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Abstract

The present paper focuses on the problem of broadcasting information in the most efficient manner in a large two-dimensional
ad hoc wireless network at low SNR and under line-of-sight propagation. A new communication scheme is proposed, where
source nodes first broadcast their data to the entire network, despite the lack of sufficient available power. The signal’s power
is then reinforced via successive back-and-forth beamforming transmissions between different groups of nodes in the network,
so that all nodes are able to decode the transmitted information at the end. This scheme is shown to achieve asymptotically the
broadcast capacity of the network, which is expressed in terms of the largest singular value of the matrix of fading coefficients
between the nodes in the network. A detailed mathematical analysis is then presented to evaluate the asymptotic behavior of this
largest singular value.

Index Terms

wireless networks, broadcast capacity, low SNR communications, beamforming strategies, random matrices

I. INTRODUCTION

The literature on the study of scaling laws in large ad hoc wireless networks concentrates mainly on multiple-unicast (one-
to-one) transmissions (see e.g. [1], [2], [3]). This does not degrade by any means the importance of investigating multicast
(one-to-many) transmissions for several reasons such as the need of many network protocols to broadcast control signals or to
enhance cooperation among nodes belonging to the same cluster or cell. In the present paper, we are interested in studying how
source nodes can broadcast their data to the whole network in the most efficient way. Previous works investigated the broadcast
capacity of wireless networks under specific channel models and mainly at high SNR [4], [5], [6], [7], [8]. Of course, multiple
strategies exist in this context, but from the scaling law point of view (that is, for large networks), the simplest communication
strategy, where source nodes take turns broadcasting their messages to the entire network, can be shown to be asymptotically
optimal (up to logarithmic factors), when the power path loss is that of free space propagation. For a stronger power path loss,
still at high SNR, simple multi-hopping strategies also allow to achieve an asymptotically optimal broadcast capacity, so there
is not much to be discussed either in this case from the scaling law point of view.

In the present paper, we address the low SNR regime and consider the line-of-sight (LOS) propagation model ([9], [10])
described in Section II below. In this regime, the power available does not allow for a source node to successfully transmit a
message to its nearest neighbour without waiting for some amount of time in order to spare power. This raises an interesting
question, as a naive cut-set argument seems to indicate that potentially much higher rates could be achievable in this case.
As a consequence, none of the two strategies described above (time-division or multi-hop broadcasting) can be shown to be
asymptotically optimal.

This issue was first revealed in [10] in the context of one-dimensional networks, under the LOS model. For such networks, the
authors proposed a hierarchical beamforming scheme to broadcast data to the network, that was proven to achieve asymptotic
optimal performance. The key idea behind the scheme is that in a one-dimensional network and under line-of-sight fading,
a group of nodes sharing some common information and using a proper precoding scheme, can beamform this information
simultaneously to all the other nodes in the network, which allows to compensate for the lack of available transmit power. This
idea can be used recursively to beamform information to larger and larger groups of nodes, reaching an optimal beamforming
gain at the final stage.

The generalization of this idea to two-dimensional networks is not immediate. Indeed, a particular feature of one-dimensional
networks is that it is always possible for a group of nodes to beamform a given signal to all the other nodes in the network
simultaneously. In two dimensions, a full beamforming gain is only achievable between groups of nodes that are sufficiently
far apart from each other. This was already observed in [11], where a strategy was developed to enhance multiple-unicast
communications in wireless networks under the LOS model. Taking inspiration from this paper, we propose below a new
multi-stage beamforming scheme which is shown to achieve asymptotically optimal1 performance for broadcasting information
in a two-dimensional wireless network.

This paper was presented at ISIT 2015.
1Technically speaking, the performance of our scheme is shown below to be asymptotically optimal up to a mutliplicative factor nε, where ε can be taken

arbitrarily small, but fixed.
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We give a detailed description of the scheme in Section III, as well as a proof of its optimality in Section IV. The proof of
optimality is done in two steps. We first provide a general upper bound on the broadcast capacity of wireless networks (see
Theorem IV.1), whose expression involves the matrix made of fading coefficients between the nodes in the network. We then
proceed to characterize the broadcast capacity of two-dimensional wireless networks under the LOS model, by obtaining an
asymptotic upper bound on the largest singular value of the above mentioned matrix. This result is of interest in its own right,
as such matrices have not been previously studied in the mathematical literature. In particular, there is much less randomness
in such a matrix than in classically studied random matrices. We propose here a recursive method to upper bound its largest
singular value.

II. MODEL

There are n nodes uniformly and independently distributed in a square of area A = n, so that the node density remains
constant as n increases. Every node wants to broadcast a different message to the whole network, and all nodes want to
communicate at a common per user data rate rn bits/s/Hz. We denote by Rn = n rn the resulting aggregate data rate and will
often refer to it simply as “broadcast rate” in the sequel. The broadcast capacity of the network, denoted as Cn, is defined as the
maximum achievable aggregate data rate Rn. We assume that communication takes place over a flat channel with bandwidth
W and that the signal Yj [m] received by the j-th node at time m is given by

Yj [m] =
∑
k∈T

hjkXk[m] + Zj [m],

where T is the set of transmitting nodes, Xk[m] is the signal sent at time m by node k and Zj [m] is additive white circularly
symmetric Gaussian noise (AWGN) of power spectral density N0/2 Watts/Hz. We also assume a common average power
budget per node of P Watts, which implies that the signal Xk sent by node k is subject to an average power constraint
E(|Xk|2) ≤ P . In line-of-sight environment, the complex baseband-equivalent channel gain hjk between transmit node k and
receive node j is given by

hjk =
√
G

exp(2πirjk/λ)

rjk
, (1)

where G is Friis’ constant, λ is the carrier wavelength, and rjk is the distance between node k and node j. Let us finally
define

SNRs =
GP

N0W
,

which is the SNR available for a communication between two nodes at distance 1 in the network.
It should be noticed that the above line-of-sight model departs from the traditional assumption of i.i.d. phase shifts in wireless

networks. The latter assumption is usually justified by the fact that inter-node distances are in practice much larger than the
carrier wavelength, implying that the numbers 2πrjk/λ can be roughly considered as i.i.d. This approximation was however
shown in [12] to be inaccurate in the setting considered in the present paper. A second remark is that no multipath fading is
considered here, which would probably reduce in practice the efficiency of the strategy proposed in the following paragraph.

We focus in the following on the low SNR regime, by which we mean, as in [10], that SNRs = n−γ for some constant
γ > 0. This means that the power available at each node does not allow for a constant rate direct communication with a
neighbor. This could be the case e.g., in a sensor network with low battery nodes, or in a sparse network with long distances
between neighboring nodes. It is important to note here that making the assumption that the SNR decays as a inverse power of
the number of nodes is key to uncover the fact that plain time-division fails to be optimal at low SNR. This type of assumption
was already made in previous contributions regarding the multiple unicast problem (see in particular [13], [14]), leading to
similarly interesting conclusions.

In order to simplify notation, we choose new measurement units such that λ = 1 and G/(N0W ) = 1 in these units. This
allows us to write in particular that SNRs = P .

III. BACK-AND-FORTH BEAMFORMING STRATEGY

First note that under the LOS model (1) and the assumptions made in the previous section, the time division scheme described
in the introduction achieves a broadcast (aggregate) rate Rn of order min(P, 1). Indeed, a rate of order 1 is obviously achieved
at high SNR2. At low SNR (i.e. when P ∼ n−γ for some γ > 0), each node can spare power while the others are transmitting,
so as to compensate for the path loss of order 1/n between the source node and other nodes located at distance at most

√
2n,

leading to a broadcast rate of order Rn ∼ log(1 +nP/n) ∼ P . As we will see, this broadcast rate is not optimal at low SNR.
In the following, we propose a new broadcasting scheme that will prove to be order-optimal. In this new scheme, source

nodes still take turns broadcasting their messages, but each transmission is followed by a series of network-wide back-and-forth
transmissions that reinforce the strength of the signal, so that at the end, every node is able to decode the message sent from

2We coarsely approximate logP by 1 here!
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Fig. 1.
√
n ×
√
n network divided into clusters of size M = n1/4

2c1
× n1/2

4
. Two clusters of size M placed on the same horizontal line and separated by

distance d = n1/2

4
pair up and start back-and-forth beamforming. The vertical separation between adjacent cluster pairs is c2n1/4+ε.

the source. The reason why back-and-forth transmissions are useful here is that in line-of-sight environment, nodes are able to
(partly) align the transmitted signals so as to create a significant beamforming gain for each transmission (whereas this would
not be the case in high scattering environment with i.i.d. fading coefficients). In what follows, we describe the scheme used to
broadcast the message of a given source node to the entire network. In other words, the scheme described below is repeated
n times to ensure the broadcast of the message of each and every node to the entire network.

Scheme Description. The scheme is split into two phases:

Phase 1. Broadcast Transmission. The source node broadcasts its message to the whole network. All the nodes receive a
noisy version of the signal in this phase, which remains undecoded. This phase only requires one time slot.

Phase 2. Back-and-Forth Beamforming with Time Division. Let us first present here an idealized version of this second
phase: upon receiving the signal from the broadcasting node, nodes start multiple back-and-forth beamforming transmissions
between the two halves of the network, in order to enhance the strength of the signal. Although this simple scheme probably
achieves the optimal performance claimed in Theorem III.1 below, we lack the analytical tools to prove it. We therefore propose
a time-division strategy, where clusters of size M = n1/4

2c1
× n1/2

4 and separated by horizontal distance d = n1/2

4 pair up for the
back-and-forth transmissions, as illustrated on Fig. 1. During each transmission, there are Θ

(
n1/4−ε

)
cluster pairs operating

in parallel (see below), so Θ(n1−ε) nodes are communicating in total. The number of rounds needed to serve all nodes must
therefore be Θ(nε).

After each transmission, the signal received by a node in a given cluster is the sum of the signals coming from the facing
cluster, of those coming from other clusters, and of the noise. We assume a sufficiently large vertical distance c2n

1/4+ε

separating any two cluster pairs, as illustrated on Fig. 1. We show below that the broadcast rate between the operating clusters
is Θ(n

1
2P ). Since we only need Θ(nε) number of rounds to serve all clusters, phase 2 requires Θ(n−

1
2+εP−1) time slots per

message. As such, back-and-forth beamforming achieves a broadcast rate of Θ(n
1
2−εP ) bits per time slot.

In view of the described scheme, we are able to state the following result.

Theorem III.1. For any ε > 0 and P = O(n−
1
2 ), the following broadcast rate

Rn = Ω
(
n

1
2−εP

)
is achievable with high probability3 in the network. As a consequence, when P = Ω(n−

1
2 ), a broadcast rate Rn = Ω(n−ε) is

achievable with high probability.

The broadcast rate achieved by our scheme outperforms therefore plain time-division in a large network. Interestingly,
Theorem III.1 also says that our scheme requires asymptotically less power to achieve the same performance as plain time-

3that is, with probability at least 1−O
(

1
np

)
as n→∞, where the exponent p is as large as we want.
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division. In a large network, this could allow for example to send control signals or channel state information at low cost in
the network, without hurting other transmissions.

Before proceeding with the proof of the theorem, the following lemma provides an upper bound on the probability that
the number of nodes inside each cluster deviates from its mean by a large factor. Its proof can be found in [15], but is also
provided in the Appendix for completeness.

Lemma III.2. Let us consider a cluster of area M with M = nβ for some 0 < β < 1. The number of nodes inside each
cluster is then between ((1− δ)M, (1 + δ)M) with probability larger than 1− n

M exp(−∆(δ)M) where ∆(δ) is independent
of n and satisfies ∆(δ) > 0 for δ > 0.

As shown in Fig. 1, two clusters of size M = n1/4

2c1
× n1/2

4 placed on the same horizontal line and separated by distance d =
n1/2

4 form a cluster pair. During the back-and-forth beamforming phase, there are many cluster pairs operating simultaneously.
Given that the cluster width is n1/4

2c1
and the vertical separation between adjacent cluster pairs is c2n1/4+ε, there are

NC =
n1/2

n1/4

2c1
+ c2n1/4+ε

= Θ
(
n1/4−ε

)
cluster pairs operating at the same time. Let Ri and Ti denote the receiving and the transmitting clusters of the i-th cluster
pair, respectively.

Two key ingredients for analyzing the multi-stage back-and-forth beamforming scheme are given in Lemma III.3 and Lemma
III.4. The proofs are presented in the Appendix.

Lemma III.3. The maximum beamforming gain between the two clusters of the i-th cluster pair can be achieved by using
a compensation of the phase shifts at the transmit side which is proportional to the horizontal positions of the nodes. More
precisely, there exist a constant c1 > 0 (remember that c1 is inversely proportional to the width of cluster i) and a constant
K1 > 0 such that the magnitude of the received signal at node j ∈ Ri is lower bounded with high probability by∣∣∣∣∣∑

k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ ≥ K1
M

d
,

where xk denotes the horizontal position of node k.

Lemma III.4. For every constant K2 > 0, there exists a sufficiently large separating constant c2 > 0 such that the magnitude
of interfering signals from the simultaneously operating cluster pairs at node j ∈ Ri is upper bounded with high probability
by ∣∣∣∣∣∣∣

NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣ ≤ K2
M

dnε
log n.

Proof of Theorem III.1. The first phase of the scheme results in noisy observations of the message X at all nodes, which are
given by

Y
(0)
k =

√
SNRkX + Z

(0)
k ,

where E(|X|2) = E(|Z(0)
k |2) = 1 and SNRk is the signal-to-noise ratio of the signal Y (0)

k received at the k-th node before
the back-and-forth beamforming starts (time (0) of the back-and-forth beamforming, denoted by the superscript (0) in the
variables Y (0)

k and Z(0)
k ). In what follows, we drop the index k from SNRk and only write SNR = mink{SNRk}. Note that

it does not make a difference at which side of the cluster pairs the back-and-forth beamforming starts or ends. Hence, assume
the left-hand side clusters ignite the scheme by amplifying and forwarding the noisy observations of X to the right-hand side
clusters. The signal received at node j ∈ Ri (denoted by the subscript) after the 1st cluster-to-cluster transmission (denoted
by the superscript (1)) is given by

Y
(1)
j =

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
AY

(0)
k + Z

(1)
j (2)

where A is the amplification factor (to be calculated later) and Z
(1)
j is additive white Gaussian noise of variance Θ(1). We
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start by applying Lemma III.3 and Lemma III.4 to lower bound∣∣∣∣∣
NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ ≥
∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣−
∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣
≥
(
K1 −K2

log n

nε

)
M

d
= Θ

(
M

d

)
.

For the sake of clarity, we can therefore approximate4 the expression in (2) as follows

Y
(1)
j =

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
A
√

SNRkX +

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
AZ

(0)
k + Z

(1)
j

' AM

d

√
SNRX +

A
√
NCM

d
Z(0) + Z

(1)
j =

AM

d

√
SNRX +

AM

d

√
NC
M

Z(0) + Z
(1)
j ,

where

Z(0) =
d√
NCM

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
Z

(0)
k .

Note that E(|Z(0)|2) = Θ(1). Repeating the same process t times (denoted by the superscript (t)) in a back-and-forth manner
results in a final signal at node j ∈ Ri in the left or the right cluster (depending on whether t is odd or even) that is given by

Y
(t)
j =

(
AM

d

)t√
SNRX +

(
AM

d

)t√
NC
M

Z(0)

+ . . .+

(
AM

d

)t−s√
NC
M

Z(s) + . . .+ Z
(t)
j ,

where

Z(s) =
d√
NCM

NC∑
b=1

∑
k∈Tb

exp(2πi(rjk − xk))

rjk
Z

(s)
k .

Note again that E(|Z(s)|2) = Θ(1), and Z(t)
j is additive white Gaussian noise of variance Θ(1). Finally, note that Lemma III.4

ensures an upper bound on the beamforming gain of the noise signals, i.e.,∣∣∣∣∣
NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ ≤
∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣+

∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣ ≤
(

1 +K2
log n

nε

)
M

d
.

(notice indeed that the first term in the middle expression is trivially upper bounded by M/d, as it contains M terms, all less
than 1/d). Now, we want the power of the signal to be of order 1, that is:

E

((AM
d

)t√
SNRX

)2
 =

(
AM

d

)2t

SNR = Θ(1) (3)

⇒ A = Θ

(
d

M
SNR−

1
2t

)
.

Since at each round of TDMA cycle there are Θ(NCM) nodes transmitting, then every node will be active Θ
(
NCM
n

)
fraction

of the time. As such, the amplification factor is given by

A = Θ

(√
n

NCM
τP

)
,

where τ is the number of time slots between two consecutive transmissions, i.e. every τ time slots we have one transmission.
Therefore, we have

A = Θ

(
d

M
SNR−

1
2t

)
= Θ

(√
n

NCM
τP

)
⇒ τ = Θ

(
NC d

2

nM P
SNR−

1
t

)
.

4We make this approximation to lighten the notation and make the exposition clear, but needless to say, the whole analysis goes through without the
approximation; it just becomes barely readable.
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We can pick the number of back-and-forth transmissions t sufficiently large to ensure that SNR−
1
t = O(nε), which results in

τ = O

(
1

n1/2P

)
.

Moreover, the noise power is given by

t−1∑
s=0

E

((AM
d

)t−s√
NC
M

Z(s)

)2
+ E

((
Z

(t)
j

)2)
≤ tE

((AM
d

)t√
NC
M

Z(0)

)2
+ 1

≤ t
(
AM

d

)2t
NC
M

+ 1

(a)

≤ t+ 1 = Θ(1),

where (a) is true if and only if SNR = Ω(NC/M) = Ω(n−1/2−ε) (check eq. (3)), which is true: Distance separating any two
nodes in the network is as most

√
2n, which implies that the SNR of the received signal at all the nodes in the network is

Ω(n−1/2).
Given that the required τ = O

(
1

n1/2P

)
, we can see that for P = O(n−1/2) the broadcast rate between simultaneously

operating clusters is Ω(n1/2P ). Finally, applying TDMA of n
NCM

= Θ(nε) steps ensures that X is successfully decoded at
all nodes and the broadcast rate Rn = Ω

(
n1/2−εP

)
.

As a last remark, let us mention that the consequence stated in the theorem for the regime where more power is available
at the transmitters is an obvious one: by simply reducing the amount of power used at each node to exactly n−1/2 ≤ P , one
achieves the following broadcast rate, using the first part of the theorem:

Rn = Ω
(
n

1
2−ε n−

1
2

)
= Ω

(
n−ε

)
.

This completes the proof of the theorem.

IV. OPTIMALITY OF THE SCHEME

In this section, we first establish a general upper bound on the broadcast capacity of wireless networks at low SNR, which
applies to a general fading matrix H (with proper measurement units such that again, SNRs = P in these units).

Theorem IV.1. Let us consider a network of n nodes and let H be the n×n matrix with hjj = 0 on the diagonal and hjk =
the fading coefficient between node j and node k in the network. The broadcast capacity of such a network with n nodes is
then upper bounded by

Cn ≤ P ‖H‖2

where P is the power available per node and ‖H‖ is the spectral norm (i.e. the largest singular value) of H .

Proof. Using the classical cut-set bound [16, Theorem 15.10.1], the following upper bound on the broadcast capacity Cn is
obtained:

Cn ≤ max
pX :

E(|Xk|2)≤P, ∀1≤k≤n

min
1≤j≤n

I(X{1,...,n}\{j};Yj |Xj).

Moreover, we have

I(X{1,...,n}\{j}, Xj ;Yj) = I(X{1,...,n}\{j};Yj) + I(Xj ;Yj |X{1,...,n}\{j})
(a)
= I(X{1,...,n}\{j};Yj)

= I(Xj ;Yj) + I(X{1,...,n}\{j};Yj |Xj)

(b)

≥ I(X{1,...,n}\{j};Yj |Xj),

where (a) follows from the fact that Xj−X{1,...,n}\{j}−Yj forms a Markov chain, which means that I(Xj ;Yj |X{1,...,n}\{j}) =
0, and (b) follows from the fact that I(Xj ;Yj) ≥ 0. Therefore, we get

Cn ≤ max
pX :

E(|Xk|2)≤P, ∀1≤k≤n

min
1≤j≤n

I(X{1,...,n}\{j};Yj |Xj)

≤ max
pX :

E(|Xk|2)≤P, ∀1≤k≤n

min
1≤j≤n

I(X{1,...,n}\{j};Yj)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

min
1≤j≤n

log(1 + hjQXh
†
j)

6



Fig. 2.
√
n×
√
n network split into K clusters and numbered in order. As such, Rj = {j −

√
K − 1, j −

√
K, j −

√
K + 1, j − 1, j, j + 1, j +

√
K −

1, j +
√
K, j +

√
K + 1}, which represents the center square containing the cluster j and its 8 neighbors (marked in shades).

where hj = (hj1, . . . , hj,j−1, 0, hj,j+1, . . . , hjn), as the joint distribution pX maximizing the above expression is clearly
Gaussian. Using then the fact that the minimum of a set of numbers is less than its average, the above expression can be
further bounded by

Cn ≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n

n∑
j=1

log(1 + hjQXh
†
j)

= max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n

n∑
j=1

log det(In + h†jhjQX)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

log det

In +
1

n

n∑
j=1

h†jhjQX


using successively the property that log det(I+AB) = log det(I+BA) and the fact that log det(·) is concave. Observing now
that the n×n matrix H whose entries are given by hjk = (hj)k is the one in the theorem statement and that

∑n
j=1 h

†
jhj = H†H ,

we can rewrite, using again log det(I +AB) = log det(I +BA):

Cn ≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

log det

(
In +

1

n
HQXH

†
)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n
Tr(HQXH

†)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n
Tr(QX) ‖H‖2 = P ‖H‖2

where the last inequality follows from the fact that Tr(BAB†) ≤ ‖B‖2Tr(A), for any matrix B and A ≥ 0. This completes
the proof.

We now aim to specialize Theorem IV.1 to line-of-sight fading, where the matrix H is given by

hjk =

0 if j = k
exp(2πirjk)

rjk
if j 6= k

(4)

The rest of the section is devoted to proving the proposition below which, together with Theorem IV.1, shows the asymptotic
optimality of the back-and-forth beamforming scheme presented in Section III for two-dimensional networks at low SNR and
under LOS fading5.

5Note that for a one-dimensional network in LOS environment, Theorem IV.1 allows to recover the result already obtained in [10].
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Proposition IV.2. Let H be the n× n matrix given by (4). For every ε > 0, there exists a constant c > 0 such that

‖H‖2 ≤ c n 1
2+ε

with high probability as n gets large.

Analyzing directly the the asymptotic behavior of ‖H‖ reveals itself difficult. We therefore decompose our proof into simpler
subproblems. The first building block of the proof is the following Lemma, which can be viewed as a generalization of the
classical Geršgorin discs’ inequality.

Lemma IV.3. Let B be an n× n matrix decomposed into blocks Bjk, j, k = 1, . . . ,K, each of size M ×M , with n = KM .
Then

‖B‖ ≤ max

{
max

1≤j≤K

K∑
k=1

‖Bjk‖, max
1≤j≤K

K∑
k=1

‖Bkj‖

}
The proof of this Lemma is relegated to the Appendix. The second building block of this proof is the following lemma, the

proof of which is also given in the Appendix.

Lemma IV.4. Let Ĥ be the M ×M channel matrix between two square clusters of M nodes distributed uniformly at random,
each of area A = M . Then there exists a constant c > 0 such that

‖Ĥ‖2 ≤ c M
1+ε

d

with high probability as M gets large, where 2
√
M ≤ d ≤M denotes the distance between the centers of the two clusters.

Proof of Proposition IV.2. The strategy for the proof is now the following: in order to bound ‖H‖, we divide the matrix into
smaller blocks, apply Lemma IV.3 and Lemma IV.4 in order to bound the off-diagonal terms ‖Hjk‖. For the diagonal terms
‖Hjj‖, we reapply Lemma IV.3 and proceed in a recursive manner, until we reach small size blocks for which a loose estimate
is sufficient to conclude.

Let us therefore decompose the network into K clusters of M nodes each, with n = KM . By Lemma IV.3, we obtain

‖H‖ ≤ max

{
max

1≤j≤K

K∑
k=1

‖Hjk‖, max
1≤j≤K

K∑
k=1

‖Hkj‖

}
(5)

where the n× n matrix H is decomposed into blocks Hjk, j, k = 1, . . . ,K, with Hjk denoting the M ×M channel matrix
between cluster number j and cluster number k in the network. Let us also denote by djk the corresponding inter-cluster
distance, measured from the centers of these clusters. According to Lemma IV.4, if djk ≥ 2

√
M , then there exists a constant

c > 0 such that

‖Hjk‖2 ≤ c
M1+ε

djk
≤ c nε M

djk

with high probability as M →∞.
Let us now fix j ∈ {1, . . . ,K} and define Rj = {1 ≤ k ≤ K : djk < 2

√
M} and Sj = {1 ≤ k ≤ K : djk ≥ 2

√
M} (see

Fig. 2). By the above inequality, we obtain
K∑
k=1

‖Hjk‖ ≤
∑
k∈Rj

‖Hjk‖+
√
c nε

∑
k∈Sj

√
M

djk

with high probability as M gets large. Observe that as there are 8l clusters or less at distance l
√
M from cluster j, so we

obtain ∑
k∈Sj

√
M

djk
≤

√
K∑

l=2

8l

√
M

l
√
M

= O
(
M1/4K3/4

)
= O

(
n3/4

M1/2

)
as K = n/M . There remains to upper bound the sum over Rj . Observe that this sum contains at most 9 terms: namely the
term k = j and the 8 terms corresponding to the 8 neighboring clusters of cluster j. It should then be observed that for each
k ∈ Rj , ‖Hjk‖ ≤ ‖H(Rj)‖, where H(Rj) is the 9M × 9M matrix made of the 9 × 9 blocks Hj1,j2 such that j1, j2 ∈ Rj .
Finally, this leads to

K∑
k=1

‖Hjk‖ ≤ 9‖H(Rj)‖+
√
c nε

n3/4

M1/2

Using the symmetry of this bound and (5), we obtain

‖H‖ ≤ 9 max
1≤j≤K

‖H(Rj)‖+
√
c nε

n3/4

M1/2
(6)
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A key observation is now the following: the 9M × 9M matrix H(Rj) has exactly the same structure as the original matrix
H . So in order to bound its norm ‖H(Rj)‖, the same technique may be reused! This leads to the following recursive Lemma.

Lemma IV.5. Assume there exist constants c > 0 and b ∈ [1/4, 1/2] such that

‖H‖ ≤
√
c nε nb

with high probability as n gets large. Then there exists a constant c′ > 0 such that

‖H‖ ≤
√
c′ nε nf(b)

with high probability as n gets large, where f(b) = 3b
4b+2 < b.

Proof. The assumption made implies that there exist c > 0 and b ∈ [1/4, 1/2] such that for every M ×M diagonal subblock
HM of the matrix H ,

‖HM‖ ≤
√
cM ε M b ≤

√
c nε M b

with high probability as M gets large. Together with (6), this implies that

‖H‖ ≤ 9
√
c nε M b +

√
c nε

n3/4

M1/2

= 10
√
c nε

(
M b +

n3/4

M1/2

)
Choosing M = bn3/(4b+2)c, we obtain

‖H‖ ≤
√
c′ nε n3b/(4b+2).

Besides, it is easy to check that the assumption of Lemma IV.5 holds with b = 1/2. Apply for this the slightly modified
version of the classical Geršgorin inequality (which is nothing but the statement of Lemma IV.3 applied to the case M = 1):

‖H‖ ≤ max

{
max
1≤j≤n

n∑
k=1

|hjk|, max
1≤j≤n

n∑
k=1

|hkj |

}
= max

1≤j≤n

n∑
k=1
k 6=j

1

rjk

For any 1 ≤ j ≤ n, it holds with high probability that for c large enough,

n∑
k=1
k 6=j

1

rjk
≤

√
n∑

l=1

(cl log n)
1

l
= O(

√
n log n)

which implies that ‖H‖ = O
(√

n1+ε
)

for any ε > 0.
By applying Lemma IV.5 successively, we obtain a decreasing sequence of upper bounds on ‖H‖:

‖H‖ ≤
√
c nε nb0 , ≤

√
c nε nb1 , ≤

√
c nε nb2

where the sequence b0 = 1/2, b1 = f(b0) = 3b0/(4b0 + 2) = 3/8, b2 = f(b1) = 3b1/(4b1 + 2) = 9/28 converges to the
fixed point b∗ = f(b∗) = 1/4 (as f is strictly increasing on [ 14 ,

1
2 ] and f(b) < b for every 1

4 < b ≤ 1
2 ). This finally proves

Proposition IV.2.

V. CONCLUSION

In this work, we characterize the broadcast capacity of two-dimensional wireless networks at low SNR in line-of-sight
environment, which is achieved via a back-and-forth beamforming scheme. We showed that the broadcast capacity is upper
bounded by the total power transfer in the network, which in turn is equal to P ‖H‖2. We present a detailed analysis of the
largest singular value of the fading matrix H . We further present a practical broadcasting scheme that guarantees the total
power transfer throughout the network. This scheme relies on back-and-forth beamforming among clusters through multiple
stage time division channel accesses.
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Fig. 3. Coordinate system.

APPENDIX

Proof of Lemma III.2. The number of nodes in a given cluster is the sum of n independently and identically distributed
Bernoulli random variables Bi, with P(Bi = 1) = M/n. Hence

P

(
n∑
i=1

Bi ≥ (1 + δ)M

)

= P

(
exp

(
s

n∑
i=1

Bi

)
≥ exp(s(1 + δ)M)

)
≤ En(exp(sB1)) exp(−s(1 + δ)M)

=

(
M

n
exp(s) + 1− M

n

)n
exp(−s(1 + δ)M)

≤ exp(−M(s(1 + δ)− exp(s) + 1)) = exp(−M∆+(δ))

where ∆+(δ) = (1 + δ) log(1 + δ) − δ by choosing s = log(1 + δ). The proof of the lower bound follows similarly by
considering the random variables −Bi. The conclusion follows from the union bound.

Proof of Lemma III.3. We present lower and upper bounds on the distance rjk separating a receiving node j ∈ Ri and a
transmitting node k ∈ Ti. Denote by xj , xk, yj , and yk the horizontal and the vertical positions of nodes j and k, respectively
(as shown in Fig. 3). An easy lower bound on rjk is

rjk ≥ xk + xj + d

On the other hand, using the inequality
√

1 + x ≤ 1 + x
2 , we obtain

rjk =
√

(xk + xj + d)2 + (yj − yk)2

= (xk + xj + d)

√
1 +

(yj − yk)2

(xk + xj + d)2

≤ xk + xj + d+
(yj − yk)2

2d
≤ xk + xj + d+

1

2c21
.

Therefore,
0 ≤ rjk − xk − xj − d ≤

1

2c21
.

After bounding rjk, we can proceed to the proof of the lemma as follows:∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ =

∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk − xj − d))

rjk

∣∣∣∣∣
≥ <

(∑
k∈Ti

exp(2πi(rjk − xk − xj − d))

rjk

)

≥
∑
k∈Ti

cos
(
π
c21

)
rjk

≥ K1
M

d
,

when the constant c1 is chosen sufficiently large so that cos
(
π
c21

)
> 0.
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Proof of Lemma III.4. There are NC clusters transmitting simultaneously. Except for the horizontally adjacent cluster of a
given cluster pair (i-th cluster pair), all the rest of the transmitting clusters are considered as interfering clusters (there are
NC − 1 of these). With high probability, each cluster contains Θ(M) nodes. For the sake of clarity, we assume here that every
cluster contains exactly M nodes, but the argument holds in the general case. In this lemma, we upper bound the magnitude
of interfering signals from the simultaneously interfering clusters at node j ∈ Ri as follows∣∣∣∣∣∣∣

NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣ ≤
NC∑
l=1
l 6=i

∣∣∣∣∣∑
k∈Tl

exp(2π(rjk − xk))

rjk

∣∣∣∣∣
≤

NC∑
l=1
l 6=i

∣∣∣∣∣∑
k∈Tl

cos(2π(rjk − xk))

rjk

∣∣∣∣∣+

NC∑
l=1
l 6=i

∣∣∣∣∣∑
k∈Tl

sin(2π(rjk − xk))

rjk

∣∣∣∣∣
≤ 2

NC∑
l=1

∣∣∣∣∣∣
∑
k∈T ′l

cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣+ 2

NC∑
l=1

∣∣∣∣∣∣
∑
k∈T ′l

sin(2π(rjk − xk))

rjk

∣∣∣∣∣∣
where T ′l denotes the l-th interfering transmit cluster that is at a vertical distance of l

(
n1/4

2c1
+ c2n

1/4+ε
)

from the desired
receiving cluster Ri. We further upper bound the first term (cosine terms) in the equation above as follows (notice that we
can upper bound the second term (sine terms) in exactly the same fashion):∣∣∣∣∣∣

∑
k∈T ′l

cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
k∈T ′l

X
(l)
k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
k∈T ′l

(
Xk − E

(
X

(l)
k

))
+
∑
k∈T ′l

E
(
X

(l)
k

)∣∣∣∣∣∣
(a)

≤

∣∣∣∣∣∣
∑
k∈T ′l

(
X

(l)
k − E

(
X

(l)
k

))∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
k∈T ′l

E
(
X

(l)
k

)∣∣∣∣∣∣
(b)
= M

∣∣∣∣∣∣ 1

M

∑
k∈T ′l

(
X

(l)
k − E

(
X

(l)
k

))∣∣∣∣∣∣+M
∣∣∣E(X(l)

1

)∣∣∣ (7)

where (a) follows from the triangle inequality and (b) results from the fact that the X(l)
k ’s (note that X(l)

k = (cos(2π(rjk −
xk)))/(rjk) ∀k ∈ T ′l ) are independent and identically distributed. Let us first bound the second term of (7): ∀k ∈ T ′l , we have

|rjk| = rjk =
√

(xk + xj + d)2 + (yj − yk)2 ≥ d =
n1/2

4

is a C2 function and

|r′jk(yk)| =
∣∣∣∣∂ rjk∂yk

∣∣∣∣ =
|yk − yj |
rjk

≥
l c2 n

1/4+ε + (l − 1) n
1/4

2c1

n1/2

≥ l c2 n−1/4+ε

Moreover, r′′jk changes sign at most twice. By the integration by parts formula, we obtain∫ yk1

yk0

dyk
cos(2πrjk)

rjk
=

∫ yk1

yk0

dyk
2πr′jk

2πr′jkrjk
cos(2πrjk)

=
− sin(2πrjk)

2πr′jkrjk

∣∣∣∣yk1

yk0

+
1

2π

∫ yk1

yk0

dyk
rjkr

′′
jk + (r′jk)2

(r′jkrjk)2
sin(2πrjk)
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which in turn yields the upper bound∣∣∣∣∣
∫ yk1

yk0

dyk
cos(2πrjk)

rjk

∣∣∣∣∣ ≤ 1

2π

(
2

minyk{|r′jk||rjk|}
+

∫ yk1

yk0

dyk
|r′′jk|

(r′jk)2|rjk|
+

∫ yk1

yk0

dyk
1

r2jk

)

≤ 1

2π

(
4

l c2 n1/4+ε
+

1

minyk{|rjk|}

∫ yk1

yk0

dyk
|r′′jk|

(r′jk)2
+
|yk1 − yk0|
minyk{r2jk}

)

≤ 1

2π

(
4

l c2 n1/4+ε
+

4

l c2 n1/4+ε
+

2

n3/4

)
≤ 9/(2π)

l c2 n1/4+ε
.

Therefore, for any k ∈ T ′l , ∣∣∣∣E(X(l)
k

) ∣∣∣∣ =

∣∣∣∣∣∣ 4

n1/2

∫ n1/2

4

0

dxk
1

|yk1 − yk0|

∫ yk1

yk0

dyk
cos(2πrjk)

rjk

∣∣∣∣∣∣
≤ 4

n1/2 |yk1 − yk0|

∫ n1/2

4

0

dxk

∣∣∣∣∣
∫ yk1

yk0

dyk
cos(2πrjk)

rjk

∣∣∣∣∣
≤ 9/(2π)

|yk1 − yk0| l c2 n1/4+ε
≤ 9c1
πc2

1

l n1/2+ε
=

9c1
πc2

1

l d nε
. (8)

We further upper bound the first term in (7) by using the Hoeffding’s inequality [17]. Note that the X
(l)
k ’s are i.i.d. and

integrable random variables such that for any 1 ≤ l ≤ NC and ∀k ∈ T ′l , we have X(l)
k ∈ [−1/d, 1/d]. As such, Hoeffding’s

inequality yields

P

∣∣∣∣∣∣ 1

M

∑
k∈T ′l

(
X

(l)
k − E

(
X

(l)
k

))∣∣∣∣∣∣ > t

 ≤ 2 exp

(
−M t2

2/d2

)

= 2 exp

(
−1

2
M d2 t2

)
(a)
= 2 exp(−nε),

where (a) is true if t = 1
d

√
2nε

M . Therefore, we have∣∣∣∣∣∣ 1

M

∑
k∈T ′l

(
X

(l)
k − E

(
X

(l)
k

))∣∣∣∣∣∣ ≤ 1

d

√
2nε

M
(9)

with probability ≥ 1− 2 exp(−nε). Combining (8) and (9), we can upper bound (7) as follows∣∣∣∣∣∣
∑
k∈T ′l

cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣ ≤M
∣∣∣∣∣∣ 1

M

∑
k∈T ′l

(
X

(l)
k − E

(
X

(l)
k

))∣∣∣∣∣∣+M
∣∣∣E(X(l)

1

)∣∣∣
≤ M

d

√
2nε

M
+

9c1
πc2

M

l dnε
.

Finally, we have∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣ ≤ 2

NC∑
l=1

∣∣∣∣∣∣
∑
k∈T ′l

cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣+ 2

NC∑
l=1

∣∣∣∣∣∣
∑
k∈T ′l

sin(2π(rjk − xk))

rjk

∣∣∣∣∣∣
(a)

≤ 4

NC∑
l=1

(
M

d

√
2nε

M
+

9c1
πc2

M

l dnε

)

≤ 4
√

2
NC
√
nεM

d
+

36c1
πc2

M

dnε
log n

≤
(

4
√

2
NC n

3ε/2

√
M log n

+
36c1
πc2

)
M

dnε
log n

=

(
Θ

(
n1/4−εn3ε/2

n3/8 log n

)
+ Θ(1)

)
M

dnε
log n = Θ

(
M

dnε
log n

)
,
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Fig. 4. Two square clusters that have a center-to-center distance d, with each cluster decomposed into
√
M vertical

√
M × 1 rectangles. djk is distance

between the centers (marked with cross) of the two rectangles j and k. Moreover, we have the points j1(xj1 , yj1 ) and k1(xk1 , yk1 ) in the rectangles j and
k, respectively.

where (a) is true with high probability (more precisely, with probability ≥ 1−4NC exp(−nε)), which concludes the proof.

Proof of Lemma IV.3. - Let us first consider the case where B is a Hermitian and positive semi-definite matrix. Then ‖B‖ =
λmax(B), the largest eigenvalue of B. Let now λ be an eigenvalue of B and u be its corresponding eigenvector, so that
λu = Bu. Using the block representation of the matrix B, we have

λuj =

K∑
k=1

Bjk uk, ∀1 ≤ j ≤ K

where uj is the jth block of the vector u. Let now j be such that ‖uj‖ = max1≤k≤K ‖uk‖. Taking norms and using the
triangle inequality, we obtain

|λ| ‖uj‖ =

∥∥∥∥∥
K∑
k=1

Bjk uk

∥∥∥∥∥ ≤
K∑
k=1

‖Bjk uk‖

≤
K∑
k=1

‖Bjk‖ ‖uk‖ ≤
K∑
k=1

‖Bjk‖ ‖uj‖

by the assumption made above. As u 6≡ 0, ‖uj‖ > 0, so we obtain

|λ| ≤ max
1≤j≤K

K∑
k=1

‖Bjk‖

As this inequality applies to any eigenvalue λ of B and ‖B‖ = λmax(B), the claim is proved in this case.
- In the general case, observe first that ‖B‖2 = λmax(BB†), where BB† is Hermitian and positive semi-definite. So by

what was just proved above,

‖B‖2 = λmax(BB†) ≤ max
1≤j≤K

K∑
k=1

‖(BB†)jk‖

Now, (BB†)jk =
∑K
l=1BjlB

†
kl so

K∑
k=1

‖(BB†)jk‖ =

K∑
k=1

∥∥∥∥∥
K∑
l=1

BjlB
†
kl

∥∥∥∥∥
≤

K∑
k=1

K∑
l=1

‖Bjl‖ ‖Bkl‖ ≤
K∑
l=1

‖Bjl‖ max
1≤j≤K

K∑
k=1

‖Bkj‖

and we finally obtain

‖B‖2 ≤

(
max

1≤j≤K

K∑
l=1

‖Bjl‖

) (
max

1≤j≤K

K∑
k=1

‖Bkj‖

)
which implies the result, as ab ≤ max{a, b}2 for any two positive numbers a, b.
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Proof of Lemma IV.4. As in the case of ‖H‖, analyzing directly the the asymptotic behavior of ‖Ĥ‖ reveals itself difficult. We
therefore decompose our proof into simpler subproblems. The strategy is essentially the following: in order to bound ‖Ĥ‖, we
divide the matrix into smaller blocks, bound the smaller blocks ‖Ĥjk‖, and apply Lemma IV.3. Let us therefore decompose
each of the two square clusters into

√
M vertical

√
M × 1 rectangles of

√
M nodes each (See Fig. 4).

By Lemma IV.3, we obtain

‖Ĥ‖ ≤ max

 max
1≤j≤

√
M

√
M∑

k=1

‖Ĥjk‖, max
1≤j≤

√
M

√
M∑

k=1

‖Ĥkj‖

 (10)

where the M ×M matrix Ĥ is decomposed into blocks Ĥjk, j, k = 1, . . . ,
√
M , with Ĥjk denoting the

√
M ×

√
M channel

matrix between k-th rectangle of the transmitting cluster and the j-th rectangle of the receiving cluster. As shown in Fig. 4, let
us also denote by djk the corresponding inter-rectangle distance, measured from the centers of the two rectangles. We want to
show that for 2

√
M ≤ d ≤M , where d is the distance between the centers of the two clusters, there exist constants c, c′ > 0

such that
‖Ĥjk‖2 ≤ c′

M ε

djk
≤ c M

ε

d
(11)

with high probability as M →∞. Applying (10) and (11), we get

‖Ĥ‖ ≤ max

 max
1≤j≤

√
M

√
M∑

k=1

‖Ĥjk‖, max
1≤j≤

√
M

√
M∑

k=1

‖Ĥkj‖

 ≤
(
c
M1+ε

d

)1/2

Therefore, what remains to be proven is inequality (11). The strategy we propose in order to upper bound ‖Ĥjk‖2 is to use
the moments’ method, relying on the following inequality:

‖Ĥjk‖2 = λmax(ĤjkĤ
†
jk) ≤

(
M∑
k=1

(λk(ĤjkĤ
†
jk))`

)1/`

=
(

Tr
(

(ĤjkĤ
†
jk)`

))1/`
valid for any ` ≥ 1. So by Jensen’s inequality, we obtain that E(‖Ĥjk‖2) ≤

(
E(Tr((ĤjkĤ

†
jk)`))

)1/`
. In what follows, we

show that taking `→∞ leads to E(‖Ĥjk‖2) ≤ c logM
djk

. More precisely, we show that

E(Tr((ĤjkĤ
†
jk)`) ≤ M(c logM)`−1

d`+1
jk

(12)

which implies (
E(Tr((ĤjkĤ

†
jk)`))

)1/`
≤ M1/`(c logM)1−1/`

d
1+1/`
jk

→
`→∞

c
logM

djk
.

We first prove (12) for ` = {1, 2}, then generalize it to any `. To simplify the notation, let F = Ĥjk. For ` = 1, we obtain

E(Tr(FF †)) =

√
M∑

j1,k1=1

E(fj1k1f
∗
j1k1) =

√
M∑

j1,k1=1

E(|fj1k1 |2) =

√
M∑

j1,k1=1

1

r2j1k1
≤ M

d2jk
(13)

Note here that given the definition of djk, it only holds that rj1k1 ≥ djk − 1 and not djk. However, given our assumption
that djk ≥

√
M , this simplification does not matter asymptotically and also allows to lighten the notation. We will make this

simplification constantly in the following. For ` = 2, we obtain

E(Tr((FF †)2)) = E(Tr(FF †FF †))

=

√
M∑

j1,j2,k1,k2=1

E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2)

≤
∑
j1=j2
k1,k2

E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2) +

∑
j1,j2
k1=k2

E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2) +

∑
j1 6=j2
k1 6=k2

E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2)

≤ 2
M3/2

d4jk
+M2S2

(a)

≤ 2
M

d3jk
+M2S2
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where S2 = |E(fj1k1f
∗
j2k1

fj2k2f
∗
j1k2

)| with j1 6= j2 and k1 6= k2 does not depend on the specific choice of j1 6= j2 and
k1 6= k2, and (a) results from fact that djk ≥

√
M . In what follows, we upper bound S2.

S2 = |E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2)|

=

∣∣∣∣ 1

M2

∫ 1

0

dxj1

∫ √M
0

dyj1

∫ 1

0

dxj2

∫ √M
0

dyj2

∫ 1

0

dxk1

∫ √M
0

dyk1

∫ 1

0

dxk2

∫ √M
0

dyk2
e2πi(gj1j2 (k1)+gj2j1 (k2))

ρj1j2(k1) ∗ ρj2j1(k2)

∣∣∣∣, (14)

where

gj1j2(k1) = rj1k1 − rj2k1 = −gj2j1(k1)

=
√

(djk − 1 + xj1 + xk1)2 + (yj1 − yk1)2 −
√

(djk − 1 + xj2 + xk1)2 + (yj2 − yk1)2 (15)

and

ρj1j2(k1) = rj1k1 · rj2k1 = ρj2j1(k1) ≥ d2jk, (16)

where 0 ≤ xj1 , xj2 , xk1 , xk2 ≤ 1 and 0 ≤ yj1 , yj2 , yk1 , yk2 ≤
√
M are the horizontal and the vertical positions, respectively

(see Fig. 4).
From now on, let us use the short-hand notation∫

dj for
∫ 1

0

dxj

∫ √M
0

dyj

Using this short-hand notation as well as equations (15) and (16), we can rewrite (14) as follows

S2 =

∣∣∣∣ 1

M2

∫
dj1

∫
dj2

∫
dk1

e2πigj1j2 (k1)

ρj1j2(k1)

∫
dk2

e2πigj2j1 (k2)

ρj2j1(k2)

∣∣∣∣
≤ 1

M2

∫
dj1

∫
dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣ · ∣∣∣∣ ∫ dk2
e2πigj2j1 (k2)

ρj2j1(k2)

∣∣∣∣
=

1

M2

∫
dj1

∫
dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣ ·B2,1

where

B2,1 =

∣∣∣∣ ∫ dk2
e2πigj2j1 (k2)

ρj2j1(k2)

∣∣∣∣ =

∣∣∣∣ ∫ 1

0

dxk2

∫ √M
0

dyk2
e2πigj2j1 (k2)

ρj2j1(k2)

∣∣∣∣
≤
∫ 1

0

dxk2

∫ √M
0

dyk2

∣∣∣∣e2πigj2j1 (k2)ρj2j1(k2)

∣∣∣∣
=

∫ 1

0

dxk2

∫ √M
0

dyk2
1

ρj2j1(k2)
≤
√
M

d2jk
(17)

We therefore obtain
S2 ≤

1

M3/2d2jk

∫
dj1 ·A1,2 (18)

where

A1,2 =

∫
dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
Before further upper bounding (18), we present the following lemma, taken from [18] and adapted to the present situation.

Lemma A.1. Let g : [0,
√
M ]→ R be a C2 function such that |g′(y)| ≥ c1 > 0 for all z ∈ [0,

√
M ] and g′′ changes sign at

most twice on [0,
√
M ] (say e.g. g′′(y) ≥ 0 in [y−, y+] and g′′(y) ≤ 0 outside). Let also ρ : [0,

√
M ] → R be a C1 function

such that |ρ(y)| ≥ c2 > 0 and ρ′(y) changes sign at most twice on [0,
√
M ]. Then∣∣∣∣∣

∫ √M
0

dy
e2πig(y)

ρ(y)

∣∣∣∣∣ ≤ 7

π c1 c2
.

15



Proof. By the integration by parts formula, we obtain∫ √M
0

dy
e2πig(y)

ρ(y)
=

∫ √M
0

dy
2πig′(y)

2πig′(y)ρ(y)
e2πig(y)

=
e2πig(y))

2πig′(y)ρ(y)

∣∣∣∣
√
M

0

−
∫ √M
0

dy
g′′(y)ρ(y) + g′(y)ρ′(y)

2πi(g′(y)ρ(y))2
e2πig(y)

which in turn yields the upper bound∣∣∣∣∣
∫ √M
0

dy
e2πig(y)

ρ(y)

∣∣∣∣∣ ≤ 1

2π

(
1

|g′(
√
M)||ρ(

√
M)|

+
1

|g′(0)||ρ(0)|

+

∫ √M
0

dy
|g′′(y)|

(g′(y))2|ρ(y)|
+

∫ √M
0

dy
|ρ′(y)|

g′(y)(ρ(y))2

)
By the assumptions made in the lemma, we have∫ √M

0

dy
|g′′(y)|

(g′(y))2|ρ(z)|
≤ 1

c2

∫ √M
0

dy
|g′′(y)|
(g′(y))2

=
1

c2

(
−
∫ y−

0

dy
g′′(y)

(g′(y))2
+

∫ y+

y−

dy
g′′(y)

(g′(y))2
−
∫ √M
y+

dy
g′′(y)

(g′(y))2

)

=
1

c2

(
1

g′(
√
M)
− 1

g′(0)
+

2

g′(y−)
− 2

g′(y+)

)
So ∫ √M

0

dy
|g′′(y)|

(g′(y))2|ρ(y)|
≤ 7

c1 c2
.

We obtain in a similar manner that ∫ √M
0

dy
|ρ′(y)|

g′(y)(ρ(y))2
≤ 7

c1 c2

Combining all the bounds, we finally get ∣∣∣∣∣
∫ √M
0

dy
e2πig(y)

ρ(y)

∣∣∣∣∣ ≤ 7

π c1 c2

For any ε > 0, we can upper bound A1,2 in equation (18) as follows

A1,2 =

∫
dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
=

∫
|yj2−yj1 |<ε

√
M

dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣+

∫
|yj2−yj1 |≥ε

√
M

dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
≤
∫
|yj2−yj1 |<ε

√
M

dj2

∫
dk1

1

ρj1j2(k1)
+

∫
|yj2−yj1 |≥ε

√
M

dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
≤ εM

d2jk
+

∫
|yj2−yj1 |≥ε

√
M

dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣ (19)

Furthermore, note that

gj1j2(k1) = rj1k1 − rj2k1

= −
∫ xj2

xj1

djk − 1 + x+ xk1√
(djk − 1 + x+ xk1)2 + (yj1 − yk1)2

dx+

∫ yj2

yj1

yk1 − y√
(djk − 1 + xj2 + xk1)2 + (y − yk1)2

dy

Therefore, the first order partial derivative of gj1j2(k1) with respect to yk1 is given by

∂gj1j2(k1)

∂yk1
=

∫ xj2

xj1

(yk1 − yj1)(djk − 1 + x+ xk1)

((djk − 1 + x+ xk1)2 + (yj1 − yk1)2)
3/2

dx+

∫ yj2

yj1

(djk − 1 + xj2 + xk1)2

((djk − 1 + xj2 + xk1)2 + (y − yk1)2)
3/2

dy
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From this expression, we deduce that for a constant c3 > 0∣∣∣∣∂gj1j2(k1)

∂yk1

∣∣∣∣ ≥ c3 |yj2 − yj1 |djk
− |yk1 − yj1 |.|xj2 − xj1 |

d2jk

≥ c3
|yj2 − yj1 |

djk
−
√
M

d2jk
(a)

≥ c3 |yj2 − yj1 | − 1

djk
, (20)

where (a) follows from the fact that djk ≥
√
M . For c3 |yj2 − yj1 | − 1 > 0 (we will tune ε accordingly, as we will see), using

(16) and (20), we can apply lemma A.1 and upper bound the second term in (19) as follows∫
|yj2−yj1 |≥ε

√
M

dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣ ≤ ∫
|yj2−yj1 |≥ε

√
M

dj2

∫ 1

0

dxk1

∣∣∣∣ ∫
√
M

0

dyk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
≤
∫
|yj2−yj1 |≥ε

√
M

dyj2
7

π
c3|yj2−yj1 |−1

djk
d2jk

≤ 7

πc3djk

∫
|yj2−yj1 |≥ε

√
M

1

|yj2 − yj1 | − 1/c3
dyj2

≤ 7

πc3djk
log

(
1

ε

)
(21)

which gives the following upper bound on (19)

A1,2 ≤
εM

d2jk
+

7

πc3djk
log

(
1

ε

)
(a)
= O

(
logM

djk

)
, (22)

where (a) results from choosing ε = c4√
M

with sufficiently large c4 > 0, which also ensures that c3 |yj2 − yj1 | − 1 > 0. For

the chosen value of ε, we get S2 = O

(
1√
Md4jk

)
+O

(
1

Md3jk
logM

)
= O

(
1

Md3jk
logM

)
. As a result, we get

E(Tr((FF †)2)) ≤ 2
M

d3jk
+M2S2 = O

(
M

logM

d3jk

)
. (23)

Now, we generalize our result to any moment ` > 2. We start with the following lemma.

Lemma A.2. For ` ≥ 1, let
S` =

∣∣E(fj1k1f
∗
j2k1 . . . fj`k`f

∗
j1k`

)
∣∣, (24)

with j1 6= . . . 6= j` and k1 6= . . . 6= k`. Note that Sl does not depend on the particular choice of j1 6= . . . 6= j` and
k1 6= . . . 6= k`. We can upper bound S` given in (24) as follows

S` ≤
1

M `−1d2jk

(
c

logM

djk

)`−1
.

Proof of Lemma A.2. Note that the lemma is true for ` = 1, 2, since S1 ≤ 1
d2jk

and S2 ≤ 1
Md3jk

logM (as we showed above).
In general, for any ` ≥ 1, we have

S` =

∣∣∣∣ 1

M `

∫
dj1

∫
dj2

∫
dk1

e2πigj1j2 (k1)

ρj1j2(k1)

∫
dj3

∫
dk2

e2πigj2j3 (k2)

ρj2j3(k2)
. . .∫

dj`

∫
dk`−1

e2πigj`−1,j`
(k`−1)

ρj`−1,j`(k`−1)

∫
dk`

e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣
≤ 1

M `

∫
dj1

∫
dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣ ∫ dj3

∣∣∣∣ ∫ dk2
e2πigj2j3 (k2)

ρj2j3(k2)

∣∣∣∣ . . .∫
dj`

∣∣∣∣ ∫ dk`−1
e2πigj`−1,j`

(k`−1)

ρj`−1,j`(k`−1)

∣∣∣∣.∣∣∣∣ ∫ dk`
e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣
=

1

M `

∫
dj1A1,2 ·A2,3 · · ·A`−1,` ·B`,1
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where (just as we defined A1,2 and B2,1)

At−1,t =

∫
djt

∣∣∣∣ ∫ dkt−1
e2πigjt−1,jt

(kt−1)

ρjt−1,jt(kt−1)

∣∣∣∣ for 2 ≤ t ≤ `

and

B`,1 =

∣∣∣∣ ∫ dk`
e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣.
Similarly to how we proceeded with A1,2 and B2,1 in (22) and (17), respectively, we can upper bound At,t+1 (for 2 ≤ t ≤ `)
and B`,1. Therefore, we get

S` ≤
1

M `

∫
dj1A1,2 ·A2,3 · · ·A`−1,` ·B`,1

≤ 1

M `

∫
dj1

(
c

logM

djk

)`−1 √
M

d2jk
=

1

M `−1d2jk

(
c

logM

djk

)`−1
. (25)

As one can notice from (25), the upper bound on S` is independent of the choice of the node j1. As such, the same upper
bound applies on the expectation conditioned on any value of j1 as follows

S̃`
def
=
∣∣E(fj1k1f

∗
j2k1 . . . fj`k`f

∗
j1k`
|j1)
∣∣ ≤ 1

M `−1d2jk

(
c

logM

djk

)`−1
. (26)

We are now set out to prove:

E(Tr((FF †)`)) = O

(
M( logM)`−1

d`+1
jk

)
.

We proved it for ` = 1, 2 and will further prove it for ` = 3 and ` = 4. After that, the mechanics of the computation is the
same for all ` > 4.

In what follows, when we say that there exists an “equality”, we mean an index is equal to another index. For example,
when we say there are 2 “equality”s, we mean that there are either two disjoint pairs of equal indices (for example, j1 = j2
and k2 = k4) or 3 equal indices (for example, j1 = j2 = j3). Let us start with ` = 3,

E(Tr((FF †)3)) =

√
M∑

j1,j2,j3=1,
k1,k2,k3=1

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j1k3)

=
∑

j1 6=j2 6=j3,
k1 6=k2 6=k3

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j1k3)

+
∑

j1,j2,j3,
k1,k2,k3:

∃ exactly 1 “equality”

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j1k3)

+
∑

j1,j2,j3,
k1,k2,k3:

∃ ≥ 2 “equality”s

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j1k3).

Note that if there exists exactly 1 “equality”, then we have 6 different cases; namely, j1 = j2 or j2 = j3 or j1 = j3 or k1 = k2
or k2 = k3 or k1 = k3. Since in all the 6 cases we end up with adjacent indices6 being equal, then these 6 cases are identical

6Two indices are said to be adjacent if they result in a term and its conjugate when they are equal. In other words, if two j indices are connected to the
same k index but in opposite direction, then they are said to be adjacent indices.
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and it makes no difference which case we consider (we consider below the case where j1 = j2). Therefore, we have∑
∃ exactly 1 “equality”

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j1k3) = 6

∑
(j1=j2) 6=j3,
k1 6=k2 6=k3

E(fj1k1f
∗
j1k1fj1k2f

∗
j3k2fj3k3f

∗
j1k3)

≤ 6
∑
j1

E

∑
k1

E(fj1k1f
∗
j1k1 |j1)

∑
j3 6=j1,
k2 6=k3

E(fj1k2f
∗
j3k2fj3k3f

∗
j1k3 |j1)



≤ 6
∑
j1

E

∑
k1

∣∣E(fj1k1f
∗
j1k1 |j1)

∣∣ ∑
j3 6=j1,
k2 6=k3

∣∣E(fj1k2f
∗
j3k2fj3k3f

∗
j1k3 |j1)

∣∣


= 6(
√
M)5S̃1S̃2 = 6M5/2S̃1S̃2.

Moreover, if there exist 2 or more “equality”s, then we will be left with 4 indices at most. Therefore, we have∑
∃ ≥ 2 “equality”s

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j1k3) ≤

∑
∃ ≥ 2 “equality”s

E(
∣∣fj1k1f∗j2k1fj2k2f∗j3k2fj3k3f∗j1k3∣∣)

≤ (
√
M)4

d6jk
=
M2

d6jk
.

As such, we get

E(Tr((FF †)3)) ≤
∑

j1 6=j2 6=j3,
k1 6=k2 6=k3

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j1k3) + 6M5/2S̃1S̃2 +

M2

d6jk

≤M3S3 + 6M5/2S̃1S̃2 +
M2

d6jk

(a)

≤ M(c logM)2

d4jk
+
M
√
M(c logM)

d5jk
+
M2

d6jk

(b)
= O

(
M(c logM)2

d4jk

)
,

where (a) follows from (25) and Lemma A.2, and (b) follows from the fact that djk ≥
√
M .

We use the same approach for ` = 4. We have

E(Tr((FF †)4)) =

√
M∑

j1,j2,j3,j4=1,
k1,k2,k3,k4=1

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4)

=
∑

j1 6=j2 6=j3 6=j4,
k1 6=k2 6=k3 6=k4

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4)

+
∑

j1,j2,j3,j4,
k1,k2,k3,k4:

∃ exactly 1 “equality”

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4)

+
∑

j1,j2,j3,j4,
k1,k2,k3,k4:

∃ exactly 2 “equality”s

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4)

+
∑

j1,j2,j3,j4,
k1,k2,k3,k4:
∃ ≥ 3 “equality”s

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4).

Note that if there exists exactly 1 “equality”, then we have two different scenarios (See Fig. 5) : 1) two adjacent indices are
equal; namely, j1 = j2 or j2 = j3 or j3 = j4 or j1 = j4 or k1 = k2 or k2 = k3 or k3 = k4 or k1 = k4. 2) two non-adjacent
indices are equal; namely, j1 = j3 or j2 = j4 or k1 = k3 or k2 = k4. Since all the cases under the same scenario are identical,
we consider one case for each scenario (the case j1 = j2 for the first scenario and the case j1 = j3 for the second scenario).
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Fig. 5. There exists exactly 1 “equality”: illustrating scenario 1) to the left and scenario 2) to the right.

Therefore, we have ∑
∃ exactly 1 “equality”

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4)

= 8
∑

(j1=j2) 6=j3 6=j4,
k1 6=k2 6=k3 6=k4

E(fj1k1f
∗
j1k1fj1k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4)

+ 4
∑

j2 6=(j1=j3) 6=j4,
k1 6=k2 6=k3 6=k4

E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2fj1k3f

∗
j4k3fj4k4f

∗
j1k4)

= 8
∑
j1

E

∑
k1

E(fj1k1f
∗
j1k1 |j1)

∑
j3 6=j4 6=j1,
k2 6=k3 6=k4

E(fj1k2f
∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4 |j1)



+ 4
∑
j1

E

 ∑
j2 6=j1,
k1 6=k2

E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2 |j1)

∑
j4 6=j1,
k3 6=k4

E(fj1k3f
∗
j4k3fj4k4f

∗
j1k4 |j1)


which can be upper bounded as such∑

∃ exactly 1 “equality”

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4)

≤ 8
∑
j1

E

∑
k1

∣∣E(fj1k1f
∗
j1k1 |j1)

∣∣ ∑
j3 6=j4 6=j1,
k2 6=k3 6=k4

∣∣E(fj1k2f
∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4 |j1)

∣∣


+ 4
∑
j1

E

 ∑
j2 6=j1,
k1 6=k2

∣∣E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2 |j1)

∣∣ ∑
j4 6=j1,
k3 6=k4

∣∣E(fj1k3f
∗
j4k3fj4k4f

∗
j1k4 |j1)

∣∣


= 8(
√
M)7S̃1S̃3 + 4(

√
M)7S̃2S̃2 = 8M7/2S̃1S̃3 + 4M7/2S̃2S̃2. (27)

If there exist exactly 2 “equality”s, we analyze the different possible cases in the following way. The first “equality” can be
through either scenario 1) or scenario 2) illustrated in Fig. 5.

1) First “equality” through the first scenario: Without loss of generality, consider the case j1 = j2. We want to have
a second “equality”. Note that we have two disjoint cycles that meet at the node j1. The second “equality” can be between
two indices belonging to the same cycle or between two indices belonging to different cycles. There are 6 cases where the
“equality” is between two indices belonging to the same cycle; namely, j1 = j3 or j3 = j4 or j1 = j4 or k2 = k3 or k3 = k4
or k2 = k4. Without loss of generality, consider the case k2 = k3:
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∑
(j1=j2)6=j3 6=j4,
k1 6=(k2=k3) 6=k4

E(fj1k1f
∗
j1k1fj1k2f

∗
j3k2fj3k2f

∗
j4k2fj4k4f

∗
j1k4)

∑
(j1=j2)6=j3 6=j4,
k1 6=(k2=k3) 6=k4

E

(
1

r2j1k1

1

r2j3k2
fj1k2f

∗
j4k2fj4k4f

∗
j1k4

)

=
∑
j1,k2

E

∑
k1

1

r2j1k1

∑
j3

1

r2j3k2

∑
j4 6=j1,k4 6=k2

E(fj1k2f
∗
j4k2fj4k4f

∗
j1k4 |j1, k2)


≤ M

d4jk

∑
j1 6=j4,
k2 6=k4

∣∣E(fj1k2f
∗
j4k2fj4k4f

∗
j1k4)

∣∣ =
M3

d4jk
S2.

On the other hand, there are 3 cases where the second “equality” is between two indices belonging to different cycles;
namely, k1 = k2 or k1 = k3 or k1 = k4. Without loss of generality, consider the case k1 = k3:

∑
(j1=j2)6=j3 6=j4,
k2 6=(k1=k3)6=k4

E(fj1k1f
∗
j1k1fj1k2f

∗
j3k2fj3k1f

∗
j4k1fj4k4f

∗
j1k4)

=
∑
j1,k1

E

fj1k1f∗j1k1 ∑
j3 6=j4 6=j1,
k2 6=k4 6=k1

E(fj1k2f
∗
j3k2fj3k1f

∗
j4k1fj4k4f

∗
j1k4 |j1, k1)



=
∑
j1,k1

E

 1

r2j1k1

∑
j3 6=j4 6=j1,
k2 6=k4 6=k1

E(fj1k2f
∗
j3k2fj3k1f

∗
j4k1fj4k4f

∗
j1k4 |j1, k1)


≤ 1

d2jk

∑
j1 6=j3 6=j4,
k1 6=k2 6=k4

∣∣E(fj1k2f
∗
j3k2fj3k1f

∗
j4k1fj4k4f

∗
j1k4)

∣∣ =
M3

d2jk
S3.

Therefore, when the first “equality” happens through the first scenario, we have the following upper bound∑
(j1=j2),j3,j4,
k1,k2,k3,k4:

∃ exactly 1 more “equality”

E(fj1k1f
∗
j1k1fj1k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4) ≤ 6

M3

d4jk
S2 + 3

M3

d2jk
S3

(a)
= O

(
M(c logM)4

d5jk

)
,

where (a) follows from Lemma A.2 and from the fact that djk ≥
√
M .

2) First “equality” through the second scenario: Without loss of generality, consider the case j1 = j3. We want to pick
up a second “equality”. Using similar techniques as used in the previous case, one can show that∑

(j1=j3),j2,j4,
k1,k2,k3,k4:

∃ exactly 1 more “equality”

E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2fj1k3f

∗
j4k3fj4k4f

∗
j1k4) = O

(
M(c logM)4

d5jk

)
.

Therefore, combining the upper bounds obtained for the two scenarios, we get

∑
j1,j2,j3,j4,
k1,k2,k3,k4:

∃ exactly 2 “equality”s

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4) = O

(
M(c logM)4

d5jk

)
. (28)

21



Finally, if there exist 3 or more “equality”s, then we will be left with at most 5 indices. Therefore, we have∑
∃ ≥ 3 “equality”s

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4)

≤
∑

∃ ≥ 3 “equality”s

E(
∣∣fj1k1f∗j2k1fj2k2f∗j3k2fj3k3f∗j4k3fj4k4f∗j1k4 ∣∣)

≤ (
√
M)5

d8jk
=
M2
√
M

d8jk

(a)
= O

(
M

d5jk

)
, (29)

where (a) follows from the fact that djk ≥
√
M .

Combining (27), (28), and (29), we get

E(Tr((FF †)4)) =

√
M∑

j1,j2,j3,j4=1,
k1,k2,k3,k4=1

E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4)

≤
∑

j1 6=j2 6=j3 6=j4,
k1 6=k2 6=k3 6=k4

∣∣E(fj1k1f
∗
j2k1fj2k2f

∗
j3k2fj3k3f

∗
j4k3fj4k4f

∗
j1k4)

∣∣
+8M7/2S̃1S̃3 + 4M7/2S̃2S̃2 +O

(
M(c logM)4

d5jk

)

=M4S4 + 8M7/2S̃1S̃3 + 4M7/2S̃2S̃2 +O

(
M(c logM)4

d5jk

)
(a)
= O

(
M(c logM)4

d5jk

)
,

where (a) follows from (26), Lemma A.2, and from the fact that djk ≥
√
M .

For ` ≥ 5, using techniques similar to the ones used for ` = 3, 4, one can show that

E(Tr((FF †)`)) = O

M `−1/2
b`/2c∑
i=1

S̃iS̃`−i

+M `S` +O

(
M(c logM)`−1

d`+1
jk

)
(a)
= O

(
M(c logM)`−1

d`+1
jk

)
,

where (a) follows from Lemma A.2 and from the fact that djk ≥
√
M .

The last step, which concludes the proof, includes applying Markov’s inequality to get

P
(
λmax(ĤjkĤ

†
jk) ≥ c′M

ε

djk

)
≤

E((λmax(ĤjkĤ
†
jk))`)

(c′M ε/djk)`

≤ E(Tr((FF †)`))

(c′M ε/djk)`

≤
M (c logM)`−1/d`+1

jk

(c′M ε/djk)`

≤ M (logM)`−1

djkM ε`

which, for any fixed ε > 0, can be made arbitrarily small by taking ` sufficiently large.
A last remark is that we proved lemma IV.4 for aligned clusters. However, the proof can be easily generalized to tilted

clusters, as shown in Fig. 6. We can always draw a larger cluster containing the original cluster and having the same center. The
larger cluster can at most contain twice as many nodes as the original cluster. The large clusters are now aligned. Moreover,
the distance d from the centers of the two newly created large clusters still satisfies the required condition (2

√
M ≤ d ≤M ).
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[2] A. Özgur, O. Lévêque, and D. N. C. Tse, “Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks,” IEEE Trans. Inform. Theory,

vol. 53, no. 10, pp. 3549–3572, October 2007.

22



Fig. 6. Two tilted square clusters that have a center-to-center distance d. We can draw larger squares (drawn in dotted line) containing the original clusters
with the same centers that are aligned.
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