Proof of a conjecture by Gazeau et al. using the Gould Hopper polynomials

C. Vignat and O. Lévêque ${ }^{1}$
L.T.H.I., E.P.F.L., Lausanne, Switzerland ${ }^{\text {a) }}$

We provide here some probabilistic interpretations of the generalized binomial distributions proposed by Gazeau et al. ${ }^{1}$. In the second part, we prove the "strong conjecture" expressed in ${ }^{1}$ about the coefficients of the Taylor expansion of the exponential of a polynomial. The proof relies mainly on properties of the Gould-Hopper polynomials.

[^0]
I. TWO PROBABILISTIC APPROACHES

A. Introduction

A generalization of the classical binomial distributions is introduced by Gazeau et al. ${ }^{1}$ as follows: assuming that $\left\{x_{i}\right\}$ is a sequence of positive numbers, the generalized factorial numbers are defined as

$$
x_{n}!=\prod_{i=1}^{n} x_{i}
$$

and the generalized binomial numbers as

$$
\binom{x_{n}}{x_{k}}=\frac{x_{n}!}{x_{k}!x_{n-k}!} .
$$

These coefficients are, in turn, used to define the sequence of polynomials $\left\{p_{n}\right\}_{n \geq 0}$ as the unique solution to the equation

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{x_{n}}{x_{k}} \eta^{k} p_{n-k}(\eta)=1, \quad \forall n \in \mathbb{N}, \forall \eta \in \mathbb{R} \tag{1}
\end{equation*}
$$

The first values are

$$
p_{0}(\eta)=1, p_{1}(\eta)=1-\eta, p_{2}(\eta)=1-\frac{x_{2}}{x_{1}} \eta(1-\eta)-\eta^{2} .
$$

Assuming that the polynomials $p_{n}(\eta)$ are positive, the values

$$
\begin{equation*}
\binom{x_{n}}{x_{k}} \eta^{k} p_{n-k}(\eta) \tag{2}
\end{equation*}
$$

define a new probability distribution which is to be compared with the usual binomial distribution with parameter η, for which

$$
\binom{n}{k} \eta^{k}(1-\eta)^{n-k}
$$

is the probability of k successful events among n independent trials, each having a success probability η. Hence the new set of probabilities (2) extends the usual binomial setup, allowing to take into account correlation between these trials (see ${ }^{1}$).

The generating function

$$
\mathcal{N}(t)=\sum_{n=0}^{+\infty} \frac{t^{n}}{x_{n}!}
$$

and the generating function of the polynomials $p_{n}(\eta)$

$$
G(t, \eta)=\sum_{n=0}^{+\infty} \frac{t^{n}}{x_{n}!} p_{n}(\eta)
$$

are related as

$$
\begin{equation*}
G(t, \eta)=\frac{\mathcal{N}(t)}{\mathcal{N}(\eta t)} \tag{3}
\end{equation*}
$$

This is shown in 2 by expanding the product $\mathcal{N}(\eta t) G(t, \eta)$; however, this can also be proved by remarking that identity (1) is nothing but a convolution-type identity,

$$
\left\{\frac{1}{x_{n}!}\right\}=\left\{\frac{\eta^{n}}{x_{n}!}\right\} *\left\{\frac{p_{n}(\eta)}{x_{n}!}\right\}
$$

where the operator $*$ is the usual convolution operator that transforms two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ into the sequence

$$
(a * b)_{n}=\sum_{k} a_{k} b_{n-k}
$$

applying the convolution theorem yields $\mathcal{N}(\eta t) G(t, \eta)=\mathcal{N}(t)$.
In the two following subsections IB and IC, it is assumed that the coefficients x_{n} can be expressed as

$$
\begin{equation*}
x_{n}!=\frac{n!}{\mathbb{E} a^{n}} \tag{4}
\end{equation*}
$$

for some random variable a with positive moments $\mathbb{E} a^{n}>0$. Here, \mathbb{E} denotes the probabilistic expectation operator defined as

$$
\mathbb{E} h(a)=\int h(a) d F(a)
$$

where $F(a)$ is the probability distribution of the random variable a, and h is any function for which this integral is defined.

We deduce that the generating function

$$
\mathcal{N}(t)=\sum_{n=0}^{+\infty} \frac{t^{n}}{n!} \mathbb{E} a^{n}=\mathbb{E} \exp (a t)=\phi_{a}(t)
$$

coincides with the moment generating function ϕ_{a} of a.

B. Self-decomposability

A random variable a is self-decomposable if, for all $\eta \in[0,1]$, there exists a random variable a_{η} independent of a such that

$$
\begin{equation*}
a \sim \eta a+a_{\eta} \tag{5}
\end{equation*}
$$

where \sim denotes equality in distribution. Since, for a fixed value of η, the self-decomposability property implies that

$$
\phi_{a}(t)=\phi_{a}(\eta t) \phi_{a_{\eta}}(t),
$$

we deduce from (3) that the generating function of the polynomials $p_{n}(\eta)$ takes the form

$$
G(t, \eta)=\phi_{a_{\eta}}(t) .
$$

Expanding each generating function on both sides, we deduce the following expression for the polynomials $p_{n}(\eta)$:

$$
\begin{equation*}
p_{n}(\eta)=\frac{\mathbb{E} a_{\eta}^{n}}{\mathbb{E} a^{n}} \tag{6}
\end{equation*}
$$

Note that by (5), the moment $\mathbb{E} a_{\eta}^{n}$ is a polynomial of maximum degree n in η : this can be shown by induction. For example, taking the expectation of both sides of (5) we deduce

$$
\mathbb{E} a=\mathbb{E} \eta a+\mathbb{E} a_{\eta}
$$

so that

$$
\mathbb{E} a_{\eta}=(1-\eta) \mathbb{E} a
$$

and by (6),

$$
p_{1}(\eta)=1-\eta .
$$

As a conclusion, choosing any self-decomposable random variable with positive moments generates a sequence of factorial numbers $\left\{x_{n}!\right\}$ according to (4), from which the polynomials p_{n} can be computed according to (6).

As an example, let us consider a standard Gaussian random variable $N \sim \mathcal{N}(0,1)$ which satisfies

$$
N \sim \eta N+N_{\eta}
$$

with $N_{\eta}=\sqrt{1-\eta^{2}} N^{\prime}$ where N^{\prime} is again standard Gaussian and independent of N. Let us define the random variable

$$
a=1+\sqrt{\alpha} N
$$

so that a is self-decomposable with

$$
a_{\eta}=1-\eta+\sqrt{\alpha\left(1-\eta^{2}\right)} N^{\prime}
$$

so that, using (6),

$$
\begin{equation*}
p_{n}(\eta)=\frac{\mathbb{E}\left(1-\eta+\sqrt{\alpha\left(1-\eta^{2}\right)} N^{\prime}\right)^{n}}{\mathbb{E}(1+\sqrt{\alpha} N)^{n}} \tag{7}
\end{equation*}
$$

Since the Hermite polynomials read as moments ${ }^{8}$ (p.49)

$$
H_{n}(\eta)=2^{n} \mathbb{E}\left(\eta+\imath \frac{N}{\sqrt{2}}\right)^{n}
$$

we deduce

$$
\frac{1}{x_{n}!}=\frac{\mathbb{E}(1+\sqrt{\alpha} N)^{n}}{n!}=\frac{\left(\frac{\alpha}{2}\right)^{\frac{n}{2}} H_{n}\left(\frac{\imath}{\sqrt{2 \alpha}}\right)}{\imath^{n} n!}
$$

and

$$
p_{n}(\eta)=\left(1-\eta^{2}\right)^{\frac{n}{2}} \frac{H_{n}\left(\frac{\iota}{\sqrt{2 \alpha}} \sqrt{\frac{1-\eta}{1+\eta}}\right)}{H_{n}\left(\frac{\imath}{\sqrt{2 \alpha}}\right)} .
$$

For example,

$$
p_{2}(\eta)=(1-\eta)\left(1+\frac{\alpha-1}{\alpha+1} \eta\right) .
$$

C. Conjugated Random Variables

Another approach to the polynomials $p_{n}(\eta)$ is based on the notion of conjugated random variables, as introduced by Spitzer in ${ }^{7}$; the independent random variables a and b are conjugated if their moment generating functions φ_{a} and φ_{b} satisfy

$$
\varphi_{a}(t) \varphi_{b}(t)=1, \forall t \in \mathbb{R}
$$

We still assume that the coefficients x_{n} satisfy (4), but moreover, that the random variable a in (4) is conjugated to a random variable b. As a consequence

$$
\frac{1}{\mathcal{N}(t)}=\frac{1}{\mathbb{E} e^{a t}}=\mathbb{E} e^{b t}
$$

Defining as in ${ }^{1}$ the coefficients I_{n} by

$$
\frac{1}{\mathcal{N}(t)}=\sum_{n \geq 0}(-1)^{n} \frac{I_{n}}{x_{n}!} t^{n}
$$

we deduce

$$
I_{n}=(-1)^{n} \frac{\mathbb{E} b^{n}}{\mathbb{E} a^{n}}
$$

Since the polynomials p_{n} satisfy 1

$$
p_{n}(\eta)=\sum_{k=0}^{n}(-1)^{k}\binom{x_{n}}{x_{k}} I_{k} \eta^{k}
$$

we deduce the expression

$$
p_{n}(\eta)=\frac{\mathbb{E}(a+\eta b)^{n}}{\mathbb{E} a^{n}}
$$

As an example, it is well-known that N and $\imath N^{\prime}$ are conjugated random variables if N and N^{\prime} are independent standard Gaussian. As a consequence, $a=1+\sqrt{\alpha} N$ and $b=-1+\imath \sqrt{\alpha} N^{\prime}$ are also conjugated; the random variable

$$
a+\eta b=(1-\eta)+\sqrt{\alpha}\left(N+\imath \eta N^{\prime}\right) \sim(1-\eta)+\sqrt{\alpha} \sqrt{1-\eta^{2}} N
$$

which yields the polynomials p_{n} as in (7); hence in the Gaussian case, the self-decomposability and the conjugacy properties yield the same result.

D. The exponential of a Brownian motion

Another probabilistic approach to the coefficients x_{n} introduced in^{1} is as follows: in^{6}, Carmona et al. consider the following random variable

$$
\begin{equation*}
I=\int_{0}^{+\infty} \exp \left(-\xi_{s}\right) d s \tag{8}
\end{equation*}
$$

where the random variable ξ_{s} is called a subordinator with Laplace exponent $\Phi(t)$ defined by

$$
\mathbb{E} e^{t \xi_{s}}=e^{s \Phi(t)}
$$

Carmona et al. proved the following result:

$$
\begin{equation*}
\mathbb{E} I^{n}=\frac{n!}{\Phi(1) \ldots \Phi(n)}, n \geq 1 \tag{9}
\end{equation*}
$$

The elementary choice of a deterministic random process $\xi_{s}=s$ yields the usual binomial case

$$
\Phi(n)=n ; x_{n}=n!.
$$

A physical interpretation of the representation

$$
x_{n}=\Phi(n)
$$

remains to be found.

II. PROOF OF TWO CONJECTURES BY GAZEAU ET AL.

In 1, the authors state the following conjecture, called strong conjecture:
Conjecture 1. If $\left\{a_{i}, 2 \leq i \leq p\right\}$ are positive numbers, and with the notation x_{n} ! $=$ $\prod_{k=1}^{n} x_{k}$, then the numbers x_{i} such that

$$
\exp \left(t+\sum_{i=2}^{p} \frac{a_{i}}{i} t^{i}\right)=\sum_{n \geq 0} \frac{t^{n}}{x_{n}!}
$$

satisfy the recurrence relation

$$
x_{n+1}=\frac{n+1}{1+\sum_{i=2}^{p} a_{i} \frac{x_{n}!}{x_{n-i+1}!}} .
$$

In the following, we prove this conjecture using Gould-Hopper polynomials as defined in ${ }^{3}$ and some integral representations of these polynomials as introduced in ${ }^{4}$.

A. Preliminary Tools

In^{5}, Nieto and Truax consider the operator

$$
I_{j}=\exp \left[\left(c \frac{d}{d x}\right)^{j}\right]
$$

where c is a constant and j an integer. They remark that, for any well-behaved function f, I_{1} acts as the translation operator

$$
I_{1} f(x)=f(x+c),
$$

which can also be viewed as the probabilistic expectation

$$
I_{1} f(x)=\mathbb{E} f\left(x+c Z_{1}\right)
$$

where Z_{1} is the deterministic variable equal to 1 .
In the case $j=2$, with Z_{2} denoting a Gaussian random variable with variance $2, I_{2}$ acts as the Gauss-Weierstrass transform

$$
I_{2} f(x)=\mathbb{E} f\left(x+c Z_{2}\right) .
$$

It was shown in ${ }^{5}$ that this result can be extended to any integer value of j as follows:

Proposition 1. For any integer $j \geq 1$, there exists a complex-valued random variable Z_{j} such that the following representation

$$
\begin{equation*}
I_{j}=\mathbb{E} f\left(x+c Z_{j}\right) \tag{10}
\end{equation*}
$$

holds.

The properties of the complex-valued random variable Z_{j} were studied further in ${ }^{4}$. The only important property we need to know here is that

$$
\mathbb{E} Z_{j}^{k}=\left\{\begin{array}{ll}
0 & \text { if } k \neq 0 \quad \bmod j \\
\frac{(p j)!}{p!} & \text { if } k=p j, \quad p \in \mathbb{N}
\end{array} .\right.
$$

and that, as a consequence, its characteristic function

$$
\begin{equation*}
\mathbb{E} \exp \left(u Z_{j}\right)=\exp \left(u^{j}\right), u \geq 0 \tag{11}
\end{equation*}
$$

since a straightforward computation gives

$$
\begin{equation*}
\mathbb{E} \exp \left(u Z_{j}\right)=\sum_{k=0}^{+\infty} \frac{u^{k}}{k!} E Z_{j}^{k}=\sum_{p=0}^{+\infty} \frac{u^{p j}}{p j!} \frac{p j!}{p!}=\exp \left(u^{j}\right) . \tag{12}
\end{equation*}
$$

Definition 1. The Gould-Hopper polynomials ${ }^{3}$ (p.58) are defined as

$$
\begin{equation*}
g_{n}^{m}(x, h)=\mathbb{E}\left(x+h^{\frac{1}{m}} Z_{m}\right)^{n} \tag{13}
\end{equation*}
$$

and can be naturally generalized as

$$
\begin{equation*}
g_{n}(x, \mathbf{h})=\mathbb{E}\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)^{n} \tag{14}
\end{equation*}
$$

for any vector $\mathbf{h}=\left[h_{2}, \ldots, h_{p}\right]$ such that $\left\{h_{i} \geq 0,2 \leq i \leq p\right\}$.
Lemma 1. The Gould-Hopper polynomials (14) satisfy the following identity

$$
\begin{equation*}
g_{n}(x, \mathbf{h})=\exp \left(\sum_{i=2}^{p} h_{i} \frac{d^{i}}{d x^{i}}\right) x^{n} . \tag{15}
\end{equation*}
$$

Proof. We have

$$
\exp \left(\sum_{i=2}^{p} h_{i} \frac{d^{i}}{d x^{i}}\right) x^{n}=\prod_{i=2}^{p} \exp \left(h_{i} \frac{d^{i}}{d x^{i}}\right) x^{n}
$$

and by applying successively (10), we deduce the result.

Lemma 2. A generating function of the Gould-Hopper polynomials $g_{n}(x, \mathbf{h})$ is

$$
\sum_{n=0}^{+\infty} \frac{t^{n}}{n!} g_{n}(x, \mathbf{h})=\exp \left(x t+\sum_{i=2}^{p} h_{i} t^{i}\right)
$$

Proof. From the definition (13), we deduce, with Z_{2}, \ldots, Z_{p} as in Proposition 1,

$$
\begin{aligned}
\sum_{n=0}^{+\infty} \frac{t^{n}}{n!} g_{n}(x, \mathbf{h}) & =\mathbb{E} \exp \left(t\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)\right) \\
& =\exp (x t) \prod_{i=2}^{p} \mathbb{E} \exp \left(t h_{i}^{\frac{1}{i}} Z_{i}\right)
\end{aligned}
$$

and the result follows from (12).

From this lemma, we deduce that the factorial coefficients x_{n} ! satisfy

$$
\left(x_{n}!\right)^{-1}=\frac{g_{n}(x, \mathbf{h})}{n!} .
$$

In order to obtain a recurrence formula for the numbers x_{n}, we need the following recurrence relation on the Gould-Hopper polynomials.

Lemma 3. The Gould-Hopper polynomials (14) satisfy the recurrence identity

$$
g_{n+1}(x, \mathbf{h})=x g_{n}(x, \mathbf{h})+\sum_{k=2}^{p} k h_{k} \frac{n!}{(n-k+1)!} g_{n+1-k}(x, \mathbf{h}) .
$$

Proof. The moment representation (14) yields

$$
\begin{aligned}
g_{n+1}(x, \mathbf{h}) & =\mathbb{E}\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)^{n+1}=\mathbb{E}\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)^{n} \\
& =x \mathbb{E}\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)^{n}+\sum_{k=2}^{p} h_{k}^{\frac{1}{k}} \mathbb{E} Z_{k}\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)^{n} .
\end{aligned}
$$

The first term is identified as $x g_{n}(x, \mathbf{h})$ and the second term is computed using the following lemma.

Lemma 4. The random variables Z_{j} as defined in Proposition 1 satisfy the Stein-type identity

$$
\mathbb{E}\left(Z_{k} f\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)\right)=k h_{k}^{1-\frac{1}{k}} \mathbb{E} f^{(k-1)}\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)
$$

for any smooth function f.

Proof. The partial derivative

$$
\frac{\partial}{\partial h_{k}} \mathbb{E}\left(f\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)\right)=\mathbb{E}\left(Z_{k} f^{\prime}\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)\right) \frac{1}{k} h_{k}^{\frac{1}{k}-1}
$$

can also be computed from (15) as

$$
\begin{aligned}
\frac{\partial}{\partial h_{k}} \exp \left(\sum_{i=2}^{p} h_{i} \frac{d^{i}}{d x^{i}}\right) f(x) & =\exp \left(\sum_{i=2}^{p} h_{i} \frac{d^{i}}{d x^{i}}\right) \frac{d^{k}}{d x^{k}} f(x) \\
& =\exp \left(\sum_{i=2}^{p} h_{i} \frac{d^{i}}{d x^{i}}\right) f^{(k)}(x)=\mathbb{E} f^{(k)}\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)
\end{aligned}
$$

so that

$$
\mathbb{E}\left(Z_{k} f^{\prime}\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)\right) \frac{1}{k} h_{k}^{\frac{1}{k}-1}=\mathbb{E} f^{(k)}\left(x+\sum_{i=2}^{p} h_{i}^{\frac{1}{i}} Z_{i}\right)
$$

which is the result after replacing f^{\prime} by f in both sides. Using this result with $f(x)=x^{n}$ yields the proof of Lemma 3.

B. Proof of the conjecture

We can now prove the Conjecture 1 as follows: by Lemma 3, the quantities

$$
\left(x_{n}!\right)^{-1}=\frac{1}{n!} g_{n}(x, \mathbf{h})
$$

satisfy the recurrence

$$
(n+1)\left(x_{n+1}!\right)^{-1}=x\left(x_{n}!\right)^{-1}+\sum_{k=2}^{p} k h_{k}\left(x_{n+1-k}!\right)^{-1} .
$$

Dividing both sides by $\left(x_{n}!\right)^{-1}$, and remarking that

$$
x_{n+1}^{-1}=\frac{\left(x_{n+1}!\right)^{-1}}{\left(x_{n}!\right)^{-1}},
$$

we deduce

$$
(n+1) x_{n+1}^{-1}=x+\sum_{k=2}^{p} k h_{k} \frac{x_{n}!}{x_{n+1-k}!} .
$$

Choosing $h_{k}=\frac{a_{k}}{k}$ and $x=1$, we deduce the result.
We note that we have proved a result which is slightly more general than Conjecture 1, namely the fact that the coefficients x_{n} in the expression

$$
\exp \left(x t+\sum_{i=2}^{p} \frac{a_{i}}{i} t^{i}\right)=\sum_{n \geq 0} \frac{t^{n}}{x_{n}!}
$$

satisfy the recurrence

$$
x_{n+1}=\frac{n+1}{x+\sum_{k=2}^{p} a_{k} \frac{x_{n}!}{x_{n+1}!}} .
$$

Conjecture 1 in 1 corresponds to the case $x=1$.

REFERENCES

${ }^{1}$ H. Bergeron, E. M. F. Curado, J.-P. Gazeau, Ligia M. C. S. Rodrigues, Generating functions for generalized binomial distributions, J. Math. Phys. 53, 103304 (2012)
${ }^{2}$ E.M.F. Curado, J.-P. Gazeau, L.M.C.S. Rodrigues, On a generalization of the binomial distribution and its Poisson-like limit, J. Stat. Phys., 146, 264-280, 2011
${ }^{3}$ H. W. Gould and A. T. Hopper, Duke Math. J. 29-1, 51-63, 1962
${ }^{4}$ C. Vignat, A probabilistic approach to some results by Nieto and Truax, Journal of Mathematical Physics 51, 123505, 2010
${ }^{5}$ M. M. Nieto and D. R. Truax, Arbitrary-order Hermite generating functions for obtaining arbitrary-order coherent and squeezed states, Physics Letters A 208, 8-16, 1995
${ }^{6}$ P. Carmona, F. Petit and M. Yor, On exponential functionals of certain Lévy processes, in Exponential functionals of Brownian motion and related processes, M. Yor, Springer, 2001
${ }^{7}$ F. Spitzer, On a class of random variables, Proceedings of the American Mathematical Society , Vol. 6-3, 494-505, Jun. 1955
${ }^{8}$ S. Janson, Gaussian Hilbert Spaces, Cambridge University Press, 1997

[^0]: ${ }^{\text {a) }}$ Electronic mail: christophe.vignat@epfl.ch, olivier.leveque@epfl.ch

