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Ayfer Özg̈ur and Olivier Ĺevêque
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Abstract— We derive an information theoretic scaling law for
the maximum achievable rate per communication pair in a two-
dimensional random ad-hoc wireless network. Our scaling law
holds for non-absorptive media and when the path loss exponent
(describing the decay of the amplitude of the signal) is between 1
and 2. The key ingredient of our result is the recently established
information theoretic scaling law for one-dimensional ad-hoc
wireless networks in the attenuation regime of interest.

I. I NTRODUCTION

The seminal work of P. Gupta and P. R. Kumar [1] on
the capacity of ad hoc wireless networks implies that the
maximum achievable rate per communication pairR in a d-
dimensional extended network with uniform traffic pattern, is
bounded above by

R ≤ K

n
1
d

. (1)

Recent attempts (see [2], [3], [4], [5]) have confirmed this
result from information theoretic point of view for absorptive
media or under strong assumptions on the attenuation. In the
more interesting case when there is no absorption and when
the path loss exponent is between 1 and 2, there is a gap
between the results presented in [4] and the upper bound (1).
This gap has been closed recently in [5] for one-dimensional
networks. In this paper, using the result of [5], we derive an
information theoretic upper bound on the maximum achievable
rate per communication pair in a two-dimensional random ad-
hoc wireless network which improves the already known upper
bounds in the attenuation regime of interest.

Main Result: If the attenuation function describing the
decay of the transmitted signals over distance is given by

g(r) =
1
rδ

where1 ≤ δ ≤ 2, then for allε > 0

R ≤ K

n
1
2−

1
2(δ+4)−ε

a.s.

in a large uniformly distributed two-dimensional network,
whereK > 0 is a constant independent ofn.

Remark: It is not difficult to extend our result and show
that the transport capacity of such a network is almost surely
bounded above by

CT ≤ Kn1+ 1
2(δ+4)+ε

which we will not prove here due to space limitations.

II. A PPROACH

We consider a constant density network ofn users (or
nodes) where the users are independently and uniformly
distributed on the two-dimensional domainD = [−

√
n,
√

n]×
[0,
√

n]. Let us divide this domain into two equal parts
[−
√

n, 0] × [0,
√

n] and [0,
√

n] × [0,
√

n]. We are interested
in bounding the total information flow from one half of the
network to the other, or equivalently the sum of the rates of
communications passing the imaginary boundary on they-
axis, say from left to right.

Let us make a series of optimistic assumptions: in parallel
to [4] and [5], we first introducen additional “mirror” users
that help relaying traffic, where the mirror location of(xi, yi)
is (−xi, yi). After the introduction of mirror users, there are
exactly n users on each side of the domain, symmetrically
located with respect to they-axis and moreover independently
and uniformly distributed on each side. Let us also assume that
the users on each side of the domain can share instantaneous
information and power among themselves so that we are in
the following MIMO channel setting,

Vi =
n∑

j=1

Gδ,n
ij Uj + Zi, i = 1, ...n

whereZ = (Z1, . . . ,Zn) is a vector of circularly symmetric
complex Gaussian random variables with unit variance and the
entries of then× n channel matrixGδ,n are given by

Gδ,n
ij =

1

((xi + xj)2 + (yi − yj)2)
δ
2

(2)

where (Li := (xi, yi), i = 1, . . . , n) are the right-hand side
node locations. In the following sections, we will use the
notationGδ,n {L1, . . . Ln} to refer to then × n matrix Gδ,n

corresponding to a specific configuration(L1, . . . Ln) or omit
the argument when no confusion can arise. Under the power
constraint

∑n
j=1 E

[
|Uj |2

]
≤ nP , the capacity of the above

channel upper bounds the maximum flow of information from
one half of the network to the other and is given by

Cn = max
Pk≥0:

Pn
k=1 Pk≤nP

n∑
k=1

log
(
1 + Pkλ2

k

)
whereλk are the eigenvalues of the symmetric matrixGδ,n.
Noting that Pk ≤ nP and λk ≥ 0 for eachk, we further



obtain

Cn ≤
n∑

k=1

log
(
1 + nPλ2

k

)
≤

n∑
k=1

log
(
1 +

√
nPλk

)2

= 2 log det
(
I +

√
nPGδ,n

)
. (3)

The proof of the fact thatGδ,n is non-negative definite can be
found in [4].

If we assume a uniform traffic pattern, there will be ordern
communication requests that need to pass the boundary from
left to right which gives

R ≤ K
Cn

n
.

Hence, we are interested in determining the scaling of the
sum-capacityCn in the above described setting.

In the one-dimensional case, the same approach leads us to
the same upper bound (3) onCn, however the structure of the
n× n channel matrixG1Dδ,n

is given by

G1Dδ,n

ij =
1

(xi + xj)
δ

(4)

in this case. When the channel matrix has this simpler struc-
ture, it has been shown in [5] thatCn is bounded above by

Cn ≤ 2 log det
(
I +

√
nPG1Dδ,n

)
≤ K(log n)3+σ (5)

for 1 ≤ δ ≤ 2, whereK > 0 is a constant independent of
n andδ, andσ > 0 is arbitrarily small. The upper bound (5)
is established for linear networks satisfying a minimum dis-
tance constraint, however the same bound holds for uniformly
distributed large random networks in the almost sure sense.

III. PROOF

Our approach is to divide the planar network into horizontal
strips and make use of the result obtained for linear networks.
Hence, we start by dividing the domainD into N =

√
n

ε equal
horizontal strips, namely

Si = [−
√

n,
√

n]× [(i−1)ε, iε] for i = 1, 2...N. (6)

Let us denote the total number of users in the stripSi

(with symmetric left and right-hand side configuration) by the
random variable2ni. We recall the generalized Hadamard’s
Inequality (see [6], Thm 9.C.1): IfA(n) is n × n Hermitian
positive definite matrix and

(
A(si), i = 1, . . . , p

)
are the diag-

onal blocks ofA of given sizes{si} (such thatn =
∑p

i=1 si)
then

det(A) ≤
p∏

i=1

det
(
A(si)

)
. (7)

We can apply this inequality to the positive definite matrix
(I +

√
nPGδ,n) with the diagonal blocks being theN strips

we have introduced. Hence, we can bound the sum-capacity
of the planar network by,

Cn ≤ 2 log det(I +
√

nPGδ,n)

≤
N∑

i=1

2 log det(I +
√

nPGδ,ni {Si}). (8)

where now we useSi to refer to the configuration of the strip
Si. Let us now consider the expected value of this upper bound
over random node locations, thus

E(x1,y1),...,(xn,yn)

[
log det(I +

√
nPGδ,n)

]
≤ En1,...,nN

[
EX(S1),...,X(Sn);Y (S1),...,Y (Sn)[ N∑

i=1

log det(I +
√

nPGδ,ni {Si})
]]

=
N∑

i=1

Eni

[
EX(Si)

[
EY (Si)

[
log det(I +

√
nPGδ,ni {Si})

]]]
(9)

where the subscripts denote the variables with respect to which
the expectation is performed andX(Si) refers to the collection
(x1, . . . ,xni

) denoting thex-coordinates of the nodes inSi

(and similarly for Y (Si)). It is easy to see that the terms
in (9) governing different stripsSi are equal. Without loss
of generality, we concentrate on the stripS1 with number of
usersn1 and configurationS1. For notational convenience,
we denote the matrixGδ,n1 {S1} by GS,δ, X(S1) by X and
Y (S1) by Y , however we keep in mind that the node locations
(xi,yi), 1 ≤ i ≤ n1 are now uniformly and independently
distributed on the set[0,

√
n] × [0, ε]. Considering the inner

most expectation for givenn1 and a set ofX and recalling
that log det(·) is a concave function on the set of positive
definite matrices, we apply Jensen’s Inequality to obtain

EY

[
log det(I +

√
nPGS,δ)

]
≤ log det

(
I +

√
nPEY

[
GS,δ

])
. (10)

The entries of the matrixGS,δ are given by (2). GivenX, each
yi, 1 ≤ i ≤ n1 is uniformly and independently distributed on
the interval [0, ε] and the random variabley = (yi − yj)2

has a distributionpy(y) supported on the interval[0, ε2] when

i 6= j. Thus the entries of the matrixEY

[
GS,δ

]
are given by

EY

[
GS,δ

ij
i 6=j

]
=
∫ ε2

0

py(y)
1

((xi + xj)2 + y)
δ
2
dy

EY

[
GS,δ

ii

]
=

1
(2xi)δ

. (11)

The matrixEY

[
GS,δ

]
can be written as a sum of two matrices

EY

[
GS,δ

]
= D′δ + G′

δ

whereG′
δ

is the matrix whose entries are given by

G′
δ

ij =
∫ ε2

0

py(y)
1

((xi + xj)2 + y)
δ
2
dy

andD′δ is the diagonal matrix that compensates the difference
between the diagonal entries ofG′

δ

andEY

[
GS,δ

]
. Thus,

D′δ
ii =

1
(2xi)δ

∫ ε2

0

py(y)

(
1−

(
1 +

y

(2xi)2

)− δ
2
)

dy.



The entries of the diagonal matrixD′δ
ii can be upper bounded

by making use of the relation

1− (1 + x)−α =
∫ x

0

α(1 + z)−α−1dz ≤ αx

which yields

D′δ
ii ≤

δ/2
(2xi)δ+2

∫ ε2

0

ypy(y)dy ≤ δε2

2(2xi)δ+2
= Dδ

ii (12)

whereDδ is defined as the upper bounding diagonal matrix. In
the appendix, we prove that the difference matrixG1Dδ −G′

δ

whose entries are given by

G1Dδ

ij −G′
δ

ij =
1

(xi + xj)δ
−
∫ ε2

0

py(y)
1

((xi + xj)2 + y)
δ
2
dy.

is non-negative definite. This fact together with (12) implies
thatG1Dδ

+Dδ −G′
δ −D′δ is a non-negative definite matrix.

Recalling that thelog det(·) is not only concave, but also
increasing on the set of positive definite matrices (see [6],
16.E) gives

log det
(
I +

√
nPEY

[
GS,δ

])
≤ log det

(
I +

√
nPDδ +

√
nPG1Dδ

)
≤ log det

(
I +

√
nPDδ

)
+ log det

(
I +

√
nPG1Dδ

)
(13)

where the last inequality is due to the following entropy
relation for independent Gaussian vectors:h(Y + X + Z) +
h(X) ≤ h(Y + X) + h(X + Z).

The second term in (13) resembles the upper bound (5) gov-
erning linear networks except thatG1Dδ

is now n1 ×n1 with
n1 ≤ n. However, by the interlacing property of symmetric
matrices (see [8, Thm 4.3.8]) then1 largest eigenvalues of the
matrix G1Dδ,n

that hasG1Dδ,n1 as an upper left submatrix
dominate the eigenvalues ofG1Dδ,n1 . Toghether with the fact
that I +

√
nPGδ has all its eigenvalues larger than 1, this

implies

log det
(
I +

√
nPG1Dδ,n1

)
≤ K ′′(log n)3+σ (14)

almost surely for largen.
For the first term in (13), let us consider the expectation

over X, thus

EX

[
log det

(
I +

√
nPDδ

)]
= EX

[
n1∑
i=1

log
(

1 +
√

nP
δε2

2(2xi)δ+2

)]

= n1

∫ √
n

0

1√
n

log

(
1 +

δ
√

P

2
n

1
2−2η

(2x)δ+2

)
dx (15)

where (15) is obtained by choosingε = n−η with η > 0.
We have the following lemma from [4] (Lemma 2.2) which
states that for anyC, p > 0 andα > 1, there exists a constant
K ′ > 0 such that for all sufficiently largen,∫ n

0

dx log
(

1 +
Cnp

xα

)
≤ K ′n

p
α∧1 log n

wherea ∧ b is minimum ofa and b. Applying this lemma to
(15) and performing the last expectation in (9) with respect to
n1 yields

En1

[
EX

[
log det

(
I +

√
nPDδ

)]]
≤ εK ′n

1−4η
2(δ+2) log n

since the expected number of nodes inS1 is n
N (andN =

√
n

ε ).
Combining all the results we have obtained until now yields

the following expectation result:

E(x1,y1),...,(xn,yn)

[
log det(I +

√
nPGδ,n)

]
≤ K ′√nn

1−4η
2(δ+2) log n + K ′′√nnη(log n)3+σ

≤ K
√

nn
1

2(δ+4)+ε

for all ε > 0, by choosingη = 1
2(δ+4) .

There remains to prove that there is concentration around
the expectation and that the sublinear behavior of this upper
bound on sum-capacity takes place almost surely. Let us define
Φn to be the following real valued function of node locations

Φn(L1, . . . , Ln) := log det(I +
√

nPGδ,n {L1, . . . , Ln}).

We set out to prove the following proposition.
Proposition 3.1: For anyε > 0, we have

lim
n→∞

|Φn(L1, . . . ,Ln)− E [Φn(L1, . . . ,Ln)] |
n

1
2+ε

= 0

almost surely.
Before the proof of Proposition 3.1, we introduce a concen-

tration inequality due to McDiarmid [8].
Theorem 3.1: Let(L1,L2, . . . ,Ln) be a family of inde-

pendent random variables withLk taking values in a setAk

for eachk. Suppose that the real-valued functionf defined on
ΠAk satisfies

sup
L1,...,Ln,L′

k

|f(L1, . . . , Ln)− f(L1, . . . , L
′
k, . . . , Ln)| ≤ ck.

Then, for anyt ≥ 0

P
(∣∣f(L1, . . . ,Ln)− E[f(L1, . . . ,Ln)]

∣∣ ≥ t
)
≤ 2e

−2t2P
c2
k .

The proof of Proposition 3.1 is based on applying Theo-
rem 3.1 to the functionΦn. The crucial step is to properly
bound the amount of change that occurs in the value of the
function Φn due to a change in one of its parameters. Note,
however, thatΦn is unbounded since thexi’s can be arbitrarily
close to zero which will make the corresponding diagonal
elements ofGδ,n go to infinity. The problem can be overcome
by showing thatxi’s are all bounded away from zero with high
probability asn goes to infinity and that under the condition
that they are all bounded away from zero, the amountΦn

can be affected from a change in one of the node positions is
bounded.

Let us fix µ > 0. The probability that any of thexi’s is
smaller thann−( 1

2+µ) is bounded above by

P
(
xmin < n−( 1

2+µ)
)
≤ nP

(
x1 < n−( 1

2+µ)
)

= n−µ,



since xi’s are uniformly and independently distributed on
[0,
√

n]. On the other hand, under the condition thatxmin ≥
n−( 1

2+µ), (L1,L2, . . . ,Ln) is still a family of independent
random variables where eachLi is now uniformly distributed
on the set

[
n−( 1

2+µ),
√

n
]
× [0,

√
n].

Conditioned onxmin ≥ n−( 1
2+µ), let (L1, . . . , Ln−1, Ln)

and(L1, . . . , Ln−1, L
′
n) be two configurations that differ only

in the last co-ordinate. LetΨn−1 be defined as the following
function of n− 1 node locations:

Ψn−1(L1, . . . , Ln−1)

:= log det(I +
√

nPGδ,n−1{L1, . . . , Ln−1}).
Now, we consider the difference in the value of the function
Φn for the two configurations

|Φn(L1, . . . , Ln−1, Ln)− Φn(L1, . . . , Ln−1, L
′
n)|

≤ |Φn(L1, . . . , Ln−1, Ln)−Ψn−1(L1, . . . , Ln−1)|
+ |Ψn−1(L1, . . . , Ln−1)− Φn(L1, . . . , Ln−1, L

′
n)|. (16)

Concentrating on the first term in (16), letλ1 ≤ · · · ≤ λn

be the eigenvalues of then × n symmetric matrix I +√
nPGδ,n {L1, . . . , Ln−1, Ln} and λ̂1 ≤ · · · ≤ λ̂n−1 be

the eigenvalues of then − 1 × n − 1 symmetric matrix
I +

√
nPGδ,n−1 {L1, . . . , Ln−1}. Note that by the interlacing

property for symmetric matrices, we have

1 ≤ λ1 ≤ λ̂1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λ̂n−1 ≤ λn.

Expressing the functionsΦn and Ψn−1 in terms of these
eigenvalues and recalling that the logarithm function is mono-
tonically increasing yields

|Φn(L1, . . . , Ln)−Ψn−1(L1, . . . , Ln−1)|

=
∣∣∣ n∑

i=1

log λi −
n−1∑
i=1

log λ̂i

∣∣∣
=

n∑
i=1

log λi −
n−1∑
i=1

log λ̂i ≤ log λn.

The largest eigenvalueλn of I +
√

nPGδ,n can be bounded
by the trace of the matrix and the conditionxmin ≥ n−( 1

2+µ),

log λn ≤ log
n∑

i=1

(
1 +

√
nP

(2xi)δ

)
≤ c1(µ) + c2(µ) log n

where c1(µ), c2(µ) > 0 are constants independent ofn.
The argument for the first term in (16) holds similarly for
the second term. Furthermore, since the numbering of the
nodes is arbitrary the same bound applies whenever the two
configurations differ in a single node location, this single node
being any of then nodes. We can therefore apply Theorem 3.1
and obtain

P
(
|Φn − E [Φn] | ≥ λn

1
2+ε
)
≤ P

(
xmin ≥ n−( 1

2+µ)
)

+ P
(
|Φn − E [Φn] | ≥ λn

1
2+ε xmin ≥ n−( 1

2+µ)
)

≤ n−µ + 2 exp

(
− 2λ2n2ε

4 (c1(µ) + c2(µ) log n)2

)

for all λ > 0. Choosingµ > 1 and considering the Borel-
Cantelli lemma completes the proof.

IV. CONCLUSION

We established an improved information theoretic upper
bound on the maximum achievable rate per communication
pair in a two-dimensional random ad-hoc wireless network
when the medium is not absorptive and the attenuation is
moderate.

APPENDIX

In order to prove that the matrixG1Dδ−G′
δ

is non-negative
definite, it is sufficient to show that

G1Dδ

jk −G′′
δ

jk =
1

(xj + xk)δ
− 1

((xj + xk)2 + y)
δ
2

is a non-negative definite matrix for eachy, sinceG1Dδ −G′
δ

is a convex combination of matrices of this type. The proof is
straight forward when the following equivalent expression for
the entries ofG′′

δ

is considered

G′′
δ

jk =
2

πΓ(δ)

∫ ∞

0

dt

∫ ∞

0

dξ(ξ sinh t)δ−1

e−ξ(cosh t)(xj+xk) cos(ξy) (17)

whereΓ is the Euler Gamma function. The expression is valid
for δ > 0 and can be obtained by considering ([9], formulas
I.2.7 and I.18.29) and ([10], formula 9.6.23). Noticing that
the entries ofG1Dδ

are obtained by substitutingy = 0 in (17)
yields

n∑
j,k=1

(
G1Dδ

jk −G′′
δ

jk

)
cjck =

2
πΓ(δ)

∫ ∞

0

dt

∫ ∞

0

dξ

(ξ sinh t)δ−1

 n∑
j=1

cje
−ξxj cosh t

2

(1− cos ξy) ≥ 0.
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