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Abstract
In this paper, we show that the sum rules for generalized Hermite polynomials
derived by Daboul and Mizrahi (2005 J. Phys. A: Math. Gen. 38 427–48)
and by Graczyk and Nowak (2004 C. R. Acad. Sci., Ser. 1 338 849) can be
interpreted and easily recovered using a probabilistic moment representation
of these polynomials. The covariance property of the raising operator of the
harmonic oscillator, which is at the origin of the identities proved in Daboul
and Mizrahi and the dimension reduction effect expressed in the main result of
Graczyk and Nowak are both interpreted in terms of the rotational invariance
of the Gaussian distributions. As an application of these results, we uncover
a probabilistic moment interpretation of two classical integrals of the Wigner
function that involve the associated Laguerre polynomials.

PACS numbers: 02.50.Cw, 02.30.Gp, 02.50.Sk

1. Introduction

1.1. Context and objectives

In a recent publication [1], Daboul et al derived several new sum rules for Hermite and
generalized Hermite polynomials using an operational approach; most of these identities are
a consequence of the invariance property of the raising operator of the harmonic oscillator
under the group of complex rotations

OC(d) = {M ∈ C
d×d; MMt = MtM = Id}.

In another publication, Graczyk et al [5] proposed a new multivariate sum rule for these
generalized polynomials1; their proof is based on the analytical properties of the generating
functions of these polynomials.

Our aim here is to show that these sum rules can be described as consequences of
probabilistic properties of Gaussian vectors; we will show that this approach, together with

1 The authors call them Gould–Hopper polynomials, but they should rather be called heat polynomials.
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some basic techniques of probability calculus, allows elementary derivations and extensions of
all these rules. As an application, we will use this probabilistic approach for the computation
of two classical integrals of the Wigner function; this allows us to uncover some interesting
relationships between these integrals, the noncentral chi-squared distribution and the associated
Laguerre polynomials. Before addressing these identities, we introduce the main probabilistic
tools and notations that will be needed for our purposes.

1.2. Moment representation of generalized Hermite polynomials

We will use the well-known integral representation of the Hermite polynomials [2, 8.951]

Hn(x) = 2n

√
π

∫ +∞

−∞
(x + ız)n e−z2

dz

that we will express under its equivalent expectation form

Hn(x) = 2n
Ez(x + ız)n, (1)

where z is Gaussian with zero mean and variance σ 2 = 1
2 , denoted as z ∼ N

(
0, 1

2

)
. The

expectation operator with respect to the distribution of a random variable z is denoted as Ez.

Daboul et al consider the family of generalized Hermite polynomials

Hn(α, β; x) =
(

αβ

2

) n
2

Hn

(√
α

2β
x

)
, (2)

with α, β and x ∈ C. Their moment representation is thus, with z ∼ N
(
0, 1

2

)
,

Hn(α, β; x) = αn
Ez

(
x + ı

√
2β

α
z

)n

. (3)

This family includes, as special cases, several types of polynomials that are relevant in physics:

• the monomials

(αx)n = Hn(α, 0, x);
• the heat polynomials [9]

vn (x, t) = Hn(1,−2t; x);
• the physicists’ Hermite polynomials

Hn(x) = Hn(2, 1; x) and

• the probabilists’ Hermite polynomials

Hn(x) = Hn(1, 1; x).

We note that the moment representation (3) allows us to easily recover the three scaling
properties derived in [1, equations (A5)–(A7)]: ∀σ �= 0,

Hn(α, β; x) = Hn(σ
−1α, σβ; σx) = σ−nHn(σα, σβ; x) = σ−nHn(α, σ 2β; σx).

Moreover, using (3) their generating function can be easily computed—without the use of the
Baker–Campbell–Hausdorff formula as in [1]—as follows:
+∞∑
n=0

un

n!
Hn(α, β; x) = Ez

+∞∑
n=0

(2u)n

n!

(
α

2
x + ı

√
αβ

2
z

)n

= Ez exp(αux + ı
√

2αβuz).

2



J. Phys. A: Math. Theor. 45 (2012) 015001 G Vignat and O Lévêque

Recognizing here the Gaussian characteristic function

Ez exp(ı
√

2αβuz) = exp

(
−αβ

2
u2

)
,

we deduce the generating function

exp

(
αux − αβ

2
u2

)
.

Most of the sum rules studied in the following will be considered for Hermite polynomials
(α = 2, β = 1), but they can be immediately extended to the generalized Hermite polynomials
using the identity (2); for the sake of completion, their general case will be provided in
appendix C.

1.3. Complex rotational invariance principle for the Hermite polynomials

The fundamental property needed in these proofs—the counterpart of the invariance property
of the raising operators—is the invariance of the moments of the Gaussian distributions under
the group of complex rotations. We thus need the following slight extension of (1).

Property 1. Complex rotational invariance principle for the Hermite polynomials.
The Hermite polynomial of degree n satisfies

Hn(x) = 2n
Ez(x + ı(Mz) j)

n,∀ j ∈ {1, . . . , d}
for any M ∈ OC(d) and any real Gaussian vector z ∼ N

(
0, 1

2 Id
)
.

The proof is given in appendix A. We also need the following property.

1.4. Rotational invariance principle for the Gaussian vectors

Property 2. If z1 and z2 are independent Gaussian N (0, σ 2Id ), then

u1 = z1 + z2√
2

, u2 = z1 − z2√
2

are again independent Gaussian N (0, σ 2Id ).

This property can be checked, for example, by inspection of the characteristic functions
of the vectors. The last property that we will need is the following.

1.5. Cancelation rule

Property 3. If z1 and z2 are independent scalar Gaussian N (0, σ 2) and if f is an entire
function, then

Ez1,z2 f (x + z1 + ız2) = f (x), ∀x ∈ C.

This property is a consequence of the fact that the monomial functions zm form an
orthogonal basis of the Fock–Bargmann Hilbert space equipped with the scalar product [10]

〈 f , g〉 =
∫

C

f̄ (z)g(z) exp(−|z|2) dz dz̄.

Finally, we introduce the following notations.

3
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1.6. Notations

Bold-typed variables denote vectors and capitalized variables denote matrices. The
Pochhammer symbol is (n) j = �(n+ j)

�(n)
, |z| is the Euclidean norm of the real-valued vector

z while zt is its transpose and ∼ denotes equality in distribution. We will also adopt the
multi-index notation: with z ∈ R

d and n = (n1, . . . , nd ) ∈ N
d,

zn =
d∏

i=1

zni
i , n! =

d∏
i=1

ni!

2. Probabilistic moments approach to sum rules

2.1. The factorization sum rule

The factorization sum rule for Hermite polynomials [1, equation (5)] is

2nHn

(
x + y√

2

)
Hn

(
x − y√

2

)
=

n∑
k=0

(
n

k

)
(−1)k H2n−2k(x)H2k(y). (4)

We note that this identity can be found in [3, 4.5.2.5].
It is proved in [1] using the covariant transformation of the raising operators for

the harmonic oscillator under the group of complex rotations OC(d). In the probabilistic
framework, this property is replaced by the rotational invariance principle for Gaussian vectors
as follows: the left-hand side of (4) can be written using (1), with u1 and u2 being independent
∼ N

(
0, 1

2

)
, as

23n
Eu1

(
x + y√

2
+ ıu1

)n

Eu2

(
x − y√

2
+ ıu2

)n

= 23n
Ez1,z2

(
x + y√

2
+ ı

z1 + z2√
2

)n (
x − y√

2
+ ı

z1 − z2√
2

)n

,

where z1 and z2 are again independent ∼ N
(
0, 1

2

)
, so that we obtain

22n
Ez1,z2 ((x + ız1)

2 − (y + ız2)
2)n = 22n

Ez1,z2

n∑
k=0

(
n

k

)
(−1)k (x + ız1)

2n−2k (y + ız2)
2k

=
n∑

k=0

(
n

k

)
(−1)k H2n−2k(x)H2k(y),

which concludes the proof.

2.2. The generalized factorization sum rule

An extension of the previous sum rule reads [1, proposition 3], with c, s ∈ C and c2 + s2 = 1:

Hm (cx − sy) Hn (sx + cy) =
m+n∑
r=0

α(m,n)
r (c, s) Hr(x)Hm+n−r(y), (5)

with coefficients α(m,n)
r (c, s) given by

α(m,n)
r (c, s) =

n∧r∑
k=0

(
m

r − k

)(
n

k

)
(−1)m−r+k cn+r−2ksm−r+2k. (6)

4
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This result is again a direct consequence of the rotational invariance principle for Gaussian
vectors; with the same notations as above, the left-hand side of (5) is

2m+n
Ez1,z2 (cx − sy + ı (cz1 − sz2))

m
Ez1,z2 (sx + cy + ı (sz1 + cz2))

n

= 2m+n
Ez1,z2

m∑
l=0

n∑
k=0

(
m

l

)(
n

k

)
cl+n−k (−1)m−l sm+k−l

× (x + ız1)
l+k(y + ız2)

m−l+n−k

=
m∑

l=0

n∑
k=0

(
m

l

)(
n

k

)
cl+n−k (−1)m−l sm+k−lHk+l (x)Hm+n−k−l (y)

=
m+n∑
r=0

α(m,n)
r (c, s) Hr(x)Hm+n−r(y),

with coefficients α(m,n)
r (c, s) given as in (6), which coincides with [1, equation (19)].

We were able to identify a fraction of these coefficients as follows.

Theorem 2.1. For r � m and r � n, the coefficients α(m,n)
r (c, s) can be expressed as

α(m,n)
r (c, s) = (−1)m cn−rsm−rP(n−r,m−r)

r

(
s2 − c2

)
,

where P(m,n)
r is the Jacobi polynomial of degree r with parameters m and n.

Proof. The Jacobi polynomial of degree r with parameters m − r and n − r reads

P(m−r,n−r)
r (x) =

r∑
k=0

(
m

r − k

)(
n

k

) (
x − 1

2

)r−k (
x + 1

2

)k

.

The result is obtained by identifying x = s2 − c2. �

2.3. The summation theorem

We show now that the summation theorem [1, proposition 1] can be viewed again as a
consequence of the rotational invariance of Gaussian vectors. We give here an equivalent but
a more compact version of this formula as follows: if O ∈ OC(d), then

1

n!
Hn ((Ox)i) =

∑
|p|=n

op
i

p!
Hp (x) ,

where oi is the ith column vector of Ot .

This result is easily proved, remarking that

Hn ((Ox)i) = Hn

⎛
⎝ d∑

j=1

Oi jx j

⎞
⎠ = 2n

Eui

⎛
⎝ d∑

j=1

Oi jx j + ıui

⎞
⎠

n

= 2n
Ez

⎛
⎝ d∑

j=1

Oi j
(
x j + ız j

)⎞⎠
n

,

with ui = ∑d
j=1 Oi jz j. Using the multinomial expansion of the nth power, we obtain

2n
Ez

∑
|p|=n

n!

p!

d∏
j=1

O
pj

i, j(x j + ız j)
p j =

∑
|p|=n

n!

p!

d∏
j=1

O
pj

i, jHpj (x j)

which is the desired result.

5
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2.4. Another sum rule based on rotational invariance

The sum rule [1, proposition 5] reads, with w = Ox,∑
|q|=n

1

q!
H2q (w) =

∑
|p|=n

1

p!
H2p (x) . (7)

The moment representation (1) allows us to identify the left-hand side, up to an n! factor, as
the multinomial expansion

Ez

∑
|q|=n

n!

q!

d∏
j=1

22q j (w j + ız j)
2q j = Ez

⎛
⎝ d∑

j=1

(
2w j + 2ız j

)2

⎞
⎠

n

= Ez(|2Ox + 2ız|2)n.

By the rotational invariance principle, this is equal to

Ez(|2Ox + 2ıOz|2)n

which coincides, up to the same n! factor, with the right-hand side.

2.5. A sum rule due to translation symmetry

This last sum rule

Hn(x + y) =
n∑

k=0

(
n

k

)
(2y)n−kHk(x) (8)

is obtained in [1, equation (25), note that index s should start from 0] as a consequence of the
translational invariance of the raising operator of the harmonic oscillator. We note also that
this sum can be found in [3, 4.5.1.7].

We propose here an elementary proof as a consequence of the moment representation (1)
and using the binomial formula as follows:

Hn (x + y) = 2n
Ez (x + y + ız)n = 2n

Ez

n∑
k=0

(
n

k

)
(x + ız)kyn−k =

n∑
k=0

(
n

k

)
(2y)n−k Hk(x).

This proof shows that the counterpart of the translation invariance of the raising operator of the
harmonic oscillator is precisely the property that the Hermite polynomial can be represented
under the form (1), namely

Hn(x) = 2n
Ez(x + ız)n.

This property itself is a consequence of the fact that the family of Hermite polynomials is a
Scheffer-type family with a basic sequence {xn}; for more details on this property, we refer the
reader to [8].

3. An elaborated sum rule due to Graczyk and Nowak

3.1. An extended version

In [5], Graczyk and Nowak prove an interesting sum rule for the multivariate heat polynomials
that does not seem to be related to the previous family of rules, and to the rotational invariance
property of the Gaussian vectors. We show here that this rotational invariance is indeed at the
basis of this result.

6
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Let us first state Graczyk’s identity for the multivariate heat polynomials, defined as

gm (x, p) =
m∏

i=1

gmi (xi, p) .

The version for the generalized Hermite polynomials is given in appendix C.

Theorem 3.1. For all m ∈ N and for all x, y ∈ R
d,

∑
|m|=m

1

m!
gm (x, p) gm (y, p) =

� m
2 �∑

j=0

(2p)2 j

j! (m − 2 j)!

(
d − 1

2

)
j

gm−2 j (x, p) gm−2 j (y, p) , (9)

with

x = |x + y| + |x − y|
2

, y = |x + y| − |x − y|
2

. (10)

This result is proved by Graczyk and Nowak using properties of generating functions
related to the heat polynomials. We provide here a probabilistic proof that allows us to
interpret the two striking features of this identity, namely

– the dimensionality reduction phenomenon expressed by (10)
– the presence of the enigmatic Pochhammer term on the right-hand side of (9).

We need the following probabilistic tools.

3.2. Some new probabilistic tools

Our first tool is a stochastic representation of the inner product of two noncentered Gaussian
vectors.

Lemma 3.2. If x, y ∈ R
d, p ∈ R and u, v are independent random vectors ∼ N (0, Id ), then

(x + √
pu)t (y + √

pv) ∼ (x + √
pu)(y + √

pv) + pzd−1w, (11)

where u, v and w are independent standard Gaussian random variables,

x = |x + y| + |x − y|
2

, y = |x + y| − |x − y|
2

(12)

and zd−1 is chi-distributed with d − 1 degrees of freedom (denoted as zd−1 ∼ χd−1) and
independent of u, v and w.

Proof. The proof is based on the polarization identity that allows us to express this inner
product as

(x + √
pu)t (y + √

pv) = 1
4 [|x + √

pu + y + √
pv|2 − |x + √

pu − y − √
pv|2]

∼ 1
4 [|x + y +

√
2pu1|2 − |x − y +

√
2pv1|2],

where vectors u1 = 1√
2
(u + v) and v1 = 1√

2
(u − v) are again Gaussian and independent as

a consequence of the rotational invariance principle.
The next step is again a consequence of the rotational invariance principle for Gaussian

vectors; if g ∼ N (0, Id ) and z ∈ R
d is a constant vector, then the norm of the random vector

z + g depends on |z| only; more precisely

|z + g| ∼ ||z|e1 + g| =
√

(|z| + g1)
2 + g2

2 + · · · + g2
d,

where e1 is the first (or any) column vector of the identity matrix Id . We deduce that

(x + √
pu)t (y + √

pv) ∼ 1
4 [||x + y|e1 + √

pu + √
pv|2 − ||x − y|e1 + √

pu − √
pv|2]

7
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and by the polarization identity, with x and y as in (12), this expression simplifies to

(xe1 + √
pu)t (ye1 + √

pv) = (x + √
pu1)(y + √

pv1) + p
d∑

i=2

uivi.

The proof follows then from the identity in distribution, with zd−1 ∼ χd−1 independent of
w ∼ N (0, 1):

d∑
i=2

uivi ∼
(

d∑
i=2

u2
i

) 1
2

w = zd−1w.

We now are in a position to prove Graczyk’s theorem 3.1; using the moment representation
of the generalized Hermite polynomials (3), we recognize the left-hand side of (9) as the
multinomial expansion

Eu,v

∑
|m|=m

1

m!

d∏
i=1

(xi +
√

2pui)
mi (yi +

√
2pvi)

mi

= 1

m!
Eu,v

(
d∑

i=1

(xi +
√

2pui)(yi +
√

2pvi)

)m

,

where u and v ∼ N (0, Id ) are independent. The sum is identified as the inner product

(x +
√

2pu)t (y +
√

2pv).

Now using the multinomial expansion of the mth power of the stochastic equivalent (11)
of this expression and taking expectations, with Ez2 j

d−1 = 2 j
(

d−1
2

)
j

and Ew2k = (2k)!
2kk! and

Ew2k+1 = 0 for w ∼ N (0, 1) , we obtain the desired result. �

4. Application to the evaluation of Wigner functions

4.1. Laguerre polynomials and noncentral chi-squared distributions

In [1], the sum rules derived above are used to evaluate the two famous integrals of Wigner
functions

In(x, p) =
∫ +∞

−∞
Hn(x + y)Hn(x − y) exp(−y2) exp(2ıpy) dy (13)

and

Im,n(x, y) =
∫ +∞

−∞
Hm(x + z)Hn(y + z) exp(−z2) dz. (14)

Both can be evaluated in terms of the associated Laguerre polynomials L(m)
n (x) and of the

Laguerre polynomials Ln(x) = L(0)
n (x) as [2, 7.377 for the second integral]

In(x, p) = (−1)n√π2nn!Ln(2x2 + 2p2)

and

Im,n(x, p) = √
π2nm!yn−mL(n−m)

m (−2xy),

respectively. Before we can propose a probabilistic approach to both evaluations, we need a
preliminary characterization of those associated Laguerre polynomials. We recall the well-
known

8
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Definition 4.1. A random variable x follows the noncentral chi-squared distribution with m
degrees of freedom and noncentrality parameter λ (denoted as x ∼ χ2

m,λ) if

x =
m∑

i=1

(μi + ni)
2 ,

where ni ∼ N
(
0, 1

2

)
are independent2 and λ = ∑m

i=1 μ2
i .

By the rotational invariance principle, this distribution depends on λ only so that

x ∼ (
√

λ + n1)
2 +

m∑
i=2

n2
i .

The Laguerre polynomials are related to the noncentral chi-squared distribution as follows
(see for example [4]).

Proposition 4.2. If x ∼ χ2
2m+2,λ, then

Exn = n!L(m)
n (−λ), λ > 0, n � 0. (15)

An immediate application of this moment representation is the Scheffer identity for
Laguerre polynomials [7, page 110]

L(α+β+1)
n (x + y) =

n∑
k=0

L(α)

n−k(x)L(β)

k (y) (16)

as a consequence of the stability property of noncentral chi-squared distributions: if u ∼ χ2
2α+2,x

and v ∼ χ2
2β+2,y are independent, then, again by the rotational invariance principle,

u + v ∼ χ2
2α+2β+4,x+y. The polynomial identity (16) holding for all negative values of x

and y holds thus for all complex valued x and y.
Another consequence of the moment representation (15) is the evaluation of the following

sum rule, used by Schleich et al [6] in the study of the harmonic oscillator
n∑

k=0

(
n

k

)
H2n−2k(x)H2k(y) = (−2)n n!Ln(2x2 + 2y2). (17)

Using the moment representation (1), the left-hand side evaluated at ıx and ıy reads

22n
Ez1,z2 ((ıx + ız1)

2 + (ıy + ız2)
2)n = (−4)n

Eun,

where u ∼ χ2,x2+y2 , which, by applying (15), yields the desired result.
We note that this proof uses basically the same ingredients as the factorization sum rule

(4) so that, at least in this probabilistic framework, the similarity between both sum rules (4)
and (17) is far from ‘deceptive’, as claimed by Daboul et al.

For the evaluation of integral (14), we will also need the famous derivation rule for
associated Laguerre polynomials

d

dx
L(m)

n (x) = −L(m+1)

n−1 (x). (18)

Surprisingly, and contrarily to the Hermite case where
d

dx
Hn(x) = nHn−1(x)

is a direct consequence of the moment representation (1), the proof of (18) from the moment
representation (15) seems difficult. In appendix B, we explain the reason of this difficulty,
showing that the derivation rule (18) is the consequence of a deeper identity for the noncentral
chi-squared distribution, namely a diffusion equation.

2 We depart here from the usual definition by using a Gaussian with variance 1/2 instead of unit variance; this will
make the link with Hermite polynomials easier to use.

9
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4.2. Evaluation of the first Wigner integral

The computation of the Wigner integral

In(x, p) =
∫ +∞

−∞
Hn(x + y)Hn(x − y) exp(−y2) exp(2ıpy) dy, x, p ∈ R

is performed in [1] using essentially the sum rule (8) and the Fourier transform of the
wavefunction of the quantum harmonic oscillator.

We provide here a simpler probabilistic approach, remarking first that the integral In (x, p)

is an analytic function in each variable x or p so that we can compute first In (ıx, ıp). Remarking
next that

exp(−y2) exp(−2py) = exp(p2) exp(−(y + p)2),

we deduce

In(ıx, ıp) = √
π22n exp(p2)Ez1,z2,y[(ıx + y − p + ız1)

n(ıx − y + p + ız2)
n]

= √
π exp(p2)Ez1,z2,y[(2ıx + ız1 + ız2)

2 − (2y + 2p + ız1 − ız2)
2]n,

where we have applied the polarization identity. By the rotational invariance of the Gaussian,
and expanding 2y ∼ √

2y1 + √
2y2, where again y1 and y2 are Gaussian and independent, we

deduce

In(ıx, ıp) = √
π exp(p2)Eu1,u2,y1,y2 [−(2x +

√
2u1)

2 − (2p +
√

2y1 +
√

2y2 + ı
√

2u2)
2]n;

applying the cancelation rule to the second term, we end up with√
π2n(−1)n exp(p2)Eu1,y1 [(

√
2x + u1)

2 + (
√

2p + y1)
2]n

and recognize the nth moment of a noncentral chi-squared random variable with the
noncentrality parameter 2x2 + 2p2; replacing x and p by −ıx and −ıp respectively yields
the result.

4.3. Evaluation of the second Wigner integral

The second Wigner integral Im,n(x, y) considered in [1] is evaluated assuming m � n without
loss of generality. We start from

E(x + z + ıu)m(y + z + ıv)n = m!

n!

∂n−m

∂xn−m
E(x + z + ıu)n(y + z + ıv)n. (19)

This moment can be computed using the polarization identity as

E(x + z + ıu)n(y + z + ıv)n = 1

22n
E[(x + y +

√
2z1 +

√
2z2 + ı

√
2u)2 − (x − y + ı

√
2v)2]n

= 1

2n
E

[(
x + y√

2
+ z1

)2

+
(

x − y

ı
√

2
+ v

)2
]n

after the application of the cancelation rule and rescaling. We recognize here the mth-order
moment of a noncentral chi-squared distribution with the noncentrality parameter

λ =
(

x + y√
2

)2

+
(

x − y

ı
√

2

)2

= 2xy.

Hence,

E (x + z + ıu)n (y + z + ıv)n = n!

2n
Ln (−2xy) .

Taking successive derivatives of this identity according to (19) and applying the derivation
rule (18), we end up with

Im,n(x, y) = √
π2m+n m!

n!

1

2n

∂n−m

∂xn−m
Ln (−2xy) = √

π2nyn−mm!L(n−m)
m (−2xy)

which is the desired result.
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5. Conclusion

We have shown that the sum rules given in [1] and [5] can be deduced from a general rotational
invariance principle for Gaussian vectors. The moment representation approach that we used is
certainly not the only one, and one may think of using other approaches such as the following
operational characterization of the generalized Hermite polynomials:

Hn(α, β; x) = exp

(
− β

2α

d2

dx2

)
(αx)n,

which can be proved by expanding the exponential term and comparing it to the expansion of
the generalized Hermite polynomials obtained from (3) as

Hn(α, β; x) = αn
� n

2 �∑
k=0

n!

(n − 2k)!k!

(
− β

2α

)k

xn−2k.

Now, the rotational invariance of the Gaussian vectors is replaced by the rotational invariance
of the Laplacian operator; if O ∈ OC(d) and w = Ox, then for any multivariate polynomial f ,


w f (w) = 
x f (x) ,

which gives another proof of such identities as (7).
One may also mention the umbral approach (see for example [11] for a good review); the

Hermite umbra M is defined as

Hn(x) = (2x + M)n ,

with the implicit rule that

M2k = (−1)k (2k)!

k!
,

and M2k+1 = 0. However, we are not aware of any multivariate extension of this approach.

Appendix A. Proof of the complex rotational invariance principle

We only need to check that (Mz) j has the same moments as a real Gaussian with zero mean
and variance σ 2 = 1

2 . Let us compute the characteristic function

Ez exp(ı(Mz) j) = Ez exp

(
ıt

d∑
k=1

Mjkzk

)
=

d∏
k=1

Ezk exp(ıtMjkzk)

=
d∏

k=1

exp

(
− t2

2
M2

jk

)
= exp

(
− t2

2

d∑
k=1

M2
jk

)
.

By the (complex) orthogonality condition MMt = MtM = Id, this sum is equal to 1 and we are
left with exp

(− t2

2

)
, so that the characteristic function of the complex-valued random variable

(Mz) j coincides with that of the real-valued Gaussian z j. Since

t → E exp(ıtz j) = E exp(ıt(Mz) j)

is analytic in a neighborhood of 0, we deduce that Ezn
j = E(Mz)n

j for all integers n.

11
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Appendix B. A diffusion equation for the noncentral chi-squared distribution

We prove here the fact that the derivation rule (18) is a consequence of the following diffusion
equation for the noncentral chi-squared distribution.

Lemma B.1. The noncentral chi-squared probability density with m degrees of freedom and
noncentrality parameter λ, denoted as fm,λ, satisfy the diffusion equation

∂

∂λ
fm,λ(x) = − ∂

∂x
fm+2,λ(x). (B.1)

As a consequence, the Laguerre polynomials satisfy
d

dλ
L(m)

n (λ) = −L(m+1)

n−1 (λ). (B.2)

Proof. The proof is based on the fact that the noncentral chi-squared distribution is a Poisson
mixture of central chi-squared distributions,

fm,λ(x) =
+∞∑
i=0

Po λ
2
(i) fm+2i,0(x),

where Po λ
2

denotes the Poisson distribution with parameter λ
2 ,

Po λ
2
(i) = e− λ

2

(
λ
2

)i

i!
, i � 0.

It can be easily checked that the Poisson distribution satisfies the diffusion equation
∂

∂λ
Po λ

2
(i) = −1

2
Po λ

2
(i) + 1

2
Po λ

2
(i − 1), i � 0

and that the central chi-squared distribution satisfies the diffusion equation
∂

∂x
fm,0(x) = −1

2
fm,0(x) + 1

2
fm−2,0(x),

hence the diffusion equation. Now, the associated Laguerre polynomial is the moment

L(m)
n (−λ) = 1

m!
E

(
χ2

2m+2,λ

)n = 1

m!

∫ +∞

0
x2 fm,λ(x) dx.

Taking the derivative with respect to λ and applying the diffusion equation (B.1) yields the
result after a simple algebra. �

Appendix C. Sum rules for generalized Hermite polynomials

The above sum rules are given here for the generalized Hermite polynomials. Note that the
first four identities are obtained by simply replacing the Hermite polynomial by its generalized
version.

• The factorization sum rule

2nHn

(
α, β; x + y√

2

)
Hn

(
α, β; x − y√

2

)
=

n∑
k=0

(
n

k

)
(−1)k H2n−2k(α, β; x)H2k(α, β; x).

• The generalized factorization sum rule

Hm (α, β; cx − sy) Hn (α, β; sx + cy) =
m+n∑
r=0

α(m,n)
r (c, s) Hr(α, β; x)Hm+n−r (α, β; y) .

12
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• The summation theorem
1

n!
Hn (α, β; (Ox)i) =

∑
|p|=n

op
i

p!
Hp (α, β; x) .

• Another sum rule based on rotational invariance, with w = Ox∑
|q|=n

1

q!
H2q (α, β; w) =

∑
|p|=n

1

p!
H2p (α, β; x) .

• A sum rule due to translation symmetry

Hn (α, β; x + y) =
n∑

k=0

(
n

k

)
(αy)n−k Hk(α, β; x).

• Graczyk and Nowak’s sum rule, with x and y as in (10)∑
|m|=m

1

m!
Hm (α, β; x) Hm (α, β; y)

=
� m

2 �∑
j=0

(αβ)2 j

j! (m − 2 j)!

(
d − 1

2

)
j

Hm−2 j(α, β; x)Hm−2 j (α, β; y) .
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