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Abstract—We consider a wireless network with a large number
of source-destination pairs distributed over a line. Under line-of-
sight propagation, this network has only one degree of freedom
for communication. At high SNR, this one degree of freedom
can be readily achieved by multi-hop relaying between nodes.
At low SNR, however, the performance is determined by the
power transfer in the network. We show that none of the existing
architectures can achieve optimal capacity scaling. We develop
a digital hierarchical beamforming architecture and show that
it is scaling optimal. This result reveals a new regime for large
wireless networks, where beamforming techniques are needed to
achieve capacity.

I. INTRODUCTION

Multi-hop is the traditional communication architecture for
wireless adhoc networks. Information is routed from source
nodes to destinations via multiple point-to-point transmissions
between intermediate nodes acting as relays. Can we design
new cooperation architectures for wireless adhoc networks that
significantly outperform multi-hop? To shed some light on this
question in the large network regime, we follow the scaling
law approach in [1]-[8]. This approach was initiated in [1] and
concentrates on the scaling of the capacity with the number
of nodes n when other parameters of the network are coupled
with n in two specific ways, leading to the so called dense and
extended scalings. We have shown in [8], [9] that by extending
this approach to seeking a multi-parameter family of scaling
laws, we can use it to identify the fundamental operating
regimes of large wireless networks. Here many different limits
(couplings) with respect to the parameters of the network
are jointly considered. This allows to uncover a number of
qualitatively different operating regimes where the answer to
the above raised question is different.

The current understanding of the operating regimes of large
wireless networks can be roughly summarized as follows (see
[9] for a detailed overview): When SNR is high and there are
sufficient spatial degrees of freedom in the network (this is
for example the case when the pairwise channels are subject
to i.i.d. fading), a hierachical cooperation architecture based
on distributed MIMO transmission can provide significant
capacity gain over multi-hop [5]. The situation is more tricky
for networks at low SNR. When the SNR is low but there
are still sufficient spatial degrees of freedom in the network
(as with i.i.d. fading), the optimal architecture depends on
the power path loss exponent of the environment α [5], [9].
α determines how fast signal power decays with distance in

an environment and is typically between 2 and 6 in a two-
dimensional network. When 2 ≤ α < 3, a bursty version of the
hierarchical cooperation architecture significantly outperforms
multi-hop and is scaling optimal. When α ≥ 3, multi-hopping
achieves the optimal scaling and no strategy can perform
better. Interestingly, none of the two architectures, hierar-
chical cooperation nor multihop, uses beamforming, which
is known to be the right strategy for point-to-point MIMO
channels at low SNR [10]. This is because under i.i.d. fading,
the distributed MIMO channels available in the network are
well-conditioned and beamforming (or waterfilling over the
eigenvalues of the channel) provides little gain. Transmitting
independent streams from each node during the distributed
MIMO transmissions is scaling optimal.

The recent work [6], however, reveals that degrees of
freedom in a wireless network can be limited by physical
constraints in the spatial channel. This can be thought of as
the spatial channel introducing correlation between pairwise
gains. In the regime when the available degrees of freedom
in the network are very few (determined by the area of the
network and the carrier wavelength [8]), they can be readily
achieved by multi-hop. This makes multi-hop scaling optimal
for such networks in the high SNR regime [6]. However, at
low SNR, the performance is determined by the power transfer
in the network and it is not clear whether any of the existing
architectures achieves the optimal scaling of the capacity.

In this paper, we explore a new regime where the network
is both limited in power (operating at low SNR) and in
spatial degrees of freedom (operating under strongly correlated
pairwise channels). We show that a new class of cooperative
beamforming architectures outperform classical multi-hopping
when α is small. To capture this regime in a simple setup, we
focus on a one-dimensional wireless network in a line-of-sight
propagation environment. This leads to the extremal case when
there is only one degree of freedom for communicating in the
network. At high SNR, this single degree of freedom can be
readily achieved with multi-hop, or even with simple time-
division between the source-destination pairs in the network.
At low SNR, we develop a hierarchical beamforming archi-
tecture and show that it outperforms existing strategies when
1 ≤ α ≤ 2.1 Here, nodes first broadcast their information to

1The assumption α ≥ 1 in one-dimensional networks replaces the tradi-
tional assumption α ≥ 2 made in two-dimensional networks.



Fig. 1: One-dimensional network

a small cluster around them. This allows to beamform this
information and distribute it over a larger cluster in a second
step. Continuing in a hierarchical fashion, the information
of each source node is broadcasted to the whole network,
including the destination node. We show that this broadcasting
strategy achieves the optimal scaling when α = 1. This is
suprising given that the original requirement is to communicate
the information of each source node only to its corresponding
destination node. A future goal of this research program is to
understand the power and spatial degrees of freedom limited
regimes of two-dimensional wireless networks.

The multi-stage broadcasting architecture developed in the
present paper is reminiscent of other schemes existing in
the literature, such as [11], [12], [13], [14]. The setups
considered in these references are nevertheless quite different.
The problem of broadcast capacity, i.e. the maximum data
rate that can be achieved from a single source node to every
other node in the network, was considered in [11], [12], [13],
while the reverse problem of the data gathering channel was
considered in [14]. Our intent here is to primarily study the
multiple-unicast scenario. Another difference is that the above
references consider primarily high or fixed SNR, while we are
interested in the low SNR regime. For one S-D pair, the low
SNR regime has been studied in [15], where it was shown that
ampify-and-forward based beamforming techniques achieve
the optimal scaling in a diamond network. As opposed to this
analog strategy, the communication architecture proposed for
multiple S-D pairs in the present paper is digital.

II. MODEL

There are n nodes uniformly and independently distributed
along a line of length L, as illustrated on Figure 1. Every
node is both a source and a destination, and the sources and
destinations are randomly paired up one-to-one. All source
nodes want to communicate to their destination node at the
same rate R(n). The aggregate throughput of the network is
defined as T (n) = nR(n).

We assume that communication takes place over a flat
channel with bandwidth W and that the received signal Yk[m]
by node k at time m is given by

Yk[m] =
∑
j∈J

hkjXj [m] + Zk[m]

where J is the set of transmitting nodes, Xj [m] is the signal
sent at time m by node j and Zk[m] is additive white circularly
symmetric Gaussian noise (AWGN) of power spectral density
N0/2 Watts/Hz. In a line-of-sight environment, the complex
baseband-equivalent channel gain hkj between transmit node

j and receive node k is given by

hkj =
√
G

exp(2πirkj/λ)

r
α/2
kj

(1)

where G is given by the Friis’ formula, λ is the carrier
wavelength, rkj is the distance between node k and node j and
α ≥ 1 is the power path loss exponent. In a one-dimensional
network, this line-of-sight model clearly departs from the
classical i.i.d. phase assumption: it implies in particular that
the channel matrix between two distant clusters of nodes is
essentially rank 1 when it is full-rank under the i.i.d. model.
Finally, we assume full channel state information at both the
transmitters and receivers (which is a reasonable assumption
in a static line-of-sight environment), as well as a common
average power budget per node P .

III. MAIN RESULT

Let us denote by SNRs the signal-to-noise ratio over the
typical nearest neighbor distance in the network. In a one-
dimensional network, the typical nearest neighbor distance is
L
n , therefore, the short-distance SNR is

SNRs =
GP

N0W

(n
L

)α
.

In this paper, we are interested in the low SNR regime,
where SNRs = n−γ for some γ > 0. We will use the
notation SNRs � 0 dB to denote this condition. This models
the scenario when the pairwise channels between nearest
neighbors are in the low SNR regime. Note that since SNRs

is jointly determined by a number of system parameters P ,
W and L, this can be the case when the available power per
node is small; when the bandwidth is large; or the distances
between the nodes are large.

A relatively straightforward analysis reveals that in one-
dimensional networks, the multi-hop scheme described in [1]
achieves with probability approaching 1 as n increases (with
high probability) an aggregate throughput of order

T (n) = Ω

(
SNRs

log n

)
when SNRs ≤ 0 dB and α ≥ 1. On the other hand, the best
known information theoretic upper bound on the throughput
scaling of such networks is given in [4]: for α ≥ 1,

T (n) = O
(
log3 n

)
.

This shows that for constant SNRs, multi-hop cooperation is
order optimal and the aggregate throughput is constant, up
to logarithmic factors. In the low SNR regime however (that
is, when SNRs � 0 dB), the question remains whether a
more sophisticated strategy would not allow to achieve higher
throughput scaling than multi-hop. We answer this question
by the affirmative in the following theorem, in the case where
the path loss exponent α lies between 1 and 2.

Theorem 1: Let us assume that 1 ≤ α < 2 and SNRs �
0 dB (i.e. SNRs = n−γ for some γ > 0). Then for any
ε > 0, there exists a communication scheme (referred to as



“hierarchical beamforming” in the sequel) that achieves the
following aggregate throughput with high probability as n gets
large:

T (n) = Ω
(
min

{
SNRs n

2−α−ε, n−ε
})

(2)

The above aggregate throughput scaling is strictly higher
than that achieved by multi-hop. In particular, when α = 1
and SNRs ≤ 1/n, T (n) = Ω(SNRs n

1−ε), which is an order
n improvement over multi-hop. The hierarchical beamforming
architecture achieving this performance is described in detail
in the next section.

Is this strategy optimal or can we do better? Before answer-
ing this question, let us introduce the notion of a broadcasting
scheme below.

Definition 1: A communication scheme achieving a per-
node throughput R(n) for n S-D pairs is said to be a
broadcasting scheme if at this same rate R(n), all destinations
are able to decode the information sent not only by their
corresponding source, but also by all the other sources.

As we will see, hierarchical beamforming enters into this
category, and so does classical multi-hop in one-dimensional
networks (at the price of a small adaptation of the original
scheme). The theorem below, together with Theorem 1 above,
shows that: a) hierarchical beamforming is scaling optimal
when α = 1; b) among all broadcasting schemes, hierarchical
beamforming is scaling optimal when 1 ≤ α < 2, and multi-
hopping is when α ≥ 2.

Theorem 2: Consider a one-dimensional network with α ≥
1 and SNRs � 0 dB. Then:

a) The aggregate throughput scaling of any communication
scheme is upper bounded with high probability by

T (n) = O
(
min

{
SNRs n log2 n, log3 n

})
b) The aggregate throughput scaling of any broadcasting
scheme is upper bounded with high probability by

T (n) =

{
O
(
min

{
SNRs n

2−α log2 n, log3 n
})

if 1 ≤ α < 2

O
(
SNRs log2 n

)
if α ≥ 2

The proof of this result is omitted due to space limitations,
but let us indicate here briefly the main ideas behind the proof.
Part a) can be proven using the classical SIMO bound showing
that the comminucation rate from one source to the rest of the
network is at most of order SNRs log2 n. For part b), the
following observation is useful: in the broadcasting scenario,
each destination is waiting for messages from the other n− 1
nodes in the network. So using the MISO bound around a
particular destination allows to upper bound the common rate
at which each source should transmit towards this destination.

An interesting open question, that we do not address in the
present paper, is whether any scaling optimal scheme for the
multiple-unicast problem in a one-dimensional network is also
a broadcasting scheme or not.

IV. HIERARCHICAL BEAMFORMING

Let us start by considering the situation where the SNR in
the network is very low. More precisely, let us assume that

SNRs ≤ nα−2 (with 1 ≤ α < 2) (3)

In this regime, many transmissions can take place concurrently
in the network (spatial reuse) without creating interference
above the noise level. Under this assumption, the lower bound
in Eq. (2) reads

T (n) = Ω
(
SNRs n

2−α−ε) (4)

We first sketch the hierarchical beamforming strategy we
propose and then proceed to its performance analysis which
also provides a more detailed description. Consider one par-
ticular source-destination pair s − d in the network. For
simplicity, assume that s has one bit to communicate to d.
s can communicate this one bit in two steps:
• it can first broadcast this bit to a small cluster of M

neighboring nodes around itself.
• the M nodes can then simultaneously transmit this bit

to the destination node d by coherently combining their
signals.

The beamforming gain due to the coherent combining of
the M signals leads to a better performance than simply
transmitting the bit from s to d.

From the network point of view, all source-destination pairs
have to eventually accomplish these two steps. Step 2 is long-
range communication and only one source-destination pair can
operate at a time. Step 1 involves local communication and can
be parallelized across source-destination pairs. This leads to
the following two phases in the operation of the network:

1. The network is divided into clusters of M nodes. Each
source node distributes one bit to the M nodes in its cluster.
There are M source nodes in a cluster, which can simply take
turns to distribute their one bit. When the total interference
from the other clusters is below the noise level, this operation
can be conducted in parallel among all clusters. At the end
of this phase, each node has therefore received (and decoded)
one bit from every other node in its cluster.

2. In the second phase, the bits are beamformed to their
actual destinations one at a time. Every cluster performs M
successive transmissions; in each transmission, the bit of one
particular source node in the cluster is beamformed to its
destination. There are a total of n succesive beamforming
transmissions in this phase, one for each source-destination
pair in the network.

A key observation is that this two-phase scheme distributes
the bits of every source node to all other nodes in the network,
even if this is not what we set for. In the second phase, the
beamforming transmissions done one at a time can be decoded
not only by the actual destination node but simultaneoulsy
by all the nodes in the network. This is a consequence of
the fact that the network has only one degree of freedom.
The transmitted signals from each cluster can be arranged to
coherently combine simultaneously at all the remaining nodes



in the network. Therefore according to Definition 1, this two-
phase scheme is a broadcasting scheme.

This brings the idea of recursion. The broadcasting require-
ment in the first phase can be handled by further dividing each
cluster into smaller clusters and use the two-phase broadcast
scheme we just described. The two-phase scheme is illustrated
in Figure 2. The recursion is summarized in the following
lemma.

M nodes M nodes

M nodes

Fig. 2: Two-phase beamforming

Lemma 1: Consider 1 ≤ α < 2 and a one-dimensional
network with n nodes and SNRs � 0 dB, subject to an
additive external interfering source with bounded average
power. If in this network, there exists a broadcasting scheme
achieving with high probability an aggregate throughput

T (n) = Ω
(
SNRs n

β
)

for some β ≤ 2 − α, then there exists another broadcasting
scheme achieving with high probability an aggregate through-
put

T (n) = Ω
(

SNRs n
f(β)

)
where

f(β) = 1− α(1− β)

2− β
(5)

Notice that f(β) > β for all 1 ≤ α < 2 and β < 2− α, so
the performance of the new scheme is always strictly better
than that of the original one. Figure 3 below illustrates the
behavior of f(β), for α = 1 and α = 1.5.

Fig. 3: Growth of the aggregate throughput exponent

Proof of Lemma 1. Consider a network of n nodes and
length L, and let us divide it into clusters of length LM/n,
with 1 � M � n, so that each cluster contains order M
nodes with high probability. Based on the assumption made

in the lemma, the following communication scheme will be
shown to achieve the desired throughput scaling.

Phase 1. Source nodes broadcast information to every other
node inside their cluster, using the original scheme with
aggregate throughput T (M) = Ω

(
SNRsM

β
)
. This step is

parallelized across clusters2.
Phase 2. For each source node inside a cluster of M nodes,

all the nodes inside the cluster simultaneously beamform the
received bits to the rest of the network. During this second
phase, only one cluster operates at a time.

Performance Analysis. In the first phase, clusters work in
parallel. In order to avoid collisions between neighboring
clusters, a simple time-division scheme with two rounds is
used, where half of the clusters are active at a time: this
only affects the throughput by a factor two and allows clear
reception of the signals inside each cluster. One can indeed
check that because of assumption (3), the average power
of the interference caused in one cluster by simultaneous
transmissions in the other clusters is bounded.

The broadcasting rate achieved by the scheme inside each
cluster is R(M) = Ω

(
SNRsM

β−1), so the total time taken
by this first phase is upper bounded by

t1 = O

(
1

SNRsMβ−1

)
In the second phase, M broadcast transmissions are performed
sequentially from each cluster towards the rest of the network.
As there are n/M clusters, the total number of transmissions
is therefore equal to n (that is, one transmission takes place
for each source node). The SNR of each transmission is lower
bounded by

SNRs
n

M
M2 n−α = SNRsM n1−α

where the above factors are explained as follows:
- the factor n/M is due to the fact that each cluster only

transmits a fraction M/n of the time, so power can be spared
during the rest of the time;

- the factor M2 is the beamforming gain (notice that because
of the line-of-sight channel model (1) and the assumption of
a one-dimensional network, it is indeed possible to beamform
the signal towards all destinations simultaneously);

- the factor n−α is a lower bound on the power attenuation
over distance.

The total time taken by this second phase is therefore upper
bounded by

t2 = O

(
n

SNRsM n1−α

)
= O

(
1

SNRsM n−α

)
Optimal cluster size. In order to optimize the throughput of
the new scheme, the optimal cluster size M∗ should be chosen
such that the durations of the two phases are equal, i.e. t1 = t2,
which leads to

(M∗)β−1 = M∗ n−α i.e. M∗ = nα/(2−β) (6)

2Notice that SNRs, that only depends on the distance between neighboring
nodes, remains unchanged for a cluster of M nodes or for the whole network.



(Notice that α/(2− β) ≤ 1, as β ≤ 2− α by assumption).
Resulting aggregate throughput. With this cluster size, it

is worthwhile noticing that the broadcasting rate of the new
scheme is the same as the one achieved in each cluster with
the original scheme. However, as more nodes participate in the
transmission, the aggregate throughput increases as follows:

T (n) = nR(M∗) = Ω
(
nSNRs (M∗)β−1

)
= Ω

(
SNRs n

f(β)
)

where f(β) is given in (5). This completes the proof. �
Let us now explain how applying recursively Lemma 1 al-

lows to obtain the lower bound (4) on the aggregate throughput
scaling.

Let us first use multi-hop for broadcasting information at the
lowest level of the hierarchy, that is, inside small clusters of
M1 nodes. Note that multi-hop can be easily transformed into
a broadcasting scheme in the one-dimensional case without
changing its aggregate throughput scaling; since information
is routed over a line, each destination already observes the
information sent by order n nodes on average. The aggregate
throughput achieved inside each cluster is therefore

T (M1) = Θ

(
SNRs

logM1

)
= Ω

(
SNRsM

β
1

)
∀β < 0

Using then the two-phase scheme described in the proof of
Lemma 1, we reach for larger clusters of size M2 (to be
specified below) an aggregate throughput

T (M2) = Ω
(

SNRsM
f(β)
2

)
∀β < 0

Iterating this procedure h− 1 times, until the large cluster of
size Mh reaches the network size n, we obtain the following
aggregate throughput

T (n) = Ω
(

SNRs n
f(h−1)(β)

)
∀β < 0

As illustrated on Figure 3, the sequence f (h−1)(β) converges
to the minimal solution of the equation

β∗ = f(β∗)

which is given by β∗ = 2 − α for 1 ≤ α < 2. For a
fixed number of hierarchical levels h, the achieved aggregate
throughput scaling is therefore T (n) = Ω

(
SNRs n

2−α−ε),
and ε > 0 can be made arbitrarily small by increasing the
number h. �

In addition, let us describe how to compute the optimal
cluster sizes M1, . . . ,Mh in this process. From Eq. (6) in the
proof of Lemma 1, we deduce that at level 1 ≤ k < h,

Mk = (Mk+1)α/(2−β(k))

where β(k) is the aggregate throughput exponent achieved at
level k. This allows to compute recursively the cluster sizes,
starting from Mh = n. From this analysis, it turns out that as
h gets large, the optimal cluster size M1 at the lowest level
of the hierarchy converges to

M1 = nα−1

So when α = 1, the hierarchical beamforming scheme starts
directly from tiny clusters, whereas when 1 < α < 2, the
optimal communication strategy is first to perform multi-hop
inside clusters of size nα−1, and then to use hierarchical
beamforming. We therefore see that in the latter case, because
of the higher value of the path loss exponent α, beamforming
only helps when sufficiently many nodes participate to the
transmission.

Finally, let us mention what happens at moderately low
SNR, i.e. when nα−2 ≤ SNRs ≤ 1. In this case, the
interference felt from the simultaneously transmitting clusters
might hurt the transmissions inside a cluster. A simple solution
to this problem is to reduce the power used by each node,
so as to meet the equality SNRs = nα−2. In this case, the
aggregate throughput of the scheme is arbitrarily close to a
constant, which proves the claim made in Theorem 1.
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