular case where11

α = 1, fitting a curve to the data points on Figure 3c gives12

λM(d) ≈ 2
(
1 −

√
1 − 3d(1 − d)

)
(29)

This result implies in particular that λM has finite slope in d = 0. More precisely, it13

follows from (29) that λ′
M(0) = 3. Appendix Appendix A.2 gives a proof that14

λ′
M(0) ≤ 3 (30)

for all values of n (when α = 1).15

For other values of α, it can be inferred from Figure 3c that the slope of λM in d = 016

also remains finite. This result therefore contrasts with the results obtained for the other17

models. Finally, Figure 3c shows that the size of the stability region delimited by the18

condition λM(d) > e/c increases significantly with α under the present model.19

When colonization takes place on a grid and the main direction of colonization is along20

a diagonal of the grid, the behavior of the metapopulation capacity λM differs little from21

the corresponding linear stepping stone model, as Figure 3d shows. This comes from the22

fact that the second dimension of the model does not enhance the survival probability of23

the metapopulation in this case. However, if only one direction displays an asymmetric24

pattern, i.e. the asymmetry is horizontal, then the metapopulation capacity is greatly25

enhanced, because of the possibility of persisting through re-colonizations in the direction26

perpendicular to the main direction of colonization. More precisely, the largest eigenvalue27
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of the matrix M is shown to behave for large system size as1

λ2D
M (d) ≈ 1 + λ1D

M (d)

2
, (31)

where λ1D
M (d) is the metapopulation capacity under the linear stepping stone model, given2

by (28). The result is illustrated on Figure 3d and proved in Appendix Appendix A.3.3

As expected, when d tends to 0, λ2D
M (d) tends to 1/2 and not to 0, which arises from the4

fact that the asymmetry affects only one direction. Even so, the slope of λ2D
M (d) is still5

infinite in d = 0, as in the linear model.6

Therefore, when two directions of colonization are affected by the asymmetry factor7

d (Fig. 3d) and a grid stepping stone model of colonization is assumed, the shape of8

the relationship between λM and d resembles that of the linear stepping stone model.9

However, removing a direction where the asymmetry factor d applies qualitatively changes10

the prediction of viability. The value of λM remains at relatively high values over the11

range of d values and the stability region nearly doubles in size (Fig. 3d).12

3.1.2. Asymmetry in connectivity13

The metapopulation capacities λM obtained for different values of asymmetry in con-14

nectivity, ab and ac, considering respectively a circulating and a bidirectional model, are15

presented in Figure 4 for both the island model and the stepping stone model. For the16

island model, the relationships between the metapopulation capacity and the asymme-17

try in connectivity are nearly identical in the bidirectional and circulating cases and are18

similar to the results from systems with asymmetry in the dispersal strength (Fig. 3). In19

contrast, in the grid stepping stone model, the metapopulation capacity is highly variable,20

even when the model is symmetric (ab or ac = 1/2). As the fraction of symmetric con-21

nections decreases (from 1/2 to zero), the metapopulation capacity becomes even more22

variable, and the patterns differ according to the type of asymmetry.23

For the circulating model, the metapopulation capacity is strongly variable below an ac24

value of 0.25 (Fig. 4). This variability reflects the diversity of connectivity patterns that25

can be generated by displacing connections. Indeed, changing the direction of connections26

can lead to systems that are either stable or highly unstable. If this process generates27

numerous habitat patches with only connections going out or going in (source and sink28
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habitat patches) the system is expected to be strongly prone to extinction. The presence1

of source and sink habitat patches is reflected by the fact that the metapopulation capacity2

remains below 1 over the range of ac values considered.3

For the bidirectional model, values of metapopulation capacity can be larger than 14

(Fig. 4). The process of creating bidirectional connections generates systems in which5

connection density becomes strongly heterogeneous. This leads to the creation of iso-6

lated habitats and strongly connected substructures weakly connected to each other.7

Increasing the number of bi-directional connections quickly increases the metapopulation8

capacity. However, the variability of the values obtained remains high, corresponding to9

the diversity of the connectivity patterns obtained.10

Finally, in both cases thresholds occur for the minimum metapopulation capacity, the11

first at λM = 1/2. This phenomenon occurs because of the formation of cycles in the12

graph through the reconnection process. Indeed, it can be checked that the largest13

eigenvalue of a submatrix of M corresponding to a cycle in the graph is equal to 1/2 (as the14

adjacency matrix of a cycle is a circulating matrix and the non-zero coefficients of M are15

all equal to 1/2 in the grid stepping stone model). In the circulating model, these cycles16

appear only after a significant amount of link-flipping (ac > 0.2 in the present sample),17

whereas they appear for any ab > 0 in the bidirectional model (as a cycle of length 2 is18

automatically created after one reconnection in this case). One observes the formation19

of further thresholds for the bidirectional model, corresponding to the appearance of20

new structures in the graph (e.g., the next threshold is at λM = 1/
√

2 ≈ 0.707, which21

corresponds to the formation of adjacent cycles of length 2).22

3.2. Extinction probability pE versus λM23

3.2.1. Asymmetry in dispersal strength24

The results are illustrated in Figure 5, where both the metapopulation capacity λM25

and the extinction probability pE are represented as functions of the asymmetry factor d,26

for various values of the colonization rate c (the local extinction rate e is kept constant27

at 0.1, as only the ratio e/c matters in (6)). Four different models are considered: the28
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island model (Fig. 5a), the strongly asymmetric distance-dependent model with α = 11

(Fig. 5b), the linear stepping stone model (Fig. 5c) and the grid stepping stone model2

with horizontal asymmetry (Fig. 5d).3

Under the island model, Figure 3a suggests that for the parameters considered, the4

metapopulation can persist (the extinction probability predicted from the metapopu-5

lation capacity drops below 1) as soon as d increases slightly above zero. This result6

matches the numerical results shown in Figure 5; for the parameters considered, the ex-7

tinction probability drops rapidly below 1 as d increases from 0. Differences in extinction8

probability obtained with the three models of colonization along the range of values of d9

are relatively constant. Their behavior is relatively similar; they quickly level off to e/c,10

the value predicted for a symmetric metapopulation (6). Those results are reflected by11

the behavior of the metapopulation capacity λM : it stays close to 1 for a wide range of12

values of d (from to d = 0.5) before finally dropping to 0 when d reaches 0.13

Under the strongly asymmetric distance-dependent model, assuming large dispersal14

ability (α = 1) (Fig. 5b), the extinction probability stays equal to 1 for a large range15

of d values. The extinction probability reaches a threshold value at quite high values16

of d, which depend on value of c considered. The transition from maximal to minimal17

extinction probabilities is more gradual than in the previous case (Fig. 5a).18

Under the stepping stone model (Fig. 5c), a similar phenomenon occurs: the extinction19

probability slowly decreases with increasing symmetry, but the decrease starts immedi-20

ately when d is slightly larger than 0. On the other hand, the threshold values reached21

for d = 1/2 are higher in this case. This is explained by the inherent low connectivity22

of the stepping stone model, whose extinction probability is therefore larger than that of23

other models. The parameter range over which extinction decreases increases as (e/c) in-24

creases. Under this model, the predictions of extinction according to the metapopulation25

capacity λM disagree with the simulation results.26

Finally, the behavior of the extinction probability is illustrated for the grid stepping27

stone model with horizontal asymmetry (Fig. 5d). Similar to the results for the island28

model (Fig. 5a), a quick decrease of the extinction probability when d is slightly larger29

than zero is predicted. Expected extinction probabilities (e/c) are reached for relatively30

low values of d and converge more rapidly when colonization is high.31
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3.2.2. Asymmetry in connectivity1

In the island model, extinction probability reaches 1 under both the bidirectional and2

the circulating models, for all values of colonization rates, as the system becomes com-3

pletely asymmetric (Figure 6). As asymmetry in connectivity decreases, the extinction4

probability drops extremely rapidly when c ≥ 0.3; when c = 0.2 it drops for ab or ac > 0.1,5

and for c = 0.1 the metapopulation never persists.6

Overall, persistence is very low in the grid stepping stone model and the behavior of7

the metapopulation capacity over the range of asymmetric values ab and ac differentiates8

between the bidirectional and circulating models. The extinction probability decreases9

faster with increased ab than with increased ac (Figure 6). For a given level of asymme-10

try, the values of the colonization rate c required for metapopulation viability are higher11

for the circulating case than for the bidirectional case. Under the circulating model, the12

proportion of permuted connections, ac, needed to provide a viable network of habitat13

patches is high (30–50%); whatever colonization rate is considered, all the connections14

have to be shuffled in order to reach the lowest extinction probability. Under the bidirec-15

tional model, a surprisingly low proportion of bidirectional connections, ab, (15-20 %) is16

sufficient to drastically reduce the extinction probability of the metapopulation (Figure17

6). Extinction rapidly declines as the number of symmetric connections increases. When18

the number of reversed connections reaches 40%, the extinction probability stabilizes19

at a low value. These results might be predicted from the considerably lower average20

metapopulation capacities in the circulating case. However, because the connection ma-21

trices are not irreducible in this case, it is unclear whether the metapopulation capacity22

can be interpreted in the same way. Indeed, for a given level of asymmetry ab the mean23

metapopulation capacities are higher in the grid stepping stone model than in the is-24

land model, but the extinction probabilities are also higher, indicating that the standard25

comparisons based on metapopulation capacities do break down in this case.26
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4. Discussion1

4.1. Asymmetry in dispersal strength2

Overall, persistence is relatively well maintained when asymmetry in dispersal strength3

is less than 25%. Below this level of asymmetry, extinction probabilities resembles those4

from a completely symmetric system. Above this value, extinction predictions are highly5

sensitive to the migration model assumed and to the shape of asymmetry in the dispersal6

pattern. When a bias in re-colonization direction exceeds 35%, viability predictions7

quickly drop under both the stepping stone model and the distance-dependent model8

of migration. The worst situation for species viability is a pattern of re-colonization in9

which both direction and range of re-colonization are biased in one direction, under a10

distance-dependent migration model, when the species has a large dispersal ability (α =11

1) (Figure 5b). Indeed, under those conditions, a small bias in the colonization pattern12

has the strongest impact on viability predictions, while for other models, the impact13

remains weak. Ultimately, when no limitation in distance is considered (island model) or14

when re-colonization is symmetric in some direction (such as e.g. for the stepping stone15

with horizontal asymmetry) viability predictions remain stable until asymmetry becomes16

extreme (more than 80% of re-colonization bias in one direction).17

Interestingly, the two patterns of re-colonization that provide the lowest extinction18

probability appear to be common in ecosystems subject to environmental gradient. For19

example, in dynamic marine environments, where advection by currents carries individ-20

uals far from natal populations (Caley et al., 1996), such dynamics might provide a high21

re-colonization potential between distant populations. Such patterns appear to be fre-22

quently associated with a local strong connectivity. Several recent studies have showed23

strong evidence that individuals can remain close to their natal habitats by exploiting24

local circulation patterns (Swearer et al., 2002; Warner and Cowen, 2002; Cowen et al.,25

2006; Becker et al., 2007; Cowen and Sponaugle, 2009; Morgan et al., 2009). In particular,26

Morgan et al. (2009) demonstrate that in conditions of wind-driven offshore transport27

and strong upwelling regions, marine larvae are more likely to recruit close to natal popu-28

lations than previously thought. Although dispersal ability certainly affects the viability29
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of metapopulations, dispersal pattern that allows either some local symmetry or/and long1

distance dispersal might simply be an evolution in heterogeneous environment to avoid2

extinction.3

4.2. Asymmetry in connectivity4

For asymmetry in connectivity, when dispersal distance is unlimited (the island model),5

viability does not differ between the two main patterns investigated. A small proportion6

of reverse connections quickly lead to viability, because the matrix has high connectance7

and because the initial configuration (before permutation of connections) follows a cas-8

cade model. Even though a pure cascade model is unviable, it provides a structure that9

allows full connectivity between all habitat patches. Under an island model, gradually10

permuting connections leads to a situation where re-colonization is allowed through the11

entire system. However, when re-colonization is limited in distance (as in the grid step-12

ping stone model) and the number of connections is reduced, viability is much harder to13

achieve. To generate a configuration in which re-colonization process is possible across14

the entire network, the number of connection permutations must be fairly high. However,15

this global connectivity is achieved faster in the bi-directional model than in the circu-16

lating model. Even with a high colonization rate, a very small proportion of asymmetry17

in connectivity quickly increases the extinction probability under the circulating model,18

while under the bidirectional model, extinction predictions remain similar to those ex-19

pected under symmetry when 10-20% of asymmetry is considered (i.e., when ab decreases20

to ≈ 0.3−0.5). In the circulating model, the permutation process gradually creates large21

networks of habitat patches which increase the average length of successive connections22

to allow re-colonization, while the bidirectional model reinforces the local re-colonization23

potential of sub-networks of habitat patches. The resulting local sub-structure provides24

sources of colonizers for the habitats that might be more prone to extinction.25

Our results agree with those of Vuilleumier and Possingham (2006). They contrast the26

prediction of metapopulation extinction under a symmetric (only bidirectional connec-27

tions) and asymmetric (only one-directional connections) connectivity matrix, given any28

random number of connections. They show that the viability under asymmetric coloniza-29
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tion pattern is much lower than under a symmetric one. Our approach refines their study1

and differs in four aspects: the starting condition is a cascade model, intermediate forms2

of asymmetry are considered (ab factor), specific numbers of connections are considered3

(grid stepping stone vs island model) and the generation of the connectivity matrix is4

performed under strong constraints which allow the creation of large loops or strong local5

connectivity in the system.6

The connectivity matrices generated here are neither precisely one-dimensional nor two-7

dimensional and share some properties of dendritic networks (Tarboton, 1996; Campbell8

Grant et al., 2007). Some authors have shown that such structures affect metapopula-9

tion dynamics, inducing source-sink dynamics (Hanfling and Weetmann, 2006; Labonne10

et al., 2008) and affecting the patterns of community diversity (Economo and Keitt,11

2008; Rodriguez-Iturbe et al., 2009) as well as genetic relatedness (Wofford et al., 2005;12

Labonne et al., 2008), diversity (Jansson et al., 2005; Morrissey and Kerckhove, 2009),13

and species range distribution (Gaylord and Gaines, 2000; Leyer, 2006; Gurnell et al.,14

2008). Such networks are a longstanding object of study for hydrologists (e.g. Horton15

1945), who differentiate river networks that are structured in a few poorly interconnected16

groups of patches (Hortonian) from networks that have a better balance between local17

and long-distance connectivity (non-Hortonian). In this context, Labonne et al. (2008)18

showed that in Hortonian networks, extinction probability is enhanced, as root patches19

often go extinct, splitting the metapopulation into disconnected components with shorter20

persistence times. Speirs and Gurney (2001) and Lutscher et al. (2005) demonstrate that21

this effect is enhanced when dendritic structures are associated with a directional bias22

of re-colonization. Our bidirectional and circulating asymmetry cases are similar to non-23

Hortonian and Hortonian networks, but we allow for a large range of spatial configurations24

in which local and global clustering is allowed. We also confirm that this effect strongly25

depends on the ability of the species to disperse: when long dispersal is allowed, as in26

the island model, there is little difference in extinction probability among the networks27

considered.28
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4.3. Predicted and actual threshold values for extinction1

Predicted and actual threshold values in asymmetry in dispersal strength show a clear2

correspondence between the predicted threshold value d∗ computed from the equation3

λM(d∗) = e/c and the value for which the probability pE drops below the value 1 when4

the island model and the two stepping stone models are considered. However, a careful5

observation of the results shows that, for the distance-dependent model, the predicted6

threshold value d∗ computed from the equation λM(d∗) = e/c does not occur exactly7

where the probability pE drops below the value 1 (Figure 3b). The observed discrepancies8

can be explained in various ways.9

First of all, the predicted threshold value d∗ is computed in the framework of the10

model (5), a deterministic model which does not a priori fully match with our stochastic11

simulations of the actual extinction probability.12

We also expect differences because of differences in the underlying assumptions of the13

models. The deterministic and stochastic models considered here would lead to identical14

predictions only for a large number of habitat patches that are equally connected to15

other habitat patches. Looking at a system where re-colonization from an habitat patch16

is restricted to a small number of habitat patches (such as the stepping-stone model)17

violates such an assumption and leads to deviations from the stochastic system. In18

addition, boundary effects cannot be neglected in a system with a relatively small number19

of patches.20

Moreover, the stochastic model is evaluated at quasi-stationary equilibrium (that is,21

after a given number of generations). As shown by Cairns and Pollett (2005), the rela-22

tionship between the time and the extinction probability in stochastic and deterministic23

metapopulation models can be strongly sensitive to the way the process is truncated.24

As the number of generations increases, so do the extinction probability and this inde-25

pendently of the system parameters. Similarly, extinction probability in the stochastic26

model decreases with the size of the system. Part of the discrepancies observed between27

the stochastic and deterministic predictions is expected from the chosen metapopualtion28

size and cut-off used. A detailed analysis of the impact of these parameters for each of29

the model investigated here could have been of interest but goes beyond the purpose of30
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this study.1

Finally, as mentioned above, the the asymmetric connectivity model does not guarantee2

irreducibility of the landscape matrix M . When M is reducible, the metapopulation is3

divided into groups of patches which are disconnected from each other and the condition4

λM ≥ e/c established by Hanski and Ovaskainen (2001) is not applicable. There is still5

much to say about the profile of surviving metapopulations (that is, the probability of6

persistence of a patch given its position). Given the theoretical result of Ovaskainen and7

Hanski (2001), it is known that when the recolonization matrix M is irreducible, the8

limit profile vector p∗ is positive everywhere. Lutscher et al. (2007) refine this picture9

and show that in environment with unidirectional flow there is an upstream limit above10

which a patch survival probability is close to zero, while a linear and strictly positive11

profile seems to emerge below this limit. Studying further this profile under our model12

is a promising future research track.13

4.4. Robustness of our model14

Our stochastic simulations are performed in discrete time: at each time step, we let all15

the extinctions occur first, and then simulate the colonizations. Reversing the order of16

events does not modify the behavior of the system during simulations, as we start with the17

situation where all habitat patches are occupied. However, if persistence is evaluated after18

the extinction events instead of the colonization events, viability predictions are lower,19

as shown on Figure 7. Nevertheless, the general behavior of the extinction probability in20

relationship to asymmetry is not affected.21

Continuous- and discrete-time colonization-extinction models of metapopulations can22

also differ in their predictions of extinction (Frank, 2005). In continuous-time models,23

extinctions and colonizations are not ordered. Extinctions occur at rate e, while col-24

onizations between habitat patches i and j occur at rate c mij, and the time intervals25

between these events are assumed to be independent and exponentially distributed. As26

Figure 8 shows, our results are robust to this change of model: simulations performed27

in discrete time or continuous time lead to similar behavior of the extinction probability28

with respect to the asymmetry factor d.29
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5. Conclusion1

In heterogeneous environments, populations are fragmented and form metapopulations2

which persist through processes of extinction and re-colonization. Due to environmental3

heterogeneity, those fragmented populations form complex networks of habitat patches4

that can display asymmetry in dispersal. Such networks have dynamic, ecological and5

genetic properties that strongly differ from those observed in homogeneous systems and6

suffer from a general lack of theoretical exploration (Vuilleumier and Possingham, 2006;7

Campbell Grant et al., 2007; Labonne et al., 2008; Morrissey and Kerckhove, 2009).8

Given fixed values of standard metapopulation parameters such as overall colonization9

rate, extinction rate, and connectivity, we explored how the level and pattern of re-10

colonization asymmetry affect the metapopulation capacity and persistence.11

We found that a directional bias in dispersal strength smaller than 25% does not affect12

metapopulation persistence; this threshold value reaches 80% when metapopulation bene-13

fits from a strong general connectivity (the island model) or with strong local connectivity14

(local horizontal symmetry). However, when the connectivity is generally weak (stepping15

stone model), a bias of as little as 35% drastically reduces viability. This effect is even16

stronger when the re-colonization bias affects both the strength and the average distance17

of dispersal. Networks that allow for a balance between local and global (long-distance)18

connectivity provide higher persistence than networks that allow for global connectivity19

and large circulating re-colonization patterns (island model).20
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6. Figures1
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Figure 1: Decay of the colonization rate f(x) with the distance x from the focal habitat patch in
(from top to bottom): the island model, the stepping stone model, the weakly and strongly asymmetric
distance-dependent models. Here, the asymmetry factor d = 1/4 (and α = 1 in the distance-dependent
models).
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Figure 2: Patterns of asymmetry in colonization. Connection matrices for island model, 16× 16 system.
Top row, circulating: for ac = 1/2 (top right), the system is antisymmetric (mij = 1 − mji for all i, j).
Bottom row, bidirectional: for ab = 1/2 (bottom right), the system is symmetric.
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Figure 3: Metapopulation capacity λM as a function of the asymmetry factor d for: (a) the island model
(triangles) and the linear stepping stone model (squares), (b) the weakly distance-dependent asymmetric
model with α = 1 (triangles) and α = 10 (squares), (c) the strongly distance-dependent asymmetric
model with α = 1 (triangles) and α = 10 (squares), and (d) the grid stepping stone model with horizontal
asymmetry in the direction of propagation (triangles) and diagonal asymmetry (squares). The number
of patches n = 100. The solid curves correspond to theoretical values obtained (or conjectured) for large
system size n.
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Figure 4: The minimum, median, and maximum value of the metapopulation capacity λM as a function
of the asymmetry parameters ab and ac for the island model and for the stepping stone model consid-
ering either bidirectional connection or a circulation system (see method for details). Only real leading
eigenvalues were considered for the grid2D case, were excluded 733/21000 complex leading eigenvalues
for the bidirectional case, 20/21000 pure-imaginary and 753/21000 complex leading eigenvalues for the
circulating case.
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Figure 5: Metapopulation capacity λM (triangles) and extinction probability pE (squares) as a function of
the asymmetry factor d and the colonization rate c for (a) the island model, (b) the strongly asymmetric
distance-dependent model with α = 1, (c) the linear stepping stone model, and (d) the grid stepping
stone model with horizontal asymmetry. The number of patches n = 100, the number of generations
g = 1000 and the number of simulations s = 1000 (except for the linear stepping stone model with
s = 2500). In addition, the local extinction rate e = 0.1 and the colonization rate c = 0.4 (black
squares), c = 0.5 (gray squares) and c = 0.6 (white squares).
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Figure 6: Probability of metapopulation extinction, pE , as a function of the asymmetry parameter ab and
ac for the island model and for the stepping stone with locale extinction rate e=0.1 and the colonization
rate c = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. Dynamics is simulated for 1000 time steps.
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model and parameters here are the same as in Figure 5b. Solid (resp. dotted) lines represent the results
obtained when extinctions (resp. recolonizations) are performed first.
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The model and parameters here are the same as in Figure 5b. Solid (resp. dotted) lines represent the
results for the discrete-time (resp. continuous-time) model.
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Appendix A. Proofs1

Appendix A.1. Linear stepping stone model2

We prove here (28). Under the stepping stone model (13), the matrix M may be3

rewritten as4

M =




0 d 0

1 − d 0 d

1 − d 0
. . .

. . .
. . . d

0 1 − d 0




=
√

d(1 − d)




0 x 0

1/x 0 x

1/x 0
. . .

. . .
. . . x

0 1/x 0




(A.1)

where x =
√

d/(1 − d). Let us now write5

Dn(λ) = det




−λ x 0

1/x −λ x

1/x −λ
. . .

. . .
. . . x

0 1/x −λ




(A.2)

It follows that D1(λ) = −λ, D2(λ) = λ2−x (1/x) = λ2−1 and expanding the determinant6

along the last column for general n gives7

Dn(λ) = −λ Dn−1(λ) − x (1/x) Dn−2(λ) = −λ Dn−1(λ) − Dn−2(λ) (A.3)

By induction, this shows that Dn(λ) does actually not depend on x, so the eigenvalues8

of the matrices9




0 x 0

1/x 0 x

1/x 0
. . .

. . .
. . . x

0 1/x 0




and




0 1 0

1 0 1

1 0
. . .

. . .
. . . 1

0 1 0




(A.4)
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are the same. It is now a well know fact that as n → ∞, the largest eigenvalue of the1

latter matrix converges to 2 (Gray 2006). So as n → ∞, the largest eigenvalue of M2

converges to3

λM(d) = 2
√

d(1 − d) (A.5)

Appendix A.2. Strongly asymmetric distance-dependent model4

We prove here (30). Under the distance-dependent model (19) and when α = 1, the5

matrix M may be rewritten as M = d (1 − d) X, where6

xij =





dj−i−1 if i < j

(1 − d)i−j−1 if i > j
(A.6)

Now, for any fixed n and as d tends to 0, the matrix X tends to7

X0 =




0 1 0

1 0 1

1 0
. . .

. . .
. . . 1

1 1 0




(A.7)

In the following, we prove that for any n, the largest eigenvalue λX0
of X0 cannot be8

greater than 3, thus proving that as d tends to 0,9

lim
d→0

λM(d)

d
= lim

d→0

d(1 − d)λX0

d
≤ lim

d→0

3d(1 − d)

d
≤ 3. (A.8)

or in other words, that λ′
M(0) ≤ 3, which is (30).10

The fact that λX0
≤ 3 is proven as follows. Let Dn(λ) and En(λ) be defined as11

Dn(λ) = det




−λ 1 0

1 −λ 1

1 −λ
. . .

. . .
. . . 1

1 1 −λ




and En(λ) = det




−λ 1 0

1 −λ 1

1 −λ
. . .

. . . −λ 1

1 1 1




(A.9)
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By expanding the determinant along the last column, the following recurrence relations1

are obtained:2

Dn+1(λ) = −λ Dn(λ) − En(λ) and En+1(λ) = Dn(λ) − En(λ) (A.10)

We now make the following claim: if λ > 3, then for all values of n, |Dn(λ)| ≥ |En(λ)|3

and Dn(λ) En(λ) < 0. This implies in particular that if λ > 3, then for all values of n,4

Dn(λ) 6= 0, so λ cannot be an eigenvalue of X0 and therefore λX0
≤ 3.5

Proof of the claim. We proceed by induction. Since D1(λ) = −λ and E1(λ) = 1, it6

is clear by assumption that |D1(λ)| ≥ |E1(λ)| and D1(λ) E1(λ) < 0. Assume now that7

|Dn(λ)| ≥ |En(λ)| and Dn(λ) En(λ) < 0. Then,8

Dn+1(λ) En+1(λ) = −λ Dn(λ)2 + En(λ)2 + (λ − 1) Dn(λ) En(λ) < 0 (A.11)

Besides,9

|En+1(λ)| = |Dn(λ) − En(λ)| = |Dn(λ)| + |En(λ)| (A.12)

and10

|Dn+1(λ)| = |λ Dn(λ) + En(λ)| = |(λ + 1) Dn(λ) + En(λ) − Dn(λ)| (A.13)

As |(λ + 1) Dn(λ)| ≥ |En(λ) − Dn(λ)|, it is still true by assumption that11

|Dn+1(λ)| = |(λ + 1) Dn(λ)| − |En(λ) − Dn(λ)| ≥ 4 |Dn(λ)| − |En+1(|λ)| (A.14)

≥ 2 (|Dn(λ)| + |En(λ)|) − |En+1(λ)| = 2 |En+1(λ)| − |En+1(λ)| = |En+1(λ)|(A.15)

so the claim is proved.12

Appendix A.3. Grid stepping stone model13

We prove here (31). In the grid case, the matrix M of the stepping stone model has14

the following structure:15

M =
1

2




M ′ D 0

D M ′ D
. . .

. . .
. . .

D M ′ D

0 D M ′




(A.16)
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where M ′ is the matrix of the linear stepping stone model and D = diag(1/2, . . . , 1/2).1

The eigenvalue decomposition of each matrix M ′ reads M ′ = SΛ′S−1, where S is an2

invertible matrix and Λ′ is the diagonal matrix of eigenvalues of M ′. Therefore,3

M =
1

2




S 0 0

0 S 0
. . .

. . .
. . .

0 S 0

0 0 S







Λ′ D 0

D Λ′ D
. . .

. . .
. . .

D Λ′ D

0 D Λ′







S−1 0 0

0 S−1 0
. . .

. . .
. . .

0 S−1 0

0 0 S−1




(A.17)

and the eigenvalues of M are the same as those of4

Λ =
1

2




Λ′ D 0

D Λ′ D
. . .

. . .
. . .

D Λ′ D

0 D Λ′




(A.18)

Let us denote by λ2D
M (d) the largest eigenvalue of M (that is, of Λ) and by λ1D

M (d) the5

largest eigenvalue of M ′ (that is, of Λ′). By Geršgörin’s discs’ argument, we know that6

λ2D
M (d) ≤ 1

2
(λ1D

M (d) + 1) (A.19)

which proves half of the claim. This upper bound is achieved for large system size n:7

indeed, if λ is an eigenvalue of the reduced size matrix8

Λ̃ =
1

2




λ1D
M (d) 1/2 0

1/2 λ1D
M (d) 1/2
. . .

. . .
. . .

1/2 λ1D
M (d) 1/2

0 1/2 λ1D
M (d)




(A.20)

then it is easily seen that λ is also an eigenvalue of the matrix Λ. As the largest eigenvalue9

of Λ̃ is known to converge to 1

2
(λ1D

M (d) + 1) for large n (Gray 2006), the claim is proved.10
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