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We provide here some probabilistic interpretations of the generalized binomial dis-

tributions proposed by Gazeau et al.1. In the second part, we prove the “strong

conjecture” expressed in1 about the coefficients of the Taylor expansion of the expo-

nential of a polynomial. The proof relies mainly on properties of the Gould-Hopper

polynomials.
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I. TWO PROBABILISTIC APPROACHES

A. Introduction

A generalization of the classical binomial distributions is introduced by Gazeau et al.1

as follows: assuming that {xi} is a sequence of positive numbers, the generalized factorial

numbers are defined as

xn! =
n∏

i=1

xi

and the generalized binomial numbers as

(
xn

xk

)
=

xn!

xk!xn−k!
.

These coefficients are, in turn, used to define the sequence of polynomials {pn}n≥0 as the

unique solution to the equation

n∑

k=0

(
xn

xk

)
ηkpn−k (η) = 1, ∀n ∈ N, ∀η ∈ R. (1)

The first values are

p0 (η) = 1, p1 (η) = 1− η, p2 (η) = 1− x2

x1
η (1− η)− η2.

Assuming that the polynomials pn (η) are positive, the values

(
xn

xk

)
ηkpn−k (η) (2)

define a new probability distribution which is to be compared with the usual binomial

distribution with parameter η, for which

(
n

k

)
ηk(1− η)n−k

is the probability of k successful events among n independent trials, each having a success

probability η. Hence the new set of probabilities (2) extends the usual binomial setup,

allowing to take into account correlation between these trials (see1).

The generating function

N (t) =
+∞∑

n=0

tn

xn!
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and the generating function of the polynomials pn (η)

G (t, η) =
+∞∑

n=0

tn

xn!
pn (η)

are related as

G (t, η) =
N (t)

N (ηt)
. (3)

This is shown in2 by expanding the product N (ηt)G (t, η) ; however, this can also be proved

by remarking that identity (1) is nothing but a convolution-type identity,
{

1

xn!

}
=

{
ηn

xn!

}
∗
{
pn (η)

xn!

}
,

where the operator ∗ is the usual convolution operator that transforms two sequences {an}

and {bn} into the sequence

(a ∗ b)n =
∑

k

akbn−k;

applying the convolution theorem yields N (ηt)G (t, η) = N (t) .

In the two following subsections I B and IC, it is assumed that the coefficients xn can be

expressed as

xn! =
n!

Ean (4)

for some random variable a with positive moments Ean > 0. Here, E denotes the proba-

bilistic expectation operator defined as

Eh(a) =
∫

h(a)dF (a)

where F (a) is the probability distribution of the random variable a, and h is any function

for which this integral is defined.

We deduce that the generating function

N (t) =
+∞∑

n=0

tn

n!
Ean = E exp (at) = φa (t)

coincides with the moment generating function φa of a.

B. Self-decomposability

A random variable a is self-decomposable if, for all η ∈ [0, 1] , there exists a random

variable aη independent of a such that

a ∼ ηa+ aη (5)
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where∼ denotes equality in distribution. Since, for a fixed value of η, the self-decomposability

property implies that

φa (t) = φa (ηt)φaη (t) ,

we deduce from (3) that the generating function of the polynomials pn (η) takes the form

G (t, η) = φaη (t) .

Expanding each generating function on both sides, we deduce the following expression for

the polynomials pn (η) :

pn (η) =
Eanη
Ean . (6)

Note that by (5), the moment Eanη is a polynomial of maximum degree n in η : this can be

shown by induction. For example, taking the expectation of both sides of (5) we deduce

Ea = Eηa+ Eaη

so that

Eaη = (1− η)Ea

and by (6),

p1 (η) = 1− η.

As a conclusion, choosing any self-decomposable random variable with positive moments

generates a sequence of factorial numbers {xn!} according to (4), from which the polynomials

pn can be computed according to (6).

As an example, let us consider a standard Gaussian random variable N ∼ N (0, 1) which

satisfies

N ∼ ηN +Nη

with Nη =
√

1− η2N ′ where N ′ is again standard Gaussian and independent of N. Let us

define the random variable

a = 1 +
√
αN

so that a is self-decomposable with

aη = 1− η +
√
α (1− η2)N ′
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so that, using (6),

pn (η) =
E
(
1− η +

√
α (1− η2)N ′

)n

E (1 +
√
αN)

n . (7)

Since the Hermite polynomials read as moments8 (p.49)

Hn (η) = 2nE
(
η + ı

N√
2

)n

we deduce

1

xn!
=

E (1 +
√
αN)

n

n!
=

(
α
2

)n
2 Hn

(
ı√
2α

)

ınn!

and

pn (η) =
(
1− η2

)n
2

Hn

(
ı√
2α

√
1−η
1+η

)

Hn

(
ı√
2α

) .

For example,

p2 (η) = (1− η)

(
1 +

α− 1

α + 1
η

)
.

C. Conjugated Random Variables

Another approach to the polynomials pn (η) is based on the notion of conjugated ran-

dom variables, as introduced by Spitzer in7; the independent random variables a and b are

conjugated if their moment generating functions ϕa and ϕb satisfy

ϕa (t)ϕb (t) = 1, ∀t ∈ R.

We still assume that the coefficients xn satisfy (4), but moreover, that the random variable

a in (4) is conjugated to a random variable b. As a consequence

1

N (t)
=

1

Eeat = Eebt.

Defining as in1 the coefficients In by

1

N (t)
=

∑

n≥0

(−1)n
In
xn!

tn,

we deduce

In = (−1)n
Ebn
Ean .
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Since the polynomials pn satisfy1

pn (η) =
n∑

k=0

(−1)k
(
xn

xk

)
Ikη

k,

we deduce the expression

pn (η) =
E (a+ ηb)n

Ean .

As an example, it is well-known that N and ıN ′ are conjugated random variables if N and

N ′ are independent standard Gaussian. As a consequence, a = 1+
√
αN and b = −1+ı

√
αN ′

are also conjugated; the random variable

a+ ηb = (1− η) +
√
α (N + ıηN ′) ∼ (1− η) +

√
α
√
1− η2N

which yields the polynomials pn as in (7); hence in the Gaussian case, the self-decomposability

and the conjugacy properties yield the same result.

D. The exponential of a Brownian motion

Another probabilistic approach to the coefficients xn introduced in1 is as follows: in6,

Carmona et al. consider the following random variable

I =

∫ +∞

0

exp (−ξs) ds (8)

where the random variable ξs is called a subordinator with Laplace exponent Φ (t) defined

by

Eetξs = esΦ(t).

Carmona et al. proved the following result:

EIn =
n!

Φ (1) . . .Φ (n)
, n ≥ 1. (9)

The elementary choice of a deterministic random process ξs = s yields the usual binomial

case

Φ (n) = n; xn = n!.

A physical interpretation of the representation

xn = Φ (n)

remains to be found.
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II. PROOF OF TWO CONJECTURES BY GAZEAU ET AL.

In1, the authors state the following conjecture, called strong conjecture:

Conjecture 1. If {ai, 2 ≤ i ≤ p} are positive numbers, and with the notation xn! =
∏n

k=1 xk, then the numbers xi such that

exp

(
t+

p∑

i=2

ai
i
ti
)

=
∑

n≥0

tn

xn!

satisfy the recurrence relation

xn+1 =
n+ 1

1 +
∑p

i=2 ai
xn!

xn−i+1!

.

In the following, we prove this conjecture using Gould-Hopper polynomials as defined in3

and some integral representations of these polynomials as introduced in4.

A. Preliminary Tools

In5, Nieto and Truax consider the operator

Ij = exp

[(
c
d

dx

)j
]

where c is a constant and j an integer. They remark that, for any well-behaved function f ,

I1 acts as the translation operator

I1f (x) = f (x+ c) ,

which can also be viewed as the probabilistic expectation

I1f (x) = Ef (x+ cZ1)

where Z1 is the deterministic variable equal to 1.

In the case j = 2, with Z2 denoting a Gaussian random variable with variance 2, I2 acts

as the Gauss-Weierstrass transform

I2f (x) = Ef (x+ cZ2) .

It was shown in5 that this result can be extended to any integer value of j as follows:
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Proposition 1. For any integer j ≥ 1, there exists a complex-valued random variable Zj

such that the following representation

Ij = Ef (x+ cZj) (10)

holds.

The properties of the complex-valued random variable Zj were studied further in4. The

only important property we need to know here is that

EZk
j =






0 if k )= 0 mod j

(pj)!
p! if k = pj, p ∈ N

.

and that, as a consequence, its characteristic function

E exp (uZj) = exp
(
uj
)
, u ≥ 0, (11)

since a straightforward computation gives

E exp (uZj) =
+∞∑

k=0

uk

k!
EZk

j =
+∞∑

p=0

upj

pj!

pj!

p!
= exp

(
uj
)
. (12)

Definition 1. The Gould-Hopper polynomials3 (p.58) are defined as

gmn (x, h) = E
(
x+ h

1
mZm

)n

(13)

and can be naturally generalized as

gn (x,h) = E
(
x+

p∑

i=2

h
1
i
i Zi

)n

(14)

for any vector h = [h2, . . . , hp] such that {hi ≥ 0, 2 ≤ i ≤ p} .

Lemma 1. The Gould-Hopper polynomials (14) satisfy the following identity

gn (x,h) = exp

(
p∑

i=2

hi
di

dxi

)
xn. (15)

Proof. We have

exp

(
p∑

i=2

hi
di

dxi

)
xn =

p∏

i=2

exp

(
hi

di

dxi

)
xn

and by applying successively (10), we deduce the result.
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Lemma 2. A generating function of the Gould-Hopper polynomials gn (x,h) is

+∞∑

n=0

tn

n!
gn (x,h) = exp

(
xt+

p∑

i=2

hit
i

)
.

Proof. From the definition (13), we deduce, with Z2, . . . , Zp as in Proposition 1,

+∞∑

n=0

tn

n!
gn (x,h) = E exp

(
t

(
x+

p∑

i=2

h
1
i
i Zi

))

= exp (xt)
p∏

i=2

E exp
(
th

1
i
i Zi

)

and the result follows from (12).

From this lemma, we deduce that the factorial coefficients xn! satisfy

(xn!)
−1 =

gn (x,h)

n!
.

In order to obtain a recurrence formula for the numbers xn, we need the following recurrence

relation on the Gould-Hopper polynomials.

Lemma 3. The Gould-Hopper polynomials (14) satisfy the recurrence identity

gn+1 (x,h) = xgn (x,h) +
p∑

k=2

khk
n!

(n− k + 1)!
gn+1−k (x,h) .

Proof. The moment representation (14) yields

gn+1 (x,h) = E
(
x+

p∑

i=2

h
1
i
i Zi

)n+1

= E
(
x+

p∑

i=2

h
1
i
i Zi

)(
x+

p∑

i=2

h
1
i
i Zi

)n

= xE
(
x+

p∑

i=2

h
1
i
i Zi

)n

+
p∑

k=2

h
1
k
k EZk

(
x+

p∑

i=2

h
1
i
i Zi

)n

.

The first term is identified as xgn (x,h) and the second term is computed using the following

lemma.

Lemma 4. The random variables Zj as defined in Proposition 1 satisfy the Stein-type iden-

tity

E
(
Zkf

(
x+

p∑

i=2

h
1
i
i Zi

))
= kh

1− 1
k

k Ef (k−1)

(
x+

p∑

i=2

h
1
i
i Zi

)

for any smooth function f.
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Proof. The partial derivative

∂

∂hk
E
(
f

(
x+

p∑

i=2

h
1
i
i Zi

))
= E

(
Zkf

′

(
x+

p∑

i=2

h
1
i
i Zi

))
1

k
h

1
k−1
k

can also be computed from (15) as

∂

∂hk
exp

(
p∑

i=2

hi
di

dxi

)
f (x) = exp

(
p∑

i=2

hi
di

dxi

)
dk

dxk
f (x)

= exp

(
p∑

i=2

hi
di

dxi

)
f (k) (x) = Ef (k)

(
x+

p∑

i=2

h
1
i
i Zi

)

so that

E
(
Zkf

′

(
x+

p∑

i=2

h
1
i
i Zi

))
1

k
h

1
k−1
k = Ef (k)

(
x+

p∑

i=2

h
1
i
i Zi

)

which is the result after replacing f ′ by f in both sides. Using this result with f (x) = xn

yields the proof of Lemma 3.

B. Proof of the conjecture

We can now prove the Conjecture 1 as follows: by Lemma 3, the quantities

(xn!)
−1 =

1

n!
gn (x,h)

satisfy the recurrence

(n+ 1) (xn+1!)
−1 = x (xn!)

−1 +
p∑

k=2

khk (xn+1−k!)
−1 .

Dividing both sides by (xn!)
−1 , and remarking that

x−1
n+1 =

(xn+1!)
−1

(xn!)
−1 ,

we deduce

(n+ 1) x−1
n+1 = x+

p∑

k=2

khk
xn!

xn+1−k!
.

Choosing hk =
ak
k and x = 1, we deduce the result.

We note that we have proved a result which is slightly more general than Conjecture 1,

namely the fact that the coefficients xn in the expression

exp

(
xt+

p∑

i=2

ai
i
ti
)

=
∑

n≥0

tn

xn!
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satisfy the recurrence

xn+1 =
n+ 1

x+
∑p

k=2 ak
xn!

xn+1−k!

.

Conjecture 1 in1 corresponds to the case x = 1.
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