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Computer and Communication Sciences, EPFL

1015 Lausanne, Switzerland
Email: {serj.haddad, olivier.leveque}@epfl.ch

Abstract—Diversity analysis of multihop free-space optical
(FSO) transmission shows the efficiency of this scheme to mitigate
atmospheric turbulence. The significant performance of serial re-
laying is fundamentally a consequence of the distance-dependent
channel variance. This prompts us to further investigate the
requirements of different FSO networks to achieve a given
diversity order. In other words, we aim at converting a network
with multiple source and destination pairs to serially relayed
transmissions. This indeed requires assisting nodes and reasonably
efficient routing protocols. Besides presenting diversity analysis
of multihop FSO transmission, this paper investigates how the
number of relay nodes scales in terms of the number of source-
destination pairs with respect to the geometry of the network and
the required diversity order. Moreover, it proposes an optimal
routing strategy for specific FSO networks with predefined
placement of relay nodes.

Keywords—Free-space optics, diversity order, multihop trans-
mission, routing, fading channels.

I. INTRODUCTION

The past decade saw a growing interest in improving
cooperation in the context of free-space optical (FSO) commu-
nication [1], [2], [3], [4], which in turn attracted a significant
attention as a potential solution for the “last mile” problem [5].
Free-space optics is a terrestrial line-of-sight (LOS) technology
that enables optical transmission through the atmosphere [5]
using either lasers or light-emitting diodes (LEDs) as transmit
devices [6]. FSO systems offer important operational and
technical assets such as immunity to electromagnetic interfer-
ence, higher bandwidth capacity, and license-free long-range
operation. However, the fact that the outer space forms the
medium of transmission renders it unpredictable and prone
to atmospheric turbulence and changing weather conditions.
Fading is the major limiting factor that severely impairs
FSO link performance. To combat atmospheric turbulence,
researchers investigated different fading mitigation techniques.
For instance, Multiple-Input and Multiple-Output (MIMO)
techniques studied in the context of radio-frequency (RF)
communications were extended and tailored to FSO systems
[7], [8], [9]. However, FSO links are very directive and lack the
wide beamwidth property of the RF transmission. This means
that the presence of a small obstacle might induce large fades
on all source-detector sub-channels simultaneously. Conse-
quently, the high performance gains promised by MIMO-FSO
systems is too optimistic and difficult to achieve in practice
[7]. On the other hand, relay-assisted transmission emerged
as a robust paradigm and a promising fading mitigation tool
capable of leveraging the performance of FSO systems.

Multihop transmission and cooperative diversity are the two
main cooperation schemes. In this work, we focus on multihop
transmission for it exploits the distance-dependent variance of
the fading amplitude and significantly boosts the performance
of FSO links. As in [10], we present a diversity analysis of
the multihop transmission scheme. In this paper however, the
diversity gain analysis focuses on the dominant outage term
corresponding to the longest FSO link to obtain tight lower
and upper bounds on the overall outage probability. Indeed,
this analysis shows the efficiency of serial relaying to achieve
a high diversity gain. For this reason, it is perfectly reasonable
to encourage multihop transmission in different FSO networks
with multiple source-destination (S-D) pairs. To serve this
goal, we study the relaying requirements of these networks
and suggest appropriate routing protocols.

The paper is organized as follows: Section II describes
the system model by identifying the modulation scheme,
the communication channel, and the network topologies we
consider. Section III derives the outage probability of the
serial FSO network and analyzes its diversity order. Finally,
in Section IV, we study how the number of relay nodes scales
in terms of the number of S-D pairs to achieve a given diversity
order. Moreover, we propose an optimal routing strategy for
specific FSO networks with a given set of relay nodes.

II. SYSTEM MODEL

In this section, we briefly present the transmission and
the channel models. We also describe the different network
topologies that we study in this paper. Note that throughout
the paper, log and ln operations are with respect to base 2 and
base e, respectively.

A. Transmission and Channel Models

We consider intensity-modulation and direct-detection
(IM/DD) FSO systems that deploy the M -ary pulse position
modulation (PPM). This means that the optical transmitter
is “on” during the interval containing the pulse and “off”
otherwise. If symbol k is transmitted, which means that the
pulse is at the k-th slot of the M -ary PPM symbol, then the
optical power incident on the photodetector during the i-th
time slot, i ∈ {1, . . . ,M}, is given by

P =

{
GPr + Pb if i = k

Pb otherwise
(1)

where G is the channel gain of the FSO link, Pr and Pb are
the optical signal power and the background radiation power



incident on the receiver, respectively. We assume that signal
and background radiation dependent shot noise is dominant
with respect to “dark current” and other noise components.

With M -ary PPM symbols and IM/DD FSO channels, the
average number of photoelectrons per slot generated by the
incident light signal (res. background radiation) λs (resp. λn)
is given by:

λs = η
PrTs/M

hf
= η

Es
hf

; λn = η
PbTs/M

hf
(2)

where Ts is the symbol duration, η is the detector’s quantum
efficiency, h is Planck’s constant, f is the optical center
frequency, and Es = PrTs/M is the received optical energy
per M -ary PPM symbol.

Denote by V = [V (1), ..., V (M)] the M -dimensional de-
cision vector, where V (m) corresponds to the number of
photoelectrons detected in the m-th PPM slot. For a PPM
symbol k (pulse at the k-th slot) sent over the described FSO
channel, V (m) can be modeled as a Poisson random variable
with parameter

EV (m) = η
PTs/M

hf
=

{
Gλs + λn if m = k

λn otherwise.
(3)

Finally, the channel gain G can be formulated as

G = βa2, (4)

where a is the amplitude of the turbulence-induced fading and
β is the normalized path loss for an FSO link of length d with
respect to a reference link of length d0, and it is given by

β =

(
d0
d

)2

e−δ(d−d0) (5)

where δ is the attenuation coefficient.

For the turbulence-induced fading coefficient a, we adopt
the log-normal channel model which presents a good fit for
weak turbulence regimes [4]. Therefore, the probability density
function of a is given by

f(a) =
1√

2πσa
e−

(ln a−µ)2

2σ2 (6)

where the parameters µ and σ satisfy the relation µ = −σ2

to ensure a mean path intensity of 1 [11]; i.e. Ea2 = 1. The
distance-dependent log-amplitude variance is given by [12]

σ2 = 0.124k7/6C2
nd

11/6 (7)

where k and C2
n are the wave number and the refractive index

structure constant, respectively.

B. Network Topology

We consider FSO networks with different node topologies.
In all these networks however, there are N randomly chosen S-
D pairs willing to establish communication with the help of a
given number of relay nodes. Each FSO node is equipped with
an FSO transceiver that can transmit directionally within an
infinitesimally small angle and can receive omnidirectionally.
The orientation of any FSO transmitter can be steered to any
possible direction.

s

Fig. 1. All possible transmissions starting at the specified source node S.

s

D

Fig. 2. Randomly chosen destination D for the specified source node S.

The problem of handling communication between N uni-
formly chosen S-D pairs has already been largely addressed
in the context of RF wireless networks (see [13] for a seminal
paper on the subject). While interference is a major issue for
RF networks, it is absent in the context of FSO networks, be-
cause FSO systems are perfectly directional. For the very same
reason however, FSO nodes cannot broadcast information to
many nodes at once, nor can the communication be redirected
during the time of transmission, for efficiency reasons.

We consider two different scenarios, namely, FSO networks
with varying number of relay nodes and FSO networks with a
given set of relay nodes.

1) Networks with a Varying Number of Relay Nodes:
These networks are characterized by the scaling of the number
of helping nodes in the network in terms of the number of
transmissions. They are made up of N square cells of area 1
willing to communicate with each other in a random fashion.

a) One-Dimensional Network: A one-dimensional net-
work consists of N square cells of area 1 placed in a linear
fashion. Ignoring the relay nodes, each cell has one FSO node
willing to communicate data to a random destination cell.
Therefore, without the assisting nodes, there are exactly N
FSO nodes placed at equal distances along a straight line of
length N , as shown in Fig. 1. The number of relay nodes added
to each of these N cells varies with respect to the desired
performance.

b) Two-Dimensional Network: A two-dimensional net-
work consists of N square cells of area 1 that form a square
(assume

√
N is integer). Ignoring the relay nodes, each cell

has one FSO node willing to communicate with a randomly
chosen destination cell. In other words, there are N FSO nodes
uniformly distributed over a square of area N . As in the
previous case, each node requires to communicate with one
of the remaining nodes, as shown in Fig. 2. The number of
relay nodes added to each of these N cells varies with respect
to the performance requirements.

2) Two-Dimensional Network with a Given Set of Relay
Nodes: Consider a third network model, which is a two-
dimensional network with N source nodes placed on one side
of the network and N destination nodes placed on the other
side. These two groups are at a distance of N cells from each
other. Each of the cells between these two groups has only one



Fig. 3. Source nodes at the top have distinct destinations at the bottom. Each
of the empty cells has one relay node. Note that in this example N = 6.

relay node. Equivalently, there are exactly (N − 1)×N relay
nodes in the network. See Fig. 3.

III. DIVERSITY ANALYSIS OF MULTIHOP TRANSMISSION

In this section, we investigate the diversity order of mul-
tihop FSO transmission assuming no background noise; i.e.
λn = 0. Note that at high signal energies, fading and quantum-
limited shot noise become the main limiting factors [7]. Each
relay decodes and forwards the received M -ary PPM signal
until the message reaches the destination node. As discussed
in [10], the conventional definition of diversity order for log-
normal channels is insignificant and it always yields infinity.
For this reason, we utilize the notion of relative diversity order
(RDO) that was introduced to analyze the performance of
indoor radio propagations over log-normal channels [4]. For
a predefined rate of transmission R, we define the relative
diversity order as

RDO(λs) =
lnPout(R)

lnPout(S,D)(R)
(8)

where Pout(R) is the outage probability of the multihop
scheme and Pout(S,D)(R) is the outage probability of the direct
transmission from the source node S to the destination node
D with a transmit power equal to the total transmit power of
the multihop scheme. We further define the asymptotic RDO
as

ARDO = lim
λs→∞

RDO(λs).

Theorem 1. The asymptotic relative diversity order of the free-
space optical multihop scheme is given by

ARDO =

(
dS,D
dmax

)11/6

where dS,D and dmax represent the distance from the source
node to the destination node and the maximum distance
separating any two consecutive nodes along the serial relaying
scheme, respectively.

A. Outage Probability Expression

In the absence of background noise, the point-to-point FSO
channel of the i-th hop reduces to an M -ary erasure channel
with parameter

Pe,i = P

(
V

(k)
i = 0|symbol k

)
= e−βiα

2
iλs (9)

where βi and αi are the normalized path loss and the fading
amplitude of the i-th hop, respectively. Likewise, the end-to-
end multihop scheme with decode-and-forward relay nodes
reduces to an M -ary erasure channel with parameter

γ = 1−
N∏
i=1

(1− Pe,i) = 1−
N∏
i=1

(
1− e−βiα

2
iλs
)

(10)

where N is the total number of hops. As such, for a predefined
rate of transmission R, the outage probability is given by

Pout(R) = P ((1− γ) logM ≤ R) . (11)

B. Diversity Analysis

Having defined the outage probability of the FSO multihop
transmission, we can give the proof for Theorem 1. The proof
relies on having tight lower and upper bounds on the outage
probability in (11).

Proof: Let K represent the index of the longest hop
along the multihop scheme. The lower bound on the outage
probability of the serial relaying scheme with N hops is given
by

Pout(R) ≥ P

((
1− e

− min
i=1,...,N

{βiα2
i }λs

)
≤ R

logM

)
= 1−

N∏
i=1

P

(
βiα

2
i >

1

λs
ln

(
logM

logM −R

))
≥ P

(
α2
K ≤

1

βKλs
ln

(
logM

logM −R

))

= Q

− 1
2 log

(
1

βKλs
ln
(

logM
logM−R

))
+ σ2

K

σK

 (12)

and the upper bound is given by

Pout(R)
(a)

≤ P

((
1−N × e

− min
i=1,...,N

{βiα2
i }λs

)
≤ R

logM

)
= 1− P

(
min

i=1,...,N
{βiα2

i } >
1

λs
ln

(
N × logM

logM −R

))
= 1−

N∏
i=1

(
1− P

(
βiα

2
i ≤

1

λs
ln

(
N × logM

logM −R

)))
≤ 1−

(
1− P

(
βKα

2
K ≤

1

λs
ln

(
N × logM

logM −R

)))N
(b)
≈ N ×Q

− 1
2 log

(
1

βKλs
log
(
N×logM
logM−R

))
+ σ2

K

σK


(13)

where we have used the inequality γ ≤
N∑
i=1

e−βiα
2
iλs to obtain

(a) and 1− (1−Q(x))N u N ×Q(x), for large values of x,
to obtain (b). Note that σ2

K = 0.124k7/6C2
nd

11/6
max is the log-

amplitude variance of the longest hop (K-th hop) and Q(x) =
1√
2π

∫∞
x
e−t

2/2dt.
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Fig. 4. Cells marked with X (resp. shady circle) represent source (resp.
destination) cells. We show all the possible transmissions that require the
assistance of the black cell.

Finally, the outage probability of the direct transmission is
given by

Pout(S,D)(R) = P

(
α2
S,D ≤

1

Nλs
ln

logM

logM −R

)

= Q

− 1
2 log

(
1

Nλs
ln logM

logM−R

)
+ σ2

S,D

σS,D


(14)

where αS,D and σ2
S,D = 0.124k7/6C2

nd
11/6
S,D are the fading

amplitude and the log-amplitude variance of the direct channel,
respectively.

Using equations (12), (13), and (14), and Q(x) u e−x
2/2,

for large values of x, we get(
σS,D
σK

)2

≤ ARDO ≤
(
σS,D
σK

)2

=

(
dS,D
dmax

)11/6

. (15)

IV. SERIAL RELAYING IN DIFFERENT NETWORK
MODELS: RELAY NODES AND ROUTING

Based on our diversity analysis, the outage of the longest
FSO link dominates the end-to-end outage probability of
the serial relaying scheme and dictates the asymptotic RDO
accordingly. For this reason, the ultimate goal in any given
FSO network would be to have multihop transmissions from
the source node to the destination node with the shortest
hops possible. This also suggests placing relay nodes along
the straight source-to-destination path at equal distances as
proved in [10]. In this context, we can formulate two valid
problems: (1) Characterize the tradeoff between the achieved
asymptotic RDO and the number of relay nodes required in
an FSO network. (2) Given a set of relay nodes, maximize the
asymptotic RDO of all transmissions in an FSO network by
optimizing the cooperation strategy (routing protocol). Both
problems aim at converting FSO networks with multiple S-D
pairs to serially relayed transmissions.

A. Scaling the Number of Relay Nodes

An improved asymptotic RDO naturally requires more
relay nodes to establish serial transmissions with shorter hops.
We are interested in the scaling of relay nodes with respect
to the asymptotic RDO. We consider both one and two
dimensional networks with N S-D pairs.

1) One-Dimensional Network: As described in Section
II-B, a one-dimensional FSO network consists of N cells
placed in a linear fashion. Each cell contains a source node
willing to communicate with a destination in a randomly
chosen cell.

Theorem 2. For all the N transmissions in a one-dimensional
FSO network to achieve an asymptotic RDO of N11/6, the total
number of FSO nodes should scale as N2.

Proof: The distance separating an S-D pair in a one-
dimensional network is Θ(N) on average. Therefore, to
achieve an asymptotic RDO of N11/6, each source node
must start a multihop transmission with hops of size Θ(1).
In other words, all FSO links along the serial cooperation
scheme should have a length of order 1. This means that each
transmission requires Θ(N) relay nodes on average, which
indeed implies the need for Θ(N2) assisting nodes to serve
all S-D pairs.

A trivial solution would be to place Θ(N) FSO nodes
in each cell, which results in a total of Θ(N2) FSO nodes.
This solution is optimal in terms of the scaling of assisting
nodes. However, nodes in the middle of a one-dimensional
network normally experience higher traffic than those at the
boundaries. Fig. 4 shows all the possible transmissions that
pass through the cell marked in black. Let Sx and Dx denote
the source and the destination cell indices corresponding to the
x-th transmission, respectively. Since the destination nodes are
chosen randomly, the mean number of transmissions Ni that
cell i has to serve is given by

Ni =

N−1∑
x=1

P(Sx < i,Dx > i) + P(Sx > i,Dx < i)

=
2(i− 1)(N − i)

N − 1
≈ 2i(N − i)

N
= O(N). (16)

As in the trivial solution, the total number of FSO nodes in
the network is given by

TN =

N∑
i=1

Ni =

N∑
i=1

2(i− 1)(N − i)
N − 1

= Θ(N2). (17)

Note that we ignore the case where the black cell is either
a source node or a destination node, because this only adds
a constant term to the total number of nodes required in this
cell.

To study the tradeoff between the asymptotic RDO
achieved and the required number of FSO nodes, we generalize
Theorem 2 in Theorem 3.

Theorem 3. For all the N transmissions in a one-dimensional
FSO network to achieve an asymptotic RDO of (N1−α)11/6,
0 ≤ α ≤ 1, the total number of FSO nodes should scale as
N2−α.

Proof: To achieve an asymptotic RDO of (N1−α)11/6,
0 ≤ α ≤ 1, each hop must have a maximum size of Nα

(Recall that the distance separating an S-D pair is Θ(N) on
average). Therefore, the number of hops required for each S-D
pair is divided by Nα compared to the serial relaying with hops
of size Θ(1). As such, the total number of FSO nodes required
to achieve an asymptotic RDO of (N1−α)11/6 is given by

TN (α) =
TN
Nα

= Θ(N2−α). (18)
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Fig. 6. Cells marked with X (resp. shady circle) represent source (resp. destination) cells. We show all S-D pairings that require the assistance of the black
cell.

S

D

Fig. 5. Horizontal and vertical serial relaying in a two-dimensional FSO
network.

For α = 1, the asymptotic RDO is equal to 1 (only direct
transmissions) and no relaying is required. In other words, we
have N FSO nodes directly transmitting to randomly chosen
destination cells.

2) Two-Dimensional Network: As described in Section
II-B, a two-dimensional FSO network is made up of N square
cells of area 1 forming a big square of area N . Each of these
cells has a source node with a destination in a randomly chosen
cell.

Theorem 4. For all the N transmissions in a two-dimensional
FSO network to achieve an asymptotic RDO of (

√
N)11/6, the

total number of FSO nodes should scale as N1.5.

Proof: The distance separating any S-D pair in a two
dimensional network is Θ(

√
N) on average. Therefore, to

achieve an asymptotic RDO of (
√
N)11/6, each source node

must start a multihop transmission with hops of size Θ(1).
In other words, each S-D pair requires Θ(

√
N) hops, equiva-

lently, Θ(
√
N) assisting nodes. As such, the total number of

relay nodes scales as Θ(N
√
N).

A simple routing strategy would be to multihop across all
the cells along the straight line joining a source to its destina-
tion. However, this requires steering the FSO transceivers over
all the angles, which in turn requires many layers of communi-
cation. On the other hand, a simpler yet order optimal routing
protocol would be to have only two layers of communication,
namely a horizontal layer and a vertical layer. This protocol
consists of multihopping along the horizontal cells, followed
by multihopping along the vertical cells, as shown in Fig. 5.
For any S-D pair, this protocol results in Θ(

√
N) hops of size

Θ(1) along both directions. Indeed, this protocol achieves an
asymptotic RDO of (

√
N)11/6.

Notice that the cells in the center of the square area
experience higher traffic than those in the boundaries. Fig. 6
shows all the possible S-D pairs that require the help of the cell
marked in black. Using the same approach as in the case of

one dimentional network, we can show that the mean number
of transmissions Ni,j that the cell with column index i and
row index j has to serve is given by:

Ni,j =
2
√
N
[
i
(√

N − i)
)

+ j
(√

N − j
)]

N
= O(

√
N).

Therefore, the total number of FSO nodes in the network is
given by

TN =

√
N∑

i=1

√
N∑

j=1

Ni,j = Θ(N1.5). (19)

To study the tradeoff between the asymptotic RDO
achieved and the required number of FSO nodes, we generalize
Theorem 4 in Theorem 5.

Theorem 5. For all the N transmissions in a two-dimensional
FSO network to achieve an asymptotic RDO of (N0.5−α)11/6,
0 ≤ α ≤ 0.5, the total number of FSO nodes scales as N1.5−α.

Proof: To achieve an asymptotic RDO of (N0.5−α)11/6,
0 ≤ α ≤ 0.5, each hop must have a size of Nα, in both
horizontal and vertical directions. Therefore, the number of
hops required for each S-D pair is divided by Nα compared
to the serial relaying with hops of size Θ(1). As such, the total
number of FSO nodes reduces to

TN (α) =
TN
Nα

= Θ(N1.5−α). (20)

In the extreme case, where α = 0.5, we only have direct
transmissions without relaying. In this case, we need Θ(1)
FSO nodes in each of the N cells.

B. Parallel Neighbor-Sort Routing for Two-Dimensional Net-
works with a Given Set of Relay Nodes

Given a two-dimensional network, as described in Section
II-B, we propose a routing protocol that utilizes the relay nodes
available in the network in an optimal way. This network has
N source nodes placed on one side of the network willing
to transmit data to N distinct destination nodes placed at a
distance of N cells on the other side of the network. See Fig. 7.
The proposed cooperation strategy relies on a sorting algorithm
and aims at establishing serially relayed S-D pairs with N hops
of size Θ(1).

We assign to each source node an integer value that repre-
sents the column index of the corresponding destination node.
Therefore, the integers assigned to source nodes correspond
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Fig. 7. Parallel neighbor-sort routing protocol.
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nodes

Fig. 8. A two-dimensional network with Nb S-D pairs.

to some permutation of integers from 1 to N . As such, an
equivalent problem to our original routing problem would be
to sort these permuted integers in N steps, such that at each
step any integer can switch positions only with the neighboring
integers. In the example shown in Fig. 7, source nodes 1 to 6
are willing to communicate data to destination nodes 5, 6, 4, 2,
3, and 1, respectively. The sorting algorithm goes as follows:

(1) Consider windows of size 1×2 containing two integers
each.

(2) Sort the integers that belong to the same window.

(3) Shift the windows by their half size (i.e. 1) to the right
in a cyclic fashion and go back to step (2).

In fact, this is known as parallel neighbor-sorting algorithm
[14]. This algorithm successfully sorts any permutation of N
integers in at most N steps. Equivalently, the neighbor-sort
routing protocol requires at most N×(N−1) assisting nodes,
which results in a total of N × (N + 1) FSO nodes in the
network. We run the proposed routing scheme in the example
shown in Fig. 7, where we have six source nodes on one side of
the square trying to communicate with six distinct destination
nodes placed on the other side. In this example, the routing
scheme starts with integers 4 and 2 (resp. 3 and 1) in the
second (resp. third) window switching places, while integers
5 and 6 in the first window remaining in their places. The
proposed strategy maximizes the asymptotic RDO of each of
the N transmissions. Since we have N hops of size Θ(1) each,
then the asymptotic RDO of each transmission is N11/6. Note
that the distance separating each S-D pair is Θ(N).

Generalization: In the same two-dimensional FSO network
of area Θ(N2), let us consider N b S-D pairs placed as shown
in Fig. 8, with 1 ≤ b ≤ 2. In this case, the minimum hop size
can be shown to be Θ(N b−1), leading to a maximum asymp-
totic RDO of order (N2−b)11/6. To achieve this ARDO, we

implement the parallel neighbor sort algorithm using windows
of size N b−1 × 2N b−1.

V. CONCLUSION

Multihop transmission exploits the distance-dependent
channel variance to improve the outage probability of FSO
systems with respect to direct transmission. Diversity analysis
shows that the asymptotic relative diversity order is dictated
by the size of the longest hop. This is the motivation behind
our effort to operate FSO networks with short distance mul-
tihop transmissions in order to accommodate multiple source-
destination pairs. Along this line, we considered two scenarios.
In the first scenario, we calculated the scaling of the number
of assisting nodes needed to achieve a given asymptotic RDO.
In the second scenario, we considered a two-dimensional FSO
network with N S-D pairs and a predefined placement of relay
nodes. The challenge resided in finding the optimal routing
protocol that achieves the highest possible asymptotic RDO.
For this purpose, we used the parallel neighbor-sort algorithm.
Finally, we would like to point out that for an FSO network
with a general topology and a predetermined set of relay nodes,
how to optimize cooperation in order to accommodate multiple
S-D pairs remains an open problem.
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