A generalization of Cauchy's determinant identity

Let H_{k} be the $n \times n$ matrix defined as

$$
h_{i j}=\frac{1}{\left(x_{i}+y_{j}\right)^{k}}
$$

where x_{i}, y_{j} are arbirary positive numbers and k is a positive integer. Cauchy's determinant identity reads

$$
\operatorname{det}\left(H_{1}\right)=\frac{\Delta(\mathbf{x}) \Delta(\mathbf{y})}{\prod_{i, j=1}^{n}\left(x_{i}+y_{j}\right)}
$$

where $\Delta(\mathbf{x})=\prod_{i<j}\left(x_{j}-x_{i}\right)$.
Borchardt then showed that

$$
\operatorname{det}\left(H_{2}\right)=\operatorname{det}\left(H_{1}\right) \operatorname{perm}\left(H_{1}\right)
$$

where $\operatorname{perm}\left(H_{1}\right)$ is the permanent of the matrix H_{1}. This allows to conclude that $\operatorname{det}\left(H_{2}\right)$ is of the form

$$
\operatorname{det}\left(H_{2}\right)=\frac{\Delta(\mathbf{x}) \Delta(\mathbf{y}) P_{2}(\mathbf{x}, \mathbf{y})}{\prod_{i, j=1}^{n}\left(x_{i}+y_{j}\right)^{2}}
$$

where $P_{2}(\mathbf{x}, \mathbf{y})$ is some polynomial with non-negative coefficients.
The conjecture is: for any integer $k \geq 1$, we have

$$
\operatorname{det}\left(H_{k}\right)=\frac{\Delta(\mathbf{x}) \Delta(\mathbf{y}) P_{k}(\mathbf{x}, \mathbf{y})}{\prod_{i, j=1}^{n}\left(x_{i}+y_{j}\right)^{k}}
$$

where $P_{k}(\mathbf{x}, \mathbf{y})$ is again some polynomial with non-negative coefficients.
This conjecture was made by Emmanuel Preissmann.

