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Abstract— This paper presents the MIMO channel capacity
over the Nakagami-m fading channel. The joint eigenvalue
density function of W = HH†, where H is the channel matrix,
is derived in a closed form in the 2 × 2 case and for integer
values of m, as well as for m → ∞. The marginal eigenvalue
distribution of W is also derived in closed form solution. For the
more general r× t case, an asymptotic formulation is presented
and is shown to be close to simulations, even for a small number
of antennas. All the results are validated by numerical Monte
Carlo simulations and are in excellent agreement.

Index Terms— Fading distributions, Rayleigh distribution,
Nakagami-m distribution, Eigenvalue distribution, MIMO chan-
nels.

I. INTRODUCTION

It has been acknowledged in recent years that the use of
multiple inputs and multiple outputs (MIMO) can potentially
provide large spectral efficiency for wireless communications
in the presence of multipath fading environments. In the
pioneering paper presented by Telatar [1], the capacity was in
particular shown to scale linearly with the number of antennas.

In most previous research on MIMO capacity, the channel
fading is assumed to be Rayleigh distributed. Of course, the
Rayleigh fading model is known to be a reasonable assumption
for the fading encountered in many wireless communications
systems. Nevertheless, many measurements campaigns [2],
[3] show that the Nakagami-m distribution provides a much
better fitting for the fading channel distribution. In fact, since
the Nakagami-m distribution has one more free parameter,
it allows for more flexibility. It moreover contains both the
Rayleigh distribution (m = 1) and the uniform distribution on
the unit circle (m→∞) as special (extreme) cases.

The Nakagami-m distribution is a general, but approximate
solution to the random phase problem [4]. The exact solution
to this problem involves the knowledge of the distribution
and the correlations of all of the partial waves composing the
total signal and becomes infeasible due to its complexity [5].
This has been circumvented by Nakagami [4] who, through
empirical methods based on field measurements followed by
a curve-fitting process, obtained the approximate distribution.
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Since the publication of [1], other distributions have been
considered, as in [6] for the Ricean case, and recently [7]
addressed the Hoyt distribution case.

The MIMO channel capacity can be computed by means
of the joint eigenvalue density function (JEDF) of the matrix
W = HH†, where † denotes the complex conjugate transpose.
In the classical Rayleigh fading model, the entries of H are
assumed to be i.i.d. zero mean complex Gaussian, resulting in
a matrix W which is Wishart distributed. This model takes
advantages of the numerous results provided by the literature
[8], [9]. Unfortunately, as one departs from this model, there
is not too much that can be said.

This paper presents the MIMO channel capacity over the
Nakagami-m fading channel. Channel state information is
assumed at the receiver side only. In this case, it is shown that
the uniform power distribution across the transmitting antennas
maximizes the channel capacity. Assuming that the entries
of H are i.i.d. with Nakagami-m distributed envelopes and
uniform phases, an elegant and simple expression for the JEDF
of the 2× 2 matrix W = HH† is derived. The general r × t
case is analyzed by means of the asymptotic formulation. All
the results are validated by numerical Monte Carlo simulations
and are shown to be in excellent agreement.

The paper is organized as follows: Sec. II introduces the
Nakagami distribution in more detail. Sec. III defines channel
capacity. Sec. IV presents the main result for the 2 × 2 case
and Sec. V presents the asymptotic result. Finally, Sec. VI
presents some numerical simulations and Sec. VII draws the
conclusion.

II. THE NAKAGAMI-m DISTRIBUTION

The entries of the r × t channel matrix H are assumed to
be i.i.d. and distributed as

Z = R exp(jΘ) (1)

where the phase Θ is uniformly distributed and independent
of the envelope R. R is in turn given by

R2 =
m∑

i=1

X2
i + Y 2

i (2)

where Xi and Yi are i.i.d. zero mean Gaussian distributed
with variance Ω/2m. The distribution of R is therefore the
Nakagami-m distribution [4] given by

pR(r) =
2mmr2m−1

ΩmΓ(m)
exp

(
−mr

2

Ω

)
(3)
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where Ω = E
[
R2

]
, m = E[R2]2/Var[R2], and Γ(·) denotes

the Euler Gamma function. In addition, pR,Θ(r, θ) = pR(r) 1
2π ,

yielding

pR,Θ(r, θ) =
mmr2m−1

πΩmΓ(m)
exp

(
−mr

2

Ω

)
(4)

Note that pR,Θ reduces to the Rayleigh distribution for m = 1
and to the uniform distribution on the circle of radius

√
Ω for

m → ∞. The above family of distributions therefore allows
to interpolate between the classical Rayleigh distribution and
the “pure random phase” distribution.

Using the standard polar-rectangular transformation, the
joint distribution of the real and imaginary parts of Z is given
by pX,Y (x, y) = pR,Θ(r,θ)

r , thus

pX,Y (x, y) =
mm

(
x2 + y2

)m−1

πΩmΓ(m)
e−

m(x2+y2)
Ω (5)

and the marginals pX(x) and pY (y) are given by

pX(u) = pY (u) =
e−

mu2
Ω mmu2mΩ−m

πΓ(m)
Ωm−

1
2 Γ

(
m− 1

2

)
1F1

(
1−m; 3

2 −m; mu
2

Ω

)
m

1
2−m

u2m

+

√
πΓ

(
1
2 −m

)
1F1

(
1
2 ;m+ 1

2 ; mu
2

Ω

)

uΓ(1−m)
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where 1F1 (·) is the Kummer confluent hypergeometric func-
tion [10].

III. MIMO CHANNEL CAPACITY

The following MIMO single-user Gaussian channel is con-
sidered, with t antennas at the transmitter and r antennas at
the receiver:

y = Hx + n (7)

H is the r × t channel matrix with i.i.d. entries hij , each
distributed as the random variable Z defined in (1).

The vector y ∈ Cr, x ∈ Ct, and n is zero-mean complex
Gaussian noise with E

[
nn†

]
= I. In addition, a total transmit

power constraint E[x†x] ≤ P is assumed.
For a given input covariance matrix Q, the MIMO instan-

taneous capacity is given by

C(Q) = log2 det
(
I + HQH†) (8)

and the MIMO channel capacity in the absence of channel
knowledge at the transmitter is given by [1]

C = sup
Q≥0:tr[Q]≤P

E [C(Q)] (9)

Since the entries hij are i.i.d. and the distribution of hij is
the same as that of −hij for all i, j, one obtains from [11,
Corollary 1b] that the uniform power allocation over the t
transmit antennas maximizes the ergodic channel capacity. The
capacity is therefore given by

C = E
[
log2 det

(
I +

P

t
HH†

)]
(10)

Defining then

W =
{

HH† r < t
H†H r ≥ t

(11)

and n = min{r, t}, the capacity can be written in terms of the
(unordered) eigenvalues λ1, . . . , λn of W as

C = E

[
n∑

i=1

log2 (1 + (P/t)λi)

]
(12)

= nE [log2 (1 + (P/t)λ)] (13)

where λ is an eigenvalue of W picked uniformly at random
among λ1, . . . , λn. Denoting by p(λ) the distribution of λ, one
obtains that

C = n

∫ ∞

0

log2 (1 + (P/t)λ) p(λ) dλ.

The purpose of the subsequent analysis is to provide an explicit
expression for both the JEDF p(λ1, . . . , λn) of the matrix W
and the marginal distribution p(λ). Note that p(λ1, . . . , λn)
and p(λ) are related by

p(λ) =
∫

Rn−1
+

p(λ, λ2, . . . , λn) dλ2 · · · dλn. (14)

IV. MAIN RESULT FOR THE 2× 2 CASE

Theorem 1: The JEDF of the 2 × 2 matrix W = HH†,
where the entries of H are i.i.d. with Nakagami-m envelope
and uniform phase, is given by

p(λ1, λ2) = K22 e
−m(λ1+λ2)

Ω (λ1 − λ2)2 F (λ1, λ2) (15)

where K22 =
(

mm

πΩmΓ(m)

)4

, F (λ1, λ2) is given by (16) and
f(i1, i2, k1, k2) is given by (17).

In order to gain some intuition on the above result, note that
the function F (λ1, λ2) is a homogeneous polynomial of order
4(m− 1). In the Rayleigh case (m = 1), F is a constant and
one recovers the classical JEDF of a Wishart matrix [8]:

p(λ1, λ2) =
1

2Ω4
e−

(λ1+λ2)
Ω (λ1 − λ2)2 (18)

The effect of the Nakagami-m envelope distribution on the
JEDF is therefore expressed by the polynomial F (λ1, λ2).

To illustrate the effect of the parameter m, Fig. 1 shows
the resulting marginal eigenvalue distribution p(λ) for m =
1, 2, 10,∞ (see also Corollary 2). It can be observed that as
the parameter m increases, the eigenvalues concentrate on the
interval [0, 4Ω], with higher probability on the boundary of
the interval. It can be also seen on Fig. 1 that the result is in
perfect agreement with Monte-Carlo simulations.

Proof: In order to get the JEDF of W, the following
steps need to be performed: 1) the joint distribution of H can
be easily found, since its entries are i.i.d.; 2) the matrix H
is decomposed as H = LQ, where L is a complex lower
triangular matrix with real positive diagonals and Q is a
complex unitary matrix

(
QQ† = I

)
; 3) therefore, W = LL†;

4) finally, performing the eigenvalue decomposition W =
SΛS†, one obtains the JEDF of W.
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F (λ1, λ2) =
π4

Γ(4m− 2)

m−1∑

i1=0

m−1∑

i2=0

i1∑

k1=0

i2∑

k2=0

f(i1, i2, k1, k2) (λ1λ2)
1
2 (i1+i2−2(k1+k2))+m−1 (λ1−λ2)−i1−i2+2(k1+k2+m−1)

(16)

f(i1, i2, k1, k2) =

(
i1
k1

)(
i2
k2

)(
m− 1
i1

)(
m− 1
i2

)
(−1)−i1−2i2+3m+1 2−2(k1+k2+1)Γ

(− i1
2 − i2

2 +m− 1
2

)

Γ
(− i1

2 − i2
2 +m

)
Γ

(− i1
2 − i2

2 + k1 + k2 +m+ 1
2

)

× Γ
(
− i1

2
− i2

2
+ k1 + k2 +m

)
Γ

(
− i1

2
+
i2
2

+ k1 − k2 + 2m− 1
)

Γ
(
i1
2
− i2

2
− k1 + k2 + 2m− 1

)
(17)
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Fig. 1. The Nakagami eigenvalue distribution function for m = 1, 2, 10, 100
(Ω = 1).

Since the entries of the channel matrix H are independent,
their joint distribution is given by

p (H) = K22 exp


−

m tr
(
HH†

)

Ω




2∏

i,j=1

|hij |2(m−1) (19)

Using the LQ decomposition, the matrix H can be written as
H = LQ, where the matrix Q is given by [12]

Q =
(

ejφ1 cos(θ) ejφ2 sin(θ)
−ej(φ3−φ2) sin(θ) ej(φ3−φ1) cos(θ)

)
(20)

and the variables are defined in the following range 0 ≤
φ1, φ2, φ3 ≤ 2π, 0 ≤ θ ≤ π/2. The matrix L is given by

L =
(

l11 0
l21R + j l21I l22

)
(21)

The Jacobian of this transformation is given by [13] J =
l311l22 sin(θ) cos(θ), so the joint probability density function

(PDF) of L and Q is given by

p (L,Q) =
K22

22m−1
e

 
−

m tr(LL†)
Ω

!

l4m−1
11 l22 sin2m−1 (2θ)

(
l222 cos2(θ) + T1L sin2 (θ)− T2L sin (2θ)

)m−1

(
T1L cos2 (θ) + l222 sin2 (θ) + T2L sin(2θ)

)m−1
(22)

where
T1L =

(
l221I + l221R

)
(23)

and

T2L = l22 (l21I sin (φ1 + φ2 − φ3)− l21R cos (φ1 + φ2 − φ3))
(24)

Since m is integer, it is possible to use the classical binomial
expansion in (22). Therefore

p (L,Q) =
K22

22m−1
e

 
−

m tr(LL†)
Ω

!

l4m−1
11 l22

×
m−1∑

i1=0

i1∑

k1=0

m−1∑

i2=0

i2∑

k2=0

(
m− 1
i1

)(
i1
k1

)(
m− 1
i2

)(
i2
k2

)

× (−1)m−1−i2T k1+k21L T 2m−2−i1−i2
2L l

2(i2−k2+i1−k1)
22

× cos2(k1+i2−k2)(θ) sin2(i1−k1+k2)(θ) sin(2θ)4m−3−i1−i2

(25)

Integrating now over θ, φ1, φ2 and φ3, the distribution of p(L)
is obtained in (26). The next transformation is given by

W = LL† =
(

w1 w3 − jw4

w3 + jw4 w2

)
(27)

where the Jacobian of this change is given by J = 4l311l22.
Using this transformation, the distribution of p(W) can be
easily obtained.

The next step it to apply the eigenvalue decomposition W =
SΛS†, where the matrix S is given by

S =
(

cos(κ) −eiψ sin(κ)
e−jψ sin(κ) cos(κ)

)
(28)

0 ≤ ψ ≤ 2π, 0 ≤ κ ≤ π/2, and Λ is the eigenvalue matrix
given by

Λ =
(
λ1 0
0 λ2

)
(29)
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p (L) =
K22 8π5/2

22m−1
e−

m tr(LL†)
Ω l4m−1

11

m−1∑

i1=0

i1∑

k1=0

m−1∑

i2=0

i2∑

k2=0

(
m− 1
i1

)(
i1
k1

)(
m− 1
i2

)(
i2
k2

)

× (−1)m−1−i2 (
l221I + l221R

)k1+k2+ 1
2 (2m−i1−i2−2)

li2−2k2+i1−2k1+2m−1
22 Γ

(
1
2

(2m− i1 − i2 − 1)
)

× 24m−4−i1−i2Γ
(

1
2 (4m+ 2k1 + i2 − 2k2 − 2− i1)

)

Γ (4 (m− 1))
Γ

(
1
2 (i1 − 2k1 + 2k2 + 4m− 2− i2)

)

Γ
(

1
2 (2m− i1 − i2)

) (26)

The Jacobian of this last transformation can be obtained as
|J | = 1

2 (λ1 − λ2)
2 sin(2κ). Finally, applying this transforma-

tion and integrating over ψ and κ, the JEDF (15) is obtained.
The following corollary is a direct consequence of Theorem

1 and equation (14).
Corollary 2: The marginal distribution p(λ) is given by

p(λ) =
K22π

4

Γ(4m− 2)

×
m−1∑

i1=0

m−1∑

i2=0

i1∑

k1=0

i2∑

k2=0

2(k1+k2+m)−i1−i2∑

i3=0

f1(i1, i2, k1, k2)

× f2(i1, i2, k1, k2, i3) e−
mλ
Ω λ

1
2 (i1+i2+2(m+i3−k1−k2−1))

(30)

where f2(i1, i2, k1, k2, i3) is given by (31).

A. Special Cases: m = 1, 2 and ∞
As already mentioned, the JEDF (15) specializes to the

classical Wishart distribution (18) in the case m = 1. For
m = 2, the JEDF (15) specializes to

p(λ1, λ2) =
4e−

2(λ1+λ2)
Ω

225π3Ω8
(λ1 − λ2)

2

× (
λ4

1 + λ2λ
3
1 + 26λ2

2λ
2
1 + λ3

2λ1 + λ4
2

)
(32)

and the corresponding marginal eigenvalue distribution (30) is
given by

p(λ) =
4e−

2λ
Ω

225Ω7

(
4λ6 − 2Ωλ5 + 50Ω2λ4

−150Ω3λ3 + 150Ω4λ2 − 15Ω5λ+ 45Ω6
)

(33)

The case m → ∞ requires a slightly different analysis,
which leads to the result below.

Theorem 3: The marginal eigenvalue distribution of the
2 × 2 matrix W = HH†, where H has i.i.d. entries with
Nakagami-∞ envelope and uniform phase, is given by

p(λ) =
1

π
√

4Ωλ− λ2
10<λ<4Ω (34)

Proof: As m→∞, the joint distribution of (R,Θ) given
in (4) tends to the uniform distribution on the circle of radius√

Ω, therefore
H =

√
Ω

(
ejθ11 ejθ12

ejθ21 ejθ22

)
(35)

where θij are uniformly distributed between 0 and 2π. In this
case, the matrix W is given by

W = Ω
(

2 w12

w12 2

)
(36)

where w12 = ej(θ11−θ21) + ej(θ12−θ22) and w12 denotes its
conjugate. Using the decomposition W = SΛS†, it is possible
to write λ1 + λ2 = tr (W) = 4Ω as well as λ1λ2 =
Ω2

(
4− |w12|2

)
, so

λ1 = Ω (2± |w12|) (37)

and λ2 = 4Ω − λ1. Note therefore that in this case, the cor-
relation between the eigenvalues λ1 and λ2 is much stronger
than in the finite m case. In particular, the joint eigenvalue
density p(λ1, λ2) does not exist.

The modulus of w12 can be written as |w12| =√
2 (1 + cos(θ11 − θ21 − θ12 + θ22)). Since the distribution

of cos(θij) is the same as the distribution of y = cos(θ11 −
θ21 − θ12 + θ22), the distribution of this term is p(y) =

1

π
√

1−y2
1|y|<1. Making the transformation of variable and

computing the distribution of |w12|, the following distribution
is obtained

p (|w12|) =
1

π

√
1− |w12|2

4

1|w12|<1 (38)

From (37) and (38), (34) follows directly.
In Fig. 1, the expression (34) is compared with simulations

for m = 100, and a nearly perfect match is observable.

V. ASYMPTOTIC CASE

In the case where the number of antennas grows to infinity,
the result given in [14] can be used, since the entries of H are
i.i.d. The limiting eigenvalue distribution of the matrix 1

nW
is given by

p(λ) =
1

2πλβΩ

√
(b− λ) (λ− a) a ≤ λ ≤ b (39)

where a = Ω
(
1−√β)2

, b = Ω
(
1 +

√
β
)2

, β = r/t. Using
(39) in (13), the following result is obtained for the asymptotic
Nakagami channel capacity

C

n
→

r,t→∞

∫ b

a

log2 (1 + Pλ) p(λ) dλ (40)

Using the result presented in [15], one obtains

C

n
→

r,t→∞
1

β ln 2
(β ln (1 + P − P v (β, P ))

+ ln (1 + P β − P v(β, P ))− v(β, P )) (41)

where v(β, P ) = 1
2

(
1 + β + 1

P −
√

(1 + β + P−1)2 − 4β
)

.

Although this formula is asymptotic, it is shown below by
simulation that it is quite accurate, even for a small number
of antennas.
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f2(i1, i2, k1, k2, i3) =
( −i1 − i2 + 2 (m+ k1 + k2)

i3

)
(−1)2m−i1−i2−i3+2k1+2k2

m
1
2 (−6m+i1+i2+2i3−2k1−2k2) Ω3m− i1

2 −
i2
2 −i3+k1+k2 Γ

(
3m− i1

2
− i2

2
− i3 + k1 + k2

)
(31)
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Fig. 2. The Nakagami channel capacity for the 2× 2 case (Ω = 1).

VI. NUMERICAL RESULTS

As already presented, Fig. 1 validates with Monte Carlo
simulations the expression given in (15) for the JEDF for
the cases m = 1, 2, 10,∞. Note that there is an excellent
agreement between the simulations and the theoretical results.

Fig. 2 compares the simulated channel capacity to the
theoretical result (13) for the 2 × 2 case and m = 0.5, 1, 20.
As can be seen on the figure, when m increases, the channel
capacity also increases. The difference between the case m =
0.5 and m = 20 is small for low values of the power P , and
increases as the power increases. The effect of the Nakagami
parameter m depends on the power P , but in the worst case it
can degrade 12.5% of the capacity for the 2×2 case. In Fig. 3,
for the 3 × 3, 4 × 4, 6 × 6, and 10 × 10 cases for different
values of m, simulations are performed and compared with
the asymptotic result given in (41).

VII. CONCLUSION

In this paper, a general JEDF for the Nakagami-m channel
is presented in a closed form solution for the 2× 2 case. The
marginal distribution is also derived in a closed form solution,
and for the m→∞ case, a simple and elegant expression is
obtained. For the more general r×t case, an asymptotic result
is presented. The ergodic MIMO channel capacity is computed
for the Nakagami-m channel, and for the 2×2 case, the effect
of the parameter m is shown to degrade 12.5% the channel
capacity. In all the cases, the results are validated by Monte
Carlo simulations.
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Fig. 3. The Asymptotic Nakagami channel capacity (Ω = 1)
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