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Abstract

We derive an information theoretic upper bound on the rate per communication pair in
a large ad hoc wireless network. We show that under minimal conditions on the attenuation
due to the environment and for networks with a constant density of users, this rate tends to
zero as the number of users gets large.

1 Introduction

The study of the feasability of large ad hoc wireless networks from an information theoretic point
of view is a subject of both mathematical and practical interest. Various techniques, ranging
from percolation theory to random matrix theory, can be used in order to tackle this problem.
An important issue is the evaluation of the capacity of such networks. In the seminal work of
P. Gupta and P. R. Kumar [3], it has been shown that under some assumptions, the transport
capacity of such (planar) networks scales with

√
nA where n is the number of users and A is the

area occupied by the network. Even if the assumptions made in [3] are quite realistic regarding
state of the art wireless communications, the question remains whether the result obtained in
there, more precisely the upper bound, can be confirmed from an information theoretic point of
view, that is, without any particular assumption on the way communication is established. A
first confirmation of this result from an information theoretic point of view has been obtained in
[6]. It was however assumed in there that signals are strongly attenuated over distance (power
decay of order 1

rα with α > 6).

The fact that the transport capacity scales with
√
nA implies in particular that if there are

order n pairs in the network willing to establish communication at a common rate R and if we
assume that the pairs are chosen at random, without any consideration on the users’ respective
locations (so the average distance between paired users is of order

√
A), then the maximum

achievable R decreases like 1√
n

as n gets large. Our aim in the present paper is to give an

information theoretic proof of the fact that in this particular scenario (and for a uniformly
distributed network with a constant density of users), the maximum achievable R tends to zero
under a minimal assumption on the attenuation function (power decay of order 1

rα with α > 2).

∗The work presented in this paper was supported in part by the National Competence Center in Research
on Mobile Information and Communication Systems (NCCR-MICS), a center supported by the Swiss National
Science Foundation under grant number 5005-67322.
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We would like to point out that our result does not say anything about the transport capacity
of the network in general. Moreover, our upper bound is not as tight as the 1√

n
behaviour found

in [3, 6] (under stronger assumptions).

Our results apply to d-dimensional networks in general (see also [4] for an extension of the
results of [3] to three dimensions). We also consider the model where an additional exponential
factor is present in the attenuation function (as also considered in [6]). Section 2 is devoted to
the study of uniformly distributed networks. In Section 3, we consider the particular situation
of a “regular” network, where the users are placed on a grid.

2 Uniformly distributed networks

The network we consider consists of an even number n of users independently and uniformly
distributed in the d-dimensional region

Ωn = [−n1/d, n1/d]× [0, n1/d]d−1

of volume |Ωn| = 2n, therefore expanding with the number of users (when d = 1, Ωn is the
interval [−n, n] and when d = 2, Ωn is the rectangle [−√n,√n]× [0,

√
n]) 1. Note that because

of this assumption of an “extended” network, the density of users remains constant as n increases.

Let us then divide these users into two arbitrary groups of n/2 users and assume that each
user of the first group wishes to establish (one way) communication with a correspondent chosen
at random in the second group (without any consideration on their respective locations) 2. We
assume that there is no fixed infrastructure that helps relaying communications, but we also
assume no restriction on the kind of help the users can give to each other; in particular, any user
may act as a relay for the communicating pairs. We moreover assume that in order to establish
communication, each user has a device of power P which transmits with attenuation g(r) over
a distance r, where g is the function given by 3

g(r) =
e−βr/2

rα/2
, r > 0. (1)

Note that g describes the decay of the amplitude of the electric field and not that of the power.
This model of decay is accepted as a standard one in wireless communications. The case α = 2
and β = 0 describes the decrease of the electric field in the empty space. Because of cancelling
reflections, the coefficient α is usually taken to be greater than 2, whereas a non-zero exponential
factor β takes into account absorption in the air.

Let now R be the the maximum achievable rate per communication pair in the network.
What we prove in the following is that R tends almost surely to zero as n gets large, under the
assumption that either α > d ∨ 2(d − 2) = max(d, 2(d − 2)) or β > 0. In the particular case

d = 2, our result says more precisely that R ≤ K n1/α logn√
n

when α > 2 and β = 0, and that

1The fact that the region Ωn is rectangular, and not square, is of little importance since we are only interested
in the asymptotic behaviour of the network capacity.

2It could be raised here that this situation does not take place in a real network; however, the argument
developed hereafter holds even if only a constant fraction of the users wish to establish communication without
any consideration on their respective locations.

3One could raise again an objection here: without any constraint on the minimum distance between users, the
above attenuation function may take arbitrarily large values. Because of our assumption of “extended” network
however, points are likely to be sufficiently far apart form each other.
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R ≤ K (logn)2√
n

when β > 0 (see theorems 2.5 and 2.10). We therefore see that in the case β = 0,

the bound obtained is quite distant from the 1√
n
bound of [3], especially when α is small.

As a first step, we divide the domain Ωn into two equal parts separated by the hyperplane
x(1) = 0, where x(i) denotes the ith coordinate of x ∈ Ωn. Statistically, there are about n/2
users on the left-hand side of the domain; moreover, about half of these are transmitters and
half of these transmitters wish to establish communication with a receiver on the right-hand
side of the domain. In total, there are therefore about n/8 communications which need to cross
the imaginary boundary from left to right, and it is easy to see that as n gets large, deviations
from this idealized situation are of order much smaller than n with high probability.

In order to obtain an upper bound on R, we make a series of optimistic assumptions: we first
assume that only the above n/8+o(n) communications need to be established. We then introduce
n additional “mirror” user that help relaying communications (where the mirror location of
x ∈ Ωn is x̃ = (−x(1), x(2), . . . , x(n))). We see that there are now exactly n users on each side of
the domain, which are moreover independently and uniformly distributed on each side. There
is however a more important reason for introducing these “mirror” users: it brings a helpful
symmetry in the problem, as we shall see below (remark 2.1). Besides, one has to keep in mind
that our ultimate goal is to show an asymptotic result on the capacity in terms of the number
of users. Therefore, doubling the number of users cannot harm by more than a factor 2.

Let us further assume that all the users on the left-hand side can share instantaneous in-
formation and even distribute their power resources among themselves in order to establish
communication in the most efficient way with the users on the right-hand side, which in turn are
able to distribute the received information instantaneously among themselves. We also assume
that the user locations are known to all users. Following the argument of [2, Thm 14.10.1], we
obtain the following upper bound on the sum of the rates of communications going from left to
right:

∑

x∈S,y∈Sc
Rxy ≤ I(XS ;YSc |XSc),

where S denotes the set of users’ locations on the left-hand side of Ωn and Sc those on the right-
hand side; XS = (Xx, x ∈ S) denotes the messages sent by the users in S, YSc those received by
the users in Sc and XSc those sent back by the users in Sc (which takes into account the effect
induced by some eventual feedback).

In our setting, we have the following formal relation between XS and YSc :

YSc = GXS + Z, (2)

where G = (Gxy, x ∈ S, y ∈ Sc) is the matrix whose entries are given by Gxy = g(|x−y|), with g
given by (1), and Z is independent additive white Gaussian noise. From this relation, we deduce
that

I(XS ;YSc |XSc) = H(GXS + Z |XSc)−H(GXS + Z |XS , XSc)

= H(GXS + Z |XSc)−H(Z)

≤ H(GXS + Z)−H(Z)

= H(GXS + Z)−H(GXS + Z |XS) = I(XS ;YSc),

where we have used the fact that Z is independent from the other variables and that conditioning
reduces entropy.

From now on, we will adopt the following notations (since we know that there are exactly n
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users on each side):

S = {x1, . . . , xn}, Sc = {y1, . . . , yn}, XS = (X1, . . . , Xn), YSc = (Y1, . . . , Yn),

where we assume that (xi, yi) forms a pair of “mirror” users for each i ∈ {1, . . . , n}. With this
notation, the channel model (2) becomes:

Yj =

n
∑

i=1

Gij Xi + Zj , j = 1, . . . , n,

where Gij = g(|xi − yj |) and Z = (Z1, . . . , Zn) is a vector of independent circularly symmetric
complex Gaussian random variables with unit variance. Under the power constraint

n
∑

i=1

E(|Xi|2) ≤ nP,

(arising from the fact that the users are assumed to be able to distribute their power re-
sources among themselves), the mutual information I(X1, . . . , Xn;Y1, . . . , Yn) is maximum when
(X1, . . . , Xn) is a jointly Gaussian vector with some covariance matrix Q, so

n
∑

i,j=1

Rij ≤ max
pX :

∑n
i=1 E(|Xi|2)≤nP

I(X1, . . . , Xn;Y1, . . . , Yn)

= max
Q≥0,T r(Q)≤nP

log det(I +GQG†)

By unitary transformation of the matrix G (see [9]), one finally obtains

n
∑

i,j=1

Rij ≤ max
Pk≥0:

∑n
k=1 Pk≤nP

n
∑

k=1

log(1 + Pk λ
2
k) =: Cn, (3)

where λk are the singular values of the matrix G (in decreasing order and repeated by multi-
plicity). Since about n/8 communications need to be established from left to right and since
we wish to achieve the same common rate R on all these communications, we deduce from the
above inequality that in order to prove that R tends to zero as n gets large, it is sufficient to
prove that the capacity Cn defined in (3) grows sublinearly in n, that is, decreases to zero when
divided by n.

Note finally that y
(1)
i = −x(1)

i and y
(k)
i = x

(k)
i for k ∈ {2, . . . , d}, so the matrixG is symmetric;

it has therefore real eigenvalues µk and the singular values λk are equal to |µk|.

2.1 No absorption case

In this section, we assume that β = 0, that is, there is no absorption which creates an exponential
decay of the power over the distance. It is shown in Appendix A that if

g(r) =
1

rα/2
, r > 0,

and α > 2(d − 2) ∨ 0, then G is a non-negative (definite) matrix, so its eigenvalues µk are also
non-negative (and equal to λk).
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We can therefore obtain the following successive upper bounds on Cn. Noting first that
Pk ≤ nP for all k, we obtain

Cn ≤
n
∑

k=1

log(1 + nPµ2
k).

Since µk ≥ 0, we further obtain

Cn ≤
n
∑

k=1

log((1 +
√
nP µk)

2) = 2
n
∑

k=1

log(1 +
√
nP µk).

The computation of the asymptotic behaviour of the eigenvalues µk is not an easy task. We are
therefore going to use the following majorization argument: from [7, Thm 9.B.1, p. 218], we
know that the eigenvalues µk majorize the diagonal elements of G, that is,

l
∑

k=1

µk ≥
l
∑

k=1

Gkk, ∀l ∈ {1, . . . , n− 1}, (4)

and
n
∑

k=1

µk =

n
∑

k=1

Gkk. (5)

On the other hand, by [7, Prop. 3.C.1, p. 64], we know that the function

(x1, . . . , xn) 7→
n
∑

k=1

log(1 +
√
nP xk)

is Schur-concave (recall [7, Def. 3.A.1, p. 54]: a Schur-concave funtion is a function f : Rn → R
such that f(x1, . . . , xn) ≤ f(y1, . . . , yn) as long as (x1, . . . , xn) majorizes (y1, . . . , yn) in the sense
defined above). We therefore conclude that

Cn ≤ 2
n
∑

k=1

log(1 +
√
nP Gkk).

Moreover, Gkk = g(|xk − yk|) = g
(

2|x(1)
k |
)

, so

Cn ≤ D0
n := 2

n
∑

k=1

log
(

1 +
√
nP g

(

2|x(1)
k |
))

. (6)

Remark 2.1. Note that the above majorization argument does not work in general if we replace
the eigenvalues µk by the singular values λk: this is because the singular values of the matrix G
satisfy (4) but not (5). This explains why we need G to be non-negative (i.e., the assumption
of mirror users).

In order to obtain an upper bound on the average behaviour of D0
n, we need the following

technical lemma.

Lemma 2.2. For any C, p > 0 and α > 1, there exists a constant K > 0 such that for all
sufficiently large n, we have

∫ n

0
dx log

(

1 +
Cnp

xα

)

≤ K n
p
α
∧1 log n,

where a ∧ b denotes the minimum value of a and b.
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Proof. Let us define x0 = n
p
α
∧1 and compute

∫ n

0
dx log

(

1 +
Cnp

xα

)

=

∫ 1

0
dx log

(

1 +
Cnp

xα

)

+

∫ x0

1
dx log

(

1 +
Cnp

xα

)

+

∫ n

x0

dx log

(

1 +
Cnp

xα

)

≤
∫ 1

0
dx log

(

1 + Cnp

xα

)

+

∫ x0

1
dx log (1 + Cnp) +

∫ n

x0

dx

(

Cnp

xα

)

= log (1 + Cnp) + α

∫ 1

0
dx log

(

1

x

)

+ (x0 − 1) log (1 + Cnp) +
Cnp

α− 1

(

1

xα−1
0

− 1

nα−1

)

.

Replacing x0 by its value and checking separately the two cases p
α < 1 and p

α ≥ 1 leads then to
the conclusion.

This lemma allows us to deduce the following.

Proposition 2.3. There exists a constant K > 0 (possibly depending on α) such that for all
sufficiently large n,

E(D0
n) ≤ Kn

d−1
d

+( 1
α
∧ 1
d
) log n,

so E(D0
n) is sublinear in n if α > d.

Proof. Set m = n
1
d (which needs not be an integer). First note that

E(D0
n) = n E

(

log
(

1 +
√
Png

(

2|x(1)
1 |
)))

= md−1

∫ m

0
dx log

(

1 +

√
P md/2

(2x)α/2

)

.

So we obtain by Lemma 2.2 that for sufficiently large n,

E(D0
n) ≤ K md−1 m( d

α
∧1) logm =

K

d
n
d−1
d

+( 1
α
∧ 1
d
) log n,

and this concludes the proof.

There remains to prove that the sublinear behaviour of D0
n in n takes place almost surely.

We prove this by showing that the deviation of D0
n from its average is indeed almost surely

sublinear in n.

Proposition 2.4. Fix α > 0. Then for any ε > 0, we have

lim
n→∞

|D0
n − E(D0

n)|
n

1
2
+ε

= 0, almost surely.

Proof. What we are going to use here is Hoeffding’s inequality (see [5]). We first note that D0
n

is the sum of n independent random variables

dk = log
(

1 +
√
nP g

(

2|x(1)
k |
))

.

However, each of these random variables is unbounded, since |x(1)
k | can be arbitrarily close to

zero. We are going to show that with a certain scaling factor, they are all bounded away from
zero with high probability as n goes to infinity, and that under the condition that they are
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effectively bounded away from zero, D0
n concentrates around its mean with a deviation of order

less than n
1
2
+ε for any ε > 0. Let us then fix η > 0 and compute the probability that any of

the |x(1)
k | is smaller than n−

d−1
d
−η. Denoting by xmin the vector xk whose first component is

minimal (in absolute value), we obtain by the union bound that

P
(

|x(1)
min| < n−

d−1
d
−η
)

≤ n P
(

|x(1)
1 | < n−

d−1
d
−η
)

= n
n−

d−1
d
−η

n
1
d

= n−η,

and this probability is arbitrarily small for any η > 0. On the other hand, under the condition

that |x(1)
min| ≥ n−

d−1
d
−η, the |x(1)

k | remain i.i.d. random variables, as the following calculation

shows. Let t1, . . . , tn ∈ [n−
d−1
d
−η, n]; we then have

P
(

|x(1)
1 | ≥ t1, . . . , |x(1)

n | ≥ tn

∣

∣

∣
|x(1)

min| ≥ n−
d−1
d
−η
)

=
P(|x(1)

1 | ≥ t1, . . . , |x(1)
n | ≥ tn)

P(|x(1)
1 | ≥ n−

d−1
d
−η, . . . , |x(1)

n | ≥ n−
d−1
d
−η)

=
n
∏

k=1

P(|x(1)
k | ≥ tk)

P(|x(1)
k | ≥ n−

d−1
d
−η)

=
n
∏

k=1

P
(

|x(1)
k | ≥ tk

∣

∣

∣
|x(1)

k | ≥ n−
d−1
d
−η
)

=
n
∏

k=1

P
(

|x(1)
k | ≥ tk

∣

∣

∣
|x(1)

min| ≥ n−
d−1
d
−η
)

,

since the x
(1)
k are independent. Moreover, under the condition that |x(1)

min| ≥ n−
d−1
d
−η, the

random variables dk are bounded:

|dk| ≤ log
(

1 +
√
nP g

(

2n−
d−1
d
−η
))

≤ log
(

1 +
√
P n

1
2
+α

2
( d−1
d

+η)
)

≤ C1(η) + C2(η) log n.

We can therefore apply Hoeffding’s inequality [5] which states that for all λ > 0 and sufficiently
large n,

P
(

|D0
n − E(D0

n)| ≥ λ
√
n
∣

∣

∣
|x(1)

min| ≥ n−
d−1
d
−η
)

≤ 2 exp

(

− 2λ2

(C1(η) + C2(η) log n)2

)

,

and replacing λ by λnε in the preceding inequality gives

P
(

|D0
n − E(D0

n)| ≥ λn
1
2
+ε
∣

∣

∣ |x(1)
min| ≥ n−

d−1
d
−η
)

≤ 2 exp

(

− 2λ2 n2ε

(C1(η) + C2(η) log n)2

)

.

In conclusion, we have

P
(

|D0
n − E(D0

n)| ≥ λn
1
2
+ε
)

≤ P
(

|x(1)
min| < n−

d−1
d
−η
)

+ P
(

|D0
n − E(D0

n)| ≥ λn
1
2
+ε
∣

∣

∣ |x(1)
min| ≥ n−

d−1
d
−η
)

≤ n−η + 2 exp

(

− 2λ2 n2ε

(C1(η) + C2(η) log n)2

)

.

Choosing η > 1, we therefore obtain that

∑

n≥1

P
(

|D0
n − E(D0

n)| ≥ λn
1
2
+ε
)

<∞,

so by the Borel-Cantelli lemma, we have for any ε > 0 and λ > 0,

P
( |D0

n − E(D0
n)|

n
1
2
+ε

≥ λ infinitely often

)

= 0,

which implies the result.
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Let us summarize the results obtained in the following theorem.

Theorem 2.5. If α > d∨ 2(d− 2) (that is, α > d when d ≤ 4) and there is no absorption (that
is, β = 0), then the maximum achievable rate R per communication pair in a large uniformly
distributed network decreases almost surely to zero as the number of users gets large. More
precisely, under the above assumption, there exist a constant K > 0 such that for sufficiently
large n,

R ≤ K
log n

n
1
d
− 1
α

a.s.

Note that the last estimate comes from the fact that R ≤ D0
n

n/8 and propositions 2.3 and 2.4.

Remark 2.6. As a by-product, the above analysis also gives an upper bound on the maximal
amount of information that can be carried from one part of the network to the other. This
amount is bounded above by Cn, which in turn is bounded above by K n(d−1)/d logn, almost
surely for sufficiently large n.

2.2 Case with absorption

In the following, we assume that β > 0. Starting back from expression (3), we follow the lines
of the preceding section: using the fact that Pk ≤ nP , we have

Cn ≤
n
∑

k=1

log(1 + nPλ2
k).

Now, since λ2
k are the eigenvalues of the matrix GG†, repeating the majorization argument of

Section 2.1 gives

Cn ≤
n
∑

k=1

log(1 + nP (GG†)kk)

Moreover, since g is decreasing, we have

(GG†)kk =
n
∑

l=1

|Gkl|2 =
n
∑

l=1

g(|xk − yl|)2 ≤ n g(|x(1)
k |)2,

So we finally obtain:

Cn ≤ Dn :=

n
∑

k=1

log
(

1 + Pn2g(|x(1)
k |)2

)

. (7)

We need now the following technical lemma, similar to Lemma 2.2.

Lemma 2.7. For any C, p, α, β > 0, there exists a constant K > 0 such that for all sufficiently
large n, we have

∫ n

0
dx log

(

1 +
Cnpe−βx

xα

)

≤ K (log n)2.

Proof. The proof follows the lines of that of Lemma 2.2; set x0 = p
β log n (which is smaller than
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n for sufficiently large n) and compute

∫ n

0
dx log

(

1 +
Cnpe−βx

xα

)

=

∫ 1

0
dx log

(

1 +
Cnpe−βx

xα

)

+

∫ x0

1
dx log

(

1 +
Cnpe−βx

xα

)

+

∫ n

x0

dx log

(

1 +
Cnpe−βx

xα

)

≤
∫ 1

0
dx log

(

1 + Cnp

xα

)

+

∫ x0

1
dx log (1 + Cnp) +

∫ n

x0

dx Cnp e−βx

= log (1 + Cnp) + α

∫ 1

0
dx log

(

1

x

)

+ (x0 − 1) log (1 + Cnp) +
Cnp

β

(

e−βx0 − e−βn
)

.

Replacing x0 by its value proves then the lemma.

From this, we deduce the following upper bound on the average behaviour of Dn.

Proposition 2.8. There exists a constant K > 0 (possibly depending on α or β) such that for
all sufficiently large n,

E(Dn) ≤ Kn
d−1
d (log n)2,

so E(Dn) is sublinear in n.

Proof. Set m = n
1
d . First note that

E(Dn) = n E
(

log
(

1 + Pn2g(|x(1)
1 |)2

))

= md−1

∫ m

0
dx log

(

1 +
Pm2de−βx

xα

)

.

So we obtain by Lemma 2.7 that for sufficiently large n,

E(Dn) ≤ K md−1 (logm)2 =
K

d2
n
d−1
d (log n)2,

and this concludes the proof.

As before, there remains to prove that the sublinear behaviour of Dn in n takes place almost
surely. We prove this using the following concentration result.

Proposition 2.9. Fix α > 0, β > 0. Then for any ε > 0, we have

lim
n→∞

|Dn − E(Dn)|
n

1
2
+ε

= 0, almost surely.

Proof. The proof is identical to that of Proposition 2.4, so we do not reproduce it here.

Let us summarize the result obtained in the following theorem.

Theorem 2.10. If there is absorption (that is, β > 0), then the maximum achievable rate R
per communication pair in a large uniformly distributed network decreases almost surely to zero
as the number of users gets large. More precisely, under the above assumption, there exist a
constant K > 0 such that for sufficiently large n,

R ≤ K
(log n)2

n
1
d

a.s.

Note that the last estimate comes from the fact that R ≤ Dn
n/8 and propositions 2.8 and 2.9.
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3 Regular networks

Let us now consider the case where the network is a regular network in the sense that the users
are placed on a regular grid inside Ωn. For simplicity, we will assume that there are n users on
each side and that n = md for some integer m. The positions of the users on the left and the
right-hand side of the region Ωn are therefore given by

xk = (−k1 + 0.5, k2 − 0.5, . . . , kd − 0.5) and yl = (l1 − 0.5, l2 − 0.5, . . . , ld − 0.5),

where k = (k1, . . . , kd) and l = (l1, . . . , ld) denote from now on multi-indices ranging from
(1, . . . , 1) to (m, . . . ,m). For notational simplicity, we will go on writing k = 1, . . . , n for an
enumeration of all the multi-indices.

We consider that these 2n users wish to form n communication pairs, choosing their corre-
spondent at random. An argument similar to that developed in the previous section shows that
there will be about n/4 communications needing to cross the imaginary boundary x(1) = 0 from
left to right. Repeating then the argument of the previous section leads to the following upper
bound on the maximum achievable rate per communication pair in the ntework:

R ≤ Cn

n/4 + o(n)
, where Cn := max

Pk≥0:
∑n
k=1 Pk≤nP

n
∑

k=1

log(1 + Pkλ
2
k),

Here, λk are the singular values of the matrixG, whose entriesGij = g(|xi−yj |) are determinisitic
in the present context.

3.1 No absorption case

Let us assume that β = 0. We will show in the following a better result than that of Section 2.1,
in the sense that we do not need anymore the assumption that α > 2(d−2), but this requires to
be a little more careful in the majoration procedure. Let us first note that for any fixed vector
(P1, . . . , Pn), we have

n
∑

k=1

log(1 + Pkλ
2
k) ≤

n
∑

k=1

log(1 + Pk(GG
†)kk),

by the same majorization argument as that of Section 2.2. Moreover, since g is decreasing, we
have

(GG†)kk =

n
∑

l=1

g(|xk − yl|)2 ≤
n
∑

l=1

g(|x(1)
k − y

(1)
l |)2 = md−1

m
∑

l1=1

g(k1 + l1 − 1)2

(recall that x
(1)
k = −k1+0.5, y

(1)
l = l1−0.5 and n = md where m is an integer). Let us compute

m
∑

l1=1

g(k1 + l1 − 1)2 =
m
∑

l1=1

1

(k1 + l1 − 1)α
≤ 1

kα1
+

∫ m

1
dy

1

(k1 + y − 1)α

≤ 1

kα1
+

1

α− 1

1

kα−1
1

≤ α

α− 1

1

kα−1
1

.

This leads to the following upper bound:

Cn ≤ max

{

n
∑

k=1

log

(

1 +
α

α− 1

Pkm
d−1

kα−1
1

) ∣

∣

∣

∣

Pk ≥ 0,

n
∑

k=1

Pk ≤ nP

}

,
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which can be rewritten as

Cn ≤ max

{

n
∑

k=1

log

(

1 +
P̃km

d−1

kα−1
1

)

∣

∣

∣

∣

P̃k ≥ 0,
n
∑

k=1

P̃k ≤
α

α− 1
nP

}

.

This maximization problem has the well known “water-filling” solution:

Cn =
n
∑

k=1

log

(

νmd−1

kα−1
1

)+

,

where ν satisfies the constraint

n
∑

k=1

(

ν − kα−1
1

md−1

)+

=
α

α− 1
nP, (8)

and a+ denotes the positive part of a ∈ R. We need now the following two technical lemmas.

Lemma 3.1. Let α > d and ν satisfy (8). There exists then a constant K > 0 (possibly
depending on α) such that for all sufficiently large n, we have

ν ≤ Kn
1
d(1−

d
α).

Proof. Equation (8) implies that

α

α− 1
mP =

m
∑

k1=1

(

ν − kα−1
1

md−1

)+

≥
∫ m

1
dx

(

ν − xα−1

md−1

)+

=

∫ x0

1
dx

(

ν − xα−1

md−1

)

,

where x0 = (νmd−1)
1

α−1 . Computing this last expression gives

α

α− 1
mP ≥ ν(x0 − 1)− xα

0 − 1

αmd−1

≥ ν
α
α−1 m

d−1
α−1

α− 1

α
− ν := F (ν).

Since F is increasing on the domain where it is positive, we then obtain that ν ≤ ν0, where ν0

satisfies the equation F (ν0) =
α

α−1mP . This equation in turn implies that

ν
α
α−1

0 m
d−1
α−1

α− 1

α
≥ α

α− 1
mP,

so

ν0 ≥
(

P

(

α

α− 1

)2
)

α−1
α

m(1− d−1
α−1

)α−1
α := Kα m1− d

α

and

ν
− 1
α−1

0 m−
d−1
α−1 ≤ K

− 1
α−1

α m−
1

α−1(1−
d
α)−

d−1
α−1 = K

− 1
α−1

α m−
d
α →

m→∞
0,
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since α > d. Now, since

F (ν0) = ν
α
α−1

0 m
d−1
α−1

(

α− 1

α
− ν

− 1
α−1

0 m−
d−1
α−1

)

,

we obtain that for sufficently large m, there exists K > 0 (depending on α) such that

α

α− 1
mP = F (ν0) ≥ K ν

α
α−1

0 m
d−1
α−1 .

This implies finally that

ν ≤ ν0 ≤ K m(1− d−1
α−1)

α−1
α = K m1− d

α ,

which concludes the proof.

Lemma 3.2. For any η > 0 and k0 ≥ 1, we have

k0
∑

k1=1

log

(

kη0
kη1

)

≤ η k0.

Proof. Let us simply compute

k0
∑

k1=1

log

(

kη0
kη1

)

= η



k0 log k0 −
k0
∑

k1=1

log k1





≤ η

(

k0 log k0 −
∫ k0

1
dx log x

)

= η (k0 log k0 − k0 log k0 + k0 − 1) ≤ η k0.

This allows us to establish the following proposition.

Proposition 3.3. Let α > d. There exists then a constant K > 0 (possibly depending on α)
such that for all sufficiently large n, we have

Cn ≤ Kn
d−1
d

+ 1
α .

So Cn is sublinear in n when α > d.

Proof. From the above analysis, we have the following upper bound on Cn:

Cn ≤ md−1
m
∑

k1=1

log

(

νmd−1

kα−1
1

)+

,

where ν satisfies the constraint (8). Let k0 denote the smallest integer such that

(νmd−1)
1

α−1 ≤ k0.

We then obtain:

Cn ≤ md−1
k0
∑

k=1

log

(

kα−1
0

kα−1
1

)

≤ md−1 α k0,

12



by Lemma 3.2 with η = α− 1. On the other hand, by Lemma 3.1, there exists K > 0 such that

k0 ≤ K m(1− d
α

+d−1) 1
α−1 + 1 = K m

d
α + 1,

for sufficiently large m, which in turn implies

Cn ≤ K md−1+ d
α ,

and this completes the proof.

This proposition leads directly to the following theorem.

Theorem 3.4. If α > d and there is no absorption (that is, β = 0), then the maximum
achievable rate R per communication pair in a large regular network decreases almost surely to
zero as the number of users gets large.

We obtain here the same result as the one obtained for uniformly distributed networks,
without the assumption of non-negativity of the matrix G, that is, without the assumption that
α > 2(d− 2).

3.2 Case with absorption

In the case where there is absorption (that is, β > 0), we follow the lines of Section 2.2 and
obtain easily:

Cn ≤
n
∑

k=1

log(1 + nPλ2
k) ≤

n
∑

k=1

log(1 + nP (GG†)kk)

≤ md−1
m
∑

k1=1

log
(

1 + Pm2dg(k1)
2
)

≤ md−1
m
∑

k1=1

log
(

1 + Pm2de−βk1

)

≤ md−1

∫ m

0
dx log

(

1 + Pm2de−βx
)

≤ K

d2
n
d−1
d (log n)2,

by Lemma 2.7, so this proves the following theorem.

Theorem 3.5. If there is absorption (that is, β > 0), then the maximum achievable rate R per
communication pair in a large regular network decreases almost surely to zero as the number of
users gets large.

4 Conclusion and perspectives

We have proved that under minimal assumptions (that is, with a power decay of order 1/rα

with α > d ∨ 2(d − 2) or in the presence of absorption), the maximum achievable rate per
communication pair in a large extended ad hoc network has to decrease to zero as the number of
users gets large. However, we have seen that our scaling law is not as tight as the one obtained
in [3, 6]. In order to get a better result, a precise study of the behaviour of the singular values
λk is necessary. This is work under progress.
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A Non-negativity of the matrix G in the no absorption case

Let us first consider the one-dimensional case (with α > 0). In this case, since yj = −xj , the
entries of the matrix G are given by

Gij = g(|xi − yj |) = g(xi + xj) =
1

(xi + xj)α/2

=

∫ ∞

0
dt

tα/2−1

Γ(α/2)
e−(xi+xj)t,

where Γ is the Euler Gamma function. This implies that G is non-negative, since

n
∑

i,j=1

Gij ci cj =

∫ ∞

0
dt

tα/2−1

Γ(α/2)

(

n
∑

i=1

e−xit ci

)2

≥ 0.

Let us now consider the higher-dimensional case together with the assumption that α > 2(d−2).
We have the following expression for the entries of the matrix G:

Gij =
1

(

(x
(1)
i + x

(1)
j )2 + |x(2)

i − x
(2)
j |2 + . . .+ |x(d)

i − x
(d)
j |2

)α/4
,

so using the fact that the Fourier transform of

fa(x2, . . . , xd) =
1

(a2 + |x2|2 + . . .+ |xd|2)α/4

is given by (see [8, formulas I.2.7 and I.18.29])

f̂a(ξ2, . . . , ξd) = Cα,d

(

√

|ξ2|2 + . . .+ |ξd|2
a

)α
4
− d−1

2

·Kα
4
− d−1

2
(a
√

|ξ2|2 + . . .+ |ξd|2),

where Kν is the modified Bessel function of second kind and of order ν, we obtain that

Gij =
Cα,d

(2π)d−1

∫

Rd−1

dξ2 · · · dξd
(

√

|ξ2|2 + . . .+ |ξd|2

x
(1)
i + x

(1)
j

)α
4
− d−1

2

·

· Kα
4
− d−1

2

(

(x
(1)
i + x

(1)
j )

√

|ξ2|2 + . . .+ |ξd|2
)

eiξ2(x
(2)
i −x

(2)
j )+···+iξd(x

(d)
i −x

(d)
j ).

Since by formula 9.6.23 in [1], we have

1

rν
Kν(r) =

√
π

2ν Γ(ν + 1
2)

∫ ∞

0
dt e−r cosh(t) sinh2ν(t),

for ν > −1
2 , we obtain that the matrix whose entries are given by

(

√

|ξ2|2 + . . .+ |ξd|2

x
(1)
i + x

(1)
j

)α
4
− d−1

2

·Kα
4
− d−1

2

(

(x
(1)
i + x

(1)
j )

√

|ξ2|2 + . . .+ |ξd|2
)
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is non-negative if
α

4
− d− 1

2
> −1

2
, that is, α > 2(d− 2).

So under the same assumption, G is a convex combination of products of non-negative matrices,
it is therefore itself non-negative.

Remark. Numerical simulations indicate that G is non-negative if and only if α ≥ 2(d− 2)∨ 0.

References

[1] Abramowitz M., Stegun I. A., “Handbook of mathematical functions”, 1964, National Bureau
of Standards.

[2] Cover T. M., Thomas J. A., “Elements of information theory”, John Wiley & Sons, 1991,
New York.

[3] Gupta P., Kumar P. R., “The capacity of wireless networks”, IEEE Trans. on Information
Theory, Vol. 46(2), 2000, pp. 388-404.

[4] Gupta P., Kumar P. R., “Internets in the sky: The capacity of three dimensional wireless
networks”, Communications in Information and Systems, Vol. 1(1), 2001, pp. 33-50.

[5] Hoeffding W., “Probability inequalities for sums of bounded random variables”, J. of Amer.
Stat. Assoc., Vol. 58, 1963, pp. 13-30.

[6] Kumar P. R., Xie L.-L., “A network information theory for wireless communications: scaling
laws and optimal operation”, IEEE Trans. on Information Theory, Vol. 50, Nr. 5, 2004, pp.
748-767.

[7] Marshall A. W., Olkin I., “Inequalities: theory of majorization and its applications”, 1979,
Academic Press.

[8] Oberhettinger F., “Tables of Fourier transforms and Fourier transforms of distributions”,
1990, Springer Verlag.

[9] Telatar E., “Capacity of Multi-antenna Gaussian Channels”, European Trans. on Telecom-
munications, Vol. 10, Nr. 6, 1999, pp. 585–595.

15


