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1 Discrete-time Markov chains

1.1 Basic definitions and Chapman-Kolmogorov equation

(Very) short reminder on conditional probability. Let A, B, C be events.

* P(A|B) =
P(A ∩B)

P(B)
(well defined only if P(B) > 0)

* P(A ∩B|C) =
P(A ∩B ∩ C)

P(C)
=

P(A ∩B ∩ C)

P(B ∩ C)
· P(B ∩ C)

P(C)
= P(A|B ∩ C) · P(B|C)

Let now X be a discrete random variable.

*
∑

k P(X = xk|B) = 1

* P(B) =
∑

k P(B|X = xk)P(X = xk)

*
∑

k P(X = xk, A|B) = P(A|B)

but watch out that

*
∑

k P(B|X = xk) 6= 1

Definition 1.1. A Markov chain is a discrete-time stochastic process (Xn, n ≥ 0) such that
each random variable Xn takes values in a discrete set S (S = N, typically) and

P(Xn+1 = j
∣∣Xn = i,Xn−1 = in−1, ..., X0 = i0) = P(Xn+1 = j

∣∣Xn = i)

∀n ≥ 0, j, i, in−1, ..., i0 ∈ S

That is, as time goes by, the process loses the memory of the past.

If moreover P(Xn+1 = j|Xn = i) = pij is independent of n, then X is said to be a time-
homogeneous Markov chain. We will focus on such chains during the course.

Terminology.
* The possible values taken by the random variables Xn are called the states of the chain. S is
called the state space.
* The chain is said to be finite-state if the set S is finite (S = {0, . . . , N}, typically).
* P = (pij)i,j∈S is called the transition matrix of the chain.

Properties of the transition matrix.
* pij ≥ 0, ∀i, j ∈ S.
*
∑

j∈S pij = 1, ∀i ∈ S.

It is always possible to represent a time-homogeneous Markov chain by a transition graph.
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Example 1.2. (music festival)
The four possible states of a student in a music festival are S = { “dancing”, “at a concert”,
“at the bar”, “back home”}. Let us assume that the student changes state during the festival
according to the following transition matrix:

P =


0 0 1 0

1/2 0 1/2 0
1/4 1/4 1/4 1/4
0 0 0 1


This Markov chain can be represented by the following transition graph:

Example 1.3. (simple symmetric random walk)
Let (Xn, n ≥ 1) be i.i.d. random variables such that P(Xn = +1) = P(Xn = −1) = 1

2
, and let

(Sn, n ≥ 0) be defined as S0 = 0, Sn = X1 + ... + Xn, n ≥ 1. Then (Sn, n ∈ N) a Markov
chain with state space S = Z. Indeed:

P(Sn+1 = j|Sn = i, Sn−1 = in−1, ..., S0 = i0)

= P(Xn+1 = j − i|Sn = i, Sn−1 = in−1, ..., S0 = i0) = P(Xn+1 = j − i)

by the assumption that the variablesXn are independent. The chain is moreover time-homogeneous,
as

P(Xn+1 = j − i) =

{
1
2

if |j − i| = 1

0 otherwise

does not depend on n.

Here is the transition graph of the chain:
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The distribution at time n of the Markov chain X is given by:

π
(n)
i = P(Xn = i), i ∈ S

We know that π(n)
i ≥ 0 for all i ∈ S and that

∑
i∈S π

(n)
i = 1.

The initial distribution of the chain is given by

π
(0)
i = P(X0 = i), i ∈ S

It must be specified together with the transition matrix P = (pij), i, j ∈ S in order to character-
ize the chain completely. Indeed, by repeatedly using the Markov property, we obtain:

P(Xn = in, Xn−1 = in−1, ..., X1 = i1, X0 = i0)

= P(Xn = in|Xn−1 = in−1, ..., X1 = i1, X0 = i0) · P(Xn−1 = in−1, ..., X1 = i1, X0 = i0)

= pin−1,in P(Xn−1 = in−1, ..., X1 = i1, X0 = i0)

= . . . = pin−1,in pin−2,in−1 · · · pi1,i2 pi0,i1 π
(0)
i0

so knowing P and knowing π(0) allows to compute all the above probabilities, which give a
compete description of the process.

The n-step transition probabilities of the chain are given by

p
(n)
ij = P(Xm+n = j|Xm = i), n,m ≥ 0, i, j ∈ S

Let us compute:

p
(2)
ij = P(Xn+2 = j|Xn = i) =

∑
k∈S

P(Xn+2 = j,Xn+1 = k|Xn = i)

=
∑
k∈S

P(Xn+2 = j|Xn+1 = k,Xm = i) · P(Xn+1 = k|Xn = i)

=
∑
k∈S

P(Xn+2 = j|Xn+1 = k) · P(Xn+1 = k|Xn = i) =
∑
k∈S

pik pkj (1)

where the Markov property property was used in (1). In a similar manner, we obtain the
Chapman-Kolmogorov equation for generic values of m and n:

p
(n+m)
ij =

∑
k∈S

p
(n)
ik p

(m)
kj , i, j ∈ S, n,m ≥ 0

where we define by convention p(0)
ij = δij =

{
1 if i = j

0 otherwise.

Notice that in terms of the transition matrix P , this equation simply reads:

(P n+m)ij = (P n Pm)ij =
∑
k∈S

(P n)ik (Pm)kj

where, again by convention, P 0 = I , the identity matrix.
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Notice also that

π
(n)
j = P(Xn = j) =

∑
i∈S

P(Xn = j|Xn−1 = i)P(Xn−1 = i) =
∑
i∈S

pij π
(n−1)
i

In matrix form (considering π(n) as a row vector), this equation reads π(n) = π(n−1) P , from
which we deduce that π(n) = π(n−2) P 2 = . . . = π(0)P n, i.e.

π
(n)
j =

∑
i∈S

p
(n)
ij π

(0)
i

1.2 Classification of states

We list here a set of basic definitions.

* A state j is accessible from state i if p(n)
ij > 0 for some n ≥ 0.

* State i and j communicate if both j is accessible from i and i is accessible from j. Notation:
i←→ j.

“To communicate” is an equivalence relation:

reflexivity: i always communicates with i (by definition).
symmetry: if i communicates with j, then j communicates with i (also by definition).
transitivity: if i communicates with j and j communicates with k, then i communicates with k
(proof in the exercises)

* Two states that communicate are said to belong to the same equivalence class, and the state
space S is divided into a certain number of such classes.

In Example 1.2, the state space S is divided into two classes: {“dancing”, “at a concert”, “at the
bar”} and {“back home”}. In Example 1.3, there is only one class S = Z.

* The Markov chain is said to be irreducible if there is only one equivalence class (i.e. all states
communicate with each other).

* A state i is absorbing if pii = 1.

* A state i is periodic with period d if d is the smallest integer such that p(n)
ii = 0 for all n which

are not multiples of d. In case d = 1, the state is said to be aperiodic.

* It can be shown that if a state i is periodic with period d, then all states in the same class are
periodic with the same period d, in which case the whole class is periodic with period d.

Example 1.4. The Markov chain whose transition graph is given by

is an irreducible Markov chain, periodic with period 2.
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1.2.1 Recurrent and transient states

Let us recall here that p(n)
ii = P(Xn = i|X0 = i) is the probability, starting from state i, to come

back to state i after n steps. Let us also define fi = P(Xever returns to i|X0 = i).

Definition 1.5. A state i is said to be recurrent if fi = 1 or transient if fi < 1.

It can be shown that all states in a given class are either recurrent or transient. In Example 1.2,
the class {“dancing”, “at a concert”, “at the bar”} is transient (as there is a positive probability to
leave the class and never come back) and the class {“back home”} is obviously recurrent. The
random walk example 1.3 is more involved and requires the use of the following proposition.

Proposition 1.6.
* State i is recurrent if and only if

∑
n≥1 p

(n)
ii =∞.

* State i is transient if and only if
∑

n≥1 p
(n)
ii <∞.

Notice that the two lines of the above proposition are redundant, as a state is transient if and
only if it is not recurrent.

Proof. Let Ti be the first time the chain X returns to state i. Therefore, fi = P(Ti <∞|X0 = i).
Let also Ni be the the number of times the chain X returns to state i and let us compute

P(Ni <∞|X0 = i) = P(∃n ≥ 1 : Xn = i & Xm 6= i, ∀m > n|X0 = i)

=
∑
n≥1

P(Xn = i & Xm 6= i, ∀m > n|X0 = i)

=
∑
n≥1

P(Xm 6= i, ∀m > n|Xn = i,X0 = i) P(Xn = i|X0 = i)

As X is a time-homogeneous Markov chain, we have

P(Xm 6= i, ∀m > n|Xn = i,X0 = i) = P(Xm 6= i, ∀m > n|Xn = i) = P(Xm 6= i, ∀m > 0|X0 = i)

Therefore,

P(Ni <∞|X0 = i) = P(Xm 6= i, ∀m > 0|X0 = i)
∑
n≥1

P(Xn = i|X0 = i)

= P(Ti =∞|X0 = i)
∑
n≥1

p
(n)
ii = (1− fi)

∑
n≥1

p
(n)
ii (2)

This implies that

• If i is recurrent, then 1 − fi = 0, so by (2), P(Ni < ∞|X0 = i) = 0, whatever the value
of
∑

n≥1 p
(n)
ii . This in turn implies

P(Ni =∞|X0 = i) = 1, so E(Ni|X0 = i) =∞
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As Ni =
∑

n≥1 1{Xn=i}, we also have

∞ = E(Ni|X0 = i) =
∑
n≥1

E(1{X1=i}|X0 = i) =
∑
n≥1

P(Xn = i|X0 = i) =
∑
n≥1

p
(n)
ii

which proves the claim in this case.

• If on the contrary i is transient, then 1 − fi > 0 and as P(Ni = ∞|X0 = i) ≤ 1 , we
obtain, using (2) ∑

n≥1

p
(n)
ii (1− fi) ≤ 1 i.e.

∑
n≥0

p
(n)
ii ≤

1

1− fi
<∞

which completes the proof.

Notice that as a by-product, we showed in this proof that if a state of a Markov chain is recurrent,
then it is visited infinitely often by the chain, with probability 1 (therefore the name “recurrent”).

Application. (simple random walk, symmetric or asymmetric)
Let us consider the simple random walk (Sn, n ∈ N), with the following transition probabilities:

S0 = 0, P(Sn+1 = Sn + 1) = p = 1− P(Sn+1 = Sn − 1) where 0 < p < 1

Starting from 0, the probability to reach 0 after 2n steps is given by

p
(2n)
00 = P(S2n = 0|S0 = 0) =

(
2n
n

)
pn (1− p)n, where

(
2n
n

)
=

(2n)!

(n!)2

Notice that p(2n+1)
00 = 0 for all n and p, as an even number of steps is required to come back to

0. Using Stirling’s approximation formula n! ' nne−n
√

2πn, we obtain

p
(2n)
00 ' (4p(1− p))n√

πn

From this expression, we see that if p = 1/2, then∑
n≥1

p
(n)
00 =

∑
n≥1

p
(2n)
00 =

∑
n≥1

1√
πn

=∞

so by Proposition 1.6, state 0 is recurrent, and as the chain is irreducible, the whole chain is
recurrent. If on the contrary p 6= 1/2, then 4p(1− p) < 1, so∑

n≥1

p
(n)
00 =

∑
n≥1

p
(2n)
00 =

∑
n≥1

(4p(1− p))n√
πn

<∞

so state 0, and therefore the whole chain, is transient (in this case, the chain “escapes” to either
+∞ or −∞, depending on the value of p).
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Among recurrent states, we further make the following distinction (the justification for this
distinction will come later).

Definition 1.7. Let i be a recurrent state and Ti be the first return time to state i.
* i is positive recurrent if E(Ti|X0 = i) <∞
* i is null recurrent if E(Ti|X0 = i) =∞

That is, if state i is null recurrent, then the chain comes back infinitely often to i, because the
state is recurrent, but the time between two consecutive visits to i is on average infinite!

Notice that even if fi = P(Ti < ∞|X0 = i) = 1, this does not imply that E(Ti|X0 = i) < ∞,
as

E(Ti|X0 = i) =
∑
n≥1

nP(Ti = n|X0 = i)

can be arbitrarily large.

Remarks.
* In a given class, all states are either positive recurrent, null recurrent or transient.
* In a finite state Markov chain, all recurrent states are actually positive recurrent.
* The simple symmetric random walk turns out to be null recurrent.

1.3 Stationary and limiting distributions

Let us first remember that a time-homogeneous Markov chain at time n is characterized by its
distribution π(n) = (π

(n)
i , i ∈ S), where π(n)

i = P(Xn = i), and that

π(n+1) = π(n)P, i.e. π
(n+1)
j =

∑
i∈S

π
(n)
i pij, ∀j ∈ S

Definition 1.8. A distribution π∗ = (π∗i , i ∈ S) is said to be a stationary distribution for the
Markov chain (Xn, n ≥ 0) if

π∗ = π∗P, i.e. π∗j =
∑
i∈S

π∗i pij, ∀j ∈ S (3)
Remarks.
* π∗ does not necessarily exist, nor is it necessarily unique.
* As we will see, if π∗ exists and is unique, then π∗i can always be interpreted as the average
proportion of time spent by the chain X in state i. It also turns out in this case that

E(Ti|X0 = i) =
1

π∗i

where Ti = inf{n ≥ 0 : Xn = i} is the first time the chain comes back to state i.
* If π(0) = π∗, then π(1) = π∗ P = π∗; likewise, π(n) = π∗ P n = . . . = π∗, ∀n ≥ 0, that is, if
the initial distribution of the chain is stationary (we also say the chain is “in stationary state”,
by abuse of language), then it remains stationary over time.
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Trivial example.
If (Xn, n ≥ 0) is a sequence of i.i.d. random variables, then pij = P(Xn+1 = j|Xn = i) =
P(Xn+1 = j) does actually depend neither on i nor on n , so π∗i = P(Xn = i) (which is also
independent of n) is a stationary distribution for the chain. Indeed,

∑
i∈S

π∗i pij =

(∑
i∈S

π∗i

)
P(Xn = j) = 1 · P(Xn = j) = π∗j

Moreover, notice that in this example, π(0) = π∗, so the chain is in stationary state from the
beginning.

Definition 1.9. A distribution π∗ = (π∗i , i ∈ S) is said to be a limiting distribution for the
Markov chain (Xn, n ≥ 0) if for every initial distribution π(0) of the chain, we have

lim
n→∞

π
(n)
i = π∗i , ∀i ∈ S (4)

Remarks.
* If π∗ is a limiting distribution, then it is stationary. Indeed, for all n ≥ 0, we always have
π(n+1) = π(n) P . If limn→∞ π

(n) = π∗, then from the previous equation (and modulo a technical
detail), we deduce that π∗ = π∗P .
* A limiting distribution π∗ does not necessarily exist, but if it exists, then it is unique.

The following theorem is central to the theory of Markov chains.

Theorem 1.10. Let (Xn, n ≥ 0) be an irreducible and aperiodic Markov chain. Let us more-
over assume that it admits a stationary distribution π∗. Then π∗ is a limiting distribution, i.e. for
any initial distribution π(0), limn→∞ π

(n)
i = π∗i , ∀i ∈ S.

We sketch the proof of this theorem below.

Proof. (sketch)
The idea behind the proof is the following coupling argument. Let (Xn, n ≥ 0) be the Markov
chain decribed above and let (Yn, n ≥ 0) be an independent replica of this one, except for the
fact that Y starts with initial distribution π∗ (so P(Yn = i) = π∗i for all n ≥ 0 and all i ∈ S).

Let us now look at the bivariate process (Zn = (Xn, Yn), n ≥ 0). It can be shown that Z is also
a Markov chain, with state space S × S and transition matrix

P(Zn+1 = (j, l)|Zn = (i, k)) = pij pkl

As X and Y are both irreducible and aperiodic, Z is also irreducible and aperiodic. It also
admits the following joint stationary distribution: Π∗(i,k) = π∗i π

∗
k. We now use the following

fact:

If a Markov chain is irreducible and admits a stationary distribution, then it is recurrent.

(This fact can be shown by contradiction: if an irreducible Markov chain is transient, then it
cannot admit a stationary distribution.)

8



So Z is recurrent, which implies the following: let τ = inf{n ≥ 0 : Xn = Yn} be the first time
that the two chains X and Y meet. One can show that for all n ≥ 0 and i ∈ S,

P(Xn = i, τ ≤ n) = P(Yn = i, τ ≤ n)

But as Z is recurrent, we also have that P(τ <∞) = 1, whatever the initial distribution π(0) of
the chain X . So we obtain for i ∈ S:

|π(n)
i − π∗i | = |P(Xn = i)− P(Yn = i)|

= |P(Xn = i, τ ≤ n)− P(Yn = i, τ ≤ n)|+ |P(Xn = i, τ > n)− P(Yn = i, τ > n)|
≤ 0 + P(τ > n) →

n→∞
0

as P(τ <∞) = 1. So π∗ is a limiting distribution.

Another equally important theorem is the following, However, its proof is more involved and
will be skipped.

Theorem 1.11. Let (Xn, n ≥ 0) be an irreducible and positive recurrent Markov chain. Then
X admits a unique stationary distribution π∗.

Remark.
An irreducible finite-state Markov chain is always positive recurrent. So by the above theorem,
it always admits a unique stationary distribution.

Definition 1.12. A (time-homogeneous) Markov chain (Xn, n ≥ 0) is said to be ergodic if it is
irreducible, aperiodic and positive recurrent.

With this definition in hand, we obtain the following corollary of Theorems 1.10 and 1.11.

Corollary 1.13. An ergodic Markov chain (Xn, n ≥ 0) admits a unique stationary distribution
π∗. Moreover, this distribution is also a limiting distribution, i.e.

lim
n→∞

π
(n)
i = π∗i , ∀i ∈ S

We give below a list of examples illustrating the previous theorems.

Example 1.14. (two-state Markov chain)
Let us consider a two-state Markov chain with the following transition graph (where 0 < p, q ≤
1):
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As both p, q > 0, this chain is clearly irreducible, and as it is finite-state, it is also positive
recurrent. So by Theorem 1.11, it admits a stationary distribution. Writing down the equation
for the stationary distribution π = πP , we obtain

π0 = π0 (1− p) + π1 q, π1 = π0 p+ π1 (1− q) (5)

Remember also that as π is a distribution, we must have π0 + π1 = 1 and π0, π1 ≥ 0. Solving
these equations (and noticing that the two equations in (5) are actually redundant), we obtain

π0 = π0 (1− p) + (1− π0) q ⇒ π0 (p+ q) = q, i.e. π0 =
q

p+ q

so π∗ =
(

q
p+q

, p
p+q

)
is the stationary distribution. Moreover, if p+q < 2 (i.e. if it is not the case

that both p = q = 1), then the chain is also aperiodic and therefore ergodic, so by Corollary
1.13, π∗ =

(
q
p+q

, p
p+q

)
is also a limiting distribution.

Notice that when both p = q = 1, then π∗ =
(

1
2
, 1

2

)
is the unique stationary distribution of

the chain, but in this case, the chain is periodic (with period d = 2) and π∗ is not a limiting
distribution. If for example the chain starts in state 0, then the distribution of the chain will
switch from π(n) = (1, 0) at even times to π(n) = (0, 1) at odd times, and reciprocally, but it
will never converge to the stationary distribution π∗ =

(
1
2
, 1

2

)
.

Example 1.15. (music festival: modified version)
Let us consider the chain with the following transition graph:

Bar Dance1/2

1/4

1/2

1/2

1/4

1

Concert

It has the corresponding transition matrix:

P =

 1/2 1/4 1/4
1/2 0 1/2
1 0 0


We can again easily see that the chain is ergodic. The computation of its stationary and limiting
distribution gives

π∗ =

(
8

13
,

2

13
,

3

13

)
Quite unexpectedly, the student spends most of the time at the bar...

Example 1.16. (simple symmetric random walk)
Let us consider the simple symmetric random walk of Example 1.3. This chain is irreducible,
periodic with period 2 and all states are null recurrent. There does not exist a stationary distri-
bution here (NB: it should be the uniform distribution on Z, which does not exist).
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Example 1.17. (cyclic random walk on {0, 1, . . . , N})
Let us consider the chain with the following transition graph (with 0 < p, q < 1 and p+ q = 1):

It has the corresponding transition matrix:

P =


0 p 0 0 q
q 0 p 0 0
... . . . . . . . . . ...
0 0 q 0 p
p 0 0 q 0


This chain is irreducible and finite-state, so it is also positive recurrent, but its periodicity de-
pends on the value of N : if N is odd (that is, the number of states is even), then the chain
is periodic with period 2; if on the contrary N is even (that is, the number of states is odd),
then the chain is aperiodic. In order to find its stationary distribution, observe that for all
j ∈ S,

∑
i∈S pij = p + q = 1, so we can use Proposition 1.18 below to conclude that

π∗ =
(

1
N+1

, . . . , 1
N+1

)
, In case N is even, this distribution is also a limiting distribution.

Proposition 1.18. Let (Xn, n ≥ 0) be a finite-state irreducible Markov chain with state space
S = {0, . . . , N} and let π∗ be its unique stationary distribution (whose existence is ensured by
Theorem 1.11 and the remark following it). Then π∗ is the uniform distribution if and only if
the transition matrix P of the chain satisfies:∑

i∈S

pij = 1, ∀j ∈ S

Remark.
Notice that the above condition is saying that the columns of the matrix P should sum up to 1,
which is different from the condition seen at the beginning that the rows of the matrix P should
sum up to 1 (satisfied by any transition matrix).

Proof. * If π∗ =
(

1
N+1

, . . . , 1
N+1

)
is a stationary distribution, then

1
N+1

=
∑
i∈S

1
N+1

pij, ∀j ∈ S, i.e.
∑
i∈S

pij = 1, ∀j ∈ S

* If
∑

i∈S pij = 1, ∀j ∈ S, then one can simply check that π∗ =
(

1
N+1

, . . . , 1
N+1

)
satisfies the

equation π∗ = π∗P .
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What happens without the aperiodicity assumption?

Theorem 1.19. Let (Xn, n ≥ 0) be an irreducible and positive recurrent Markov chain, and let
π∗ be its unique stationary distribution (whose existence is ensured by Theorem 1.11). Then for
any initial distribution π(0), we have

lim
n→∞

1

n

n∑
k=1

π
(k)
i = π∗i , ∀i ∈ S

In this sense, π∗i can still be interpreted as the average proportion of time spent by the chain in
state i, and it also holds that

E(Ti|X0 = i) =
1

π∗i
, ∀i ∈ S

1.4 Reversible Markov chains and detailed balance

Let (Xn, n ≥ 0) be a time-homogeneous Markov chain. Let us now consider this chain back-
wards, i.e. consider the process (Xn, Xn−1, Xn−2, . . . , X1, X0): this process turns out to be also
a Markov chain (but not necessarily time-homogeneous). Indeed:

P(Xn = j|Xn+1 = i,Xn+2 = k,Xn+3 = l, . . .)

=
P(Xn = j,Xn+1 = i,Xn+2 = k,Xn+3 = l, . . .)

P(Xn+1 = i,Xn+2 = k,Xn+3 = l, . . .)

=
P(Xn+2 = k,Xn+3 = l, ..., |Xn+1 = i,Xn = j)

P(Xn+2 = k,Xn+3 = l, ..., |Xn+1 = i)

P(Xn+1 = j,Xn = j)

P(Xn+1 = i)

=
P(Xn+2 = k,Xn+3 = l, ..., |Xn+1 = i)

P(Xn+2 = k,Xn+3 = l, ..., |Xn+1 = i)
P(Xn = j|Xn+1 = i) (6)

= P(Xn = j|Xn+1 = i)

where (6) follows from the Markov property of the forward chain X .

Let us now compute the transition probabilities:

P(Xn = j|Xn+1 = i) =
P(Xn = j,Xn+1 = i)

P(Xn+1 = i)
=

P(Xn+1 = i|Xn = j)P(Xn = j)

P(Xn+1 = i)
=
pji π

(n)
j

π
(n+1)
i

We observe that these transition probabilities may depend on n, so the backward chain is not
necessarily time-homogeneous, as mentioned above.

Let us now assume that the chain is irreducible and positive recurrent. Then by Theorem 1.11,
it admits a unique stationary distribution π∗. Let us moreover assume that the initial distribution
of the chain is the stationary distribution (so the chain is in stationary state: π(n) = π∗, ∀n ≥ 0,
i.e. P(Xn = i) = π∗i , ∀n ≥ 0, ∀i ∈ S). In this case,

P(Xn = j|Xn+1 = i) =
pji π

∗
j

π∗i
= p̃ij

i.e. the backward chain is time-homogeneous with transition probabilities p̃ij .
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Definition 1.20. The chainX is said to be reversible if p̃ij = pij , i.e. the transition probabilities
of the forward and the backward chains are equal. In this case, the following detailed balance
equation is satisfied:

π∗i pij = π∗j pji, ∀i, j ∈ S (7)

Remarks.
* If a distribution π∗ satisfies the above detailed balance equation, then it is a stationary distri-
bution. Indeed, if π∗ satisfies (7), then∑

i∈S

π∗i pij =
∑
i∈S

π∗j pji = π∗j
∑
i∈S

pji = π∗j , ∀j ∈ S

* In order to find the stationary distribution of a chain, solving the detailed balance equation (7)
is easier than solving the stationary distribution equation (3), but this works of course only if
the chain is reversible.
* Equation (7) has the following interpretation: it says that in the Markov chain, the flow from
state i to state j is equal to that from state j to state i.
* If equation (7) is satisfied, then π∗ is the uniform distribution if and only if P is a symmetric
matrix.

Example 1.21. (cyclic random walk on {0, 1, . . . , N})
Let us consider the cyclic random walk on {0, 1, . . . , N} of Example 1.17 with right and left
transition probabilities p and q (p+ q = 1). We have seen that the unique stationary distribution
of this chain is the uniform distribution π∗ =

(
1

N+1
, . . . , 1

N+1

)
. Is it the case that the detailed

balance equation is satisfied here? By the above remark, this happens only when the transition
matrix P is symmetric, i.e. when p = q = 1/2. Otherwise, we see that the flow of the Markov
chain is more important in one direction than in the other.

Example 1.22. (Ehrenfest urns)
Let us consider the following process: there are 2 urns and N numbered balls. At each time
step, one ball is picked uniformly at random among the N balls, and transferred from the urn
where it lies to the other urn.

Let now Xn be the number of balls located in the first urn at time n. The process X describes a
Markov chain on {0, . . . , N}, whose transition probabilities are given by

pi,i+1 =
N − i
N

pi,i−1 =
i

N
∀1 ≤ i ≤ N − 1 and p01 = 1, pN,N−1 = 1

The corresponding transition graph is

13



This chain is clearly irreducible, periodic with period 2 and positive recurrent, so it admits a
unique stationary distribution π∗. A priori, we are not sure that the chain is reversible (although
it is a reasonable guess in the present case), but we can still try solving the detailed balance
equation and see where it leads:

π∗i pi,i+1 = π∗i+1pi+1,i i.e. π∗i
N − i
N

= π∗i+1

i+ 1

N
⇒ π∗i+1 =

N − i
i+ 1

π∗i

So by induction, we obtain

π∗i =
(N − i+ 1) · · ·N

i · · · 1
π∗0 =

N !

(N − i)! i!
π∗0 =

(
N
i

)
π∗0

Writing down the normalization condition
∑N

i=0 π
∗
i = 1, we obtain

1 = π∗0

N∑
i=0

(
N
i

)
= π∗0 2N so π∗i = 2−N

(
N
i

)
, i = 0, 1, ..., N

Remark.
In physics, this process models the diffusion of particles across a porous membrane. It leads to
the following paradox: assume the chain starts in state X0 = 0 (that is, all the particles are on
one side of the membrane), and let then the chain evolve over time. As the chain is recurrent, it
will come back infinitely often to its initial state 0. This seems a priori in contradiction with the
second principle of thermodynamics, which states that the entropy of a physical system should
not decrease. Here, the entropy of the state 0 is much less than that of any other state in the
middle, so the chain should not come back to 0 after having visited states in the middle. The
paradox has been resolved by observing that for macroscopic systems (that is, N ∼ 6, 022 ×
1023, the Avogadro number), the recurrence to state 0 is never observed in practice, as π∗0 = 2−N .

1.5 Hitting times and absorption probabilities

Let (Xn, n ≥ 0) be a Markov chain with state space S and transition matrix P and let A be a
subset of the state space S (notice thatA need not be a class). In this section, we are interested in
knowing what is the probability that the Markov chain X reaches a state in A. For this purpose,
we introduce the following definitions.

Definition 1.23.
* Hitting time: HA = inf{n ≥ 0 : Xn ∈ A} = the first time the chain X “hits” the subset A.
* Hitting probability: hiA = P(HA < ∞|X0 = i) = P(∃n ≥ 0 such that Xn ∈ A|X0 = i),
i ∈ S.

Remarks.
* The time HA to hit a given set A might be infinity (if the chain never hits A).
* On the contrary, we say by convention that if X0 = i and i ∈ A, then HA = 0 and hiA = 1.
* If A is an absorbing set of states (i.e. there is no way for the chain to leave the set A once it
has entered it), then the probability hiA is called an absorption probability. A particular case
that will be of interest to us is when A is a single absorbing state.

14



The following theorem allows to compute the vector of hitting probabilities hA = (hiA, i ∈ S).

Theorem 1.24. The vector hA = (hiA, i ∈ S) is the minimal non-negative solution of the
following equation: {

hiA = 1 ∀i ∈ A
hiA =

∑
j∈S pij hjA ∀i /∈ A

(8)

By minimal solution, we mean that if gA = (giA, i ∈ S) is another solution of (8), then giA ≥
hiA, ∀i ∈ S.

Remarks.
* The vector hA is not a probability distribution, i.e. we do not have

∑
i∈S hiA = 1.

* This theorem is nice, but notice that in order to compute a single hitting probability hiA, one
needs a priori to solve the equation for the entire vector hA. It turns out however in many
situations that solving the equation is much easier than computing directly hitting probabilities.

Proof. * Let us first prove that hA is a solution of (8). If i ∈ A, then hiA = 1, as HA = 0 in this
case. If i /∈ A, then

hiA = P(∃n ≥ 0 : Xn ∈ A|X0 = i) = P(∃n ≥ 1 : Xn ∈ A|X0 = i)

=
∑
j∈S

P(∃n ≥ 1 : Xn ∈ A|X1 = j,X0 = i)P(X1 = j|X0 = i)

=
∑
j∈S

P(∃n ≥ 1 : Xn ∈ A|X1 = j)P(X1 = j|X0 = i) (9)

=
∑
j∈S

P(∃n ≥ 0 : Xn ∈ A|X0 = j) pij =
∑
j∈S

hjA pij (10)

where (9) follows from the Markov property and (10) follows from time-homogeneity.

Notice that if the state space S is finite, then it can be proved that there is a unique solution to
equation (8), so the proof stops here.

* In general however, there might exist multiple solutions to equation (8). Let us then prove that
hA is minimal among these. For this purpose, assume gA is another solution of (8). We want to
prove that giA ≥ hiA, ∀i ∈ S. As gA is a solution, we obtain the following.

If i ∈ A, then giA = 1 = hiA. If i /∈ A, then

giA =
∑
j∈S

pijgjA =
∑
j∈A

pij +
∑
j /∈A

pijgjA =
∑
j∈A

pij +
∑
j /∈A

pij

(∑
k∈A

pjk +
∑
k/∈A

pjk gkA

)
= P(X1 ∈ A|X0 = i) + P(X2 ∈ A,X1 /∈ A|X0 = i) +

∑
j /∈A

∑
k/∈A

pij pjk gkA

= P(X1 ∈ A or X2 ∈ A|X0 = i) +
∑
j /∈A

∑
k/∈A

pij pjk gkA
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Observe that the last term on the right-hand side is non-negative, so

giA ≥ P(X1 ∈ A or X2 ∈ A|X0 = i)

This procedure can be iterated further and gives, for any n ≥ 1:

giA ≥ P(X1 ∈ A or X2 ∈ A or ... or Xn ∈ A|X0 = i)

So finally, we obtain

giA ≥ P(∃n ≥ 1 : Xn ∈ A|X0 = i) = P(∃n ≥ 0 : Xn ∈ A|X0 = i) = hiA

which completes the proof.

We are also interested in knowing how long does the Markov chain X need to reach a state in
A on average. For this purpose, let us introduce the following definition.

Definition 1.25. The average hitting time of a set A from a state i ∈ S is defined as

µiA = E(HA|X0 = i) =
∑
n≥0

nP(HA = n|X0 = i)

Notice that this average hitting time might be ∞. The following theorem allows to compute
the vector of average hitting times µA = (µiA, i ∈ S). As its proof follows closely the one of
Theorem 1.24, we do not repeat it here.

Theorem 1.26. The vector µA = (µiA, i ∈ S) is the minimal non-negative solution of the
following equation: {

µiA = 0 ∀i ∈ A
µiA = 1 +

∑
j /∈A pij µjA ∀i /∈ A

(11)

Please pay attention that this equation is similar to equation (8), but of course not identical.

We list below a series of examples where the above two theorems can be used.

Example 1.27. (gambler’s ruin on {0, 1, 2, ..., N})
Let us consider the time-homogeneous Markov chain with the following transition graph:

This chain models the following situation: a gambler plays “heads or tails” repeatedly, and each
time wins or loses one euro with equal probability 1/2; he plays until he either loses everything
or wins a total amount of N euros. Assuming that he starts with i euros (with 1 ≤ i ≤ N − 1),
what is the probability that he loses everything?

16



The answer is hi0 = P(H0 < ∞|X0 = i) (indeed, the only alternative is HN < ∞). Let us
therefore try solving equation (8):

i = 0 : h00 = 1

1 ≤ i ≤ N − 1 : hi0 = 1
2
(hi−1,0 + hi+1,0) i.e. hi+1,0 = 2hi0 − hi−1,0

i = N : hN0 = 0

(12)

Notice that there is actually no equation for hN0; we therefore choose the smallest non-negative
value, i.e. 0 (another view on this is that we know that hN0 = 0, as 0 is not accessilble from N ).
This gives

h20 = 2h10 − 1, h30 = 2h20 − h10 = 3h10 − 2, . . .

By induction, we obtain hi0 = ih10 − (i− 1), ∀1 ≤ i ≤ N − 1.

Writing down equation (12) for i = N − 1, we further obatin

0 = hN0 = 2hN−1,0 − hN−2,0 = 2(N − 1)h10 − 2(N − 2)− (N − 2)h10 + (N − 3)

Therefore Nh10 −N + 1 = 0, i.e.

h10 =
N − 1

N
and hi0 = i

N − 1

N
− (i− 1) =

iN − i−Ni+N

N
=
N − i
N

Here is now a second question: how long will the game last on average (until the gambler either
loses everything or wins N euros), assuming again the gambler starts with i euros (1 ≤ i ≤
N − 1)?

The answer is the following: let us consider the subset A = {0, N}; the average duration of the
game is µiA = E(HA|X0 = i). Notice that hiA = 1 (as there is no other alternative than to end
in 0 or N ) and also that the chain has a finite number of states, so µiA < ∞ (whereas it can be
checked that both µi0 = µiN =∞). The equation (11) for the vector µA reads in this case:

i = 0 : µ0A = 0

1 ≤ i ≤ N − 1 : µiA = 1 + 1
2
(µi−1,A + µi+1,A) i.e. µi+1,A = 2µiA − 2− µi−1,A

i = N : µNA = 0

(13)

The solution of this equation is obtained similarly to the previous one:

µ2A = 2µ1A − 2, µ3A = 2µ2A − 2− 2µ1A = 3µ1A − 6, . . .

17



so by induction, we obtain: µiA = iµ1A − i(i− 1)

Writing down equation (13) for i = N − 1, we further obtain

0 = µNA = 2µN−1,A − 2− µN−2,A

= 2(N − 1)µ1A − 2(N − 1)(N − 2)− 2− (N − 2)µ1A + (N − 2)(N − 3)

= Nµ1A − (N − 2)(2(N − 1)− (N − 3))− 2

= Nµ1A − (N2 −N − 2)− 2 = Nµ1A −N2 +N

So µ1A = N2−N
N

= N − 1 and µiA = i(N − 1)− i(i− 1) = i(N − i).

Example 1.28. (gambler’s ruin on N)
Let us consider the time-homogeneous Markov chain with the following transition graph:

This Markov chain describes a gambler playing repeatedly until he loses everything (there is no
more upper limitN ), winning each game with probability 0 < p < 1 and losing with probability
q = 1 − p. Starting from a fortune of i euros, what is the probability that the gambler loses
everything?

The answer is again hi0, so let us try solving equation (8) (first assuming that p 6= 1/2):

h00 = 1, hi0 = phi+1,0 + qhi−1,0 i ≥ 1

The general solution of this difference equation is given by

hi0 = α yi+ + β yi−

where y± are the two solutions of the quadratic equation y = py2 + q, i.e. y+ = 1, y− = q/p.
Therefore,

hi0 = α + β (q/p)i

Using the boundary condition h10 = ph20 + q, we moreover obtain that α + β = 1, i.e.

hi0 = α + (1− α) (q/p)i

18



For any α ∈ [0, 1], the above expression is a non-negative solution of equation (8). The param-
eter α remains to be determined, using the fact that we are looking for the minimal solution.

* if p < q, then the minimal solution is given by hi0 = 1, ∀i (i.e. α = 1)

* If p > q, then the minimal solution is given by hi0 = (q/p)i, ∀i (i.e. α = 0)

In the borderline case where p = q = 1/2, following what has been done in the previous
example leads to

hi0 = ih10 − (i− 1), ∀i

and we see that the minimal non-negative solution is actually given by h10 = 1, leading to
hi0 = 1 for all i.

In conclusion, as soon as p ≤ 1/2, the gambler is guaranteed to lose everything with probability
1, whatever his initial fortune.

Remarks.
* These absorption probabilities we just computed are also the hitting probabilities of the
Markov chain with the following transition graph:

And for this chain, the probabilities h10 = P(H0 < ∞|X0 = 1) and f0 = P(T0 < ∞|X0 = 0)
are equal! So this new chain is recurrent if and only if h10 = 1, that is, if and only if p ≤ 1/2.

* In the case p = 1/2, we can also compute the average hitting times µi0, following what has
been done in the Example 1.27. We obtain:

µi0 = iµ10 − i(i− 1), ∀i

As i(i − 1) increases faster to∞ than i, we see that the vector µ0 can be non-negative only if
µ10 =∞ itself, i.e. µi0 =∞ for all i. This is saying that in this case, the average time to reach
0 from any starting point i is actually infinite!

* Making now the connection between these two remarks, we see that for the chain described
above, we have

∞ = µ10 = E(H0|X0 = 1) = E(T0|X0 = 0)

i.e. the expected return time to state 0 is infinite, so the chain is null recurrent when p = 1/2
(similarly, it can be argued that the chain is positive recurrent when p < 1/2).
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1.5.1 Application: branching processes

Here is a simple (not to say simplistic) model of evolution of the number of individuals in a
population over the generations. Let first (pj, j ≥ 0) be a given probability distribution.

Let now Xn describe the number of individuals in the population at generation n. At each
generation n, each individual i ∈ {1, ..., Xn} has Cn

i children, where (Cn
i , i ≥ 1, n ≥ 0) are

i.i.d. random variables with distribution P(Cn
i = j) = pj , j ≥ 0. The number of individuals at

generation n+ 1 is therefore:
Xn+1 = Cn

1 + ...+ Cn
Xn

Because the random variable Cn
i are i.i.d., the process (Xn, n ≥ 0) is a time-homogeneous

Markov chain (what happens to generation n + 1 only depends on the value Xn, not on what
happened before). Let us moreover assume that the population starts with i > 0 individuals.

We are interested in computing the extinction probability of this population, namely:

hi0 = P(Xn = 0 for some n ≥ 1|X0 = i).

This model was originally introduced by Galton and Watson in the 19th century in order to study
the extinction of surnames in noble families. It nowadays has found numerous applications in
biology, and numerous variants of the model exist also.

Remarks.
* If p0 = P(Cn

i = 0) = 0, then the extinction probability hi0 = 0, trivially; let us therefore
assume that p0 > 0. In this case, 0 is an absorbing state and all the other states are transient.
* If a population starts with i individuals, then if extinction occurs, it has to occur for the family
tree each of the i ancestors. So because of the i.i.d. assumption, the total extinction probability
is the product of the extinction probabilities of each subtree, i.e. hi0 = (h10)i.
* As a corollary, the fact that extinction occurs with probability 1 or not does not depend on the
initial number of individuals in the population.
* For i = 1, the transition probabilities have the following simple expression:

p1j = P(Xn+1 = j|Xn = 1) = P(Cn
1 = j) = pj.

From Theorem 1.24, we know that the vector h0 = (hi0, i ≥ 0) is the minimal non negative
solution of

h00 = 1, hi0 =
∑
j≥0

pij hj0, i ≥ 1

In particular, we obtain the following closed equation for h10:

h10 =
∑
j≥0

p1j hj0 =
∑
j≥0

pj (h10)j (14)

In order to solve this equation for h10 (remembering that we are looking for the minimal non-
negative solution), let us define the generating function

g(z) =
∑
j≥0

pjz
j, z ∈ [0, 1]

20



Equation (14) can therefore be rewritten as the fixed point equation h10 = g(h10). Its minimal
non-negative solution is given by the following proposition.

Proposition 1.29. Let µc =
∑

j≥1 pj j be the average number of children of a given individual.

* If µc ≤ 1, then h10 = 1, i.e. extinction occurs with probability 1.

* If µc > 1, then the minimal solution of h10 = g(h10) is a number strictly between 0 and 1, so
both extinction and survival occur with positive probability.

From this proposition, we see that slightly more than one child per individual is needed on av-
erage in order for the population to survive. But of course, there is always a positive probability
that at some generation, no individual has a child and the population gets extinct.

Proof. Let us analyze the properties of the generating function g:

* g(0) = p0 ∈ ]0, 1], g(1) =
∑

j≥0 pj = 1

* g′(z) =
∑

j≥1 pj j z
i−1, so g′(1) =

∑
j≥1 pj j = µc.

* g′′(z) =
∑

j≥2 pj j(j − 1) zj−2 ≥ 0, so g is a convex function.

Given these properties, we see that only two things can happen:

* Either µc ≤ 1 (top curve), and then the unique solution to equation h10 = g(h10) is h∗10 = 1.

* Or µc > 1 (bottom curve), and then equation h10 = g(h10) admits two solutions, the minimal
of which is a number h∗10 ∈ ]0, 1[.
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2 Continuous-time Markov chains

2.1 The Poisson process

Preliminary. (convergence of the binomial distribution towards the Poisson distribution)
Let c > 0 and X1, . . . , XM be i.i.d. random variables such that P(Xi = +1) = c/M and
P(Xi = 0) = 1− (c/M), for 1 ≤ i ≤M .

Let also ZM = X1 + . . .+XM . Then ZM ∼ Bi(M, c/M), i.e.

P(ZM = k) =

(
M
k

)
(c/M)k (1− (c/M))M−k, 0 ≤ k ≤M

Proposition 2.1. As M → ∞, the distribution of ZM converges to that of a Poisson random
variable with parameter c > 0, i.e.

P(ZM = k) →
M→∞

ck

k!
e−k, ∀k ≥ 0

Proof. Let us compute

P(ZM = k) =

(
M
k

)
(c/M)k (1− (c/M))M−k

=
M(M − 1) · · · (M − k + 1)

k!

ck

Mk
(1− (c/M))M (1− (c/M))−k →

M→∞

ck

k!
e−c

2.1.1 Definition and basic properties

The Poisson process is a continuous-time process counting events taking place at random times,
such as e.g. customers arriving at a desk. Its definition follows.

Definition 2.2. A continuous-time stochastic process (Nt, t ∈ R+) is a Poisson process with
intensity λ > 0 if:

* N is integer-valued: Nt ∈ N, ∀t ∈ R+.
* N0 = 0 and N is increasing: Ns ≤ Nt if s ≤ t.
*N has independent and stationary increments: for all 0 ≤ t1 ≤ . . . ≤ tm and n1, . . . , nm ∈ N,

P(Nt1 = n1, Nt2 −Nt1 = n2, . . . , Ntm −Ntm−1 = nm)

= P(Nt1 = n1)P(Nt2 −Nt1 = n2) · · ·P(Ntm −Ntm−1 = nm)

and for all 0 ≤ s ≤ t and n,m ∈ N,

P(Nt −Ns = n) = P(Nt−s = n)

* P(N∆t = 1) = λ∆t+ o(∆t), P(N∆t ≥ 2) = o(∆t), where by definition lim∆t→0
o(∆t)

∆t
= 0.

NB: As a consequence of this definition, we see that P(N∆t = 0) = (1− λ∆t) + o(∆t).
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Illustration. Here is a graphical representation of the time evolution of a Poisson process.

From the above definition, we deduce in the proposition below the distribution of the Poisson
process at a given time instant.

Proposition 2.3. At time t ∈ R+, Nt is a Poisson random variable with parameter λt, i.e.

P(Nt = k) =
(λt)k

k!
e−λt, k ≥ 0

Proof. (sketch)
Let t ∈ R+, M ≥ 1 and define ∆t = t/M . We can write

Nt =
M∑
i=1

Xi, where Xi = Ni∆t −N(i−1)∆t

From the last line of Definition 2.2 and the stationarity property, we deduce that

P(Xi = 1) = P(N∆t = 1) ' λ∆t =
λt

M
P(Xi ≥ 2) = P(N∆t ≥ 2) ' 0

P(Xi = 0) = P(N∆t = 0) ' 1− λ∆t = 1− λt

M

The random variables Xi can therefore be considered as (nearly) Bernoulli random variables

with parameter
λt

M
. Therefore,

P(Nt = k) = P(X1 + ...+XM = k) '
(
M
k

) (
λt

M

)k (
1− λt

M

)M−k
→

M→∞

(λt)k

k!
e−λt

by Proposition 2.1.

Corollary 2.4. For t ∈ R+, E(Nt) = λt (so λ is the average number of events per unit time).
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2.1.2 Joint distribution of the arrival times and inter-arrival times

Definition 2.5. The arrival times of a Poisson process are defined as

T0 = 0, Tn = inf{t ∈ R+ : Nt = n}, n ≥ 1

The cumulative distribution function (cdf) of a given arrival time can be computed easily:

P(Tn ≤ t) = P(Nt ≥ n) =
∑
k≥n

P(Nt = k) =
∑
k≥n

(λt)k

k!
e−λt

and its corresponding probability density function (pdf) is given by

pTn(t) =
d

dt
P(Tn ≤ t) =

∑
k≥n

λk tk−1

(k − 1)!
e−λt −

∑
k≥n

(λt)k

k!
λ e−λt

= λ e−λt

(∑
k≥n

(λt)k−1

(k − 1)!
−
∑
k≥n

(λt)k

k!

)
= λ e−λt

(λt)n−1

(n− 1)!

i.e. Tn ∼ Gamma(n, λ) (and remember that such a Gamma random variable can be written as
the sum of n i.i.d. exponential random variables, each of parameter λ > 0),

We now would like to compute the joint distribution of the arrival times T1, . . . , Tn. For this, let
us recall the following.

* If T is a non-negative random variable, then for 0 ≤ a < b, P(a < T ≤ b) =
∫ b
a
dt pT (t),

where pT is the pdf of T .

* Similarly, if Tn ≥ . . . ≥ T2 ≥ T1 are non-negative random variables, then for 0 ≤ a1 < b1 <
a2 < b2 < ... < an < bn, we have

P(a1 < T1 ≤ b1, a2 < T2 ≤ b2, . . . , an < Tn ≤ bn)

=

∫ b1

a1

dt1

∫ b2

a2

dt2 · · ·
∫ bn

an

dtn pT1,...,Tn(t1, . . . , tn)

where pT1,...,Tn is the joint pdf of T1, . . . , Tn.
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Let us therefore compute

P(a1 < T1 ≤ b1, a2 < T2 ≤ b2, . . . , an < Tn ≤ bn)

= P(Na1 = 0, Nb1 −Na1 = 1, Na2 −Nb1 = 0, . . . , Nan −Nbn−1 = 0, Nbn −Nan ≥ 1)

= P(Na1 = 0)P(Nb1 −Na1 = 1)P(Na2 −Nb1 = 0) · · ·P(Nan −Nbn−1 = 0)P(Nbn −Nan ≥ 1)

= e−λa1 λ(b1 − a1) e−λ(b1−a1) e−λ(a2−b1) · · · e−λ(an−bn−1)
(
1− e−λ(bn−an)

)
= λn−1

n−1∏
i=1

(bi − ai) (e−λan − e−λ bn) =

∫ b1

a1

dt1 · · ·
∫ bn

an

dtn λ
n e−λtn

So the joinf pdf of T1, . . . , Tn is given by

pT1,...,Tn(t1, . . . , tn) = λn e−λtn 1{0≤t1≤...≤tn}

In particular,

pT1,...,Tn−1|Tn(t1, . . . , tn−1|tn) =
pT1,...,Tn(t1, . . . , tn)

pTn(tn)

=
λne−λtn

λn(tn)n−1 e−λtn/(n− 1)!
1{0≤t1≤...≤tn} =

(n− 1)!

(tn)n−1
1{0≤t1≤...≤tn}

i.e., given that Tn = tn, the random variables T1, . . . , Tn−1 have the same distribution as the
order statistics of n− 1 random variables uniformly distributed on [0, tn].

Definition 2.6. The inter-arrival times of a Poisson process are defined as

Sn = Tn − Tn−1, n ≥ 1

Equivalently, Tn = S1 + S2 + ...+ Sn, for n ≥ 1.
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The joint pdf of S1, . . . , Sn can be easily computed from the joint pdf of T1, . . . , Tn:

pS1,...,Sn(s1, . . . , sn) = pT1,...,Tn(s1, s1 + s2, . . . , s1 + ...+ sn)

= λn e−λ(s1+...+sn) 1{s1≥0,s1+s2≥s1,...,s1+...+sn≥s1+...+sn−1} =
n∏
i=1

λ e−λsi 1si≥0

i.e. S1, . . . , Sn are n i.i.d. exponential random variables with parameter λ (and as already ob-
served above, Tn is the sum of them). This gives rise to the following proposition (which can
also be taken as an alternate definition of the Poisson process).

Proposition 2.7. Let (Sn, n ≥ 1) be i.i.d. exponential random variables with parameter λ > 0.
Then the process defined as

Nt = max{n ≥ 0 : S1 + . . .+ Sn ≤ t}, t ∈ R+

is a Poisson process of intensity λ > 0.

Remark.
The exponential distribution of the inter-arrival times leads to the following consequence:
* Let t0 ∈ R+ be a fixed time, chosen independently of the process N . Then by stationarity,

P(Nt0+t −Nt0 ≥ 1) = P(Nt ≥ 1) = 1− P(Nt = 0) = 1− e−λt

* Let us now replace t0 by an arrival time of the process Tn. Then again,

P(NTn+t −NTn ≥ 1) = P(Sn+1 ≤ t) = 1− e−λt, i.e. the probability is the same as before!

So the probability that an event takes place t seconds after a given time does not depend on
whether this given time is an arrival time of the process or not.

2.1.3 Additional properties

We prove below two useful propositions.

Proposition 2.8. (superposition of two independent Poisson processes)
Let N (1), N (2) be two independent Poisson processes with intensity λ1 and λ2, respectively.
Then the process N defined as

Nt = N
(1)
t +N

(2)
t , t ∈ R+

is again a Poisson process, with intensity λ1 + λ2.

Proof. (sketch)
We only prove here that for t ∈ R+, Nt is a Poisson random variable with parameter (λ1 +λ2) t:

P(Nt = n) = P(N
(1)
t +N

(2)
t = n) =

n∑
k=0

P(N
(1)
t = k,N

(2)
t = n− k)

=
n∑
k=0

P(N
(1)
t = k)P(N

(2)
t = n− k) =

n∑
k=0

(λ1t)
k

k!
e−λ1t

(λ2t)
n−k

(n− k)!
e−λ2t

=
n∑
k=0

n!

k!(n− k)!
λk1 λ

n−k
2

tn

n!
e−(λ1+λ2)t =

((λ1 + λ2)t)n

n!
e−(λ1+λ2)t
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The superposition of two Poisson processes is illustrated on the figure below.

The next proposition is in some sense the reciprocal of the former one.

Proposition 2.9. (thinning of a Poisson process)
Let N be a Poisson process with intensity λ and let (Xn, n ≥ 1) be a sequence of i.i.d. random
variables independent of N and such that P(Xn = 1) = p = 1 − P(Xn = 0), with 0 < p < 1.
Let us then associate to each arrival time Tn of the original process N a random variable Xn

and let N (1) be the process whose arrival times are those of the process N for which Xn = 1.
Then N (1) is again a Poisson process, with intensity pλ.

Proof. (sketch)
We only prove again that for t ∈ R+, N (1)

t is a Poisson random variable with parameter pλt:

P(N
(1)
t = k) =

∑
n≥k

P(Nt = n,X1 + ...+Xn = k)

=
∑
n≥k

P(Nt = n)P(X1 + ...+Xn = k) (15)

=
∑
n≥k

(λt)n

n!
e−λt

(
n
k

)
pk (1− p)n−k

=
(pλt)k

k!
e−λt

∑
n≥k

(λt)n−k

(n− k)!
(1− p)n−k =

(pλt)k

k!
e−pλt

where (15) follows from the assumed independence between the process N and the random
variables (Xn, n ≥ 1).
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2.2 Continuous-time Markov chains

2.2.1 Definition and basic properties

Definition 2.10. A continuous-time Markov chain is a stochastic process (Xt, t ∈ R+) with
values in a discrete state space S such that

P(Xtn+1 = j|Xtn = i,Xtn−1 = in−1, . . . , Xt0 = i0) = P(Xtn+1 = j|Xtn = i),

∀j, i, in−1, . . . , i0 ∈ S and ∀tn > tn−1 > . . . > t0 ≥ 0

If moreover

P(Xt+s = j|Xs = i) = P(Xt = j|X0 = i) = pij(t), ∀i, j ∈ S and ∀t, s ≥ 0

then the chain is said to be time-homogeneous (we only consider such chains in the following).

Notice that we do not have anymore a single transition matrix P = (pij)i,j∈S , but a collection
of transition matrices P (t) = (pij(t))i,j∈S , indexed by t ∈ R+.

Example 2.11. The Poisson process with intensity λ > 0 is a continuous-time Markov chain,
Indeed, for j ≥ i ≥ in−1 ≥ . . . ≥ i0 ∈ N, we have:

P(Ntn+1 = j|Ntn = i, Ntn−1 = in−1, . . . , Nt0 = i0)

= P(Ntn+1 −Ntn = j − i|Ntn = i, Ntn−1 = in−1, . . . , Nt0 = i0)

= P(Ntn+1 −Ntn = j − i) = P(Ntn+1−tn = j − i)
where the last line follows from the independence and the stationarity of increments. Similarly,
we obtain

P(Ntn+1 = j|Ntn = i) = P(Ntn+1−tn = j − i)
proving therefore the Markov property. Furthermore, the transition probabilities are given by

pij(t) = P(Nt = j − i) =
(λt)j−i

(j − i)!
e−λt

Notations.
* π(t) = (πi(t), i ∈ S) is the distribution of the Markov chain at time t ∈ R+.
i.e. πi(t) = P(Xt = i). Again, we have πi(t) ≥ 0 for all i ∈ S and

∑
i∈S πi(t) = 1, ∀t ∈ R+.

* π(0) = (πi(0), i ∈ S) is the initial distribution of the Markov chain.

One can check that πj(t) =
∑

i∈S πi(0) pij(t) and πi(t+ s) =
∑

i∈S πi(t) pij(s).

The Chapman-Kolmogorov equation reads in the continuous-time case as

pij(t+ s) =
∑
k∈S

pik(t) pkj(s), ∀i, j ∈ S, t, s ∈ R+

Proof. Along the lines of what has been shown in the discrete-time case, we obtain

pij(t+ s) = P(Xt+s = j|X0 = i) =
∑
k∈S

P(Xt+s = j,Xt = k|X0 = i)

=
∑
k∈S

P(Xt+s = j|Xt = k,X0 = i)P(Xt = k|X0 = i) =
∑
k∈S

pik(t) pkj(s)
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2.2.2 Transition and sojourn times

Disclaimer. In this section and the following ones, rigorous proofs are often missing!

Definition 2.12. The transition and sojourn times of a continuous-time Markov chain are de-
fined respectively as

T0 = 0, Tn+1 = inf{t > Tn : Xt 6= XTn}, n ≥ 0

and
Sn = Tn − Tn−1, n ≥ 1

Equivalently, Tn = S1 + . . .+ Sn.

The following fact is essentially a consequence of the Markov property.

Proposition 2.13. (without proof)
The sojourn times (Sn, n ≥ 1) are independent exponential random variables.

Remarks.
* In general, the sojourn times (Sn, n ≥ 1) are not identically distributed random variables.
* Also, the parameter of the exponential random variable Sn+1 depends on the state of the
Markov chain at time Tn. That is, given that XTn = i, Sn+1 is an exponential random variable
with some parameter νi, so that the average waiting time in state i is E(Sn+1|XTn = i) = 1/νi.
The parameter νi is the rate at which the chain leaves state i.

Here is the graphical representation of the time evolution of a Markov chain with 3 states and
ν1 ∼ ν3 < ν2:

In order to avoid strange behaviors (such as e.g. processes with infinitely many transitions dur-
ing a fixed period of time), we make the following additional assumption:

n∑
i=1

Si = Tn →
n→∞

∞
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2.2.3 Embedded discrete-time Markov chain

Let us define X̂n = XTn and q̂ij = P(XTn+1 = j|XTn = i) = P(X̂n+1 = j|X̂n = i), i, j ∈ S.

Fact. (without proof)
The process (X̂n, n ≥ 0) is a discrete-time Markov chain with transition probabilities (q̂ij)i,j∈S .
It is said to be embedded in the continuous-time Markov chain (Xt, t ∈ R+).

Remark.
* Notice indeed that q̂ij ≥ 0, ∀i, j ∈ S and

∑
j∈S q̂ij = 1, ∀i ∈ S, as in the discrete-time case.

* Here, in addition, q̂ii = 0, ∀i ∈ S, i.e. the embedded discrete-time Markov chain never has
self-loops in its transition graph.
* The embedded chain does not “see” the time elapsed between any two transitions.

Fact. (again without proof)
The continuous-time Markov chain (Xt, t ∈ R+) is completely characterized by the parameters
(νi)i∈S (= the rates at which the chain leaves states) and (q̂ij)i,j∈S (= the transition probabilities
of the embedded discrete-time chain).

From this, we also deduce the following (by an approximate reasoning):

pii(∆t) = P(X∆t = i|X0 = i) ' P(T1 > ∆t|X0 = i) = e−νi∆t = 1− νi∆t+ o(∆t) (16)

pij(∆t) = P(X∆t = j|X0 = i) ' P(XT1 = j, T1 ≤ ∆t|X0 = i) ' q̂ij (1− e−νi∆t)
= q̂ijνi∆t+ o(∆t) (17)

Let us therefore define a new matrix Q as follows:

qii = −νi and qij = νi q̂ij, j 6= i

Then |qii| = νi represents the rate at which the chain leaves state i and qij = νi q̂ij represents
the rate at which the chain transits from state i to state j. Notice also that∑

j∈S

qij = qii +
∑
j 6=i

qij = −νi + νi

(∑
j 6=i

q̂ij

)
= 0, ∀i ∈ S

Finally, we deduce from equations (16) and (17) that

P (∆t) = I +Q∆t+ o(∆t)

The matrix Q characterizes therefore the short-term behavior of the continuous-time Markov
chain X . It is therefore called the infinitesimal generator of X .

2.2.4 Kolmogorov equations

Proposition 2.14. (Kolmogorov equation: version 1)

dπj(t)

dt
=
∑
i∈S

πi(t) qij, ∀i, j ∈ S, ∀t ∈ R+

or in matrix form:
dπ

dt
(t) = π(t)Q.
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Proof.

πj(t+ ∆t) =
∑
i∈S

πi(t) pij (∆t) = πj(t) pjj(∆t) +
∑
i 6=j

πi(t) pij(∆t)

= πj(t) +
∑
i∈S

πi(t) (qij∆t+ o(∆t))

where the last equality is obtained using equations (16) and (17). Therefore,

πj(t+ ∆t)− πj(t)
∆t

=
∑
i∈S

πi(t) qij +
o(∆t)

∆t

so taking the limit ∆t→ 0, we obtain (watch out that a technical detail is missing here)

dπj
dt

(t) = lim
∆t→0

πj(t+ ∆t)− πj(t)
∆t

=
∑
i∈S

πi(t) qij

Proposition 2.15. (Kolmogorov equation: version 2, “forward” and “backward”)

dpij
dt

(t) =
∑
k∈S

pik(t) qkj =
∑
k∈S

qik pkj(t), ∀i, j ∈ S, ∀t ∈ R+

or in matrix form:
dP

dt
(t) = P (t)Q = QP (t).

We skip the proof: it follows the same lines as above. The only difference is that the Chapman-
Kolomogorov equation is used here:

pij(t+ ∆t) =
∑
k∈S

pik(t) pkj(∆t) =
∑
k∈S

pik(∆t) pkj(t)

Example 2.16. (two-state continuous-time Markov chain)
Let us consider the continuous-time Markov chain with state space S = {0, 1} and infinitesimal
generator

Q =

(
−λ λ
µ −µ

)
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The embedded discrete-time Markov chain has the following transition matrix:

Q̂ =

(
0 1
1 0

)

and the average waiting times are
1

λ
in state 0 and

1

µ
in state 1.

The Kolmogorov equation (version 1) reads in this case(
dπ0

dt
,
dπ1

dt

)
= (π0, π1)

(
−λ λ
µ −µ

)
Solving this ordinary differential equation, we obtain

π0(t) =
µ

λ+ µ
+

(
π0(0)− µ

λ+ µ

)
e−(λ+µ)t

and

π1(t) =
λ

λ+ µ
+

(
π1(0)− λ

λ+ µ

)
e−(λ+µ)t

2.2.5 Classification of states

As in the discrete-time case, let us introduce some definitions.

* Two states i and j communicate if pij(t) > 0 and pji(t) > 0 for some t ≥ 0.

* The chain is said to be irreducible if all states communicate.

* Fact: if pij(t) > 0 for some t > 0, then pij(t) > 0 for all t > 0, so there is no notion of
periodicity here.

* Let Ri be the first return time to state i: Ri = inf{t > T1 : Xt = i}.

* A state i is said to be recurrent if fi = P(Ri <∞|X0 = i) = 1 and transient otherwise.

* Moreover, if a state i is recurrent, then it is positive recurrent if E(Ri|X0 = i) <∞ and null
recurrent otherwise.
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Remarks.
* The continuous-time Markov chain X and its embedded discrete-time Markov chain X̂ share
all the above properties (except for periodicity).
* X is said to be ergodic if it is irreducible and positive recurrent (and as before, in a finite-state
chain, irreducible implies positive recurrent).

2.2.6 Stationary and limiting distributions

The following theorem is the equivalent of Corollary 1.13 for discrete-time Markov chains.

Theorem 2.17. Let X be an ergodic continuous-time Markov chain. Then it admits a unique
stationary distribution, i.e. a distribution π∗ such that

π∗P (t) = π∗, ∀t ∈ R+ (18)

Moreover, this distribution is a limiting distribution, i.e. for any initial distribution π(0), we
have

lim
t→∞

π(t) = π∗

Remark.
Equation (18) is not so easy to solve in general, but it can be shown to be equivalent (modulo a
technical assumption) to the much nicer equation

π∗Q = 0, i.e.
∑
i∈S

π∗i qij = 0, ∀j ∈ S (19)

Here is the main proof idea in one direction: if π∗ satisfies (18), then π∗(P (t) − P (0)) = 0,
∀t ∈ R+. So

lim
t→0

π∗
(
P (t)− P (0)

t

)
= 0

which in turn implies (and here comes the technical detail that we skip) that π∗
dP

dt
(0) = 0,

i.e. π∗Q = 0.

Example 2.18. (two-state continuous-time Markov chain)
Turning back to the two-state continuous-time Markov chain of Example 2.16 (which is er-
godic), we need to solve

(π∗0, π
∗
1)

(
−λ λ
µ −µ

)
= 0

which leads to (π∗0, π
∗
1) =

(
µ

λ+µ
, λ
λ+µ

)
. Notice that this result could also have been obtained by

taking the limit t→∞ in the expression obtained for (π0(t), π1(t)).
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Example 2.19. (birth and death process)
Let (Xt, t ∈ R+) be continuous-time Markov chain with state space S = N and infinitesimal
generator

q0j =


−λ if j = 0

λ if j = 1

0 otherwise
and qij =


µ if j = i− 1

−λ− µ if j = i

λ if j = i+ 1

0 otherwise

for i ≥ 1

So ν0 = λ, and νi = λ+ µ for i ≥ 1. Moreover, the embedded discrete-time Markov chain has
the following transition probabilities:

q̂01 =
q01

ν0

= 1, q̂i,i+1 =
qi,i+1

νi
=

λ

λ+ µ
, q̂i,i−1 =

qi,i−1

νi
=

µ

λ+ µ

corresponding to the transition graph

where p = λ
λ+µ

and q = 1− p = µ
λ+µ

, i.e. this chain is a random walk on N.

Let us now look for the stationary distribution of the continuous-time Markov chain, if it exists.

* If λ, µ > 0, then the chain is irreducible.
* If λ ≥ µ, i.e. p ≥ q, then the chain is either transient or null recurrent. so there does not exist
a stationary distribution.
* If on the contrary λ < µ, i.e. p < q, then the chain is positive recurrent, and solving the
equation π∗Q = 0 in this case leads to

π0 q00 + π1 q10 = 0, πi−1 qi−1,i + πi qii + πi+1 qi+1,i = 0

−λπ0 + µπ1 = 0, λ πi−1 − (λ+ µ) πi + µπi+1 = 0

So

π1 =
λ

µ
π0, π2 =

1

µ
((λ+ µ)π1 − λπ0) =

(
λ

µ

)2

π0

and by induction,

πk =

(
λ

µ

)k
π0, π0

(
1 +

λ

µ
+
λ2

µ2
+ . . .

)
= 1

i.e., finally,

π∗k =

(
λ

µ

)k (
1− λ

µ

)
, k ∈ N

This concludes these short lecture notes on Markov chains.
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