Joint distribution of subdeterminants of Wishart matrices

Let us consider H a 3×3 matrix with i.i.d. $\sim \mathcal{N}_{\mathbb{C}}(0,1)$ entries. What is the joint distribution of the following 3 random variables'?

$$
\left\{\begin{array}{l}
X_{1}=\left|h_{11}\right|^{2} \\
X_{2}=\left|h_{11} h_{22}-h_{12} h_{21}\right|^{2} \\
X_{3}=|\operatorname{det}(H)|^{2}=\operatorname{det}\left(H H^{*}\right)
\end{array}\right.
$$

Notice that X_{i} correspond to the modulus square of the determinant of the upper left $i \times i$ submatrix of H.

Same question when 3 is replaced by n.
Remark: The answer is known for the following random variables:

$$
Y_{i}=\operatorname{det}\left(H_{i} H_{i}^{*}\right)
$$

where H_{i} is the $i \times n$ upper submatrix of H. The joint distribution of the Y 's can be computed by using the Choleski decomposition of the matrix $H H^{*}$. But such a technique does not work for the X 's.

