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Abstract—Hierarchical cooperation has been shown recently to
achieve better throughput scaling than classical multihop schemes
in static wireless networks, under certain assumptions on the
channel model. However, the end-to-end delay and the complexity
of the scheme turns out to be significantly larger than those of
multihop schemes. A modification of the scheme is proposed here
that reduces complexity and achieves a throughput-delay trade-
off D(n) = (log n)2T (n) for T (n) between Θ(

√
n/ log n) and

Θ(n/ log n), where D(n) and T (n) are respectiveley the average
delay per bit and the aggregate throughput in a network of n
nodes. This trade-off complements the previous results on the
throughput-delay trade-off D(n) = T (n) of multihop schemes
that achieve throughput scaling between Θ(1) and Θ(

√
n).

I. INTRODUCTION

Scaling laws offer a way of studying fundamental trade-offs
in wireless networks as well as of highlighting the qualitative
and architectural properties of specific designs. Such study has
been initiated by the work [1] of Gupta and Kumar in 2000.
Their by now familiar model considers n nodes randomly dis-
tributed on a unit area, each of which wants to communicate to
a random destination at a common rate R(n). They ask what is
the maximally achievable scaling of the aggregate throughput
T (n) = nR(n) and show that cooperation between nodes
can dramatically improve performance. Instead of using the
simple non-cooperative scheme of time-sharing between direct
transmissions from source nodes to destinations, which only
achieves aggregate throughput Θ(1), the nodes can cooperate
and relay the packets by multihopping from one node to the
next, in which case an aggregate throughput scaling of Θ(

√
n)

is achieved. The price to pay, however, is in terms of delay.
In the multi-hop scheme, the packets need to be retransmitted
many times before they reach their actual destinations, which
results in larger end-to-end delay. More precisely, as shown
later in [2], [3], in a multi-hop scheme, bits are delivered to
their destinations in Θ(

√
n) average time after they leave their

source nodes, while the average delay for the simple TDMA
scheme remains only Θ(1). Note that this accounts only for
on-the-flight delay; the queuing delay at the source node is
not considered.

The problem of delay in networks is much more involved
compared to point-to-point communication. In the point-to-
point scenario illustrated in Fig. 1, the transmission delay
introduced by the channel is usually fixed by the nature of
the problem whereas, as we have seen above, it is determined
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Fig. 1. Block diagram of a point-to-point

by the particular scheme used in the case of networks. The
only design parameter that influences the overall delay of the
communication in Fig. 1 is the bulk-size B, where bulks of
B bits are mapped into blocks of N channel symbols. It
is well known that in this setup, for a given probability of
error, the rate of communication R can be increased up to the
capacity of the channel if larger bulk size B is allowed, see
for example [4, Ch.5]. However, increasing the bulk-size B
or equivalently increasing the block-length N results in larger
delay in communication and also increased complexity.1

Recently, it has been shown in [5] that under certain
assumptions on the channel model, a much better aggregate
throughput scaling is achievable in wireless networks than
the one achieved by classical multi-hop schemes. The authors
exhibit a hierarchical cooperation scheme that uses distributed
MIMO communication to achieve aggregate throughput scal-
ing arbitrarily close to linear, i.e. Th(n) = Θ(n

h
h+1 ) for any

integer h > 0. The parameter h corresponds to the number of
hierarchical levels used in the scheme and by increasing h, one
can get arbitrarily close to linear scaling. A natural question
is whether there is a price to pay for this superior scaling of
the throughput. In particular, where is the scheme located on
the throughput-delay/complexity trade-off discussed earlier?
In this paper, we reanalyze the scheme presented in [5] and
show that better throughput is achieved at the expense of
increased bulk-size. More precisely, we show that the bulk-
size used by the scheme scales as Bh(n) = Θ(n

h
2 ); in other

words, it grows arbitrarily large as the throughput approaches
linear scaling. Note that the bulk-size immediately imposes a
lower bound on the end-to-end delay of the communication;
even if there is no transmission delay from the source node
to the destination node, receiving a bulk of B(n) bits will
take at least Θ(B(n)/ log n) channel uses for a destination
node, since a simple application of the cut-set bound upper

1Note that for point-to-point communication, B and N are simply related
as R = B

N
.



bounds the rate of reception by (or transmission from) a
node with log n bits per channel use. The same argument
applies to complexity since in the best case, complexity is
approximately linear in block-length, which is lower bounded
by Θ(B(n)/ log n).

In the rest of the paper, we present a modification of
the hierarchical cooperation scheme that achieves the same
aggregate throughput Th(n) = Θ(n

h
h+1 ) by using a much

smaller bulk-size of Bh(n) = Θ(n
h

h+1 ) bits. The key idea
in [5] that yields the hierarchical architecture is to set up the
receive and transmit cooperation for the distributed MIMO
transmissions as multiple problems of the original kind, that
is of communicating between n source-destination pairs in
a network of n nodes. Any known solution to the original
problem can then be used for cooperation, eventually yielding
a better solution for this problem. However, if the scheme
to begin with uses large bulk-size, using it for cooperation
yields a scheme with even larger bulk-size. This is the reason
for the increase in bulk size Θ(n

h
2 ) with the number of

hierarchical levels h. In this paper, we study the problem of
cooperation more carefully. We pose it as a network multiple
access problem, where each of the n nodes in the network is
interested in conveying independent information, say L bits,
to each of the other nodes in the network. We propose a two-
phase hierarchical scheme that solves this problem in Θ(n

h+1
h )

time-slots for any h > 0. Using this scheme for cooperation,
we achieve a bulk-size scaling Bh(n) = Th(n) for the original
problem. We show that reduced bulk size consequently reduces
the delay to Dh(n) = n.

We proceed by optimizing the scheduling in this scheme to
further reduce the end-to-end delay. To do this, we need to
consider a generalized version of the multiple access problem
where each node in the network is interested in conveying
independent information, say again L bits, to each of the
nodes in a subset of A(n) nodes, where the A(n) < n
nodes are chosen unformly at random among the n nodes in
the network. We show that this task can be accomplished in
Θ(A(n)

n n
h

h+1 log n) channel uses for any h > 0 if A(n) ≥
n

h
h+1 . This allows us to achieve a throughput delay trade-off

of (T (n), D(n)) = (nb/ log n, nb log n) for any 0 ≤ b < 1.
This new result is depicted in Figure 2, together with previous
results from the literature.

A related line of research (see e.g. [6], [7], [2], [8])
is the characterization of the throughput-delay trade-off for
mobile networks, where nodes move over the duration of
communication according to a certain mobility pattern. In
general, mobility schemes achieve an aggregate throughput
scaling comparable to that of hierarchical cooperation (i.e. up
to linear in n), but the delay scaling performance of such
schemes may vary significantly, depending on the chosen
mobility model. For instance, under the classical random walk
mobility model considered in [2], the performance is quite
poor, as illustrated in Figure 2. But from the delay point of
view, a more prominent disadvantage which is common to all
mobility schemes and which does not appear on the graph in
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Fig. 2. Throughput-delay performance achieved by hierarchical cooperation
together with known results from the literature.

Figure 2, is the constant that precedes the delay scaling law.
This pre-constant relates to the speed of nodes in the case of
mobility schemes, whereas it relates to the speed of light in
the case of hierarchical cooperation.

II. SETTING AND MAIN RESULTS

There are n nodes uniformly and independently distributed
in a square of unit area. Every node is both a source and a
destination. The sources and destinations are paired up one-
to-one in a random fashion without any consideration on
respective locations. Each source has the same traffic rate R(n)
to send to its destination node.2 The aggregate throughput of
the system is T (n) = nR(n).

We assume that communication takes place over a flat
channel of bandwidth W Hz around a carrier frequency of
fc, fc À W . The complex baseband-equivalent channel gain
between node i and node k at time m is given by:

Hik[m] = r
−α/2
ik exp(jθik[m]) (1)

where rik is the distance between the nodes, θik[m] is the
random phase at time m, uniformly distributed in [0, 2π] and
{θik[m], 1 ≤ i ≤ n, 1 ≤ k ≤ n} is a collection of i.i.d. random
processes. The θik[m]’s and the rik’s are also assumed to be
independent. The constant α ≥ 2 is called the power path loss
exponent of the environment.

Note that the channel is random, depending on the location
of the users and the phases. The locations are assumed to be
fixed over the duration of the communication. The phases are
assumed to vary in a stationary ergodic manner (fast fading).
We assume that the channel gains are known at all the nodes.
The signal received by node i at time m is given by

Yi[m] =
n∑

k=1

Hik[m]Xk[m] + Zi[m]

2In the following text, we will sometimes refer to this traffic pattern as the
unicast problem in order to distinguish it from the multicast problems that
will be discussed in Sections IV and V-B.
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where Xk[m] is the signal sent by node k at time m and Zi[m]
is white circularly symmetric Gaussian noise of variance
N0 per symbol. Every node is subject to a transmit power
constraint that we denote by P .3

Following [3], the delay D(n) of a communication scheme
for this network is defined as the average time it takes for a bit
or packet of constant size to reach its destination node after
it leaves its source node, where the averaging is over all bits
or packets traveling in the network. So defined, the delay of
a scheme quantifies the average time spent by the bits inside
the network while operated under this scheme.4

The following theorem is the main result of this paper.
Theorem 2.1: Using hierarchical cooperation, the following

points are achievable on the throughput-delay scaling curve,

(T (n), D(n)) = Θ
(
nb/ log n, nb log n

)

where 0 ≤ b < 1 (see Figure 2).

III. OVERVIEW OF THE HIERARCHICAL COOPERATION
SCHEME

In this section, we give a brief overview of the hierar-
chical cooperation scheme as presented in [5] and establish
the throughput-delay trade-off for this scheme. Some of the
discussions presented here directly build on results already
established in [5].

The hierarchical cooperation scheme is based on clustering
the nodes in the network and performing long-range MIMO
transmissions between the clusters. The long-range MIMO
transmissions should be proceeded and followed by coop-
eration phases establishing transmit and receive cooperation
respectively which yields three successive phases in the oper-
ation of the network. If simple TDMA is used for establishing
cooperation in phase 1 and 3, the overall scheme achieves a√

n-scaling of the aggregate throughput. This is the three phase
scheme discussed in Section III-A. Higher throughputs can be
achieved by setting the cooperation problem as multiple com-
munication problems and using the three phase scheme as a
solution to each of those communication problems. This yields
the idea of recursion and results in a hierarchical architecture,
where increasing the number of levels in the hierarchy yields
an aggregate throughput scaling arbitrarily close to linear. The
hierarchical cooperation scheme is discussed in more detail in
Section III-B.

3We present the low-level assumptions on the channel and network model
in this section for the sake of completeness. However, most of the discussions
in the following sections will rely on intermediate results established in [5],
hence the dependence of the results on the low level assumptions might not
be always evident.

4Note that this definition does not account for the source delay. The delay
at the source node can be accounted for if the delay of a scheme is defined
to be the average time it takes for a bit to reach its destination node after it
arrives at the source node. However in order to work with this definition of
delay, one needs to make particular assumptions on the arrival process. Note
that how larger is this delay from the results we establish in this paper depends
on how well the arrival process at the source nodes matches the scheduling
in the scheme.

A. The Three Phase Scheme

The network is divided into clusters of M nodes and a
particular source node s sends M bits to its destination node
d in three steps:
(1) Node s first distributes its M bits among the M nodes

in its cluster, one for each node;
(2) These nodes together can then form a distributed transmit

antenna array, sending the M bits simultaneously to the
destination cluster where d lies;

(3) Each node in the destination cluster gets one observation
from the MIMO transmission, and it quantizes and ships
the observation back to d, which can then do joint MIMO
processing of all the observations and decode the M
transmitted bits.

From the network point of view, all source-destination pairs
have to eventually accomplish these three steps. Step 2 is long-
range communication and only one source-destination pair can
operate at a time. Steps 1 and 3 involve local communica-
tion and can be parallelized across source-destination pairs.
Combining all this leads to the following three phases in the
operation of the network:

Phase 1: Setting Up Transmit Cooperation Clusters work
in parallel. Within a cluster, each source node distributes M
bits to the other nodes, 1 bit for each node, such that at the
end of the phase, each node has 1 bit from each of the other
nodes in its cluster. (Recall our assumption that each node is a
source for some communication request and a destination for
another.) Thus, since there are M source nodes in each cluster,
this gives a traffic demand of exchanging M(M − 1) ∼ M2

bits. Using TDMA, one-at-a-time transmission between pairs
of nodes, these M2 bits can be exchanged in M2 time slots.

Phase 2: MIMO Transmissions Successive long-
distance MIMO transmissions are performed between source-
destination pairs, one at a time. In each one of the MIMO
transmissions, say the one between s and d, the M bits of s
are simultaneously transmitted by the M nodes in its cluster
to the M nodes in the cluster of d. Each of the long-distance
MIMO transmissions are repeated for each source-destination
pair in the network, hence we need n time-slots to complete
the phase.

Phase 3: Cooperate to Decode Clusters work in parallel.
Since there are M destination nodes inside the clusters, each
cluster received M MIMO transmissions in phase 2, one
intended for each of the destination nodes in the cluster. Thus,
each node in the cluster has M received observations, one from
each of the MIMO transmissions, and each observation is to
be conveyed to a different node in its cluster. Nodes quantize
each observation into fixed Q bits, so there are a total of QM2

bits to be exchanged inside each cluster. Using TDMA as in
Phase 1, the phase can be completed in QM2 time slots.

In [5], it is shown that each destination node is able to
decode the transmitted bits from its source node from the
M quantized signals it gathers by the end of Phase 3. The
throughput achieved by the scheme can be calculated as
follows: each source node is able to transmit M bits to its
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destination node, hence nM bits in total are delivered to their
destinations in M2+n+QM2 time slots, yielding an aggregate
throughput of

nM

M2 + n + QM2

bits per time-slot. Choosing M =
√

n to maximize this
expression yields an aggregate throughput T (n) = 1

2+Q

√
n.

Note that as opposed to multihop, this three phase scheme
allows only bulk transmission between any source-destination
pair in the network; i.e. one can not arbitrarily communicate
one bit (or L bits with L constant) using the three-phase
scheme, but M =

√
n bits per source-destination pair should

be transferred with each use of the scheme.
The end-to-end delay of this scheme is simply the total time

for the three phases, since the bits are leaving their source
nodes at the beginning of the first phase and are only decoded
by their respective destination nodes at the end of the third
phase. With the choice M =

√
n, we see that the delay of

the three phase scheme is D(n) = (2 + Q)n. Note that this
delay scaling is much worse when compared to the delay of
the multi-hop scheme achieving same aggregate throughput.

B. The Hierarchical Cooperation Scheme

Higher aggregate throughput scaling can be achieved by
using a better network communication scheme than TDMA
to establish the transmit and receive cooperations in phase
1 and phase 3. Note that there are M2 and QM2 bits that
need to be exchanged in phase 1 and 3 respectively. This
traffic demand of exchanging M2 bits (or QM2 bits) can
be handled by setting up M sub-phases, and assigning M
pairs in each sub-phase to communicate their 1 bit (or Q
bits). The traffic to be handled at each sub-phase now looks
similar to the original network communication problem (the
unicast network problem defined in Section II), with M users
instead of n. Any scheme suggesting a good solution for the
original problem can now be used inside the sub-phases as an
alternative to TDMA; for example, the multi-hop scheme and
the three-phase scheme given in Section III-A would be two
alternatives both achieving an aggregate throughput scaling
Θ(
√

M) (in a network of size M ) as opposed to the Θ(1)
scaling achieved by TDMA. In general, if a scheme achieving
aggregate throughput scaling M b is used to handle the traffic
in each sub-phase, the total completion time for phase 1 and
3 becomes M ×M1−b and M ×QM1−b respectively. This in
turn yields an aggregate throughput

nM

M2−b + n + QM2−b

bits per time-slot, which is maximized by the choice M =
n

1
2−b , yielding T (n) = 1

2+Qn
1

2−b . (Note that plugging b = 0
for TDMA yields the aggregate throughput scaling

√
n derived

earlier for the three phase scheme.) Starting with b = 0 for
TDMA and noticing that 1

2−b > b for 0 ≤ b < 1, applying the
same argument recursively h times, one gets a scheme achiev-
ing aggregate throughput scaling Th(n) = n

h
h+1 . Note that this

recursion builds a hierarchical architecture with h levels. At

the lowest level of the hierarchy, the simple TDMA scheme is
used to exchange bits for cooperation among small clusters.
Combining this with longer range MIMO transmissions, one
gets a higher throughput scheme for cooperation among nodes
in larger clusters at the next level of the hierarchy. Finally,
at the top level of the hierarchy, the cooperation clusters are
almost of the size of the network and the MIMO transmissions
take place at a global scale. See Figure III-B.

For deriving the delay performance of the hierarchical
scheme, let us first concentrate on the simplest case h = 2. The
resultant scheme achieving aggregate throughput scaling n2/3

divides the network into clusters of size M1 = n2/3 and uses
the three phase scheme inside these clusters for establishing
cooperation. More precisely, the traffic of communicating 1 bit
(or Q bits) between M1 source-destination pairs in each sub-
phase of phase 1 (or phase 3) is handled by further dividing the
cluster into smaller clusters of size M2 =

√
M1 = n1/3 and

using the three phase scheme (TDMA-MIMO-TDMA) given
in Section III-A. Note however that the three phase scheme
allows only bulk transmissions between source-destination
pairs. In this particular case, one will have to communicate
M2 bits between the source-destination pairs assigned at each
sub-phase, as opposed to the original requirement of commu-
nicating only 1 bit (or Q bits). For the overall scheme, this
in turn increases the bulk size to be communicated between
every source-destination pair in the network from M1 bits to
M1×M2 bits, resulting also in larger delay. The delay of the
two-level hierarchical scheme is given by M2 × n = n4/3, as
opposed to n for the three phase scheme (h = 1). Indeed, it
can be checked that the aggregate throughput achieved by the
two-level scheme is given by the expression

M2 M1 n

M1(M2
2 + M1 + QM2

2 ) + M2n + M1Q(M2
2 + M1 + QM2

2 )
(2)

and the optimal choices of M1 = n2/3 and M2 = n1/3

maximize the aggregate throughput scaling to T2(n) = n2/3,
while the denominator dictating the delay of the scheme
is of order D2(n) = n4/3. Note that the increase of the
communication bulk size does not affect the throughput, since
it corresponds to multiplying the numerator and denominator
of (2) by the same factor, but it affects the delay.

Extending the argument for larger h and noticing that the
cluster size at the k’th level of an h-level hierarchical scheme
is given by Mk = n

h+1−k
h+1 , we obtain the bulk-size in an h-

level hierarchical scheme as

Bh(n) = Mh × . . .×M1 = n
h
2

and its end-to-end delay as

Dh(n) = Mh ×Mh−1 × · · · ×M2 × n = n
h2+h+2
2(h+1)

where we observe that for large h, the delay exponent is linear
in h. Recall that the aggregate throughput achieved by an h-
level hierarchical cooperation scheme is given by Th(n) =
n

h
h+1 .
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Fig. 3. The salient features of the three phases and the time division in a hierarchical scheme are illustrated. Figure taken from [5].

The results obtained in this section establish the poor delay
performance of hierarchical cooperation. Note that the delay
is mostly due to the large bulk-size used by the scheme and
this not only imposes large delay but also results in high
complexity. This is different from multi-hop schemes since
their bulk-size is constant (Θ(1)) and the delay is due to the
time spent in relaying the messages inside the network. In the
next section, we modify the scheme so that it achieves the
same throughput using much smaller bulk-size.

IV. HIERARCHICAL COOPERATION WITH SMALLER
BULK-SIZE

In this section, we treat the problem of cooperation in the
three phase scheme with more care. We start by defining the
network multiple access problem to be the following.

Definition 4.1 (The Network Multiple Access Problem):
Consider the assumptions on the network and channel model
given in Section II. Let each node in the network be interested
in communicating independent information to each of the
other nodes in the network. In particular, let us assume that
each node has 1 independent bit (or L independent bits, with
L constant) to send to each of the other nodes in the network
and the quantity of interest is the smallest time F (n) required
to accomplish this task. This problem we refer to be the
network multiple access problem.

The following theorem provides an achievable solution to
this problem.

Theorem 4.1: For any integer h > 0, the network MAC
problem can be solved in

F (n) ≤ K n
h+1

h

time-slots, for some constant K > 0 independent of n.

Proof of Theorem 4.1: Let us start by assuming that there
exists a scheme that solves the multiple access problem in

F (n) = nb time-slots with b > 1. Note that one such scheme
is simple TDMA that yields b = 2. Using this existing scheme,
we will construct a new scheme that yields smaller F (n).

As before, let us start by dividing the network into clusters
of M nodes. Let us first focus on one specific cluster S and one
node d located outside of this cluster. In particular, all nodes
in S have 1 bit to send to d. These bits can be communicated
to d in two steps:
(1) The nodes in S simultaneously transmit their 1 bit

messages destined to d forming a distributed transmit
antenna array for MIMO transmission. The nodes in the
destination cluster which d belongs to, form a distributed
receive antenna array for this MIMO transmission.

(2) Each node in the destination cluster obtains one observa-
tion from the MIMO transmission in the previous phase;
it quantizes and ships this observation to d, which can
do joint MIMO processing of all the observations and
decode the M transmitted bits from the nodes in S.

As a first step towards handling the whole network problem,
note that these two steps should be accomplished between S
and all other nodes in the network. This can again be done in
two steps:

Phase 1: MIMO transmissions We perform successive
long-distance MIMO transmissions between S and all other
nodes in the network. In each of the MIMO transmissions,
say between S and d, the M nodes in S are simultaneously
transmitting the 1 bit messages they would like to commu-
nicate to d and the M nodes in the cluster where d lies are
observing the MIMO transmission. The MIMO transmissions
should be repeated for each node in the network, hence we
need n time-slots to complete the phase.

Phase 2: Cooperate to decode Clusters work in parallel.
Since there are M nodes inside each cluster, each cluster
received M MIMO transmissions from S in the previous
phase, one intended for each node in the cluster. Thus, each

5



PHASE 1 PHASE 2
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Fig. 4. The figure illustrates the time-division in the hierarchical scheme
that solves the network multiple access problem.

node in the cluster has M observations, one from each of the
MIMO transmissions, and each observation is intended for a
different node in the cluster. Each of these observations can
be quantized into Q bits, with a fixed Q, which yields exactly
the original network multiple access problem, with M nodes
instead of n. Using the scheme we assumed to exist in the
beginning of the proof, this task can be completed in QM b

time slots.

The total time we have spent during the two phases for
handling the traffic originated from cluster S is given by n +
QM b. From the network point of view, the above two steps
should be completed for all n/M clusters in the network. Thus,
the multicasting task can be completed in n

M (n+QM b) time
slots. Choosing M = n

1
b in order to minimize this quantity

yields F (n) = (1 + Q)n2− 1
b .

Note that 2 − 1
b < b for b > 1. In other words, we have

established a solution for the multiple access problem that is
better than the one we started with. Indeed, the two phase
scheme described above can be used recursively yielding a
better scheme at each step of the recursion. In particular,
starting with TDMA achieving b = 2 and applying the idea
recursively h times, one gets a scheme that solves the multiple
access problem in Θ(n

h+1
h ) time slots. The operation of this

scheme is illustrated in Figure 4. ¤

The interest in the multiple access problem arises from the
fact that it exactly models the required traffic for cooperation in
the three phase scheme. Recall the communication requirement
inside the clusters in Phase 1 and 3 described in Section III-A.
This communication requirement, equivalent to a network
multiple access problem, is handled using TDMA in the three
phase scheme which has been seen to be suboptimal in the Sec-
tion III-A. In the hierarchical cooperation scheme described
in Section III-B, this multiple access problem is handled by
decomposing it into a number of unicast network problems.
The resultant scheme is optimal in terms of throughput, but not
very satisfying in terms of bulk-size. By using the solution to
the multiple access problem suggested in this section, one can
modify the hierarchical cooperation scheme, so as to achieve
the same throughput with smaller bulk-size and consequently
smaller delay. Note that the gain is coming from treating the
cooperation problem as it is and not necessarily as multiple
network communication problems as was previously done in
Section III-B.

Corollary 4.1: A modified hierarchical cooperation scheme
can achieve an aggregate throughput Th(n) ≥ K1n

h
h+1 with

bulk-size Bh(n) = K2n
h

h+1 and delay Dh(n) ≤ K3n, for

any integer h ≥ 0 and some positive constants K1, K2,K3

independent of n.

Proof of Corollary 4.1: Consider the three phase hierarchical
scheme described in Section III-A. By Theorem 4.1, the
required traffic for transmit and receive cooperation in phase
1 and phase 3 can be handled in KM

h+1
h and KQM

h+1
h time

slots respectively. The expression for the aggregate throughput
then becomes

Mn

KM
h+1

h + n + KQM
h+1

h

which is maximized by the choice M = n
h

h+1 , yielding
aggregate throughput Th(n) = 1

1+K+KQn
h

h+1 , bulk-size

Bh(n) = n
h

h+1 and delay Dh(n) = (1 + K + KQ)n. ¤

V. HIERARCHICAL COOPERATION WITH BETTER
SCHEDULING

In the previous section, we presented a modified hierarchical
scheme that achieves throughput Th(n) = Θ(n

h
h+1 ) using

bulk-size Bh(n) = Θ(n
h

h+1 ). However, the delay of this
scheme is still Dh(n) = Θ(n). In this section, we optimize the
scheduling in the scheme to further improve the delay perfor-
mance to Dh(n) = Θ(n

h
h+1 log n). We first start by improving

the scheduling in the three phase scheme with h = 1 discussed
in Section III-A. We then consider the modified hierarchical
scheme with h ≥ 2 discussed in Section IV .

Before starting, we state the following binning lemma,
similar in spirit to Lemma 4.1 and Lemma 5.1 in [5] and
can be proven using similar techniques. The lemma will be
used repeatedly throughout the rest of the paper.

Lemma 5.1: Let us assume that f(n) balls are thrown into
n bins, independently and uniformly at random. The following
properties are satisfied with high probability.
(a) If limn→∞

f(n)
n log n = ∞, then there are Θ( f(n)

n ) nodes in
each bin.

(b) If limn→∞
f(n)

n = c with c ≥ 0 a constant independent
of n, then there are at most O(log n) nodes in each bin.

A. Better Scheduling for the Three Phase Scheme

Recall the operation of the three phase scheme from the
point of view of a single source-destination pair s-d as
described in Section III-A: a step (1) where s distributes its
M bits among the M nodes in its cluster, followed by a
step (2) where these M bits are simultaneously transmitted
to the destination cluster via MIMO transmission, and a step
(3) where the quantized MIMO observations are collected at
the destination node d. These three steps need to be eventually
accomplished for each source-destination pair in the network.
In this section, we improve the scheduling in accomplishing
this task: we organize M successive sessions and allow only
n/M source-destination pairs to complete the three steps in
each session.

In the beginning of each session we randomly choose one
source node from each cluster, thus n/M source nodes in
total. In general, the n/M destination nodes corresponding to
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these randomly chosen source nodes can be located anywhere.
However, from Lemma 5.1, we know that no more than log n
of these destination nodes are located in the same cluster with
high probability. We proceed by accomplishing the three steps
for these chosen source-destination pairs:

Phase 1: Setting Up Transmit Cooperation Clusters work
in parallel. The chosen source node in each cluster distributes
its M bits to the other nodes by using TDMA, which takes
M time-slots in total. Note that as opposed to the scheme
described in Section III-A, there is only one source node
operating in each cluster.

Phase 2: MIMO Transmissions Successive MIMO trans-
missions originated from each cluster are performed, transmit-
ting the bits of the active source node in each cluster to its
respective destination cluster. Note that in the current case,
there is only one MIMO transmission originated from each
cluster, so there are only n/M MIMO transmissions that need
to be performed in total. This will require total time n/M .

Phase 3: Cooperate to Decode Clusters work in parallel.
Each cluster received at most log n MIMO transmissions in
phase 2 by Lemma 5.1-b, each MIMO transmission intended
for a different destination node in the cluster. The received
observations at each node are quantized into Q bits and are to
be conveyed to the actual destination nodes. The traffic inside
each cluster is at most of exchanging QM log n bits and can
be completed using TDMA in at most QM log n time slots.
(See Figure 5.)

The operation continues with the next session by choosing
a new set of n/M source nodes randomly among the nodes
that have not yet accomplished the above steps. Note that all
source-destination pairs will accomplish the three steps in a
total of M sessions.

With this rather smoother operation on the network level,
we accomplish to serve n/M source-destination pairs in each
session, that is transfer M× n

M bits in total to their destinations
in M+ n

M +QM log n time slots yielding aggregate throughput

M × n
M

M + n
M + QM log n

(3)

which is maximized by the choice M =
√

n yielding ag-
gregate throughput T (n) = 1

2+Q

√
n

log n . The delay experienced
by each bit is now much less compared to the three phase
scheme in Section III-A, since it is again dictated by the total
time spent in the three phases (denominator of (3)), which is
now less than D(n) = (2 + Q)

√
n log n.

Note that instead of choosing M =
√

n, which is the
optimal choice to maximize the throughput achieved by the
scheme, one can choose M = nb with 0 ≤ b ≤ 1/2. In this
case, we also restrict the number of source-destination pairs
to be served in each session to M , which can be less than the
total number of clusters n/M . Indeed, we operate one source
node in each of the M(≤ n/M) clusters and simply keep the
remaining clusters inactive. The expression for the aggregate

throughput becomes

M ×M

M + M + QM log n

which implies that the scheme achieves aggregate throughput
T (n) = nb/ log n and delay D(n) = nb log n for any 0 ≤ b ≤
1/2. Note that this throughput-delay trade-off differs only by
log n from the trade-off achieved by multi-hop schemes.

B. Better Scheduling for the Hierarchical Cooperation Scheme

In this section, we adopt the scheduling idea of Section V-A
to the modified hierarchical scheme presented in Section IV.
However, this modification is not trivial and requires us to
consider a generalized version of the network multiple access
problem.

Definition 5.1 (The Generalized Network MAC Problem):
Consider the assumptions on the network and channel model
given in Section II. Let each of the n nodes in the network be
interested in conveying independent information to a subset
A(n) of the nodes (A(n) ≤ n), where the A(n) nodes are
chosen randomly among the n nodes in the network. In
particular, let us assume that each node in the network has
an independent 1 bit message (or L independent bits, with
L constant) to send to each of these A(n) nodes and the
quantity of interest is the minimal time G(n) required to
accomplish this task. We define this to be the generalized
network multiple access problem.

The following theorem provides an achievable solution to
this problem. We skip the proof of the theorem since it is
similar in spirit to the proof of Theorem 4.1.

Theorem 5.1: For any integer h > 0, if A(n) ≥ n
h

h+1 , then
the network multiple access problem can be solved in

G(n) ≤ K
A(n)

n
n

h+1
h log(n)

time-slots, for some constant K > 0 independent of n.

Note that the generalized network multiple access problem
contains the network multiple access problem discussed earlier
as a special case with A(n) = n. Plugging A(n) = n in
Theorem 5.1, we recover the result of Theorem 4.1 with an
extra log n factor. Indeed, when the condition A(n) ≥ n

h
h+1 is

satisfied with strict inequality in order, the extra log n factor in
Theorem 5.1 is not needed. However, it is needed to account
for the case A(n) = n

h
h+1 , in which case it arises due to part-b

of Lemma 5.1.

We are now ready to apply the scheduling idea in Sec-
tion V-A to the hierarchical cooperation scheme. Consider
dividing the network into clusters of M1 nodes and then
further divide these clusters into smaller clusters of size M2.
Following the scheduling idea in Section V-A, let us organize
M1/M2 sessions and for each session randomly choose one
small cluster inside every large cluster. Only the source nodes
located in the chosen small clusters and their corresponding
destination nodes will be served at each session. As usual, we
are operating in three successive phases in each session:
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Fig. 5. The three phase scheme with better scheduling. The figure illustrates the operation in one session.

Fig. 6. The figure illustrates sub-phase 1 of phase 1 of the modified
hierarchical scheme with better scheduling. Note that there is only one small
cluster distributing bits inside every large cluster.

Phase 1: Setting Up Transmit Cooperation The active
small clusters operate in parallel. Note that there is a single
active cluster of size M2 inside every large cluster of size M1.
Let S be the chosen small cluster inside the larger cluster L
that will operate in the current session. In this phase, each
of the M2 source nodes in S need to distribute their M1 bits
among the M1 nodes in the larger cluster L, each of the M1

bits goes to a different node. This can be accomplished in two
sub-phases:

• Sub-Phase 1: MIMO transmissions Successive MIMO
transmissions are performed between nodes in S and each
node in L. In each of these MIMO transmissions, say the
one between S and a node d in L (located outside of
S), the M2 nodes in S are simultaneously transmitting
the 1 bit messages they would like to communicate to d.
The M2 nodes located in the same small cluster with d
are acting as a distributed receive antenna array for this
MIMO transmission. Since these MIMO transmissions
should be repeated for every node in L, this sub-phase
takes a total of M1 time-slots. See Figure 6.

• Sub-Phase 2: Cooperate to Decode All small clusters
in the network work in parallel. In particular, each small
cluster in L has received M2 MIMO transmissions from
S in the previous phase, one MIMO transmission for each
node in this small cluster. Thus, each node in the small
cluster has M2 observations, one from each of the MIMO
transmissions and each observation is to be conveyed to a
different node in the cluster. Quantizing each observation
into Q bits, we get the network multiple access problem
defined in Section IV in a network of size M2, and by

Theorem 4.1 this problem can be handled in QM
h1+1

h1
2

time-slots for any integer h1 > 0.
Phase 2: MIMO Transmissions At the end of the first

phase, all source nodes in the active small clusters have
distributed their M1 bits among the nodes in the larger cluster.
Now, successive long-distance M1×M1 MIMO transmissions
between large clusters are performed. During each MIMO
transmission, the M1 bits of a particular source node in the
active small cluster are transferred to the destination cluster
where its destination node is located. The number of MIMO
transmissions to be performed in this phase is equal to the
total number of source nodes active in this session. Hence the
total phase can be completed in n

M1
×M2 time-slots.

Phase 3: Cooperate to Decode By part-a of Lemma 5.1,
there are order M2 destination nodes located in each of the
large clusters. Thus, each large cluster has received M2 MIMO
transmissions in the previous phase, and the quantized MIMO
observations spread over the M1 nodes of the large cluster
should be collected at the corresponding M2 destination nodes.
This is the generalized network multiple access problem of
size M1 with A(M1) = M2. By Theorem 5.1, it can be solved

in M2
M1

× M
h2+1

h2
1 log M1 time-slots for any integer h2 > 0

provided that A(M1) ≥ M
h2

h2+1

1 .
Gathering everything together, at every session of this

modified hierarchical cooperation scheme, we deliver M1 ×
M2 × n

M1
bits to their destinations in a total of

(
M1 + M

h1+1
h1

2

)
+

n

M1
×M2 +

M2

M1
×M

h2+1
h2

1 log M1

time-slots. The aggregate throughput is given by
n

M1
×M2 ×M1

M1 + M
h1+1

h1
2 + n

M1
×M2 + M2

M1
×M

h2+1
h2

1 log M1

which is maximized by the choice h = h2 = h1 + 1,
M1 = n

h
h+1 and M2 = M

h−1
h

1 , yielding aggregate throughput

T (n) = n
h

h+1

log n and delay D(n) = n
h

h+1 log n. Note that these
choices for M1 and M2 satisfy the constraint A(M1) = M2 ≥
M

h2
h2+1

1 .

Note that at this point, we have proven that all points
on the throughput-delay scaling curve (T (n), D(n)) =
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(n
h

h+1 / log n, n
h

h+1 log n) with h being a positive integer
are achievable. In order to show that all points on the line
(T (n), D(n)) = (nb/ log n, nb log n) with 0 ≤ b < 1 are
achievable, we can choose M1 = nb with 0 ≤ b ≤ h

h+1
in the above discussion, while maintaining the relationships
M2 = M

h−1
h

1 and h = h2 = h1 + 1. Extending the argument
at the end of Section V-A, we also restrict the number of
small clusters to be served in each session to M

1/h
1 which

can now be less than the total number of large clusters
n/M1 (≥ M

1/h
1 ). Indeed, we operate one small cluster in each

of the M
1/h
1 large clusters and simply keep the remaining large

clusters inactive. The expression for the aggregate throughput
becomes

M
1
h
1 ×M2 ×M1

M1 + M
h1+1

h1
2 + M

1
h
1 ×M2 + M2

M1
×M

h2+1
h2

1 log M1

which shows that we can achieve aggregate throughput
T (n) = M1/ log M1 and delay D(n) = M1 log M1. Recalling
that M1 = nb, we get the points on the throughput-delay
scaling curve (T (n), D(n)) = (nb/ log n, nb log n) for any
0 ≤ b ≤ h

h+1 and h > 0. This concludes the proof of the
main result of this paper. ¤

VI. CONCLUSION

The present work shows that hierarchical cooperation not
only can lead to higher throughput in ad hoc networks, but
also to reasonable end-to-end delay, given that some extra
care is taken in setting up cooperation at the lower levels and
scheduling communications. Meanwhile, we have discussed
the network multiple-access problem in the present paper,
which might be of interest in its own right.
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