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Abstract—The present paper focuses on the problem of
broadcasting information in the most efficient manner in a
large two-dimensional ad hoc wireless network at low SNR and
under line-of-sight propagation. A new communication scheme
is proposed, where source nodes first broadcast their data to
the entire network, despite the lack of sufficient available power.
The signal’s power is then reinforced via successive back-and-
forth beamforming transmissions between different groups of
nodes in the network, so that all nodes are able to decode the
transmitted information at the end. This scheme is shown to
achieve asymptotically the broadcast capacity of the network,
which is expressed in terms of the largest singular value of the
matrix of fading coefficients between the nodes in the network.
A detailed mathematical analysis is then presented to evaluate
the asymptotic behavior of this largest singular value.

Index Terms—wireless networks, broadcast capacity, low SNR

I. INTRODUCTION

The literature on the study of scaling laws in large ad
hoc wireless networks concentrates mainly on multiple-unicast
(one-to-one) transmissions (see e.g. [1], [2], [3]). This does
not degrade by any means the importance of investigating
multicast (one-to-many) transmissions for several reasons such
as the need of many network protocols to broadcast control
signals or to enhance cooperation among nodes belonging to
the same cluster or cell. In the present paper, we are interested
in studying how can source nodes broadcast their data to
the whole network in the most efficient way. A few previous
works investigate the broadcast capacity of wireless networks
under specific channel models and mainly at high SNR [4],
[5], [6]. Of course, multiple strategies exist in this context,
but from the scaling law point of view (that is, for large
networks), the simplest communication strategy, where source
nodes take turns broadcasting their messages to the entire
network, can be shown to be asymptotically optimal (up to
logarithmic factors), when the power path loss is that of free
space propagation. For a stronger power path loss, still at high
SNR, simple multi-hopping strategies also allow to achieve an
asymptotically optimal broadcast capacity, so there is not much
to be discussed either in this case from the scaling law point
of view.

In the present paper, we address the low SNR regime and
consider the line-of-sight (LOS) propagation model described
in Section II below. In this regime, the power available does
not allow for a source node to successfully transmit a message
to its nearest neighbor without waiting for some amount of

time in order to spare power. In this case, contrary to the
high SNR case, none of the two strategies described above
(time-division or multi-hop broadcasting) is asymptotically
optimal. This issue was first revealed in [7] in the context
of one-dimensional networks, under the LOS model. For such
networks, the authors proposed a hierarchical beamforming
scheme to broadcast data to the network, that was proven to
achieve asymptotic optimal performance. The generalization
of this idea to two-dimensional networks is not immediate.
Indeed, a particular feature of one-dimensional networks is
that it is always possible for a group of nodes to beamform
a given signal to all the other nodes in the network simul-
taneously. In two dimensions, a full beamforming gain is
only achievable between groups of nodes that are sufficiently
far apart from each other. This was already observed in [8],
where a strategy was developed to enhance multiple-unicast
communications in wireless networks under the LOS model.
Taking inspiration from this paper, we propose below a new
multi-stage beamforming scheme which is shown to achieve
asymptotic optimal performance for broadcasting information
in a two-dimensional wireless network. As it will be clear
in the description of the scheme proposed, the nodes do not
require any channel state information (CSI) except for their
own location in the network. This fact adds an extra value to
the practicality of the proposed scheme.

We give a detailed description of the scheme in Section
III and a proof of its optimality in Section IV, that goes
along with a general upper bound on the broadcast capacity of
wireless networks at low SNR (see Theorem IV.1). This bound
is shown to be proportional to the square of the largest singular
value of the matrix made of fading coefficients between the
nodes in the network. We then proceed to characterize the
broadcast capacity of two-dimensional wireless networks. For
this, we provide a detailed study of the largest singular value
of the matrix under the LOS model. The study of this matrix
reveals itself difficult, as there is much less randomness in
such a matrix than in classical random matrices studied in the
mathematical literature. In Section IV, we propose a recursive
method to tackle this problem. We lack so far a complete
rigorous proof, but our analysis is supported by both an
approximation argument, as well as numerical simulations.

II. MODEL

There are n nodes uniformly and independently distributed
in a square of area A = n, so that the node density remains



constant as n increases. Every node wants to broadcast a
different message to the whole network, and all nodes want
to communicate at a common per user data rate rn bits/s/Hz.
We denote by Rn = n rn the resulting aggregate data rate
and will often refer to it simply as “broadcast rate” in the
sequel. The broadcast capacity of the network, denoted as Cn,
is defined as the maximum achievable aggregate data rate Rn.
We assume that communication takes place over a flat channel
with bandwidth W and that the signal Yj [m] received by the
j-th node at time m is given by

Yj [m] =
∑
k∈T

hjkXk[m] + Zj [m]

where T is the set of transmitting nodes, Xk[m] is the signal
sent at time m by node k and Zj [m] is additive white circularly
symmetric Gaussian noise (AWGN) of power spectral density
N0/2 Watts/Hz. We also assume a common average power
budget per node of P Watts, which implies that the signal
Xk sent by node k is subject to an average power constraint
E(|Xk|2) ≤ P . In a line-of-sight environment, the complex
baseband-equivalent channel gain hjk between transmit node
k and receive node j is given by

hjk =
√
G

exp(2πirjk/λ)

rjk
(1)

where G is Friis’ constant, λ is the carrier wavelength, and
rjk is the distance between node k and node j. Let us finally
define

SNRs =
GP

N0W

which is the SNR available for a communication between two
nodes at distance 1 in the network.

We focus in the following on the low SNR regime, by which
we mean, as in [7], that SNRs = n−γ for some constant γ >
0. In order to simplify notation, we choose new measurement
units such that λ = 1 and G/(N0W ) = 1 in these units. This
allows us to write in particular that SNRs = P .

III. BACK-AND-FORTH BEAMFORMING STRATEGY

First note that under the LOS model (1) and the assump-
tions made in the previous section, the time division scheme
described in the introduction achieves a broadcast (aggregate)
rate Rn of order min(P, 1). Indeed, a rate of order 1 is
obviously achieved at high SNR1. At low SNR, each node can
spare power while the others are transmitting, so as to com-
pensate for the path loss of order 1/n between the source node
and other nodes located at distance at most

√
2n, leading to a

broadcast rate of order Rn ∼ log(1 + n×P/n) ∼ min(P, 1).
As we will see, this broadcast rate is not optimal in the low
SNR regime where P = n−γ with γ > 0.

In the following, we propose a new broadcasting scheme
that will prove to be order-optimal. Our strategy is based on a
back-and-forth beamforming technique between clusters. The
scheme is split into two phases:

1We coarsely approximate logP by 1 here!
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Fig. 1. An extended network divided into clusters of size M = n1/4
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As such, there are 2cn1/4 rows, each row containing 4 clusters. Source node
S transmits its message to the whole network. Afterwards, clusters separated
by distance n1/2/4 pair up and start back-and-forth beamforming.

Phase 1. Broadcast Transmission. The source node broad-
casts its message to the whole network. All the nodes receive
a weak noisy signal in this phase. This phase requires only
one time slot.

Phase 2. Back-and-Forth Beamforming with Time Divi-
sion. Upon receiving the signal from the broadcasting node,
clusters of size Θ(n1/4 × n1/2) start back-and-forth beam-
forming transmissions, as illustrated on Fig. 1. During each
transmission, there are Θ(n3/4) nodes participating on each
side. This process is therefore repeated Θ(n1/4) times in a time
division fashion to ensure the transmission of the message to
the whole network. Assuming that the broadcast rate between
corresponding clusters is Θ(n3/4−εP ) (to be shown below),
we obtain that phase 2 requires Θ(n1/4 × n−3/4+εP−1)
time slots. As such, back-and-forth beamforming achieves a
broadcast rate of Θ(n1/2−εP ) bits per time slot.

In view of the described scheme, we are able to state the
following result.

Theorem III.1. For any ε > 0 and P = O(n−3/4), the
following broadcast rate

Rn = Ω
(
n

1
2−εP

)
is achievable with high probability in the network.

We first present the following two lemmas, the proofs of
which can be found in [9], but they are also provided in the
Appendix for completeness.

Lemma III.2. Let us partition the network of area n into clus-
ters of area M , with M = nβ for some 0 < β < 1. The num-
ber of nodes inside each cluster is between ((1− δ)M, (1 +
δ)M) with probability larger than 1 − n

M exp(−∆(δ)M)
where ∆(δ) is independent of n and satisfies ∆(δ) > 0 for
δ > 0.

Lemma III.3. Consider two clusters of size M = n1/4

2c ×
n1/2

4
placed on the same horizontal line and separated by distance
n1/2

4 . For a sufficiently large constant c, the maximum beam-
forming gain between the two given clusters can be achieved



by using a proper compensation of the phase shifts at the
transmit side, that is∣∣∣∣∣

M∑
k=1

exp(2πi(rjk − xk)/λ)

∣∣∣∣∣ = Θ(M),

where xk denotes the horizontal position of node k.

Another building block for the multi-stage back-and-forth
beamforming scheme is described in the following lemma.

Lemma III.4. Consider two clusters of size M =
√
d/c × d

placed on the same horizontal line and separated by distance
d. Moreover, each node has a noisy observation of the same
message (to be successfully decoded at the end by all the
nodes) with an initial SNR = Θ(M−1). As such, for any
ε > 0, P = O(d−1) and sufficiently large constant c, back-
and-forth beamforming between the two clusters achieves a
broadcast rate

RM = Ω

(
M2−εP

d2

)
= Ω(M

2
3−εP ).

Proof. For the sake of clarity, we provide here a simplified
proof, assuming that the distance from any node in the first
cluster to any node in the second cluster is equal to the inter-
cluster distance d. By the lemma III.3, a full beamforming
gain is achievable. Practically, this allows us to assume that the
phase shifts in the fading coefficients hjk can be completely
compensated. and replaced therefore by 0.

Before starting the back-and-forth beamforming between
the two clusters, each of the nodes in the first cluster has
a noisy observation of message X , given by

Xj =
√

SNR X + Z
(0)
j j = 1, . . . ,M

where E(|X|2) = E(|Z(0)
j |2) = Θ(1). Note that it does

not make a difference at which cluster the back-and-forth
beamforming starts or ends. Hence, assume the nodes in the
first cluster ignite the scheme by amplifying and forwarding
the noisy observations of X to the nodes of the second cluster.
The received signal at j-th node of the second cluster is given
by

Y
(1)
j =

A

d

M∑
i=1

Xi + Z
(1)
j

= A×M
d

√
SNR X + A×M

d
1√
M
Z(0) + Z

(1)
j

where A =
√
P/RM is the amplification factor2, Z(0) =

1/
√
M
∑M
i=1 Z

(0)
i (note that E(|Z(0)|2) = Θ(1)), and Z(1)

j is
additive white Gaussian noise of variance Θ(1). Repeating the
same process k times in a back-and-forth manner results in a
final signal at the j-th node of the first or the second cluster
(depending on whether k is odd or even) that is given by

Y
(k)
j =

(
A×M
d

)k√
SNR X +

(
A×M
d

)k 1√
M
Z(0)

+ . . .+
(
A×M
d

)k−l 1√
M
Z(l) + . . .+ Z

(k)
j

2For a broadcast rate of RM bits/slot, 1/RM time slots per bit are used,
resulting in a total transmit power of A2 = P/RM .

where Z(l) = 1√
M

∑M
i=1 Z

(l)
i for l = 0, . . . , k − 1 (again

E(|Z(l)|2) = Θ(1)), and Z(k)
j is additive white Gaussian noise

of variance Θ(1). We want the power of the signal

E
(((

A×M
d

)k√
SNR X

)2)
=
(
A×M
d

)2k
SNR = Θ(1)

⇒ RM = (d× P ) SNR
1
k = Ω(d1−εP ) = Ω

(
M

2
3−εP

)
Finally, given the assumption that SNR = Θ(M−1), the power
of the noise is indeed given by

k−1∑
l=0

E
(((

A×M
d

)k−l 1√
M
Z(l)

)2)
+ E

((
Z

(k)
j

)2)
≤ k + 1 = Θ(1)

The proof of Theorem III.1 follows now directly from
Lemmas III.2 and III.4

Proof of Theorem III.1. As shown in Fig 1, the network is
divided into clusters of size M = n1/4

2c ×
n1/2

4 = Θ(n3/4).
According to lemma III.2, there are order M nodes in each
cluster with high probability. Clusters apart from each other by
distance n1/2/4 pair up to perform back-and-forth beamform-
ing. Let us assume that at the beginning (i.e. after Phase 1)
each node has a noisy observation of the same message with
an SNR = Θ(M−1) (to be verified below). Moreover, as each
cluster pair operates only a fraction of 1

2cn1/4 of the time, we
can say that during the transmission, the power P̂ available at
each node is equal to 2cn1/4P . As P = O(n−3/4), it holds
that P̂ = O(n−1/2). Applying Lemma III.4 with d = n1/2/4,
results in

RM = Ω
(
M

2
3−εP̂

)
.

As such, multi-stage back-and-forth beamforming achieves a
broadcast rate

Rn =
RM

2cn1/4
= Ω

(
M

2
3−εP

n
1
4

)
= Ω

(
n

1
2−εP

)
.

Note finally that each source node operates every n/Rn time
slots. It has therefore a transmit power of order n1/2+ε. More-
over, the distance separating any two nodes in the network is
as most

√
2n. This implies that the SNR of the received signal

at all the nodes in the network is Ω(n−1/2) = Ω(M−2/3). This
is even better than the required SNR.

IV. OPTIMALITY OF THE SCHEME

In this section, we first establish a general upper bound on
the broadcast capacity of wireless networks at low SNR, which
applies to a general fading matrix H (with proper measurement
units such that again, SNRs = P in these units).

Theorem IV.1. Let us consider a network of n nodes and let
H be the n × n matrix with hjj = 0 on the diagonal and
hjk = the fading coefficient between node j and node k in



the network. The broadcast capacity of such a network with
n nodes is then bounded by

Cn ≤ P ‖H‖2

where P is the power available per node and ‖H‖ is the
spectral norm (i.e. the largest singular value) of H .

Proof. Using the classical cut-set bound, the following upper
bound on the broadcast capacity Cn is obtained:

Cn ≤ max
pX :

E(|Xk|2)≤P, ∀1≤k≤n

min
1≤j≤n

I(X{1,...,n}\{j};Yj)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

min
1≤j≤n

log(1 + hjQXh
∗
j )

where hj = (hj1, . . . , hj,j−1, 0, hj,j+1, . . . , hjn). Using the
fact that the minimum of a set of numbers is less than its
average, the above expression can be further bounded by

Cn ≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n

n∑
j=1

log(1 + hjQXh
∗
j )

= max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n

n∑
j=1

log det(In + h∗jhjQX)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

log det

In +
1

n

n∑
j=1

h∗jhjQX


using successively the property that log det(I + AB) =
log det(I + BA) and the fact that log det(·) is concave.
Observing now that the n × n matrix H whose entries are
given by hjk = (hj)k is the one of the theorem statement
and that

∑n
j=1 h

∗
jhj = H∗H , we can rewrite, using again

log det(I +AB) = log det(I +BA):

Cn ≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

log det

(
In +

1

n
HQXH

∗
)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n
Tr(HQXH

∗)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n
Tr(QX) ‖H‖2 = P ‖H‖2

which completes the proof.

We now aim to specialize Theorem IV.1 to line-of-sight
fading, where the matrix H is given by

hjk =

0 if j = k
√
G

exp(2πirjk)

rjk
if j 6= k

(2)

The rest of the present section is devoted to proving the
proposition below which, together with Theorem IV.1, shows
the asymptotic optimality of the back-and-forth beamforming
scheme presented in Section III for two-dimensional networks
at low SNR and under LOS fading3.

3Note that in a similar context but in one-dimensional networks, Theorem
IV.1 also allows to recover the result already obtained in [7].

Proposition IV.2. Let H be the n × n matrix given by (2).
For every ε > 0, there exists a constant c > 0 such that

‖H‖2 ≤ c n 1
2+ε

with high probability as n gets large.

Analyzing directly the the asymptotic behavior of ‖H‖
reveals itself difficult. We therefore decompose our proof into
simpler subproblems. The first building block of the proof is
the following lemma, which can be viewed as a generalization
of the classical Geršgorin discs’ inequality.

Lemma IV.3. Let B be an n × n matrix decomposed into
blocks Bjk, j, k = 1, . . . ,K, each of size M ×M , with n =
K ×M . Then

‖B‖ ≤ max

{
max

1≤j≤K

K∑
k=1

‖Bjk‖, max
1≤j≤K

K∑
k=1

‖Bkj‖

}
Due to space constraints, the proof of this lemma is rele-

gated to the Appendix.
The second building block of this proof is the following

claim. In Appendix A, we provide an approximation argument
as well as some numerical simulations supporting this claim.
The rigorous proof is still work in progress.

Claim IV.4. Let H0 be the M×M channel matrix between two
square clusters of M nodes distributed uniformly at random,
each of area A = M and separated by distance d such that√
M ≤ d ≤M . Then there exists a constant c > 0 such that

‖H0‖2 ≤ c
(
M

d

)
logM

with high probability as M gets large.

The strategy for the proof of Proposition IV.2 is now
essentially the following: in order to bound ‖H‖, we divide
the matrix into smaller blocks, apply Lemma IV.3 and use the
estimate of Claim IV.4 in order to bound the off-diagonal terms
‖Hjk‖. For the diagonal terms ‖Hjj‖, we reapply Lemma IV.3
and proceed in a recursive manner, until we reach small size
blocks for which a loose estimate is sufficient to conclude.

Let us therefore decompose the network into K clusters of
M nodes each, with n = K×M . By Lemma IV.3, we obtain

‖H‖ ≤ max

{
max

1≤j≤K

K∑
k=1

‖Hjk‖, max
1≤j≤K

K∑
k=1

‖Hkj‖

}
(3)

where the n × n matrix H is decomposed into blocks Hjk,
j, k = 1, . . . ,K, with Hjk denoting the M × M channel
matrix between cluster number j and cluster number k in the
network. Let us also denote by djk the corresponding inter-
cluster distance, measured from the centers of these clusters.
According to Claim IV.4, if djk ≥ 2

√
M , then there exists a

constant c > 0 such that

‖Hjk‖2 ≤ c
(
M

djk

)
logM ≤ c

(
M

djk

)
log n

with high probability as M →∞.



Let us now fix j ∈ {1, . . . ,K} and define Rj = {1 ≤ k ≤
K : djk < 2

√
M} and Sj = {1 ≤ k ≤ K : djk ≥ 2

√
M}. By

the above inequality, we obtain
K∑
k=1

‖Hjk‖ ≤
∑
k∈Rj

‖Hjk‖+
√
c log n

∑
k∈Sj

√
M

djk

with high probability as M gets large. Observe that as there
are order l clusters at distance l

√
M from cluster j, we obtain

∑
k∈Sj

√
M

djk
'

√
K∑

l=1

l

√
M

l
√
M
'M1/4K3/4 =

n3/4

M1/2

as K = n/M . There remains to upperbound the sum over Rj .
Observe that this sum contains at most 9 terms: namely the
term k = j and the 8 terms corresponding to the 8 neighboring
clusters of cluster j. It should then be observed that for each
k ∈ Rj , ‖Hjk‖ ≤ ‖H(Rj)‖, where H(Rj) is the 9M × 9M
matrix made of the 9× 9 blocks Hi1,i2 such that i1, i2 ∈ Rj .
Finally, this leads to

K∑
k=1

‖Hjk‖ ≤ 9‖H(Rj)‖+
√
c log n

n3/4

M1/2

Using the symmetry of this bound and (3), we obtain

‖H‖ ≤ 9 max
1≤j≤K

‖H(Rj)‖+
√
c log n

n3/4

M1/2
(4)

A key observation is now the following: the 9M×9M matrix
H(Rj) has exactly the same structure as the original matrix H .
So in order to bound its norm ‖H(Rj)‖, the same technique
may be reused! This leads to the following recursive lemma.

Lemma IV.5. Assume there exist constants c > 0 and b ∈
[1/4, 1/2] such that

‖H‖ ≤
√
c log n nb

with high probability as n gets large. Then there exists a
constant c′ > 0 such that

‖H‖ ≤
√
c′ log n n

3b
4b+2

with high probability as n gets large.

Proof. The assumption made implies that there exist c > 0 and
b ∈ [1/4, 1/2] such that for every M ×M diagonal subblock
HM of the matrix H ,

‖HM‖ ≤
√
c logM M b

with high probability as M gets large. Together with (4), this
implies that

‖H‖ ≤ 9
√
c logM M b +

√
c log n

n3/4

M1/2

≤
√
c log n

(
M b +

n3/4

M1/2

)
Choosing M = dn3/(4b+2)e, we obtain

‖H‖ ≤
√
c′ log n n3b/(4b+2)

It is now easy to check that the assumption of Lemma
IV.5 holds with b = 1/2. Apply for this the slighlty modified
version of the classical Geršgorin inequality (which is nothing
but the statement of Lemma IV.3 applied to the case M = 1):

‖H‖ ≤ max

{
max
1≤j≤n

n∑
k=1

|hjk|, max
1≤j≤n

n∑
k=1

|hkj |

}
Using (2), we see that

n∑
k=1

|hjk| =
n∑
k=1

1

rjk
'

√
n∑

l=1

l
1

l
=
√
n

which implies that ‖H‖ ≤
√
n.

By applying Lemma IV.5 successively, we obtain a decreas-
ing sequence of upper bounds on ‖H‖:

‖H‖ ≤
√
c log n nb0 , ≤

√
C log n nb1 , ≤

√
c log n nb2

where the sequence b0 = 1/2, b1 = 3b0/(4b0 + 2) = 3/8,
b2 = 3b1/(4b1 + 2) = 9/28 converges to the fixed point b∗ =
1/4. This finally proves Proposition IV.2 (modulo Claim IV.4).
�

V. CONCLUSION

In this work, we characterize the broadcast capacity of
two-dimensional wireless networks at low SNR in line-of-
sight environment, which is achieved via a back-and-forth
beamforming scheme. A possible simplification of the scheme
is to reduce the time-division factor so as to have back-and-
forth transmissions directly between the two halves of the
network. The analysis of the performance of this simplified
scheme is however more delicate.
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for large one-dimensional wireless networks,” Proc. of the IEEE Int.
Symp. on Inform. Theory, pp. 1533–1537, Jul. 2012.

[8] ——, “Telescopic beamforming for large wireless networks,” Proc. of
the IEEE Int. Symp. on Inform. Theory, pp. 2771–2775, Jul. 2013.

[9] A. Merzakreeva, “Cooperation in space-limited wireless networks at low
SNR,” Ph.D. dissertation, EPFL, Switzerland, 2014.
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APPENDIX

Proof of Lemma III.2. The number of nodes in a given cluster
is the sum of n independently and identically distributed
Bernoulli random variables Bi, with P(Bi = 1) = M/n.
Hence

P

(
n∑
i=1

Bi ≥ (1 + δ)M

)

= P

(
exp

(
s

n∑
i=1

Bi

)
≥ exp(s(1 + δ)M)

)
≤ En(exp(sB1)) exp(−s(1 + δ)M)

=

(
M

n
exp(s) + 1− M

n

)n
exp(−s(1 + δ)M)

≤ exp(−M(s(1 + δ)− exp(s) + 1)) = exp(−M∆+(δ))

where ∆+(δ) = (1 + δ) log(1 + δ) − δ by choosing s =
log(1 + δ). The proof of the lower bound follows similarly by
considering the random variables −Bi. The conclusion follows
from the union bound.

Proof of Lemma III.3. The distance between transmit node k
and receive node j is given by

rjk =
√

(
√
n/4 + xj + xk)2 + (yj − yk)2),

as shown in Fig. 2, where 0 ≤ xk ≤
√
n/4 (resp. xj) and

0 ≤ yk ≤ n1/4/2c (resp. yj) denote the horizonal and the
vertical coordinates of the node k (resp. node j). Moreover,
the two clusters are separated by distance

√
n/4. It is clear

jkr

x yx
y

j
jk

k

Fig. 2.

that rjk ≥
√
n/4 + xj + xk. Moreover, we can upper bound

rjk as follows:

rjk =
√

(
√
n/4 + xj + xk)2 + (yj − yk)2)

≤
√
n/4 + xj + xk +

2(yj − yk)2√
n

≤
√
n/4 + xj + xk +

1

2c2
.

Therefore, by removing the horizontal coordinates at the

transmit nodes and for sufficiently large constant c, we obtain∣∣∣∣∣
M∑
k=1

exp(2πi(rjk − xk)/λ)

∣∣∣∣∣
=

∣∣∣∣∣e(2πi(√n/4+xj)
M∑
k=1

e(2πi(rjk−(
√
n/4+xj)−xk)/λ)

∣∣∣∣∣
=

∣∣∣∣∣
M∑
k=1

exp(2πi(rjk −
√
n/4− xj − xk)/λ)

∣∣∣∣∣
≥Re

(
M∑
k=1

exp(2πi(rjk −
√
n/4− xj − xk)/λ)

)

=

M∑
k=1

cos
(
2πi(rjk −

√
n/4− xj − xk)/λ)

)
≥M × cos

(
2πi

2λc2

)
= Θ(M).

Proof of Lemma IV.3. - Let us first consider the case where
B is a Hermitian and positive semi-definite matrix. Then
‖B‖ = λmax(B), the largest eigenvalue of B. Let now λ
be an eigenvalue of B and u be its corresponding eigenvector,
so that λu = Bu. Using the block representation of the matrix
B, we have

λuj =

K∑
k=1

Bjk uk, ∀1 ≤ j ≤ K

where uj is the jth block of the vector u. Let now j be such
that ‖uj‖ = max1≤k≤K ‖uk‖. Taking norms and using the
triangle inequality, we obtain

|λ| ‖uj‖ =

∥∥∥∥∥
K∑
k=1

Bjk uk

∥∥∥∥∥ ≤
K∑
k=1

‖Bjk uk‖

≤
K∑
k=1

‖Bjk‖ ‖uk‖ ≤
K∑
k=1

‖Bjk‖ ‖uj‖

by the assumption made above. As u 6≡ 0, ‖uj‖ > 0, so we
obtain

|λ| ≤ max
1≤j≤K

K∑
k=1

‖Bjk‖

As this inequality applies to any eigenvalue λ of B and ‖B‖ =
λmax(B), the claim is proved in this case.

- In the general case, observe first that ‖B‖2 = λmax(BB∗),
where BB∗ is Hermitian and positive semi-definite. So by
what was just proved above,

‖B‖2 = λmax(BB∗) ≤ max
1≤j≤K

K∑
k=1

‖(BB∗)jk‖



Now, (BB∗)jk =
∑K
l=1BjlB

∗
kl so

K∑
k=1

‖(BB∗)jk‖ =

K∑
k=1

∥∥∥∥∥
K∑
l=1

BjlB
∗
kl

∥∥∥∥∥
≤

K∑
k=1

K∑
l=1

‖Bjl‖ ‖Bkl‖ ≤
K∑
l=1

‖Bjl‖ max
1≤j≤K

K∑
k=1

‖Bkj‖

and we finally obtain

‖B‖2 ≤

(
max

1≤j≤K

K∑
l=1

‖Bjl‖

) (
max

1≤j≤K

K∑
k=1

‖Bkj‖

)
which implies the result, as ab ≤ max{a, b}2 for any two
positive numbers a, b.

A. Arguments supporting Claim IV.4

The strategy we propose in order to upperbound ‖H0‖2 is to
use the moments’ method, relying on the following inequality:

‖H0‖2 = λmax(H0H
∗
0 ) ≤

(
M∑
k=1

(λk(H0H
∗
0 ))`

)1/`

=
(
Tr
(
(H0H

∗
0 )`
))1/`

valid for any ` ≥ 1. So by Jensen’s inequality, we obtain that
E(‖H0‖2) ≤

(
E(Tr((H0H

∗
0 )`))

)1/`
. An approximation argu-

ment similar to that used in [10] suggests that the following
two matrices have similar spectral properties:

(H0)jk =
exp(2πirjk)

rjk
and (H ′0)jk =

exp(2πimyjzk)

d

where m = M/d and yj , zk are i.i.d.∼ U([0, 1]) random
variables. This suggests that

E(Tr((H0H
∗
0 )`)) ' E(Tr((H ′0H

′∗
0 )`))

In addition, it can be shown, following the technique developed
in [10], that there exists a constant c > 0 such that

E(Tr((H ′0H
′∗
0 )`)) ≤

(
c
M

d
logM

)`+1

for
√
M ≤ d ≤M

A slightly stronger estimate than the above is actually con-
firmed for H0 itself through numerical simulations: see Figure
3 on the next page.

Taking finally ` → ∞ leads to E(‖H0‖2) ≤ c Md logM
(modulo the approximation made). Besides, using a standard
concentration argument, one can prove that for every ε > 0,
there exists a constant c > 0 such that

P
(∣∣‖H0‖2 − E(‖H0‖2)

∣∣ > cM
1
2+ε
)
→

M→∞
0

which completes the argument.



Fig. 3. Simultaneous representation of E(Tr((H0H∗
0 )
`)) (solid curve) and (M/d)`+1 (dotted curve) for the successive values of ` = 1, 2, 3, 4, 5. On the

graphs, M = 900 and d =Mα with α ∈ [0.5, 1], whose value is represented on the horizontal axis, while the vertical scale is logarithmic.


