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Abstract—We analyze the performance of distributed MIMO
transmissions in wireless networks, under the assumption of a
line-of-sight environment. This leads us to the study of a new
class of random matrices which depend on a linear number
of random variables. We characterize the number of their
significant singular values and give an upper bound on the size
of their largest singular value. This translates into estimates on
the number of degrees of freedom for the MIMO transmission.

I. I NTRODUCTION

The aim of the present paper is to study the efficiency of
distributed multiple-input multiple-output (MIMO) transmis-
sions in a wireless network with homogeneously distributed
nodes, under the following classical line-of-sight propagation
model between nodek and nodej in the network:

hjk =
e2πirjk/λ

rjk
. (1)

In the above equation,λ is the carrier wavelength andrjk
is the internode distance. More precisely, we are interested in
assessing the performance of a distributed MIMO transmission
between two far away clusters ofn nodes in the network, by
establishing how the number of spatial degrees of freedom is
affected by the above line-of-sight assumption.

From a mathematical point of view, the aboven×n matrix
H is an interesting object, as it is halfway between a purely
random matrix with i.i.d. entries and a fully deterministic
matrix. Indeed, the internode distancesrjk are themselves
random just because the node positions are. Hence, there
are only ordern independent sources of randomness inH ,
as opposed to the classical i.i.d. fading model classically
considered in MIMO communications where the fading matrix
contains ordern2 independent sources of randomness. This
basic i.i.d. assumption was first questioned by [1] in the
context of wireless networks. It has been shown (see [2])
to remain valid in the regime where the cluster areas are
large enough compared to the distance between them. This
has for consequence that full degrees of freedom are available
for communication between the two clusters in this case. In
the present paper, our aim is to consider the case where the
i.i.d. assumption fails to hold and the number of spatial degrees
of freedom available for communication is limited.

To this end, a precise characterization of the spectrum of
the above matrixH is needed, but a direct analysis of the
spectrum reveals itself difficult. It turns out that in the regime

of interest for us, namely when the inter-cluster distance is
large, the matrixH may be reasonably well approximated, up
to a constant factor, by then× n matrix G defined as

gjk = e−2πimyj zk (2)

whereyj, zk are i.i.d.U([0, 1]) random variables andm is a
parameter that grows withn asm = nδ, for some fixed1/2 <
δ ≤ 1. The justification of this approximation is discussed later
in the present paper and also in detail in our former paper on
the subject [3].

The matrixG shares withH the same feature that it is gen-
erated by ordern independent sources of randomness only, but
its nice structure makes it more amenable to analysis. In this
paper, we establish two main results regarding the spectrumof
G. The first one concerns the number of significant singular
values ofG, a quantity directly linked to the spatial degrees
of freedom of the corresponding MIMO channel. We show
below that this number is, up to a logarithmic factor, of order
m in the regime wherem = nδ and1/2 < δ ≤ 1.

Our second contribution concerns the spectral radius (or
largest eigenvalue) of the matrixGG∗/n. We show below that,
in the same regime as above, this spectral radius does not
exceedn/m, up to a logarithmic factor. Using then the fact
that

n = tr(GG∗/n) =
n
∑

j=1

λj ,

whereλ1, . . . , λn are the eigenvalues ofGG∗/n, we conclude,
combining the above two results, that all them significant
eigenvalues ofGG∗/n are roughly of the same ordern/m
(otherwise they could not sum up ton).

II. SPATIAL DEGREES OF FREEDOM

1 Let us consider two square clusters of areaA separated
by a distanced, one containingn transmitters and the other
containingn receivers uniformly distributed in their respective
clusters, as illustrated on Fig. 1.

1The material of this section is essentially retaken from [3].
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Fig. 1. Two square clusters of areaA separated by distanced.

We are interested in estimating the number of spatial degrees
of freedom of a MIMO transmission between the two clusters:

Yj =
∑

k

√
F hjk Xk + Zj , j = 1, . . . , n,

whereF is Friis’ constant, the coefficientshjk are given by
the line-of-sight fading model (1) andZj represents additive
white Gaussian noise at receiverj. The distancerjk between
nodej at the receiver side and nodek at the transmitter side
is given by

rjk =

√

(d+
√
A (xj + wk))2 + A (yj − zk)2 (3)

where xj , wk, yj, zk ∈ [0, 1] are normalized horizontal and
vertical coordinates, as illustrated on Fig. 3.
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Fig. 2. Coordinate system.

Assuming full channel state information and perfect coop-
eration of the nodes on both sides, the maximum number of
bits per second and per Hertz that can be transferred reliably
from the transmit cluster to the receive cluster over this MIMO
channel is given by the following expression:

Cn = max
Q≥0 :Qkk≤P, ∀k

log det(I +HQH∗), (4)

whereQ is the covariance matrix of the input signal vector
X = (X1, . . . , Xn) andP is the power constraint at each node
(in order to simplify notation, we choose units so that the other
parameters, such as Friis’ constantF , the noise power spectral
densityN0 and the bandwidthW do not appear explicitly in
the above capacity expression).

In the sequel, we make the followingtwo assumptions:
1) d,A both increase2 with n and satisfy the relation

√
A ≤

d ≤ A/λ.

2) P = (d+
√
A)2

n ; because the average distance between two
nodes in opposite clusters isd+

√
A and because the MIMO

power gain is of ordern, this power constraint ensures that
the SNR of the incoming signal at each receiving node is of

2By “increasing withn”, we mean thatA = nβ and d = nγ for some
powersβ, γ > 0.

order1 on average, so that the MIMO transmission operates
at full power. Imposing this power constraint allows us to
focus our attention on the spatial degrees of freedom of the
system. Notice that because of assumption (1), the powerP
is allowed here to scale arbitrarily withn. This might sound
a bit artificial, but as stated above, it serves our main goal,
which is to assess the number of degrees of freedom of the
system.

An upper bound on the capacity expression (4) can be
found trivially by applying the Hadamard inequality to the
determinant. This procedure leads to an upper bound of order
n. A natural question is whether it is possible to tighten this
bound on the capacity, hence showing that the distributed
MIMO system does not have the full spatial degrees of
freedom for its transmission. In order to answer this question,
let us first observe that any matrixQ satisfying the above
constraints also satisfiesQ � nPI 3. Thus,

Cn ≤ log det(I + nPHH∗) =
n
∑

k=1

log(1 + λk) (5)

whereλ1, . . . , λn are the eigenvalues ofnPHH∗. The number
of significant eigenvalues ofnPHH∗ therefore determines the
number of spatial degrees of freedom. The direct analysis of
these eigenvalues appears to be difficult, so we proceed by
approximating the matrixnPHH∗ by another matrixGG∗,
easier to analyze.

Claim 1. Let m = A/(λd) and G be the matrix whose entries
are given by (2):

gjk = e−2πimyjzk ,

where yj , zk, 1 ≤ j, k ≤ n are the same random variables
as in expression (3). Then under assumptions 1) and 2), the
following approximation holds:

log det(I + nPHH∗) = log det(I +GG∗) (1 + o(1))

with high probability as n gets large.

Observe first that by expression (5), the above approxima-
tion is equivalent to saying that the number of significant
eigenvalues ofnP HH∗ andGG∗ do not differ in order asn
gets large. Some numerical evidence of this fact is provided
on Fig. 4 for a given set of parameters (but a similar behavior
is observed for a wide range of parameters).
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Fig. 3. Eigenvalues ofnPHH∗ (blue) andGG∗ (red) for the
parametersn = 500, A = 10′000m2, d = 300m, λ = 0.1m

(som = A/(λd) ≃ 333).

3whereA � B denotes the partial ordering on the set of positive definite
matrices



It can be observed on the figure that the eigenvalues drop to
zero after a threshold of orderm = A/(λd) for both matrices
nPHH∗ andGG∗. The rest of the present section is devoted
to the proof of this observation for the matrixG, which is
recast in the following statement.

Theorem 2. Let m = nδ, with 1/2 < δ ≤ 1. Then there exists
a constant K2 > 0 such that

log det(I +GG∗) ≤ K2 m logn

with high probability as n gets large.

Let us mention that applying the same technique as in [2],
a matching lower bound onlog det(I +GG∗) can be found,
up to logarithimic factors. This result on matricesG of the
form (2) is interesting in itself, as these do not appear to have
been studied before in the random matrix literature.

Provided Claim 1 holds true, this result also shows that the
number of spatial degrees of freedom of a MIMO transmission
between two clusters of areaA separated by distanced is of
orderm = A/(λd), up to logarithmic factors (in the regime
where

√
n ≪ m ≤ n).

Proof: An accompanying concentration result allows us
to limit ourselves to computing the expected value. See [3] for
a precise formulation.

In order to upperboundE(log det(I + GG∗)), let us now
expand the determinant,GJ×n representing the matrix where
only the rows in the index setJ are present:

E(log det(I +GG∗))

= E

(

log

(

1 +

n
∑

k=1

∑

J⊂{1,...,n}
|J |=k

det(GJ×nG
∗
J×n)

))

≤ log

(

1 +
n
∑

k=1

∑

J⊂{1,...,n}
|J|=k

E(det(GJ×nG
∗
J×n))

)

where we used Jensen’s inequality. Using the fact that theyj
are i.i.d., we further obtain thatE(det(GJ×nG

∗
J×n)) only

depends on the sizek of the subsetJ , so

E(log det(I +GG∗))

≤ log

(

1 +
n
∑

k=1

(

n

k

)

E(detGk×nG
∗
k×n)

)

= log

(

1 +

n
∑

k=1

(

n

k

)

E

(

∑

I⊂{1,...,n}
|I|=k

det(Gk×IG
∗
k×I)

))

= log

(

1 +

n
∑

k=1

(

n

k

)2

E(det(Gk×kG
∗
k×k))

)

where we have used this time the Cauchy-Binet formula
together with the fact that thezk are i.i.d. We thus see that
in order to upperboundE(log det(I + GG∗)), it is enough
to controlE(det(Gk×kG

∗
k×k)), whereGk×k is the upper left

k × k submatrix ofG.
We will show that, similarly to what has been observed

numerically for the eigenvaluesλk, E(det(Gk×kG
∗
k×k)) drops

rapidly for k greater than a given threshold of orderm, which
will imply the result.

Using the definition of the determinant, we obtain

E(det(Gk×kG
∗
k×k))

=
∑

σ,τ∈Sk

(−1)|σ|+|τ |
E

( k
∏

j=1

gj,σ(j) gj,τ(j)

)

= k!
∑

σ∈Sk

(−1)|σ| E

( k
∏

j=1

gjj gj,σ(j)

)

= k!
∑

σ∈Sk

(−1)|σ| EZ

( k
∏

j=1

EY (e
−2πiyj(zj−zσ(j)))

)

= k!
∑

σ∈Sk

(−1)|σ| EZ

( k
∏

j=1

1− e−2πim(zj−zσ(j))

2πim(zj − zσ(j))

)

= k!EZ

(

det

({

1− e−2πim(zj−zl)

2πim(zj − zl)

}

1≤j,l≤k

))

.

Multiplying row j by eπimzj and columnl by e−πimzl , we
reduce the problem to computing the following determinant:

EZ

(

det

(

{

sin(πm(zj − zl))

πm(zj − zl)

}

1≤j,l≤k

))

.

Operators and Fredholm Theory. The key observation is that
the above expected value of the determinant can be seen
as a classically studied quantity in the Fredholm theory of
integral operators. This allows us to deduce precise estimates.
A reference for the material discussed below is [4].

Consider the continuous functionKm(x, y) = sin(m(x−y))
π(x−y)

on [0, 1]2 and the associated operatorKm : C([0, 1]) →
C([0, 1]) defined as

Km φ(x) =

∫ 1

0

sin(m(x− y))

π(x− y)
φ(y) dy.

The pth iterated kernelKp of an operator K is defined as
K1 = K and

Kp(x, y) =

∫ 1

0

Kp−1(x, z)K(z, y) dz

Associated to this is thepth trace ofK:

Ap =

∫ 1

0

Kp(x, x) dx

Define as well the compound kernelK[p] ∈ C([0, 1]2p) as

K[p](x,y) = det







K(x1, y1) K(x1, y2) . . . K(x1, yp)
...

...
. . .

...
K(xp, y1) K(xp, y2) . . . K(xp, yp)







for x = (x1, . . . , xp) andy = (y1, . . . , yp). In this notation,
the quantity we are interested in is

EZ

(

det

(

{

sin(πm(zj − zl))

πm(zj − zl)

}

1≤j,l≤k

))

= k!
1

mk
dk,



where

dk =
1

k!

∫

[0,1]k
Km,[k](x,x) dx1 · · · dxk.

SinceKm is a compact operator, it has a discrete spectrum
µ1 ≥ µ2 ≥ . . . It is immediate to see thatAp =

∑

µp
i .

Furthermore, the quantitiesdk and Ap are related by the
following recurrence relation, which follows from expanding
the determinant in the definition ofK[p] and regrouping equal
terms (see [4]).

k dk =

k
∑

p=1

(−1)p−1 Ap dk−p.

Using the fact thatAp =
∑

µp
i , it can be seen that the only

solution to the above recurrence (withd0 = 1) is

dk =
∑

i1<i2<...<ik

µi1 µi2 · · ·µik . (6)

We conclude that it is sufficient to estimate the eigenvaluesof
the operatorKm in order to upperbounddk.

Since the kernelKm is translation invariant, it can be
defined equivalently on[−1/2, 1/2], and this new operator has
the same eigenvalues. This operator is called the sinc kernel
and is well known in signal processing, since it is the Fourier
transform of the indicator function. It was originally studied
by D. Slepian in [5] and precise estimates exist on the behavior
of its eigenvalues. In particular, we have the following recent
result from [6, Theorem 3]:

Theorem 3. Let δ > 0. There exists M ≥ 1 and c > 0 such
that, for all m ≥ 0 and k ≥ max(M, cm),

µk ≤ e−δ (k−cm).

This theorem essentially says that the eigenvaluesµk decay
exponentially fork ≥ cm. The direct consequence of this is
that the numbersdk decay as follows:

dk ≤
{

1, if k ≤ cm,

Ck e−δ (k−cm)2/2, if k > cm.

Gathering all estimates together, we finally obtain

E(log det(I +GG∗))

≤ log

(

1 +

n
∑

k=1

(

n

k

)2
k!2

mk
dk

)

≤ log

(

1 +

n
∑

k=1

n2k dk

)

≤ log

(

1 +
cm
∑

k=1

n2k +
n
∑

k=cm+1

n2k Ck e−δ (k−cm)2/2

)

≤ (cm+ 1) logn+O(1),

which concludes the proof of Theorem 2.

III. M AXIMAL EIGENVALUE

Another quantity of interest is the maximal eigenvalue of
the matrixGG∗/n. As already mentioned in the introduction,
the following bound on the largest eigenvalue together with
the results from the previous section allow us to conclude that
all significant eigenvalues are roughly of the same ordern/m
in the regime of interest.

Theorem 4. Let m = nδ with 1/2 < δ ≤ 1. Then there exists
a constant K3 > 0 such that

E(λmax(GG∗/n)) ≤ K3 (n/m) logn

and for every ε > 0,

λmax(GG∗/n) ≤ K3 (n/m)nε

with high probability as n → ∞.

Proof: We use the following inequality, valid for any
integerl ≥ 1:

E(λmax(GG∗/n)) ≤ E

(

tr

(

GG∗

n

)l
)1/l

, (7)

in order to reduce the problem to computing

1

nl
E









∑

1≤j1,j2,...jl≤n
1≤k1,k2,...kl≤n

gj1k1gj2k1 . . . gjlkl
gj1kl









. (8)

We will first concentrate on terms in this sum where all indices
are different, i.e.j1 6= j2 6= . . . 6= jl and k1 6= k2 6= . . . 6=
kl. There are ordern2l such terms. Concretely, we get the
following multiple integral for one term:

1

nl

∫

[0,1]2l
{dyjdzk} e−2πim[z1(y2−y1)+z2(y3−y2)+...+zl(y1−yl)]

(9)
For everyj, we have

∫ 1

0

dzj e
−2πimzj(yj+1−yj) =

1− e−2πim(yj+1−yj)

2πim(yj+1 − yj)

so
∣

∣

∣

∣

∫ 1

0

dzj e
−2πimzj(yj+1−yj)

∣

∣

∣

∣

≤ max

{

1,
1

πm

1

|yj+1 − yj|

}

,

where the first term is obtained by simply noticing that the
integrand on the left-hand side is upperbounded by1. Observe
next that
∫ 1

0

dyj 1{|yj+1−yj|≥ε}
1

πm

1

|yj+1 − yj |
≤ 1

πm
log

(

1

ε

)

.

The desired bound on (9) can then be obtained by first bound-
ing the integral over one of thezk term by1 and then splitting
the domain of integration to make sure theyj ’s multiplying
the samezk are at leastε apart. One can then integrate over
all remainingzk’s and repeat the above procedurel− 1 times,



as each integration reduces the occurrence of one of theyj ’s.
One then gets a bound of the form

(

2 ln(1/ε)

πm

)l−i−1

εi,

where i is the number of indices such that|yj+1 − yj | < ε.
Since there are

(

l
i

)

ways to choose such indices, if one takes
ε = 1

m , one gets that (9) is bounded above by

1

nl

l
∑

i=0

(

l

i

)(

2 ln(m)

πm

)l−i−1 (
1

m

)i

≤ 1

nl

l
∑

i=0

(

l

i

)(

2 ln(m)

πm

)l−1

≤ 2
1

nl

(

1

m

)l−1(
4 ln(m)

π

)l−1

.

As there are of the order ofn2l such terms, this gives us the
desired bound after taking thelth root.

We now take care of the case where some of the variables
coincide. A minute’s thought shows that we can reduce to the
case where all thez variables are distinct. Observe that ifi
pairs ofy variables are identified, there will be of the order of
n2l−i terms in the sum of (8), and so to get the same bound
as in the previous section, we can afford to boundi of the z
variables by1 in the original integral (9). We now introduce
a combinatorial way to look at the problem. Consider a graph
whose vertices are the variablesYj and with an edge between
two vertices if theY variables appear in front of the sameZ
variable in (9), after possible identifications ofY variables.
For example, when all theYj ’s are different, we get a circle.
We then delete one edge (the equivalent of bounding a term
by 1 in the original integral as in the previous paragraph)
and get a tree, which allows one to use successive integration.
What remains to be seen is that given this circular graph, after
identifying i pairs of vertices, one can get a tree by removing
i edges. This is immediate.

Combining these results, we obtain

E
(

(λmax(GG∗/n))l
)

≤ E

(

tr

(

HH∗

n

)l
)

≤ 1

nl
E









∑

1≤j1,j2,...jl≤n
1≤k1,k2,...kl≤n

gj1k1gj2k1 . . . gjlkl
gj1kl









≤ 1

nl

l
∑

i=0

(

l

i

)

2

(

4 ln(m)

πm

)l−i−1

n2l−i

≤ C 2l+1

(

4 ln(m)n

πm

)l−1

n,

where the indexi counts the number ofy indices that are
paired up. Taking thelth root of the last expression and using
Jensen’s inequality allows us to obtain the desired upper bound
on the expectation in the theorem.

The second inequality may be obtained using Markov’s
inequaility:

P (λmax(GG∗/n) ≥ K3(n/m)nε) ≤ E
(

(λmax(GG∗/n))l
)

(K3(n/m))l nεl

≤ (logn)l

nεl
,

which, for any fixedε > 0, can be made arbitrarily small by
taking l sufficiently large.

IV. CONCLUSION AND PERSPECTIVES

The goal of this work is to give precise estimates on the
number of spatial degrees of freedom in large MIMO systems
in a line-of-sight environment. An upper bound for a model
closely related to the line-of-sight model has been given, and
the similarity of the two models is supported numerically.
As such, it remains to be shown that the eigenvalues of
the two models are indeed very close, in order to bound
| log det(I + nP HH∗) − log det(I + GG∗)|; this is work
in progress. Besides, numerical simulations suggest that more
precise estimates on both the number of significant eigenvalues
of GG∗/n and its maximal eigenvalue could probably be
obtained. Finally, let us mention that the matrixG studied
in this paper is related to Vandermonde matrices and random
DFT matrices that appear in other contexts in the literatureon
wireless communications [7], [8], [9], [10] and compressed
sensing [11], [12], respectively.
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