
Modular Software Radio

Linus

February 23, 2007

Contents

I Introduction 2

1 How to read this document 3
1.1 Overview of this part 3

2 Motivation 4
2.1 Why Software-Radio? 4

3 System Overview 5
3.1 Simulation Mode 5
3.2 Real-Time Mode 5
3.3 Communication 6

4 Usage 7
4.1 Past .. . 7
4.2 Present 7
4.3 Future 7

5 Outlook 8
5.1 Multi-point to Multi-point 8
5.2 Low-Tech Communication 8

II Architecture 9

6 Overview 10

7 GUI 11
7.1 User I/O 11

7.1.1 Chains .11
7.1.2 Stats .. 12
7.1.3 Output-ports 12
7.1.4 Plots .12
7.1.5 Export .. 12
7.1.6 Re-configuration 12
7.1.7 Process-Data 12

7.2 Mapper .. . 12
7.3 FifoCmd 12

8 Signal Processing 13
8.1 DBG .. 13
8.2 Framework 13

8.2.1 Modules and Chains 14
8.2.2 CDB and SDB . 14

1/121

CONTENTS CONTENTS

8.2.3 Subsystem .. 14
8.2.4 STFA . 15

9 Antenna 16
9.1 Common .. 16
9.2 Driver 16
9.3 Hardware or Simulation 17

9.3.1 Hardware .. 17
9.3.2 Simulation .. . 17

10 Operating System 18

11 Modes of Operation 19
11.1 Test 19
11.2 Simulation or Real-Time 19
11.3 Local-Loop 19
11.4 Two-Radio System 20

11.4.1 Setup .. 20
11.4.2 Modules .. 20
11.4.3 Master .. 21
11.4.4 Client .. . 21

12 Hardware 22

13 Code 23
13.1 Directory Structure 23

III Reference-Manuals 24

14 Overview 25

15 GUI 26
15.1 General Interface 26
15.2 Interaction 27

15.2.1 Plotting 28
15.2.2 Configuration 28
15.2.3 Signal and Outputs 28
15.2.4 Image .. 28

15.3 Internal 29
15.3.1 Mapper .. 29
15.3.2 FifoCmd .. 29
15.3.3 Module .. 29

16 Signal Processing 30
16.1 CDB .. . 30

16.1.1 swrspcget new desc . 30
16.1.2 swrspcdefineconfig parameter . 30
16.1.3 swrspcdefinestatsparameter . 31
16.1.4 Flags for define* parameter . 31
16.1.5 Types for define* parameter . 31
16.1.6 swrspcdefineinput . 31
16.1.7 Port Types .. . 32
16.1.8 Port Flags 32

16.2 SDB .. . 32

2/121

CONTENTS CONTENTS

16.2.1 Instantiation 33
16.2.1.1 swrchaincreate . 33
16.2.1.2 swrsdb instantiatename . 33
16.2.1.3 swrconnectionadd . 33

16.2.2 Manipulating stats- and config-structures 34
16.2.2.1 Accessing own Structures 34
16.2.2.2 Accessing other Structures 34

16.2.3 Other Functions 35
16.3 Subsystem 35

16.3.1 Messages .. . 35
16.3.1.1 Basic Handling .35
16.3.1.2 Data Propagation .. 36
16.3.1.3 Reconfiguration .. 36

16.3.2 Subsytem-Flags 36
16.3.2.1 Propriety .37
16.3.2.2 User-defined .37
16.3.2.3 State . 37

16.3.3 Port-Flags 38
16.3.3.1 Block-related .. 38
16.3.3.2 Signal-passing .. . 38

16.4 Module 38
16.4.1 General introduction 38
16.4.2 Data Structures 39
16.4.3 Data Types .. . 39

16.4.3.1 For Config and Stats .. 39
16.4.4 Macros .. 40

16.4.4.1 moduleinit . 40
16.4.4.2 other functions .. . 41

17 Makefile 42
17.1 Make Arguments 42

17.1.1 Common .42
17.1.2 Radios .. 42
17.1.3 Code .43

18 DBG-interface 44
18.1 Command-syntax 44

18.1.1 listmodules . 44
18.1.2 list tag modules . 44
18.1.3 listnew modules . 44
18.1.4 showall . 44
18.1.5 show* . 45
18.1.6 getoutput . 45
18.1.7 getblock . 45
18.1.8 getimage . 45
18.1.9 setconfig . 45
18.1.10 newlist . 45
18.1.11 readlist . 45
18.1.12 closelist . 46
18.1.13 processdata . 46
18.1.14 getprofiling . 46
18.1.15 ping .. . 46

3/121

CONTENTS CONTENTS

19 Signal Flow 47
19.1 Common .. . 47

19.1.1 Transmitting 47
19.1.2 Receiving 47

19.2 Hardware 49
19.2.1 ICS-hardware 52
19.2.2 Philips-hardware 52
19.2.3 STM-hardware 52

20 Important Modules 53
20.1 STFA .. . 53

20.1.1 Synchronisation 54
20.1.2 Important Parameters 55

20.1.2.1 Structural .55
20.1.2.2 Timing . 55

20.1.3 Attaching Chains 56
20.1.3.1 Overcoming the Time-Limits 56

21 Subsystems 58
21.1 Nyquist 58
21.2 Reception-chain 58
21.3 More detail 60

21.3.1 wrx . 60
21.3.2 sigtype . 60

22 Interface 61
22.0.3 New commands defined 61

22.1 int swrant ics init(fs rx, fs tx, ch rx, ch tx, sig type); 62
22.1.1 fsrx . 62
22.1.2 fstx . 62
22.1.3 chtx . 62
22.1.4 chtx . 62
22.1.5 sigtype . 62

22.2 double swrant ics get fs rx(void); . 64
22.3 double swrant ics get fs tx(void); . 64
22.4 void swrant ics rx(ch, fc, W); . 64

22.4.1 ch .64
22.4.2 fc .64
22.4.3 W . 64

22.5 void swrant ics rx freq(ch, fc); . 64
22.5.1 ch .64
22.5.2 fc .64

22.6 void swrant ics tx(ch, fi tx); . 65
22.6.1 ch .65
22.6.2 fi tx . 65

22.7 void swrant ics clk(f adc dacmult, f dac); . 65
22.7.1 f adc . 65
22.7.2 dacmult . 65
22.7.3 f dac . 65

22.8 void swrant ch start(void); . 65
22.9 void swrant ch stop(void); . 65
22.10int swrant ch io(slot); . 65

22.10.1 slot .. . 66
22.10.2 return 66

4/121

CONTENTS CONTENTS

22.11void swrant ch set synth(ch, RF, side); . 66
22.11.1 ch .. 66
22.11.2 RF .. 66
22.11.3 side .. . 66

22.12void swrant ch set freq diff(ch, freq diff); . 67
22.12.1 ch .. 67
22.12.2 frecdiff . 67

22.13writeddcs(void); . 67

23 FPGA 68
23.1 Directories 68
23.2 Testing the version 69

24 Tidbits 70
24.1 DMA-considerations 70

24.1.1 Conclusion 70
24.2 Server 71
24.3 Resampler 71
24.4 Samples, Chips and Symbols 71

IV HOWTOs 72

25 From Conception to Measurement 73
25.1 Defining New Modules 73

25.1.1 The Files .. . 74
25.1.1.1 snr.c . 74
25.1.1.2 snrsend.c . 74
25.1.1.3 snrrcv.c . 77
25.1.1.4 Makefile . 80

25.1.2 Compile it .. . 80
25.2 Testing 80

25.2.1 The Directory 80
25.2.2 Makefile .. 80
25.2.3 testsnr.c . 81

25.2.3.1 startit . 81
25.3 Going Over the Air 83

25.3.1 The Directories and Files 83
25.3.2 README .83
25.3.3 MS/radioms.c . 83
25.3.4 radiobs.c . 84
25.3.5 Running it with the channel-simulation 85
25.3.6 Running the real thing 85

26 Tools 86
26.1 Visualize 86

26.1.1 Starting it 86
26.1.2 Mouse handling 86
26.1.3 Plotting of values 86
26.1.4 Exporting values 87
26.1.5 Known bugs .. 87

26.2 Channel-server 87
26.2.1 Starting it 87
26.2.2 Known bugs .. 87

5/121

CONTENTS CONTENTS

26.3 LDPC-code generation 87
26.3.1 Starting it 87
26.3.2 Known bugs .. 87

27 Debugging 88
27.1 Debugging in user-space 88

27.1.1 Using Gdb with Tests 88
27.1.2 Debugging a Simulation 88
27.1.3 Using ddd .. . 89

27.1.3.1 Known bugs . 89

28 Getting Started 90
28.1 Prerequisites 90
28.2 Installing the MSR 90

28.2.1 Download the software 90
28.2.2 Compile the software 90
28.2.3 Common errors 91

28.2.3.1 While compiling ’Visualize’ I get ’libqwt not found’ 91
28.3 Running the examples 91

29 Testing 92
29.1 Files 92
29.2 Main 93

30 Using CVS 94
30.1 Structure 94
30.2 Starting a new Branch 95
30.3 Checking Out for the First Time 96

31 Creating a simple radio 97
31.1 General Setup 97

31.1.1 Overview .. . 97
31.1.2 Files .. . 97

31.2 Master 99
31.2.1 Testing the Master 100
31.2.2 Slots and Blocks in the Software-Radio 100

31.3 Client 101
31.3.1 Testing the Client 103
31.3.2 Testing the transmission 103
31.3.3 Synchronisation 103

31.4 RF-transmission 103
31.4.1 Going Further 104

V Practice 105

32 Introduction 106
32.1 Motivation 106
32.2 Intended reader 107
32.3 Parts 107
32.4 Conventions 107

32.4.1 Directories 107
32.4.2 Commands .. 107
32.4.3 Radio-platforms 108

6/121

CONTENTS CONTENTS

33 Test Configurations 109
33.1 Setup 109

33.1.1 RF-cards .. . 109
33.1.2 Rohde & Schwarz .. . 109
33.1.3 ICS-cards 110
33.1.4 FPGA .110
33.1.5 Power supply 110

33.2 GPS .. . 110
33.2.1 Hardware-setup 110
33.2.2 Software-setup 110

33.2.2.1 Short testing sequence 111
33.3 Radio system 112

33.3.1 Hardware-setup 112
33.3.2 Software-setup 112

33.4 Radar-system 113
33.4.1 Hardware-setup 113
33.4.2 Software-setup 113
33.4.3 Camera-setup 114
33.4.4 Amplitude settings 114

33.5 WLAN .. 115
33.5.1 Hardware-setup 115
33.5.2 Software-setup 115

VI Future thoughts 116

34 STFA 117
34.1 Antenna 117
34.2 Chains 117

34.2.1 Implementation 118

35 Visualize 119

VII Index 120

7/121

Part I

Introduction

8/121

Chapter 1

How to read this document

Before going into details about what is a software-radio, and what it can be used for, I will give an overview
of this document, so that you know where to start first.

This document is separated into six parts:

• Introduction - this is what you’re reading right now. It gives some basic definitions and ideas about
the signal-processing part as well as the chosen implementation.

• Architecture - here you’ll learn more about the design of the different aspects of the software-radio

• Reference Manual - when you need to know about a certain function how to use it or what it does,
this is the place to go. Usually you’ll need the knowledge from theTechnical Documentsto know
everything.

• How-to - a more practical approach, this could also be called tutorial, as you learn how to use the
software-radio step-by-step, without an explanation for the gory details.

• Tipsntricks - a collection of common pitfalls and how to avoid them, plus some help on how to do
more unusual things.

• Future Thoughts - lots of things I wanted to do with the software-radio, both technically and experi-
mentally, but that I didn’t have any time left. Wanna go for it?

At the beginning of each part, you will find a short overview ofthe different chapters and what they talk
about.

1.1 Overview of this part

• Motivation - why we want to have a software-radio

• System Overview - the basic building blocks of the software-radio

• Usage - what we are doing with it right now

• Outlook - possible future enhancements

9/121

Chapter 2

Motivation

This introduction describes our motivation for building a transceiver based on software-radio, hereafter
calledsoftware-radio testbed,and gives an overview of the general philosophy.

2.1 Why Software-Radio?

We talk about Software Radio when the map between the data (sending and receiving) and the
data-carrying antenna signal are completely (within hardware limits) specified by the software.
Any map that conforms with the hardware limitations (power,bandwith, hardware imperfec-
tions) may be implemented by means of an appropriate code. (B. Rimoldi, 2003)

If you like the idea of a flexible transceiver and are not too concerned with size and energy consumption,
then you want your transceiver to be software-radio based. For instance, let us say that you have a software
radio mobile phone. This mobile phone is a general purpose communication device with a piece of software
that makes it behave like a mobile phone. You can turn your mobile phone into a GPS receiver, or a TV
receiver, or a Wi-Fi interface, just by down-loading a pieceof software (assuming there is a server that has
the software you need).

For the technically oriented person: in a software-based transmitter, the software creates the samples
corresponding to the signal to be transmitted. A general purpose hardware converts these samples into the
signal that will be sent to the antenna. Similarly, in a software-based receiver, the general purpose hardware
takes the signal captured by the antenna and produces the corresponding samples. The software does the
rest. The hardware is not aware of the standard you are using:it just converts back and forth between
samples and waveforms.

Fig.2.1 shows the two main components of a software-defined transceiver. The hardware implements
a two-way mapping between waveforms and samples. Except forthe possibility of controlling the power
of the transmitted signal, the amplification of the receivedsignal, as well as some other parameters that
are not relevant for this discussion, this mapper performs the same operation regardless of the standard
implemented by the transceiver.

img /var/www/html/ipgwww/data/media/dumbhardware.ps

Figure 2.1: Dumb hardware and intelligent software

10/121

Chapter 3

System Overview

The software-radio helps to make it possible to implement a signal-processing algorithm which works on
samples that are transmitted and received over the air.

Because the debugging is an important part of the implementation of a signal-processing algorithm, the
software-radio can be run in eithersimulation modeor in real-time mode. Fig. 3.1 shows the software-radio
in both modes.

TheGraphical User Interface(GUI1) is the only visible part of the software-radio and allows the user
to visualize the state of the differentModulesas well as to change their configuration. TheChannelis a
general interface that represents either aSimulationor has access to theHardware.

3.1 Simulation Mode

In simulation mode no hardware is used, and the whole transmission is simulated in software, including
Gaussian noise and multi-path fading. There are no real-time constraints which makes it very easy to debug
the algorithm to be implemented.

Of course, if you don’t have access to the right hardware, this is the only possibility to use the software-
radio. However, thechannel-serverwhich links multiple channels together, is written to simulate a real
channel with high enough accuracy to test and verify signal-processing algorithms.

3.2 Real-Time Mode

In real-time mode only the Graphical User Interface runs on Linux, while the rest of the software-radio runs
in Real-Time mode, made available through the use of RTLinux. This is necessary, as the transmission and
reception of the samples has to meet time-constraints that are not possible to meet in simple Linux.

As of spring 2004, there exists two hardware-platform that allow the software-radio to do actual tran-
sception of samples over the air. The older one, produced by STMicroelectronics, offers a simple SISO-
interface, that is, one antenna at each end of the transmission. The newer interface, produced by ICS-Ltd,
allows the software-radio to take advantage of a MIMO-channel, with up to four antennas at each end of
a transmission. A MIMO-channel is defined as a channel that has more than one transmitting antenna and
more than one receiving antenna. These channels have very interesting properties, mainly the possibility
to multiply the available channel-capacity by a function ofthe available antennas.

1Graphical User Interface

img /var/www/html/ipgwww/data/media/simulationreal-time.ps

Figure 3.1: Structure of the software-radio in both modes

11/121

Communication Chapter 3. System Overview

3.3 Communication

The software-radio is built to have a two-way communication. So, if you have more than one instance of a
software-radio running, they can communicate together.

If the software-radio is run in real-time mode, only one instance of a software-radio can run on a
computer. So if you want to communicate in real-time, you need at least two computers.

In simulation mode, the number of instances per computer is only limited by its calculation-power (and
the patience of the user ;). AChannel-Serverconnects all channels of all instances of the software-radio
together and makes it possible that everybody can listen to what the other radios are sending.

12/121

Chapter 4

Usage

At EPFL, the Federal Institute of Technology in Lausanne, Switzerland, we use the software-radio both in
class and for research purposes.

This chapter gives an overview of what we did with the software-radio until the end of 2003, what we
are doing now in winter/spring 2004, and what we are planningto do during the rest of this year.

4.1 Past

In class, it has been used to demonstrate the different partsof a radio-transmission, such as modulation,
spreading, coding and matched filtering.

For research, we used it succesfully to demonstrate the usability of LDPC-codes over the air and to
verify their theoretical performance.

4.2 Present

We are looking in the challenges arising from MIMO transmission that is coded with LDPC-codes. There
are timing constraints to be solved, as well as theoretical challenges with regard to the MIMO channel to
be met.

4.3 Future

Different projects for the software-radio are in preparation. These include a better matched filter (channel
estimation), ZigBee implementation and the obligatory GPS-decoder.

13/121

Chapter 5

Outlook

For the time being, the software-radio is taking a directiontowards point-to-point communications in
MIMO-channels. We would very much like to study the implications of multi-point to multi-point com-
munications, as well as low-tech implementations of a communication.

5.1 Multi-point to Multi-point

Point-to-point communications are quite well known. In fact, every commercially available transmission
technology today only works in a point-to-point configuration, usually surrounded with a method to be sure
that only one person is sending at the same time on the same frequency.

Different theories describe the possiblity of having more than one sender at the same time and being
able to reconstruct the signal at the other end. It would be very interesting to study these theories in a real
environment in order to give a feed-back about problems arising when implementing such theories.

5.2 Low-Tech Communication

The current hardware in use is capable taking advantage of several MHz1 of spectrum to transmit and
receive. HAM-radios only have a couple of kHz of spectrum available for the transcpetion. It would be
interesting to study transmission using a sound-card and a HAM-radio, perhaps to propose a better and
faster transmission than AX.25.

1Megahertz

14/121

Part II

Architecture

15/121

Chapter 6

Overview

In this part you’ll learn about the architecture behind the software-radio. If you’re looking for a precise
information, you may be better off by looking at thereference-part of this document.

We like to split the software-radio in three parts: GUI1, Signal Processing and the Antenna, as can
be seen in figure 6.1. For each of these elements, you can find a chapter that describes it in more detail.
Additionally to these aspects, there are more general ones that don’t fit that nicely into the pictures. Here
is an overview of the chapters in this part of the documentation:

• GUI1 Is the Graphical User Interface, that allows to interact with the software-radio on a user-level

• Signal Processing is the ensemble of all interchangeable participants that make the active part of the
software-radio

• Antenna represents the transmission and reception part ofthe software-radio, either in simulation or
in real-time mode

• Operating system how the different parts of RTLinux and linux play together

• Modes of Operation gives an overview of the different modesof the software-radio

• Hardware which shows the architecture of the ICS-hardware

• Code the different directories in the tar-ball of the software-radio

1Graphical User Interface

img /var/www/html/ipgwww/data/media/architectureoverview.ps

Figure 6.1: The three main components and their respective subdivisions

16/121

Chapter 7

GUI

For taking measurements and changing the behaviour of the software-radio we developed this Graphical
User Interface, calledVisualize. It is capable of showing the internal states of all active modules (parts of
the software-radio), their signals and changing the configuration of these modules while the software-radio
is running.

By looking at figure 6.1, we distinguish three main-parts of the GUI1:

• User I/O is the input and output towards the user. It shows the chains, updates the statistics and offers
windows to configure the modules

• Mapper arranges the modules in the software-radio to chains

• FifoCmd interfaces with the software-radio

7.1 User I/O

Different ways of interfacing the software-radio exist. The user can display:

• Chains which is an overview of the general state of the software-radio

• Stats representing internal values of the modules, singlevalues or plots

• Output-ports that are the signals that pass from one moduleto the next

• Plots tracing stats of different modules against each other or in time

There exist two ways of actively interacting with the software-radio:

• Re-configuration by changing parameters of one or more modules

• Process Data which informs a module to immediately do something by processing it’s input

7.1.1 Chains

When theVisualize-tool is started, it displays an overview of all active chains for the first antenna of the
first radio it finds. In fig. @screenshot of visualize start-up@ you see the STFA in the middle, surrounded
by a sending and a receiving chain. Each module in the chain has its name displayed, as well as up to two
parameters of its internal state.

1Graphical User Interface

17/121

Mapper Chapter 7. GUI

7.1.2 Stats

A stats can either be a single value or ablock of values. Examples of single values include SNR, variance,
BER or counters, whileblocksof values can include channel-vectors, slots or a whole frame.

7.1.3 Output-ports

Each module has zero to many output-ports that can be displayed in a seperate window. As these signals
can be of complex nature, one can chose to display only the real, only the imaginary, or the absolute part.
Additionally, one can chose to display the FFT of the first 2⌊log2⌋ samples of the signal.

7.1.4 Plots

You may also be interested in a plot of one stats-variable in time or of two stats-variables one against the
other. TheVisualize-tool opens each new plot in a seperate window.

7.1.5 Export

All plotting-windows can be exported either as postscript-file or as a Matlab-function (which are also
compatible with Octave).

7.1.6 Re-configuration

When asking for a re-configuration window, theVisualize-tool will update the software-radio with every
new value you fill in. This is very useful for educational and debugging purposes.

7.1.7 Process-Data

This is mainly a debugging-function and allows to send aData-msgto one of the modules, which will then
process whatever is in its input.

7.2 Mapper

This is an important part of theVisualize-tool, as it’s not a straightforward task to identify chainsand
display them correctly. It is basically the original version written by two 4th year students, but extended to
work with more than one STFA, or other main-modules.

7.3 FifoCmd

This is the interface to the software-radio and takes care about the communication between the two. Ev-
erything is driven by theVisualize-tool, which means that the software-radio does only reply to requests
from the GUI1 and never initiates a request by itself.

18/121

Chapter 8

Signal Processing

Our goal was to find a suitable tradeoff between code re-use and performance of the software-radio. This
is why we chose to have a modular framework, running on a RTLinux-platform. In the following sections,
you will learn about the following items:

• DBG the interface to the GUI1

• Framework which makes it possible that modules can interact with each other and the outer world

• STFA the interface to the channel

8.1 DBG

The debug-interface allows the user to interact with the software-radio. It accepts commands and queries
from the GUI12 and replies accordingly. Looking at figure 8.1 you can see theFifos used in both RF- and
simulation-mode.

The replies of the dbg-module can be either status-informations or data directly from the software-radio.
An overview of the different queries/replies can be found in18.

8.2 Framework

The modules, which define the specific task of the software-radio, are surrounded by a framework that takes
care of the book-keeping tasks necessary to guarantee a goodworking together of the different modules.

There are three parts:

• Modules and Chains the specific description of different signal-processing parts, like pulse-shape
filter, coding, mapping, and others

• CDB Class Data Base, where a reference to every available module is stored

• SDB Subsystem Data Base, which contains a reference to every instantiated and thus active module,
as well as the glue that makes it work

Because of the complexity of the subsystem alone, it has its own subsection where an overview of its
capabilities is shown. The same goes for the STFA.

1Graphical User Interface
2the FifoCmd class encapsulates all queries and commands

img /var/www/html/ipgwww/data/media/architecturedbg.ps

Figure 8.1: The debug-interface in RF- and simulation-mode

19/121

Framework Chapter 8. Signal Processing

img /var/www/html/ipgwww/data/media/modular.ps

Figure 8.2: Two simple chains and a module in detail

img /var/www/html/ipgwww/data/media/cdbsdb.ps

Figure 8.3: The CDB and SDB

8.2.1 Modules and Chains

The communication system is built out of modules. Each of themodules has a classroom-style function.
As an example, in a simple one-way communication system, thetransmitter could consist of a first module
that maps bits into signal space points and a second module that maps signal space points into samples. In
the corresponding receiver you may find a module that implements the matched filter, and another module
that decides what was transmitted.

Signal processing modules have inputs and outputs for the signals being processed. They also have a
configuration-part to control the behavior of the module (e.g. the desired amplification for an amplifier)
and statistics to display relevant information (e.g. internal variables). This is shown in fig. 8.2.

Each of the modules can exist in multiple copies. The framework (composed of CDB and SDB) makes
sure that each copy can work independently of the other copies, not unlike the class/instance-behaviour of
C++ or other object-oriented languages.

When one or more modules are linked together, we speak about achainof modules. The software-radio
knows how to pass the data from one module to another, and willcall each module at the appropriate time,
that is when it has some data to process.

8.2.2 CDB and SDB

The Class Data Base (CDB) and Subsystem Data Base (SDB) make it possible to use the modules in an
object-oriented approach. While the CDB holds the static information about a module, such as the names
and types of the configuration-parameters, the SDB holds an actual implementation of a module, with the
specific configuration-values that may differ from one implementation to another.

An overview of the CDB and SDB can be found in fig. 8.3. It shows part of a running software-
radio that has two transmitting and two receiving slots3. On the left side you see the CDB that holds a
description of each module that has been loaded in the software-radio. On the right-hand side, you see the
actual instantiations of some modules present in the CDB.

The loading of the modules happens usually at start-up, but theoreticaly it’s also possible to load further
modules once the software-radio has been started. While loading, a module informs the CDB about it’s
presence, and includes the input/output signal-types, it’s name, configuration and statistics-names and -
types. After that, the module is inscribed in the CDB, but notyet not active.

Once a module is needed in the software-radio, it isinstantiated, that is, a running instance of the
module is created. This includes reservation of memory needed for the different variable parts, as well as
initialisation of these parts. After a module is instantiated, it can be connected to other modules and can
perform signal processing.

8.2.3 Subsystem

Usually the subsystem is a part of the SDB. But over time it hasbecome quite complex and would deserve
an own directory in the Base/-directory4. One can think of the subsytem as the base-class for all modules.
It offers a handful of virtual functions that allow it to interact with the modules.

3For clarity, only part of the chains are shown
4Future work hint. . .

20/121

Framework Chapter 8. Signal Processing

img /var/www/html/ipgwww/data/media/architecturesubsystem.ps

Figure 8.4: Two modules and all possible connections

The main goal of the subsystem is to allow interaction between two modules. In figure 8.4 all the
possible interactions between two modules are shown.

It is thus responsible for the following tasks:

• Allocating Memory for the Data, Config- and Stats-blocks

• Messaging between modules and do most tasks

• Threading the modules if necessary

Most changes in the state of a module include a message sent tothe attached modules. An overview and
short description of every message can be found in 16.3.

8.2.4 STFA

The Slot To Frame Allocator (STFA) is a module that makes the connection between the antenna and the
rest of the modules. It offers a frame-based, slotted TDD interface to the rest of the signal-processing
modules.

There exist two STFAs, one for the old hardware and one for thenew, ICS-based hardware. The first is
called stfa, while the second is called stfaics.

21/121

Chapter 9

Antenna

The antenna-part of the software-radio has the structure asshown in fig. @Antenna-blowup: Common/-
Driver/HW/Server@ Their respective functions are as follows:

• Common is the interface towards the signal processing part

• Driver implements a certain hardware or simulation

• Hardware or Simulation the actual transmission system

9.1 Common

The interface of the antenna offers the following parameters to the signal-processing part:

• DMA-region a place where the received samples are written to and the samples to be sent are read
from

• RF-parameters frequency, amplitude and other config-parameters

• Timing an function is available that tells about the actualtiming of the RX/TX part

9.2 Driver

This is the implementation of a certain way to transmit and receive samples. It has to take care about all
initialisations and correct handling of all exceptions. The following drivers are functional:

• RF interfaces the old, STMicroelectronics based RF-system

• ICS interfaces the new, ICS-based RF-system that is capable of MIMO-transmission

• Simul for simulations of the RF-system

• Simul ics for simulations of the ICS-system

• Emul does a simple copy of the data to be transmitted to the next slot

• NOP does nothing, for debugging purposes

22/121

Hardware or Simulation Chapter 9. Antenna

9.3 Hardware or Simulation

The final part of the software-radio defines the channel. TheEmul driver, for example, implements a
flat single-tap channel with no noise. TheSimul drivers need a channel-server that takes multiple radios
together, mixes their signal, and sends back the calculatedsignal.

The most interesting parts are the RF and ICS hardware, because they offer a real channel to test the
transmission with.

9.3.1 Hardware

In the following table you can find a comparison of the two hardware-systems available.

RF ICS
Max. number of antennas 1 4
Frequency [GHz1] 1.9 2.4-2.48
Bandwith [MHz2] 3.8 1
Resolution 12 14

9.3.2 Simulation

In simulation-mode, a channel-server accepts connectionsfrom different radios, as can be seen in fig.
@channel-server with two radios@. The channel-server can simulate multi-tap channels and add gaussian
noise to the transmitted signals. This allows for easy simulation of real-world signals, before taking the
modules on the air.

23/121

Chapter 10

Operating System

One very important aspect of a software-radio is it’s real-time capability. In our implementation, we trans-
mit and receive slots of a duration of about 1ms. If we want to make sure that there is no blank in the
transmission, we need to make sure to do our calculations in this short time-span and to do it at the right
moment.

In a modern operation system, lots of things are happening atthe same time: graphics, sound, network,
disk-access and more. A normal program will have to wait for these tasks to finish, before it can do it’s
work. This means that it’s nearly impossible for a normal program to meet sub-ms precision. Different
approaches exist to bring a solution to this problem. We chose RTLinux because of it’s stability, availability
and because it is licensed under the GPL1 which means that other people can use this solution without
having to pay high software-costs.

In short, RTLinux allows to meet time-constraints of a couple of µs , the precision-constraint that is
given by todays hardware. It does this by running a real-timeaware micro-kernel which is principally
responsible for scheduling. One of the default tasks that runs with the lowest priority is the linux-kernel.
This makes sure that even if the kernel is busy doing one of thenot-so important things, RTLinux may put
it to sleep, execute the real-time task, and resume the linux-kernel.

1GNU General Public License

24/121

Chapter 11

Modes of Operation

As the signal-processing part and the framework is very flexible, different operating-modes are possible:

• Test which includes just a simple chain that is run a limitednumber of times

• Simulation or Real-Time modes which are possible for both Local-Loop and the Two-Radio System

• Local-Loop where a radio ’talks’ to itself by receiving every sample sent

• Two-Radio System a set of two radio, where each one talks to the other

In the following sections, the advantages of each of these are listed.

11.1 Test

As the name indicates, this is used to test the basic functionality of a module. Usually it includes a simple
chain that has only the most basic components in it in order totest the module. Like this one can test the
module in a simple environment, before going through the more real and more complete test in a real-time
communication.

To test a mapper-module that maps bits into complex symbols,it would be enough to have the chain
as depicted in fig. @show modules: source→mapper→block→slicer→sink@ For convenience, thesource
can contain readable text-messages that are printed by thesink and can be verified by hand.

The block module exists in different variants, where MIMO channels and multi-tap fading channels
can be simulated, both in a convenient, deterministic manner.

11.2 Simulation or Real-Time

As already described in section 9.3, the software-radio canbe run either locally without the RF-hardware
and in a user-space mode, or it can be run in real-time using special RF-hardware for transmission and
reception. While the former is much more easy to debug, only the latter allows to make real-world mea-
surements and confirmation of theoretical results.

In the software-radio, both modes are transparent to the user, as the decision between the simulation
or the real-time mode only has to be taken when running it. Forthe user, in either case, the channel is
represented by the STFA.

11.3 Local-Loop

Sometimes it is too complicated to take care about all the synchronisation and fading-problems. Then you
can chose to run your modules to test in a local-loop, and thusalways be synchronised. When running in

25/121

Two-Radio System Chapter 11. Modes of Operation

img /var/www/html/ipgwww/data/media/simplesetup.ps

Figure 11.1: The most simple two-way communication example

simulation-mode, the channel-server makes sure that the sent samples are received at the same time. If you
run the radio in real-time mode, then you have to make sure to connect the output of the cards with the
input through a cable.

11.4 Two-Radio System

TODO: update for ICS-example
This section describes a basic system with two radios, following the example of the radio found in

Radios/Simple/BSandRadios/Simple/MS1. It is important to know about this if you want to do more than
just run the examples. You will learn about the most important modules, how to put them together and
what make the thing going.

11.4.1 Setup

Looking at fig. 11.1, you can see two parts: a master and a client 2. The communication channel in this
example consists of three slots, of which only two are occupied3. The part in the middle, where the tree
slots reside, is called STFA, which means Slot To Frame Allocation. This is the most basic module that
you will find in mostly all of the software-radio. The input ofthe STFA are sent through the antenna, while
the received signal from the antenna is passed through the output of the STFA. As you can see in figure
6.1, the antenna is a placeholder for either a real channel orjust a simulation.

11.4.2 Modules

This is a short overview of the different modules:

sch send Synchronisation CHannel. This module generates data that is used to communicate the config-
uration of the other clients. This includes the configuration about which slot to use for sending,
which slot to use for receiving, and gain-control. Most of itis not used in a two-radio case.

modulator Takes bits as inputs and creates complex symbols.In its default-configuration, it outputs QPSK
symbols.

spread Spreads the input-symbols with a given sequence. Usually this is used to have more than one
radio sending during the same slot, in this example it is usedto give some protection to the
data, as a spreader may act as a simple coder.

chestsend Inserts a training-sequence into the signal. This sequence is known at the receiver-end, which
uses it then to estimate the channel and to create the matched-filter.

synchsend Adds a synchronisation-sequence to the signal. The sequence is done in a special way so as to
make it possible to retrieve the synchronisation-signal with as less calculation as possible.

rrc The Root Raised Cosine pulse-shape filter. Takes the complex signal, upsamples by a factor
of two and generates a real output.

stfa Slot To Frame Allocation, takes the slots and prepares them to be sent over the channel.

rrc rcv Applies again a Root Raised Cosine filter

1Microsoft
2Historically, the master is called BS (for BaseStation) andthe client is called MS1 (for MobileStation).
3There are three slots in order to allow for a more relaxed timing.

26/121

Two-Radio System Chapter 11. Modes of Operation

chestrcv The counterpart tochestsend, calculates the channel-estimation and the matched-filter, and
applies it to the input-signal.

demodulator Makes a hard decision on the received signals.

sink Prints to the screen the received sequence of bits.

synchrcv Keeps up the synchronisation with the master.

despread Undos the operation introduced by the spreader, and offers a cleaner signal. As coding module
this is suboptimal.

sch rcv Decodes the synchronisation-channel and sets the tx-amplitude according to it’s information.

11.4.3 Master

The masters task is to send out the synchronisation-signal on it’s slot 1, combined with the data-signal that
tells an eventual client its required tx-gain. The tx-gain of the client is calculated with the power received
on slot 2. If it is below a certain threshold, the master considers that no client is sending, and puts the
tx-power to 0. If the receiving-power is above a certain threshold, the tx-gain is adjusted to what the master
would like to hear. This task in fact is done automatically bythe schsend module.

11.4.4 Client

While the master is quite static, the client has to do lots more:

1. Search for the synchronisation-signal

2. Set up the synch-slot and uplink-slot

3. Keep the synchronisation

The first point is necessary because the client doesn’t know beforehand the time-frame of the master. So, in
order to get it, the mobile sets up asynchrcv module on each slot, and choses the one that has the highest
probability of a successful synchronisation. After this, it updates the offset of the STFA, so that it is in
synch with the master, and keeps onesynchrcv module active, to allow for further synchronisation. All
this is done in a macro-module calledmacrosynch.

Once the primary synchronisation is achieved, it will set upsome modules to decode and demodulate
the synchronisation-channel, as well as set up a tx-channelon slot 2.

After this it has to keep up the synchronisation, because themaster and the client don’t have exactly
synchronised clocks.

27/121

Chapter 12

Hardware

The current hardware is composed of three parts, as can be seen in fig. @figure of layout with ICS-rx and
tx, as well as RF-cards@ This setup is optimized towards a 4×4MIMO-system at 2.4GHz.

28/121

Chapter 13

Code

Once you untar the SRadio-*.tar.gz file, you find a directory in the form ofSRadio-1.0.01 under which all
the code is placed.

13.1 Directory Structure

Base CDB, SDB and the channel implementations are found here, as well as some general helping
functions to the MSR.

Conventions template files that can be copied to new projectsand then be filled in

Modules all user-written modules are found in here, put intodifferent categories: Coding, Channel,
Data, General, Macro, Signal

Test simple chains that are used to test the basic functionalities of the modules

Radios full-fledged two way transmission parts

User place for all compiled user-libraries

Kernel place for all compiled kernel-libraries

Documentation where you find this manual as well as some presentations

1the name has to start with SRadio, or else the Makefiles won’t work!

29/121

Part III

Reference-Manuals

30/121

Chapter 14

Overview

In this part you find a complete as possible reference to all parts of the software-radio. If you’re interested
in one of these components, be sure to read about the corresponding subject in the architectural part.

• GUI1 shows an overview of the classes used in theVisualizeprogram

• Signal Processing gives more details about the CDB and SDB,as well as the subsystem and the
modules

• Antenna what a driver has to implement in order to be used

• Hardware how to set up the hardware

• Modules a detailed description of the most often used modules

1Graphical User Interface

31/121

Chapter 15

GUI

The Graphical User Interface for the software-radio is calledVisualize, as it visualizes the internal structure
and state of the modules. Furthermore it’s possible to change configuration-parameters of the modules in
real-time, while it is running.

This chapter is split into three sections: one for the general interface, one for the interaction windows,
and one for the more internal structures.

15.1 General Interface

The main classes involved in displaying the main view are shown in figure 15.1. Only the main subclassing
from Qt is shown, subclassing from QObject and such is not shown.

There is one main-window, even if there are multiple radios to display. The main window, created by
Interface, contains aQTabWidgetwith a tab for every active radio. If there is only one active radio, no tab
will be shown.

Each active radio that is show is served by aRadioViewmodule which is the activeQWidget for the
corresponding tab. The RadioView updates the display once asecond, and stops updating if it is not the
active tab. While updating it checks for new or removed modules and asks each module to update the
values shown in it’s body.

Each RadioView instance has it’s ownModuleGenerator. On instantiation, the ModuleGenerator lists
all available module and tries to determine which one is the main-module. In the most common situation,
this will be astfa, but it might be another module. The main-module is very important for the Mapper. For
further updates, only added modules are taken into consideration.

All modules are drawn upon aCanvasView, which is subclassed fromQCanvasView. CanvasView’s
main job is to create the context-menu when the user clicks the right mouse-button, as well as to move the
canvas when the user drags it with the left mouse-button.

The Visualize!Classes!Mapperhas a reference to all modules. He also figures out the position and
connections of all modules, so that they fit nicely onto the CanvasView1. The main-module is calledstfa.
As we only show one channel at a time, the Mapper needs also to know which is the current channel.

Finally the Module represents the software-radio module with respect to all needed functionalities.
It draws itself with the name and the chosen stats-parameters, including the pads for the connections; it
can bring up windows for output- and stats-signals; it can ask the software-radio module to perform the
signal-processing2.

Between all these modules a number of signals are passed in order to minimize the cross-module
method calls.

1Here is a possibility to rewrite a class
2This is only useful in debugging-mode

32/121

Interaction Chapter 15. GUI

Figure 15.1: The classes involved in bringing up the main view

15.2 Interaction

There are a number of ways the user can interact with the GUI3:

• Chosing the stats to be displayed on the module

• Showing a stats-graphic

• Showing a graphic of an output-port

• Configuring values of a module

• Plotting stats-values

The active classes in doing this are shown in figure 15.2. The following list gives an overview of the used
modules and their function, for a more detailed description, refer to the following subsections.

• Interface is the head of the visualize-tool and is the only one to have access to the menus

• Module represents a software-radio module

• Block is the virtual class for the (output)port, stats and plot

• Port knows how to read data from an output-port

• Stats reads a stats-’block’ that represents some data

• Plot has a flexible data-part that can grow over time

• ConfWind shows a window with all configuration-options of the module

• Image is a special stats-’block’ representing an image

• Show allows a Block to be displayed, complete with all control-widgets necessary

• PlotWin takes care of chosing the stats to be displayed

3Graphical User Interface

33/121

Interaction Chapter 15. GUI

Figure 15.2: The different display-options

15.2.1 Plotting

There are two possibilities of plotting: Y(t) and XY. The former takes only one stats-argument and displays
it in time, while the latter displays one stats-argument as the function of a second one.

Once the user has chosen one of the two plotting-methods, theInterface class instantiates aPlotWin
and sets up the signals so that the PlotWin will be informed whenever the user clicks on a module.

It is the software-radio that takes care of reading the stats-values and putting them into a list. The
PlotWin class reads this list once a second and updates its internal values with the values read from the
software-radio.

In a clean implementation, PlotWin would be a subclass of Show, but as PlotWin needs an initialised
window to work with, this is not possible.

15.2.2 Configuration

If the user requests a reconfiguration of a module, aConfWind class is instantiated and given the authority
to change configuration parameters. The ConfWind acts independantly on changes from the user and
transmits them to the software-radio.

15.2.3 Signal and Outputs

Both require the Module to instantiate aShow, but give it either a Port or a Stats as argument. Show takes
care of letting the user chose the method to display the signal (real, imaginary, complex, absolute, fft),
zoom in and out, freezing and exporting to postscript and matlab.

15.2.4 Image

Althogh Image is a stats-variable, it is implemented as a class on its own4. When the module is asked to
show a stats, it decides whether it has to put an Image in a QMainWindow or a Show.

The Image-class takes care itself about updating and preparing the data for display.

4One could subclass it from Block and tell Show how to treat an image

34/121

Internal Chapter 15. GUI

15.3 Internal

These classes deserve some more specific treatement.

15.3.1 Mapper

The mapper is described in a report of the students who wrote it. The report can be found in the software-
radio tree underSRadio/Documentation/Report/Visualize.ps.bz2

Although the report is not up-to-date with most of the software-radio, the mapper has never been
updated in the meantime. So everything described in the report with regard to the mapper is still accurate.

15.3.2 FifoCmd

This is the link with the software-radio. The counterpart isin SRadio/Base/DBG/*. All possible requests
and changes to the configuration are described by this class.

15.3.3 Module

Together with the Mapper, this is one of the main classes. Itstasks consist of:

• Draw itself on the canvas with the name and the chosen stats-parameters, including the pads for the
connections and eventual performance-measurements

• Show windows for output- and stats-signals, as well as configuration

• Process some data of the module. This is mostly useful in debugging-mode and for test-cases. It
corresponds to acall modulein the software-radio.

35/121

Chapter 16

Signal Processing

16.1 CDB

There are two classes of functions in the CDB: defining a module and requesting informations about defined
modules. While the latter is only used internally of the software-radio, the former is also used in the
module-definition. Both type of functions are also described briefly in Include/cdb.h.

The Class Data Base has a reference to all announced modules in the system. Only a module that
is written in here can be instantiated, get into the SDB and beconnected to other modules. These are
the functions used to add a new module to the CDB. Every function has also a counterpart-macro that is
defined inInclude/spc.h.

16.1.1 swrspc get new desc

First, it has to ask for a new descriptor, using the followingfunction:
1 s w r s p c d e s c t * s w r s p c g e t n e w d e s c (
2 i n t n b r i n p u t s , / / The maximum number o f i n p u t s
3 i n t n b r o u t p u t s , / / The maximum number o f o u t p u t s
4 i n t nb r c on f i g pa ra ms , / / How many c o n f i g u r a t i o n pa r ame te r s
5 i n t n b r s t a t s p a r a m s) ; / / How many s t a t i s t i c pa r ame te r s

This function allocates the necessary memory to store the required parameters and makes sure there is a
place in the internal database. All required in- and outputsneed to be defined, as well as all config- and
stats-parameters. This can be done using the functions thatare described hereafter. Each of this function is
also used in a macro defined inInclude/spc.hfor easier reference.

16.1.2 swrspc define config parameter

Every configuration-parameter has to be defined in the order of appearance in theconfig t-structure. The
types have to be the same. Instead of using the following function, you can resort to theUM CONFIG * -
functions. So, to define an INTeger, you can useUM CONFIG INT(”Name”);.

1 i n t s w r s p c d e f i n e c o n f i g p a r a m e t e r (
2 s w r s p c d e s c t * cdb desc , / / The d e s c r i p t i o n r e c e i v e d
3 p a r a m e t e rt y p e t type , / / The t y p e o f the v a r i a b l e
4 unsigned long f l a g s , / / E v e n tua l f l a g s
5 c ons t char * name) ; / / The name to use in the s o f tw a r e−r ad io

If you have the following configuration-structure:
1 t ype de f s t r u c t {
2 i n t s l o t s ;
3 double a mp l i t ude ;
4 } c o n f i g t ;

then you need to define the two configuration-parameters withthe following macros:
1 UM CONFIG INT (” s l o t s ”) ;
2 UM CONFIG DOUBLE(”amp”) ;

36/121

CDB Chapter 16. Signal Processing

Note that the order and the type need to correspond, but not the name!

16.1.3 swrspc define stats parameter

Correspondingly to defining the config-parameters, all stats-parameters need to be defined, too. The same
restrictions with regard to order and type apply. There are also macros that call this function. They are
calledUM STATS * , where the types are the same as for the config-parameters.

1 i n t s w r s p c d e f i n e s t a t s p a r a m e t e r (
2 s w r s p c d e s c t * desc , / / The d e s c r i p t i o n−hand le r
3 p a r a m e t e rt y p e t type , / / The t y p e o f the s t a t s
4 unsigned long f l a g s , / / E v e n tua l f l a g s
5 c ons t char * name) ; / / Name v i s i b l e i n the s o f tw a r e−r ad io

If you have the following stats-structure:

1 t ype de f {
2 complex double c ha nne l ;
3 double SNR;
4 } s t a t s t ;

Then you have to define them with the following macros:

1 UM STATSDOUBLE COMPLEX(”H”) ;
2 UM STATS DOUBLE(”SNR”) ;

Note again how the order and the types need to correspond, butnot the names!

16.1.4 Flags for define* parameter

There are two flags for the config- and stats-parameters that can be defined when defining these parameters:

• PARAMETER DEBUG shows a parameter only when debug-mode is active in visualize

• PARAMETER HIDE never shows a parameter in the visualize-tool

16.1.5 Types for define* parameter

These are the valid types for the stats- and the config-parameters:

UM CONFIG UM STATS
int INT INT
double DOUBLE DOUBLE
complex double DOUBLE COMPLEX DOUBLE COMPLEX
char[128] STRING128 STRING128
block t - BLOCK
imaget - IMAGE
void * POINTER POINTER
SYMBOL COMPLEX COMPLEX COMPLEX

16.1.6 swrspc define input

All inputs to the module need to be defined using this function. Again, a macro exists that englobes this
function. Contrary to the config- and stats- definitions, there is only one macro, and you have to give it a
paramater for the type. Even if you intend to use only a subsetof the inputs at any given time, you have to
define all of them.

37/121

SDB Chapter 16. Signal Processing

1 i n t s w r s p c d e f i n e i n p u t (
2 s w r s p c d e s c t * desc , / / A p o i n t e r t o the d e s c r i p t i o n
3 s w r s i g n a l t y p e t s i g n a l t y p e , / / The s i g n a l t y p e
4 unsigned long f l a g s) ; / / E v e n tua l f l a g s

All outputs to the module need to be defined using this function. Again, a macro exists that englobes
this function. Contrary to the config- and stats- definitions, there is only one macro, and you have to give it
a paramater for the type. Even if you intend to use only a subset of the outputs at any given time, you have
to define all of them.

1 i n t s w r s p c d e f i n e o u t p u t (
2 s w r s p c d e s c t * desc ,
3 s w r s i g n a l t y p e t s i g n a l t y p e ,
4 unsigned long f l a g s) ;

1 s w r s p c i d t s w r c d b r e g i s t e r s p c (
2 s w r s p c d e s c t ** desc ,
3 c ons t char * name) ;

16.1.7 Port Types

These are the valid signal-types for the in- and output and their respective type-name:

UM (IN/OUT)PUT(SIG
U8 U8
SYMBOL S16 SYMBOL S16
int S32
double DOUBLE
complex double DOUBLE COMPLEX
SYMBOL COMPLEX SYMBOL COMPLEX
SYMBOL COMPLEX S32 SYMBOL COMPLEX S32
SYMBOL MMX SYMBOL MMX
SAMPLE S12 SAMPLE S12

16.1.8 Port Flags

The port-flags are described in 16.3.3.1 and can either be directly added when creating the ports, or in the
init-block of the module by a line like

1 p o r t i n (0) . f l a g s = SWRPORTOWN MALLOC;

16.2 SDB

Once a module is defined in the CDB, it can beinstantiated. When this is done, the SDB allocates private
space for each instantiation and makes sure that each time aninstance is called, it has the reference to its
own private space.

Furthermore the SDB offers functions to have access to the config- and stats-structures from both the
inside and the outside of a module. The difference is, that inside of the module you have an exact knowledge
of the structure to change, while outside of the module you don’t know anything else than the type and the
name of the parameter to change or read.

Then the SDB offers some more special functions to access internal structures like the port in- and
outputs and the profiling.

38/121

SDB Chapter 16. Signal Processing

16.2.1 Instantiation

16.2.1.1 swrchain create

Usually you will instantiate achainof modules, using the functionswr chaincreate. It takes a number of
arguments to modules that should form a chain. The followingarguments are valid:

• NEW SPC(”name”) Instantiates the module ”name” and connects its input 0 to the previous output
(if any) and its output 0 to the next input (if any)

• NEW SPCIN(”name”, in) as NEWSPC, but the input port ’in’ is connected to the output-port of
the previous module

• NEW SPCOUT(”name”, out) as NEWSPC, but the output port ’out’ is connected to the input-port
of the next module

• NEW SPCIN OUT(”name”, in, out) as NEWSPC, but the input-port ’in’ is connected to the
previous module, and the output-port ’out’ is connected to the next module

• NEW SPCVAR(”name”, var) same as NEWSPC, but the id of the instantiated module is stored
in ’var’

• NEW SPCVAR IN(”name”, var, in) same as NEWSPCIN, but the id of the instantiated module
is stored in ’var’

• NEW SPCVAR OUT(”name”, var, out) same as NEWSPCOUT, but the id of the instantiated
module is stored in ’var’

• NEW SPCVAR IN OUT(”name”, var, in, out) same as NEWSPCIN OUT, but the id of the
instantiated module is stored in ’var’

• OLD SPC(var) same as NEWSPC, but instead of instantiating a new module, takes an alread
instantiated module ’var’

• OLD SPCIN(var) same as NEWSPCIN, but instead of instantiating a new module, takes an
alread instantiated module ’var’

• OLD SPCOUT(var) same as NEWSPCOUT, but instead of instantiating a new module, takes an
alread instantiated module ’var’

• OLD SPCIN OUT(var) same as NEWSPCIN OUT, but instead of instantiating a new module,
takes an already instantiated module ’var’

• CHAIN END indicates that the chain is finished.

The function returns an identifier to the created chain, so that the whole chain can be deleted when not in
use anymore. In order to function correctly, at least two modules must be given as arguments.

16.2.1.2 swrsdb instantiate name

If you only want to create one instance, for example for a module that will be connected to multiple other
modules, or for a module that doesn’t have any in- or ouputs, you can useswr sdb instantiatename. It
takes as argument the name of the module and returns a sdb-id or -1 if an error occurs.

16.2.1.3 swrconnectionadd

Once you created a chain or some single modules, you might want to create connections ’by hand’. Then
you need the following function:

1 swr conn swr conn add (
2 s w r s d b i d sender , / / The id o f t he s e nd ing module
3 i n t ou tpu t , / / The ou tpu t−p o r t o f t he s e nd ing module
4 s w r s d b i d re c e i v e r , / / The id o f t he r e c e i v i n g module
5 i n t i n p u t) ; / / The inpu t−p o r t o f t he r e c e i v i n g module

39/121

SDB Chapter 16. Signal Processing

16.2.2 Manipulating stats- and config-structures

There are two possibilities: either a module wants to changeits own structures, or a part of the software-
radio outside of the module wants to read or write one of the structures. This can be another module, or the
visualize-tool. Due to the different sources that may be using the config- and stats-structures, they have to
be mutex’ed, so that the information read is always up-to-date and doesn’t change in a critical way.

16.2.2.1 Accessing own Structures

For the modules own structures, a pair of functions exist to request the mutex to either the config- or the
stats-structure. Once the mutex is aquired, the module can access it as it likes, before giving back the
mutex. In order to force the user not to access the structuresoutside of a mutexed environment, a pointer to
the structures is passed and is initialised with the addressof the structure, or with NULL when the mutex
is released. In this way the software-radio will immediatlyshow a bug when the structures are accessed
outside of a mutexed environment.

In order to aquire the mutex, one of the two functions has to becalled:

1 i n t s w r s d b g e t c o n f i g s t r u c t (s w r s d b i d id , vo id ** s t r) ;
2 i n t s w r s d b g e t s t a t s s t r u c t (s w r s d b i d id , vo id ** s t r) ;

As this is usually done in the module, thecontext-variable is available, so it is used like this:

1 c o n f i g t * c o n f i g ;
2 s w r s d b g e t c o n f i g s t r u c t (c on te x t−>id , &c o n f i g) ;

Now the module can read and write to the configuration-structure. The stats-structure is used in the same
way.

To release the mutex, also two functions exist:

1 i n t s w r s d b f r e e c o n f i g s t r u c t (s w r s d b i d id , vo id ** s t r) ;
2 i n t s w r s d b f r e e s t a t s s t r u c t (s w r s d b i d id , vo id ** s t r) ;

As described above, they take a pointer to a pointer of the struct. In this way, using the pointer incorrectly
causes a segmentation-fault (or a kernel-Oops in real-time).

16.2.2.2 Accessing other Structures

When accessing structures from other modules, one not only has to take care about mutual exclusion, but
also one has to notify the module that something changed, at least in the case of a configuration-change.

To change the configuration of another module, one has to knowthe id of that module, the name of
the configuration-variable and the type. Then one can set thevalue using one of theswr sdbset config * -
functions:

1 i n t s w r s d b s e t c o n f i g p o i n t e r (s w r s d b i d id , char * name , vo id * va lue) ;
2 i n t s w r s d b s e t c o n f i g i n t (s w r s d b i d id , char * name , i n t va lue) ;
3 i n t s w r s d b s e t c o n f i g c o m p l e x (s w r s d b i d id , char * name , complex double va lue) ;
4 i n t s w r s d b s e t c o n f i g d o u b l e (s w r s d b i d id , char * name , double va lue) ;
5 i n t s w r s d b s e t c o n f i g s y m b o l (s w r s d b i d id , char * name , SYMBOLCOMPLEX va lue) ;

There is a special case where one wants to wait for the reconfiguration of the module, for example when
changing a range of configurations from the same module. For this reason, the ’id’-parameter of the above
functions can be chosen to be negative. Internally, all sdb-ids are positive, so a negative id always points
to a unique module and stands for: ”don’t reconfigure right now”. The other case is when reading stats-
structures of other modules. The function-names are:

1 vo id * s w r s d b g e t s t a t s p o i n t e r (. . .) ;
2 i n t s w r s d b g e t s t a t s i n t (. . .) ;
3 complex double s w r s d b g e t s t a t s c o m p l e x (. . .) ;
4 double s w r s d b g e t s t a t s d o u b l e (. . .) ;
5 SYMBOL COMPLEX s w r s d b g e t s t a t s s y m b o l (. . .) ;
6 b l o c k t s w r s d b g e t s t a t s b l o c k (. . .) ;
7 ima ge t s w r s d b g e t s t a t s i m a g e (. . .) ;

All functions have\textttswrsdb id id, char *name as parameter. Here a negative sdb-id as ’id’-parameter
is invalid.

40/121

Subsystem Chapter 16. Signal Processing

16.2.3 Other Functions

Most other functions from the SDB are only used internally and are documented inInclude/sdb.h. The only
exception is the function to read and display the profile of a module:

1 i n t s w r s d b s h o w p ro f i l e (s w r s d b i d id) ;

which displays all available profiles of the given module complete with number of calls, total time and
average time.

16.3 Subsystem

As written in 8.2.3, the subsystem is the base-class for all modules. As such it is responsible for correct
message-passing and cleaning up of the modules. Furthermore it keeps track and acts upon different flags
that may be set in the subsytem and the ports. So there are three places that describe more or less entierly
the state of the subsystem:

• Messages which are passed between subsystems1

• Subsystem-flags reflecting the state of the subsystem

• Port-flags showing the state of each port individually

In the following three subsections you’ll find a descriptionof each of these systems.

16.3.1 Messages

Each message that is passed to a subsystem has three arguments: message-id, data and return-id. The
message-id tells the subsystem what it needs to do. The data-part is a (void*)-pointer, and should be set
to NULL when it’s not used. The return-id is used when a return-message could be generated, and should
contain the sender-id. If the sender has no id (is not a module), the sender-id should be set to -1.

The messages defined in the message-id can be divided in threegroups:

• Basic handling involves everything to set-up the module and is rarely or never called during life-time

• Reconfiguration of the module is also pretty rare for most ofthe modules

• Data Propagation is the workhorse of the subsystem and modules

Each group is described in more detail in the following sections.

16.3.1.1 Basic Handling

After the initialisation of a subsystem, everything is ready to connect this subsystem to another subsystem.

Connecting is done by sending the messageSUBS MSG CONNECT to both subsystems that are to
be connected together. As payload for the message one shouldgive a structure of type swrpropagationt.
This structure contains all necessary information: port-#, size, flags, block-address, sdb-id of the other end
and the direction. If one of the ports is already defined with regard to its size, it will communicate this to
the connect-function, which will inform the other port of the desired size.

The SUBSMSG DISCONNECT message works in a similar way. One has to take care that both
messages don’t inform the other subsystem of the change. A function wanting to connect or disconnect
two modules has to inform both of the action to take.

The user can ask for tracking of certain values. Whenever a subsystem is asked to track its values, it is
sent aSUBSMSG NEW TRACK message, after which the subsystem will check the tracking-list on each
data-processing to update the corresponding tracks. Similarly, SUBS MSG NO TRACK is sent to tell the

1Subsystem and Module are interchangeable in this context

41/121

Subsystem Chapter 16. Signal Processing

subsytem to stop searching the tracking-list. This pair of messages exists because tracking is quite rare and
asks for some processing-power in order to update all necessary lists. So, as long as the subsystem didn’t
receive a SUBSMSG NEW TRACK-message, it won’t search through the list.

Even though the software-radio is conceived as a real-time radio, some modules take more time be-
cause of their complexity. In order to assure that the rest ofthe software-radio is not affected by a complex
module, it is possible to put the module in a thread by sendingit a SUBSMSG THREAD2. When re-
ceiving this message, the subsystem sets up a thread and willactivate this thread whenever it receives a
SUBS MSG DATA message. For all other messages, the subsystem will runin the context of the calling
function.

Finally, a subsystem will stop working upon receiving aSUBS MSG EXIT -message. All input- and
output-ports have to be cleaned up before sending this messasge, otherwise undefined behaviour might
occur.

16.3.1.2 Data Propagation

In a multi-threaded real-time environment one has to take care that things don’t get mixed up. For this rea-
son, before asking a module to do some calculations on data, one has to send it aSUBS MSG PREPARE-
message. This message is propagated to all connected outputs where it is further propagated. If any of
the connected modules is still working, the message returnsa SUBSSTATUS WORKING, and the caller
should wait for a later time.

If the prepare-message returned 0 (for OK), that means that all modules in the chain are prepared and
can be called by sending aSUBSMSG DATA -message to the top module. This message will test for
SUBS STATUS MULTI IN and SUBSSTATUS THREAD and react accordingly. If appropriate, it will
call the pdata-function of the module. Upon returning, the output-ports are checked for new data, and the
modules connected to output-ports containing new data are sent a SUBSMSG DATA-message.

A small test-message that survived from the depths of the development is theSUBS MSG PING-
message, which has no direct effect on the subsystem.

In order to allow for user-defined messages to the modules, the SUBS MSG USER-message exists.
The payload of the message can contain whatever is accurate.Upon reception of this message, the
usermsg-function of the module is called, with the payload as argument.

16.3.1.3 Reconfiguration

Whenever a part of the software-radio thinks that the configuration might have changed, it sends aSUBS MSG RECONFIG-
message to the corresponding module. If the receiving module has the flag SUBSSTATUS RECONFIG
set, it will call the reconfig-function of the module. Furthermore the configureinputs or configureoutputs-
function is called, depending on whether the SUBSSTATUS RESIZEUP or -DOWN flag is set.

Upon arrival of a message, the subsystem stores all input- and output-port addresses, as well as the
sizes. If something changes during the execution of the message, aSUBSMSG RESIZE-message is sent
to all ports that changed size or the data-pointer.

16.3.2 Subsytem-Flags

These flags reflect the internal state of the susbsystem and are split in these groups:

• Propriety reflect a general state of this subsystem which ismore or less static

• User-defined, that is, set in theinit-part of the module

• State for transient information about the module
2This is not the default setting, because threading of a module gives a sensible overhead

42/121

Subsystem Chapter 16. Signal Processing

16.3.2.1 Propriety

All these flags are set internally by the software-radio and change very rarely.

• SUBSSTATUS THREAD module has been threaded

• SUBSSTATUS TRACKED there is a statstrack list with this module

• SUBSSTATUS RESIZEDOWN resize-messages go down

• SUBSSTATUS RESIZEUP resize-messages go up

The RESIZE-flags are set the first time a module receives a resize-message. This is done to know in the
future which port-sizes have precedence, because in some situations it’s not straightforward to decide what
to do if there is not a clear preference for a certain resize-direction.

16.3.2.2 User-defined

All these flags can be set in theinit-part of the module by inserting a line

SET_STATUS(RESIZE_NONE);

One has to note that with the SETSTATUS-command the SUBSSTATUS -part of the flag has to be
omitted.

A module like the STFA only generates resize-requests, and will never receive one. The usual logic
of the subsystem forbids this, but if you set theSUBSSTATUS RESIZENONE-flag the subsystem will
honor this behaviour.

While some modules don’t want to receive resize-requests, other modules like the testdatarcv need
to be informed by changes on both the input and the output. If this is the case, you have to set the
SUBS STATUS RESIZEBOTH-flag. Afterwards the module will be alerted by any size-change on its
input- and output-ports, and the subsystem won’t complain about this strange behaviour.

The SUBSMSG PREPARE-message traverses all attached modules. Of courseit has to stop at the
STFA, else every module will be inprepare-status. If a module has theSUBS STATUS PREPARESWALLOW -
flag set, then it will silently drop all requests to prepare and it will not inform other modules attached to
itself.

If you have a module with multiple intputs, and you want to make sure that all connected inputs contain
up-to-date data, you can set theSUBSSTATUS MULTI IN -flag. This will tell the subsystem to make sure
that all inputs contain data before calling the pdata-method of the module.

An important issue when using the MULTIIN-flag is the fact that the subsystem will try to make
sure that all inputs are from the same time-instant. For thisreason, the inputs of the module that has the
MULTI IN-flag set need to arrive in chronological order. Taking theexample of a MIMOLDPC-decoder,
the first input has to come from the first STFA, the second inputfrom the second STFA and so on. This is
the only way that the subsytem can make sure that all inputs come from the same frame.

16.3.2.3 State

The states described here are very short-lived. They usually indicate a work in progress or a needed action.

• SUBSSTATUS RECONF is set when the configuration-parameters have been changed, but before
the module’s reconfig-method has been called.

• SUBSSTATUS WORKING indicates a module that is in it’s pdata-method

• SUBSSTATUS PREPARE is a module that is ’locked’ and ready to process data.

• SUBSSTATUS LISTED in conjunction with the debug-interface, indicatesa module that is known
to the visualize-tool

43/121

Module Chapter 16. Signal Processing

16.3.3 Port-Flags

These flags are individual for each input- and output-port. They can be combined together, although not all
combinations make sense. There are mainly two groups of port-flags:

• Block-related which define how the block is allocated and who takes care about malloc/free

• Data-passing which describe when a block of data is ready orwhen it needs to change

16.3.3.1 Block-related

Besides the usual block- (port-)handling, some modules need a more special handling. These flags help
define such special ports.

• SWR PORTOWN MALLOC this means that the module wants to keep track on it’s own about the
different malloc/free

• SWR PORTOTHER FREE another port is responsible for freeing this data

• SWR PORTOTHER MALLOC another port is allocating the memory

• SWR PORTTHIS FREE this port is responsible for freeing the data

• SWR PORTPASSEDTHROUGH this port passes the data through

16.3.3.2 Signal-passing

The flagSUBSPORT DATA is set whenever a module requests a buffer by usingbuffer out(port). When
terminating the subsystem-call, it checks for this flag on all output-ports and makes sure that the appropriate
attached modules are called.

TheSUBSPORTGOT RESIZE-flag is only used internally to mark a port that already has been re-
sized. Without it, one could have a ping-pong of two ports that try to resize each other mutually.

16.4 Module

This section gives an overview of the module-creation and the use of it. Even though 25 gives an example
of how to create a new module, it is a good idea to read at least this introduction, so that you know what it
is about.

16.4.1 General introduction

Before a module can be used, it usually has to go through the following steps:

1. Registration with the CDB, usually inmoduleinit, this happens when loading the module into mem-
ory

2. Instantiation, which means setting up the needed memory and callinginit

3. A call to reconfigto assure that everything is OK

The points 2 and 3 are done automatically when callingswr sdb instantiate* and may happen more than
once, where a new memory-block is allocated for each instantiation, in order to make sure that all copies
of the module work in an independent way.

Once this has been done, a module can be asked to do one of the following tasks:

pdata Process an incoming data-block and eventually produce some output-data

reconfig Reconfigure itself because one of the configuration variables have been changed

44/121

Module Chapter 16. Signal Processing

resize Re-calculate its input- and output-sizes

custom-msg React to a user-message

finalize Clean up allocated values

The names to the left are the internal names used in the module-definition. You will never call these
functions directly, but rather ask the MSR to do something that will then call one of these functions. So if
you reconfigure one module usingswr sdbset configureint you ask the MSR to set the configuration of
this module-instance to a certain value and to call the appropriatereconfigfunction.

16.4.2 Data Structures

A module has three different data-structures:

config Where other modules may ask for a change in the behaviour

stats Results from the signal-processing

private Internal structure that is not available to the outside

While the first two have already been discussed a bit, the third is new. It may be used for internal tables
built depending on the configuration, it may contain a copy ofimportant config-parameters or anything
else needed for a module to function correctly. An importantpoint: the private-structure is personal to each
copy of the module, so it is not suited to keep ’global’ options.

The config and stats structures are protected by mutexes, as they are open to all other modules to use.
So in order to use a config-structure, one has first to call

1 s w r s d b g e t c o n f i g s t r u c t (c on te x t−>id , (vo id **)& c o n f i g) ;

before being able to useconfig-\textgreatersomething. To free the structure, use

1 s w r s d b f r e e c o n f i g s t r u c t (c on te x t−>id , (vo id **)& c o n f i g) ;

after which other modules can alos access this structure. The same goes for the stats-structure. You don’t
have to make this extra effort with the private-structure, as they are local to each instance anyway.

16.4.3 Data Types

16.4.3.1 For Config and Stats

Blocks
Blocks are a defined in the following way:

typedef struct {
void *data;
int size;
swr_signal_type_t type;

} block_t;

They can be used to give a window into an internal vector. The matched-filter module for example has a
block that points to the matched-filter used, so the user can see the matched-filter in real-time, using the
visualisation tool.

Thedatapointer has to point to the vectory you want to display,size is the size in units oftype, which
is one of the Data-Types described in here (w/oBlock, of course).

SYMBOL COMPLEX
1 t ype de f s t r u c t {
2 s ho r t i n t r e a l ;
3 s ho r t i n t imag ;
4 } SYMBOL COMPLEX;

45/121

Module Chapter 16. Signal Processing

SYMBOL COMPLEX S32
1 t ype de f s t r u c t {
2 i n t r e a l ;
3 i n t imag ;
4 } SYMBOL COMPLEX;

DOUBLE COMPLEX
1 t ype de f s t r u c t {
2 double r e a l ;
3 double imag ;
4 } doub le complex ;

This structure is compatible with thecomplex doubledeclaration from C. So, if you include ”complex.h”,
you can declare acomplex doubleand tell the subsystem to use it as such.

SYMBOL MMX
Describes one complex symbol in a special format. It is done like this:
Re0Im0− Im0Re0

The utility of this is that if we want to do a complex multiplication, we can arrange the second complex
number in the following way:

Re0Im0Re0Im0

And then a special MMX-operation on these two complex numbers yields directly the result, separated
into real and imaginary part. This is very useful for convolutions that need to be optimised.

Simple Data-types

U8 Unsigned 8-bit

S8 Signed 8-bit

U32 Unsigned 32-bit

S32 Signed 32-bit

SAMPLE S12 Signed 12-bit, where the 12 upper bits are used. For the available hardware, the lower 4
bits signal RX/TX

SYMBOL S16 Signed 16-bit real symbol

DOUBLE a double floating-point value

16.4.4 Macros

Each function that is defined in a module takes at least one argument: swr sdb t *context In there all
necessary information to distinguish one instance of another is stored. As this information may be a bit
difficult to access, a lot of macros allow easy access to this information. These macros are defined inspc.h
which is already included in the templates.

16.4.4.1 moduleinit

This function is a bit special in that it only registers the module with the CDB and doesn’t do any actual
signal-processing. So these are the macros you can use:

UM CONFIG INT adds an int-parameter to the configuration

UM CONFIG COMPLEX adds a complex-parameter to the configuration

UM CONFIG DOUBLE adds a double-parameter to the configuration

UM CONFIG DOUBLE COMPLEX adds a doublecomplex-parameter to the configuration

UM CONFIG STR128 adds a char[128] parameter to the configuration

46/121

Module Chapter 16. Signal Processing

UM CONFIG POINTER adds a void* parameter to the configuration

UM STATS INT adds an int-parameter to the statistics

UM STATS COMPLEX adds a complex parameter to the stats

UM STATS DOUBLE adds a double-parameter to the statistics

UM STATS DOUBLE COMPLEX adds a doublecomplex-parameter to the statistics

UM STATS STR128 adds a char[128] parameter to the statistics

UM STATS POINTER adds a void* parameter to the statistics

UM STATS BLOCK adds a blockt parameter to the statistics, see<ref>par:Blocks</ref>

UM STATS IMAGE adds an image to the stats

UM INPUT adds an input-port, for the types see<ref>sub:Data-types</ref>, and allows to define a flag

UM OUTPUT adds an output-port, for the types see<ref>sub:Data-types</ref>, and allows to define a
flag

16.4.4.2 other functions

private allows access to this modules private-structure

size in(n) returns the input-size of the portn. This may also be used to assign a size to a port, so
size in(0)=256;is valid.

size out(n) returns the output-size of the portn. Allocating sizes is possible as withsize in.

dataavailable(n) returns true if the input-portn has some new data

buffer in(n) returns a pointer to the input-buffern and clears the data-flag on this input-port

buffer out(n) returns a pointer to the output-buffern and sets the data-flag on this output-port

call module sends a MSGDATA to the module

makethread puts a module in a thread

47/121

Chapter 17

Makefile

17.1 Make Arguments

Whenever you are in a sub-directory of the software-radio, you can give some arguments to themake
command. There are arguments that may be used everywhere in the tree, some that are only valid in the
Radios/*subdirectories and some arguments that are only valid in thesubdirectories that contain code.

17.1.1 Common

These arguments may be used anywhere in the tree (except theTools-directory):

clean Remove all object-files in all sub-trees

whole Re-compile the whole tree

base Re-compile base only

tools Re-compile tools only

modules Re-compile modules only, additionallymod coding, mod data, mod general, mod macro, mod signal
re-compile only this special modules-directory

show Starts the visualisation-tool

server Start the channel-server

kill End all simulations as well as the channel-server

cleanproc Remove all simulation-directories from/tmp

rmall Unloads all real-time modules and stops RTLinux

cvs up Updates thewhole SRadio/*-tree using CVS1

cvs commit Commitsall changes to the SRadio/*-tree

17.1.2 Radios

Arguments that can be used in the subdirectories ofRadios/

bsms Starts channel-server and both BS and MS2 part. To stop, runmake kill

1Concurrent Versions System
2Microsoft

48/121

Make Arguments Chapter 17. Makefile

showbsms Likebsms, but also runs the visualisation-tool

wait bsms Likebsms, but stops the MS2 after 20 seconds and the BS after 30 seconds. Most useful to
check whether a radio exits nicely, before trying it in real-time

shortwait bsms Likewait bsmsbut for the impatient: BS waits for 10 seconds, MS2 for 5 seconds. At-
tention: things might not be correctly initialised after 5 seconds!

mc Starts channel-server and both Server and Client part. Tostop, runmake kill

showmc Likemc, but also runs the visualisation-tool

wait mc Like mc, but stops the Client after 20 seconds and the Server after 30seconds. Most useful to
check whether a radio exits nicely, before trying it in real-time

shortwait mc Like wait mc but for the impatient: Server waits for 10 seconds, Client for 5 seconds.
Attention: things might not be correctly initialised after5 seconds!

17.1.3 Code

Useful arguments when you are developing code

user Loads the modules defined in the Makefile for simulation and unloads them

usershow Likeuser, but also starts the visualisation-tool

userwait Like user, but doesn’t unload the modules

userwait 5 Like user, but waits for 5 seconds before unloading

userwait 10 waits for 10 seconds before unloading

userwait 20 waits for 20 seconds before unloading

userwait 30 waits for 30 seconds before unloading

userwait 60 waits for 60 seconds before unloading

ddd Start the graphical debugger in simulation-mode

debug Start gdb in simulation-mode

rf Starts the radio in real-time mode

rf tail Like rf but also tails/var/log/messageswherePR DBGs will be written to

rf show Likerf tail but launches the visualisation-tool

rmall Unloads all modules from real-time mode

49/121

Chapter 18

DBG-interface

18.1 Command-syntax

18.1.1 listmodules

returns a list of all available modules
Arguments none
Returns a moduleid,name list of all modules available, where moduleid is to be used for reference,

while name reflects the spc-name of the module. The returned list is sorted on moduleid.

18.1.2 list tag modules

returns a list of all available modules and tags all modules as ’seen’. See alsolist new modules.
Arguments none
Returns a moduleid,name list of all modules available, where moduleid is to be used for reference,

while name reflects the spc-name of the module. The returned list is sorted on moduleid.

18.1.3 listnew modules

only returns modules that are not tagged as ’seen’. Useful only in conjunction withlist tag modules. All
returned modules are tagged as ’seen’, too.

Arguments none
Returns a moduleid,name list of all modules available, where moduleid is to be used for reference,

while name reflects the spc-name of the module. The returned list is sorted on moduleid.

18.1.4 showall

gives the whole description of a module
Arguments the id of the module
Returns

input number of inputs, followed by a type,len - list for every input

output number of outputs, followed by a connid,connindex,type,len list for every output, where
conn id and connindex point to the module and port connected. If this port is not connected,
conn id and connindex are both -1.

config number of configs, followed by a name,type,value - listfor every configuration-item.

stats number of stats, followed by a name,type,value - list for every configuration-item.

50/121

Command-syntax Chapter 18. DBG-interface

18.1.5 show*

Returns only part of the description. ”*” can be one of input,output, config, stats and will return the
corresponding information.

Arguments the id of the module
Returns Like showall, but only the asked argument

18.1.6 getoutput

returns a given output of a given module
Arguments moduleid,port nbr
Returns size,type,values where values are decimal, comma-seperated values. For complex numbers,

each value is a (real,imag)-pair.

18.1.7 getblock

Returns the values of a block. Contrary to ”showstats” and ”showconfig”, ”get block” returns the values
in their binary form.

Arguments moduleid, statsindex
Returns The block of data in binary representation.

18.1.8 getimage

Returns an image that is stored in a stats. ReadReturnsfor a description of the values returned.
Arguments moduleid, statsindex
ReturnsThe image in binary representation. The size of the returnedblock is ofwidth·height·⌈bpp+7

8 ⌉
. That means that a 20 x 20 black/white image (bpp= 1) will return 400 bytes.

18.1.9 setconfig

Sends a new config-value
Arguments moduleid, config index, value value is in human-readable form.
Returns ”Reconfigured” on success

18.1.10 newlist

A list is used when one wants to track a certain value in the software-radio, or a value-pair. The software-
radio tries its best to make sure that all value-pairs are correlated, but it may happen that an older value gets
paired with a new value.

Arguments moduleid1 , statsindex1 , moduleid2 , statsindex2 If moduleid2 is −1 then only a
single value will be tracked and the values returned byreadlist will contain a value,time pair.

Returns The id of the list, in ascii

18.1.11 readlist

Returns the so far collected value-pairs. The cache is of length 1024, that means that you should collect
the data before 1024 are stored. In the most busiest scenario, this means once every second.

Arguments list id
Returns The first line contains the total number of value-pairs that will be sent. Then follow either

(value1 , value2) or (value, time) pairs, each one followed by a ”\n”.

51/121

Command-syntax Chapter 18. DBG-interface

18.1.12 closelist

Finishes tracking of the values from this list.
Arguments list id
Returns OK or error on error.

18.1.13 processdata

Tells a module to immediatly start processing. If the modulehas inputs, all connected inputs will be
activated before processing.

Arguments moduleid
Returns OK on success

18.1.14 getprofiling

Returns all profiling-data from a module. The software-radio keeps track of the number of calls and the
total execution-time of the following parameters: user-messages, data-processing and total time.

Arguments moduleid
Returns Three lines of profiling with the time spent and the number of calls seperated by a space. The

numbers are 64-bit integers. The time spent is returned inµ s.

18.1.15 ping

To test whether the software-radio is still running and replying to requests.
Arguments none
Returns ”pong”

52/121

Chapter 19

Signal Flow

For a correct understanding of what happens in the software-radio and where to insert a new module, it
is very good to have an overview of the signal-flow that goes through the radio. As of the writing of this
chapter, new hardware is being installed in our lab. For thisreason, this chapter is seperated into three
sections:

• Common: the common signal-flow

• ICS-hardware: the signal-flow specific to the ICS-cards

• STM-hardware: the signal-flow specific to the STM-cards

19.1 Common

In figure 19.1 you see an overview of the most common architecture when building a software-radio. On
the left-hand side you see the transmitting modules while onthe right-hand side the receiving modules are
located. Each transmission is built around aslot which is a constant time-slice in the transmission.

19.1.1 Transmitting

The most common implementation starts with two blocks that have bits as output. TheSourcemay be
anything, from a pseudo-random sequence to a part of a network-transmission.

These bits go through aCodingblock, where redundant information is added, in order to assure some
error-resistance when receiving the data. The ouput of thisoperation are again bits. For the coding we have
ldpc-codes, convolutional-codes or spreading-sequenceswhich allow also for to seperate multiple users if
they send at the same time-instant.

After the coding, the bits getMappedinto symbols. The most common mapping is a QPSK-mapping,
where two bits define one symbol, as can be seen in figure 19.2. The mapper-module supports also other
PSK-mappings or QAM-mappings. But commonly the QPSK-mapping is used.

In the middle of this block, a test-sequence is inserted which is calledMidamble, because of it’s position
in the block, as can be seen in figure 19.3. The goal of this test-sequence is to be able to estimate the
channel at the receiving end and to perform a matched filtering afterwards, cancelling out any effects due
to the channel.

Once these four basic operations are done, the block composed of complex symbols goes through the
hardware-specific part.

19.1.2 Receiving

Out of the hardware-specific part, we get again a block composed of complex symbols. If we have a flat
fading channel with only one tap, that is a direct line-of sight, as well as a perfect synchronisation between

53/121

Common Chapter 19. Signal Flow

Figure 19.1: The common part of the signal-flow

Figure 19.2: QPSK signal space

54/121

Hardware Chapter 19. Signal Flow

Data 1 Midamble Data 2

Figure 19.3: Position of the midamble

the sending and the receiving part (which is usually NOT the case), then this receivd symbols would be the
same as the sent ones.

In common transmissions, this is not the case. For this reason we have theMatched Filtering, where
the midamble from the sending chain is used to estimate the channel-parameters. Using these channel-
parameters, one can improve the received quality of the signal. The output of this module is the filtered
signal without the midamble. This module usually produces also information used by other modules, such
asSNR or amplitudeof the signal.

Now that the received signal is filtered, it is ready to be sliced.Slicing denotes the fact of taking a hard
decision on the received symbols. For a QPSK-signal, the quadrant of the symbol gives directly the two
bits. If the signal-alphabet is bigger, one has to calculatethe distances between the received symbol and
all possible emitted symbols, and then taking the smallest distance. A hard decision is usually the worst
thing to do. For example the LDPC-decoder takes the complex symbols directly from the matched filter
and achieves much better results.

After the slicing, we have again a block of bits, which run through theDecoder, where an algorithm
tries to correct for transmission errors. As noted before, decoding on bits is not ideal, but it is what happens
in most school-book examples. . .

The decoder ouputs again a block of bits that should contain no errors anymore. This block can now
be either used for the network-transmission, reception of an image, or just to count the number of residual
errors, in order to evaluate a code/decoder-pair.

19.2 Hardware

The hardwares job is to take the signal at it’s sampling frequency, something around 1-10MHz, and to mix
it so that it falls in the carrier-frequency, 1.9GHz, or 2.4-2.48GHz. In order to relieve the hardware of
some very difficult filtering, it is important that the signalsent to the hardware does not occupy the whole
sampling-frequency bandwith, but rather just a portion of it.

Furthermore it is important that, as the outgoing signal is filtered, as less as possible intersymbol inter-
ference is produced. For this reason, we apply a root-raisedcosine filter, whose Fourier transform is the
square root of the commonly used raised-cosine spectrum. Ifa root-raised cosine filter is used at both the
transmitter and the receiver, the product of the transfer functions will be a raised cosine that will give rise
to an output having a minimal inter-symbol interference at the receiver.

The ICS- and STM-hardware differ mostly in two aspects:

• Band while the ICS-hardware wants to have the signal in baseband, the STM-hardware needs the
signal in passband

• Signal Unit the ICS-hardware works with complex samples, while the STM-hardware only works
with real samples

The figures 19.4 and 19.5 depict the steps done to the signal from the fourier-transform point of view.
The range of the fourier-transform has been chosen to be− 1

2..1
2 , but one could have− f

2 .. f
2 or − π

2..π
2

without changing the meaning at all.

55/121

Hardware Chapter 19. Signal Flow

Figure 19.4: The signal preparation for ICS

56/121

Hardware Chapter 19. Signal Flow

57/121

Hardware Chapter 19. Signal Flow

19.2.1 ICS-hardware

In figure 19.4, you can see the preperation necessary for sending the signal to the ICS-hardware. The signal
is first upsampled by a factor of two. This is done by insertinga zero in between two complex symbols.

Next we apply the lowpass RRC-filter and now we have a signal that occupies half the bandwith, but at
double the symbol rate. Thus, we didn’t loose information.

On the receiving side, exactly the contrary needs to be done:first we apply the RRC-filter, then we
downsample by a factor of two. The filtering is necessary, as there might be some other signal next to ours.
And, because the reception sample-rate is twice the symbol-rate, we have to downsample by a factor of
two.

19.2.2 Philips-hardware

The latest hardware that is not yet installed has been developed by Philips. It contains the A/D- and
D/A-converters directly on the same board as the RF-part. The connection to the PC is made via two
SCSI1-cables, and the PCI-card only contains simple glue logic toput the data on the PCI-bus or to read it
from there.

This hardware works at 1.9GHz and has a bandwith of 5MHz.

19.2.3 STM-hardware

Looking at figure 19.5, you can see that for the STM-hardware,we need to upsample by a factor of four.
The filter chosen for the pulse-shaping is a passband-filter,that has a bandwith of 1/4.

Because the hardware accepts only real samples, we can’t keep the signal at baseband, as a loss of the
signal would happen. You can see that by taking the real-partof the signal, it gets mirrored at the axis. If
you do this with a baseband signal, information loss occurs.

These three operations are done using advanced MMX-operations that manage to take advantage of the
special structures of the filters and the signal.

1Small Computer System Interface

58/121

Chapter 20

Important Modules

In this chapter you’ll learn about some of the most importantmodules in the software-radio. They represent
the basic functionality and should be known by everyone thatwants to handle the software-radio.

20.1 STFA

STFA stands for Slot To Frame Allocator. Its main purpose is to map the RX- and TX-slots to the correct
moment in time. First of all you need to understand the principles of a slotted TDD transmission using
frames. In figure 20.1 you can see a transmission of 3 frames. Each frame takes the same amount of time.
Normally the frame-structure stays the same during the transmission. Of course this wouldn’t be the case
in a multi-user environment, where a frame contains the structure of the up- and downlink slots, which
would change during connection and disconnection of users.

The STFA represents this frame-structure. It is a module with inputs and outputs, where is the number
of slots per frame. The purpose of the STFA is to calculate theslots so that they are sent at the correct mo-
ment in time. To understand figure 20.2 correctly, it helps toimagine yourself the STFA as a representation
of the channel. So the inputs of the STFA are the inputs to the channel, which corresponds to the TX-part.
The outputs of the STFA are what comes out of the channel, which is the RX-part.

Internally, the STFA has two large sample-buffers that holdone complete frame in memory. One buffer
is read continously1 from by the D/A converter, while the other buffer is written to continously2 by the A/D
converter. For this reason, it is important that the result of one slot is computed before the D/A converter
needs it. It is also important that a RX-slot is processed before the next frame.

1the transmission is done in blocks using DMA
2the transmission is done in blocks using DMA

Figure 20.1: The frames and slots

59/121

STFA Chapter 20. Important Modules

Figure 20.2: Inputs and outputs of the STFA

Figure 20.3: A typical set-up of the STFA

20.1.1 Synchronisation

A common problem in a slotted TDD-environment is the synchronisation of two stations. If we consider
two participants in a communication, called BS and MS3 (for Base Station and Mobile Station), one has to
define at what instant in time the first frame starts. If we callthis time-instantt f rame(0) , then all consecutive
frames will start att f rame(n) = tstart + ndf rame where is a positive integer anddf rame is the time-duration
of one frame. This also defines all slots, astslot(m) = t f rame(n)+mdslot with dslot the time-duration of one
slot and 0< m< slots.

We can’t know beforehandt f rame(0) , and alsodf rame is only known up to a certainδt , because of
clock-drifts between the two stations. One solution is to send a synchronisation-signal in slot 0, so that one
can knowtslot(0) for every frame. Then we can findtslot(m) for all the other slots of the frame, supposing
that the error indslot is negligible when calculating the time-instants of one slot.

This setup is shown in figure 20.3. In a real system, the MS3 starts out with synchronisation modules
attached to all its STFA-outputs. The reason for this is thatupon startup, we don’t have any information
abouttslot(0) , so we have to expect the synchronisation-signal on any slot. Once the synchronisation-
signal is found on a given slot, the buffers are adjusted so that the synchronisation-signal falls intoslot0

3Microsoft

60/121

STFA Chapter 20. Important Modules

Figure 20.4: The different size-parameters

. Then, each timeslot0 is received, the buffer is adjusted again, so that alltslot(m) are accurate and in
synchronisation with the BS again.

20.1.2 Important Parameters

There are three groups of parameters in the STFA:

• Structural which define the size of the different parts of the STFA

• Timing everything that got to do with preparation of slots and synchronization

• RF the parameters of the RF-part are also reflected in the STFA

20.1.2.1 Structural

These are quite important, as they define the basic structureand size of the STFA. You can’t change these
parameters once the STFA has been started, as the DMA-transfer would be disturbed greatly by this. An
overview of the parameters is given in figure 20.4.

Theblocksper slot parameter has a unit of 128 symbols. By taking the default value of 20, this gives a
slot-length of 2560 symbols. Substracting the guard-period, we get a useable slot-length of 2470 symbols.

To make things even more complicate, the total number ofblockshas to be a multiple of 16. This is
due to the fact that the DMA-transfer is done in blocks with a size of 16 * 128 symbols4. Taking a smaller
block-size for the DMA-transfer would result in more interrupts and thus a higher system-load.

As we have a TDD-system, TX and RX slots are stacked up in time.Without any special handling, the
RF-system would have to be able to switch off the transmit-chain from one symbol to another. Because
this is very difficult to do, aguard-periodhas been inserted. During this time, the state of the RF-cards is
not defined, and no useful data is transmitted.

20.1.2.2 Timing

Usually you don’t have to change these parameters. They are taken into account by the synchronisation-
macro module.

4This is defined in Base\/Antenna\/ICS/ics dev.h

61/121

STFA Chapter 20. Important Modules

Figure 20.5: Two transmit and one receive-chain as an example

20.1.3 Attaching Chains

The STFA on its own doesn’t do anything. The mode of operationand the kind of mapping done over
the air is defined by attaching chains to it. If a chain is attached to an input of the STFA, we talk about a
transmit-chain, or TX-chain. A receive-chain or RX-chain is attached to the output of the STFA.

In figure 20.5 you see a picture of some example-chain. In the middle is the STFA that is responsible
to alert all modules as soon as there is some data to proceed. Looking at the RX-chain, you see that it is
very simple for the STFA to know when to alert the RRC-module of the chain. The right moment is when
this slot has been received.

For the TX1-chain, the right moment to alert the source-module is talert = tslot(0)−dcalcchaintx1 . Unfor-
tunatly thedcalcchaintx1 is not known in advance and might change during the run of the software-radio. One
way to tackle this problem is to put an upper time-limit on thecalculation-duration, and call the top-module
that much in advance. In the actual STFA-implementation,dcalcchaintxmax = 2∗dslot , so that the first module
of the TX1-chain is called at the beginning of slot 0.

Another problem arises when we have constructs as in the TX2-chain5. Although it is not optimal
(See 34.2), we applied the same reasoning as with the TX1-chain, that is, we call the top module of the
TX2-chain two slots in advance. The disadvantage is, that the whole chain has to finish in the time 2∗dslot

.

20.1.3.1 Overcoming the Time-Limits

In an ideal setup, you’ll be able to calculate every slot in a frame fast enough, so that it can be sent on
time over the air. Unfortunatly, this is not always the case.Sometimes you want to trade in some of the

5The two branches may also fall into two different STFAs

62/121

STFA Chapter 20. Important Modules

real-time with the possibility to do some more calculationsthan the time allows. The problem is different
on the sending- and on the receiving side.

The only time you’d want to send a slot that takes a very long time to calculate is when you want to do
repeated measurements on the slot. So what you can do is to calculate the slot once, and then send it again
and again. You can do this by setting the notice-point not to the top-module, but rather to the RRC-module
only. Like this only the pulse-shape will be done, taking care of an eventual desynchronisation between the
two radios6.

On the receiver side, the only reason for taking more than theallocated time is about the same. But you
may easily take up more time than 2∗dslot , if the total amount of all receiving chains is not bigger than
one frame. If this might be the case, then you can use the following command:

make_thread(rrc_id);

This means that every time the STFA has data that needs to be processed, it checks whether the chain is
still working, and only notifies the top-module, if no work isdone. If the chain is still working, the STFA
doesn’t send the request, and waits for the next frame to check back again.

Here at EPFL we use these two techniques to measure code-qualities, especially LDPC-coding schemes.
It is important to us that we get an actual transmission, but analyzing 10 slots per second is good enough
for our case.

6Remember that the MS3 moves in time

63/121

Chapter 21

Subsystems

The software-radio has a reception and a transmission part.Each one of these has its specialities and
quirks. Here I list the names used in programming, the restrictions and how they come across. Only the
reception-part is treated in this document, as the transmission-part is quite simple.

21.1 Nyquist

It is very important to understand the implication of Nyquists theorem for this reception-chain. Nyquist
wrote that the sampling-frequency must be twice the bandwith of the signal to sample. He also described
the aliasing that happens if you sample a signal that is out ofthis bound. For the reception-part of the
software-radio, we rely on this aliasing to capture a signalat an intermediate frequency of 70MHz using a
sampling-frequency of 100MHz. In a most general way, given the parameters:

fi rx the intermediate frequency

wi rx the intermediate used bandwith

f adc the sampling-frequency of the analog-to-digital converter

then f adc must be chosen so that

fadc
2

N /∈

[

f ir x−
wirx

2
, f ir x+

wirx
2

]

is fulfilled. Else we get an overlapping of the aliased signaland we loose information.
For the software-radio,f irx = 70MHz , wirx = 20MHz , fadc= 100MHz , which fullfills the above

equation.

21.2 Reception-chain

The different parameters of fig.21.1 and fig.21.2, their boundaries, and a short description:

f rf [2300..2500]MHz1, the transmission-frequency

attn rx [0-41]dB, the attenuation of the Rx-chain (0 gives stronges output, 41 gives weakest)

f adc [1-100]MHz1, the sampling frequency of the ADC.

fi rx [1-500]MHz1, the intermediate frequency. Every frequency abovefadc
2 will be attenuated due

to the sinc of the ADC.
1Megahertz

64/121

Reception-chain Chapter 21. Subsystems

Figure 21.1: Reception-chain

Figure 21.2: The whole chain and the most important part of it

65/121

More detail Chapter 21. Subsystems

fs rx [0- fadc
8]MHz1, the final sampling frequency (the DDC does down-sampling).Contrary to

f adc, fsrx is measured in complex samples.

w rx [0.08-0.75], the portion of the final sampling frequency fs rx which is not cut off by the DDC
filters.

sig type SIGCOMPLEX ICS, SIGS16 for FPGADEFAULT
SIG COMPLEX S16 for FPGAS16

21.3 More detail

The final sampling frequency is limited by the use of the DDCs in the card. A simplified structure of the
DDCs can be seen in fig.21.2. Due to internal limitations, thesmallest useable decimation factor of the
DDCs is 8, and the highest is 4096. For more detail, see the Graychip-documentation on page 11, 3.4.2
and references.

21.3.1 wrx

This parameter is also dependant on the DDC-chips. In fig.21.2 this is simplified by aFiltering block. The
DDC itself does implement this filtering with two filters, called cfir and ffir . The exact nature of these
filters is subject to a subsequent work and thus only pre-calculated filters have been used. This is why the
bandwith can only be one of 0.085, 0.17, 0.34, 0.40, 0.50, 0.75.

Another point here: the filters infilters.c are defined for twice this bandwith. This is because of the
internal workings of the DDCs and can only be understood through a thorough study of the Graychip-
documentation, see also the document about the DDC by Ignace.

21.3.2 sigtype

The signal-types are defined for the software-radio and can be chosen to be one of the following. The
choice of the signal-type influences also whether the DDCs are used or not.

SIG COMPLEX ICS is the standard mode of the ICS-card. In this mode, DDCs are enabled and the signal
is outputted in baseband.

SIG S16 bypasses the DDCs and transfers the direct output of the ADCs. This has been tested with one
ADC only. It is useful for processing high-bandwith signals.

SIG COMPLEX S16 is only possible with a re-programmed FPGA on the ICS-cards. DDCs are enabled,
only one channel is transmitted, but not in the SIGCOMPLEX ICS format that takes 128bits
per sample, but in a more simple SIGCOMPLEX S16 format, that only takes 32bits per
complex sample, thus allowing 4 times more storage.

66/121

Chapter 22

Interface

The following files have been rewritten:

Include/antenna.h
Base/Antenna/ICS/*
Base/Antenna/Common/antenna.c

In table 22.0.3 you can see the newly defined commands.

22.0.3 New commands defined

Name Short description
swr ant ics init Initialises the ics-cards, should be called first
swr ant ics get fs rx Returns the real sampling-frequency
swr ant ics get fs tx Returns the real sampling-frequency
swr ant ics rx Sets the bandwith and the if-frequency
swr ant ics rx freq Sets the if-frequency of the reception, also while

the radio is running
swr ant ics tx Sets the if-frequency of the transmission, also

while the radio is running
swr ant ics clk Sets the speed of the clock-reference, as well as

the multiplication-factor of the DACs
swr ant ics start Starts the transmission
swr ant ics stop Stops the transmission
swr ant ics io Returns the time left to reach a certain position in

the reception
swr ant ics set synth Sets the synthesizer on the RF-card
swr ant ics write ddcs Writes the calculated values to the DDCs, can’t be

called while the radio is running!

67/121

int swr ant ics init(fs rx, fs tx, ch rx, ch tx, sig type); Chapter 22. Interface

22.1 int swr ant ics init(fs rx, fs tx, ch rx, ch tx, sig type);

This is the first function to call to initialise the cards. This function can only be called when the cards are
not running, as some very basic parameters are defined in here.

22.1.1 fsrx

Type: double
Description:
sampling frequency for the reception, in Hz. Must be between10kHz and 3MHz. The sampling-

frequency on the reception has some constraints, describedin the functionswr ant ics clk. This sampling-
frequency is given in complex samples, so that a sampling frequency of 10MHz gives a theoretical bandwith
of 10MHz! See alsoswr ant ics rx

22.1.2 fstx

Type: double
Description:
sampling frequency for the transmission, in Hz. Must be between 10kHz and 3MHz. The sampling-

frequency of the transmission has some constraints that aredescribed in the functionswr ant ics clk. This
frequency is in complex samples! Please be aware that the DACs have an in-built filter that cuts the useful
signal to about 75% of the bandwith of fstx. So if fs tx is 1MHz, the useful bandwith is about 750kHz.

22.1.3 chtx

Type: uint
Description:
how many rx-channels, between 0 and 4 —

22.1.4 chtx

Type: uint
Description:
how many tx-channels, between 0 and 4

22.1.5 sigtype

Type: swr signal type t
Description:
the desired type of the rx-channels, it depends on the program in the FPGA. A version exists for

a one-channel, 32-bit complex reception mode (16bits real and 16bits imaginary), using the DDCs but
allowing for a longer aquisition time. In this mode,ch tx must be 0 andch rx 1. The different signal types
correspond to the following:

SIG COMPLEX ICS is the signal used by most of the radio-systems, as it allows to use the DDC and
works with complex signals on the reception path

SIG S16 is used for the 802.11. Here the DDCs are completely bypassed and raw ADC-material is
received.

SIG S32 not implemented yet: DDCs work in wideband real-mode only

SIG COMPLEX S16 uses the modified FPGA to implement a 1-channel 32 to 16 bitconversion, including
the DDCs. Used for GPS-reception.

68/121

int swr ant ics init(fs rx, fs tx, ch rx, ch tx, sig type); Chapter 22. Interface

After this function has been called, everything is set up so that swr ant init can be called. All other
funtions defined in here are only for more special needs.

swr ant ics init calls swr ant ics clk(100e6, 4, 50e6)which initialises the multipliers on the ICS-
cards.

fs rx and fstx have to meet certain criterias, so the final values may differ from the chosen ones! To get
the real values, use the functionsswr ant ics get fs rx as well as the functionswr ant ics get fs tx, which
return the re-calculated values.

69/121

double swrant ics get fs rx(void); Chapter 22. Interface

22.2 double swrant ics get fs rx(void);

22.3 double swrant ics get fs tx(void);

These function get the actual sampling frequency as calculated byswr ant ics clk. They return the actual
frequency in Hz, which may differ from the settings, becauseof the limitations of the cards.

22.4 void swr ant ics rx(ch, fc, W);

22.4.1 ch

Type: int
Description: The affected channel, 0-3

22.4.2 fc

Type: double
Description: The new center-frequency

22.4.3 W

Type: double
Description: The bandwith of the final samples that contain data, relativeto fs rx set by swrant ics init.

W ∈ 0.085, 0.17, 0.34, 0.5, 0.75. If a non-existant bandwith is selected, the next-higher (or highest avail-
able) will be chosen.

fc is re-calculated to fit into[0.. f srx
2] , using the availability of different Nyquist windows. First it is

converted relative to the sampling-frequency:

f =
f c

f srx

Then it is converted using:

fp =
1−|(f −⌊ f ⌋)∗2−1|

2

f p is calculated with 31 bits precision. For a fsrx of 100MHz this gives a precision of120 Hz.

22.5 void swr ant ics rx freq(ch, fc);

Function to set only the intermediate-frequency of the reception-part.

22.5.1 ch

Type: int
Description: The affected channel, 0-3

22.5.2 fc

Type: double
Description: The new intermediate-frequency, see also the function swrant ics rx
Because it is very difficult to re-program the DDC-chip whilethe software-radio is running, this func-

tion has been written to only re-program the intermediate-frequency and nothing else. This function only
calculates the new value to be programmed in the DDC-chip. The final programmation of the chip is done
in the DMA-interrupt so that the transmission is not interrupted.

70/121

void swr ant ics tx(ch, fi tx); Chapter 22. Interface

22.6 void swr ant ics tx(ch, fi tx);

This sets the intermediate frequency ’fitx’ for the tx-channel. For the re-calculation of the intermediate
frequency, seeswr ant ics rx.

This function can be used without problems during runtime.

22.6.1 ch

Type: int
Description: The affected channel, 0-3

22.6.2 fi tx

Type: double
Description: center-frequency, in Hz

22.7 void swr ant ics clk(f adc dac mult, f dac);

The ICS-cards usually are clocked by an external 50MHz-clock. If you set a new clock-frequency, fsrx
and fstx are re-calculated and might differ. A frequency set withswr ant ics init might be possible with
f dac=50MHz, but not fit correctly into fdac=25MHz!

22.7.1 fadc

Type: double
Description: the external frequency in Hz

22.7.2 dacmult

Type: int
Description: the multiplier. One of 1, 4..16

22.7.3 fdac

Type: double
Description: the external frequency in Hz

22.8 void swr ant ch start(void);

Here the channel begins to send/receive data. All initialised antennas begin at once to send/receive.

22.9 void swr ant ch stop(void);

Here the channel interrupts sending/receiving data. It maybe that later on another transmission starts.

22.10 int swr ant ch io(slot);

This function returns the time to wait so that the next slot will be sent/received.

71/121

void swr ant ch set synth(ch, RF, side); Chapter 22. Interface

22.10.1 slot

Type: int
Description: read/write up to this block

22.10.2 return

Type: int
Description: The time in micro-seconds (10−6) to wait

22.11 void swrant ch set synth(ch, RF, side);

Sets the synthesizer on a given RF-board. Due to some constraints, the RF-boards take quite some time to
behave stable in a new frequency. This is in the order of a couple of ms.

22.11.1 ch

Type: int
Description: The affected channel, 0-3

22.11.2 RF

Type: double
Description: The frequency in Hz: [2.3..2.5] * 109

22.11.3 side

Type: int
Description: low- or high-injection:

0 Auto

1 low-injection

2 high-injection

72/121

void swr ant ch set freq diff(ch, freq diff); Chapter 22. Interface

22.12 void swrant ch set freq diff(ch, freq diff);

As described in the functionswr ant ics tx, the value for the intermediate tx-frequency has a resolution of
32bits. With this function, you can set an offset to the ’official’ value.

22.12.1 ch

Type: int
Description: The affected channel, 0-3

22.12.2 frecdiff

Type: long int
Description: An offset to the set value. The step isf st x

232 , where fstx includes an eventual multiplicator
(usually 4).

22.13 write ddcs(void);

A function calledics554ddc set cic is used to set the decimation to the desired value. The main problem is
the calculation of the attenuation of the signal. This function has been tested for a wide range of decimations
and should work without problems.

73/121

Chapter 23

FPGA

For the work on the software-radio, we have two versions of the FPGA:

STD which is the standard off-the-shelf version, that worksfor SIG COMPLEX ICS and SIGS16

GPS which is used for the GPS SIGCOMPLEX S16

Both of these modes can be programmed using a simple Tool. This can be found in the directory FPGA.
If all you want is to reprogram the FPGA, here is how to proceed:

1. cd into the directory

2. ./compile

3. program :

• for the GPS-version:
./program gps

• for the standard-version:
./program std

Of course, if you want to switch back and forth between versions, you don’t have to enter the ”./compile”-
command every time.

23.1 Directories

Module The kernel-module to talk to the ics554-card

Program The actual programmer for the FPGA

Api The Application Programming Interface, the glue between ModuleandProgram

inc The include-files necessary

All these files are nearly identical to the software delivered on the ICS-CDs of the software-development
pack. The only change has been done to theProgram, so that it accepts the command-line switches and
doesn’t wait for a key.

74/121

Testing the version Chapter 23. FPGA

23.2 Testing the version

Before running the radios it is a good idea to verify the version of the program in the FPGA. This can be
done by running the following program:

cd
$SRADIO/Test/FPGA
make test

This will tell you whether the actual program supports either STD or GPS mode.

75/121

Chapter 24

Tidbits

24.1 DMA-considerations

Size of the slots and FIFOs:
512k
2∗16 = 16k 512k

2∗4 = 64k

For 1 slot Rx - ics554 Tx - ics564
Samples 2560*2=5120=5k 2560*2=5120=5k
Bytes 5120*16=81920=80k 5120*4=20480=20k
FIFO-size [bytes] 65536*8=512k 65536*4*2=512k
Max samples

The samples per slot is given by the pseudo-UMTS system of thesoftware-radio and is fixed for the
moment at 2560 samples. As we do an oversampling by a factor of2, this gives 2560*2=5120 samples per
slot, for both the ics554 and ics564.

The total bytes is calculated assamples∗bytespersamples, wherebytespersamplesis:

4 = 16bit real + 16bit imaginary

16 = 32bit real + 32bit imaginary, but for two channels, as we can’t treat only one channel at a
time in the ics554-card

According to the ics-554 documentation E10681 Rev.B p. 55, the FIFO is sized at 65536 * 64bit-values,
which gives 512kBytes. The ics-564 documentation E10734 Rev.- p. 9 gives the size 65536 16bit-samples
as “approximately one quarter of the FIFO-size”. So the total is 65536*4*2 = 512kBytes.

24.1.1 Conclusion

The DMA-size will be dependant on the slot-size. So, there will be 1 slot per DMA-transfer. This limits
the slot-length to 16kSamples for the Rx-part, but that should be OK.

Care has to be taken for small slot-sizes, as the DMA-transfer happens in two steps:

1. Fill up the FIFOs on the ics564

2. Start the transfer

3. Wait for underflow of the FIFOs and re-transmit

76/121

Server Chapter 24. Tidbits

24.2 Server

The old implementation of the server takes DMABLOCK-sized packets and works on these. In order to
rewrite only what is necessary, I adjusted the Base/Antenna/Simul ics in a way to chop down the slots into
DMA BLOCK-sized packets. Too bad if it is not a multiple of these.There is no check against that.

24.3 Resampler

A big mess that nobody understands. Hopefully the work of thestudent this summer sheds some light on
this.

24.4 Samples, Chips and Symbols

The current setup has 2 Samples for 1 Chip, and 1 Chip for 1 Symbol (without a spreading-sequence). This
means, that there is a 2 x oversampling.

77/121

Part IV

HOWTOs

78/121

Chapter 25

From Conception to Measurement

Of course the main idea behind the MSR is that you’re able to write new modules for it. This chapter
will give an introduction with an actual example of a module as well as an implementation of a radio-
transmission. After this you should be able to create your own modules and put them into use. An important
introduction can be found in chapter 31. You should also already have run the example in chapter 28. This
part is a bit heavy on coding, but you won’t be able to write modules without a good knowledge of C.

25.1 Defining New Modules

In here you will learn the most important things about a module, how it works, how to use it, and how to
extend it. This example is already present in the tree, but you can read this section to get a feel of it.

The goal of this module will be to measure the SNR of the signal. Even though this functionality is
already implemented in a module, it is a nice idea to have a possibility to compare the results of the two
approaches. The existing module compares the received training sequence with the original in order to
calculate the SNR. As the training sequence is only part of a transmitted slot, it is a good idea to compare
this SNR with the SNR computed in here.

In order to calculate the SNR differently, we will transmit arandom sequence and then compare it after
the transmission. This is depicted in fig. 25.1. In order to know the exact amplitude, it is important to know
the random sequence in advance. This is done by setting theseedparameter of the random-module.

Once we have the received signaly = yr + iyi = [y0ry1r ...yn−1r] + i[y0iy1i...yn−1i] and the transmitted
signal , we can calculate the amplitude:

a =
∑n−1

l=0 ylr sign(xlr)+yli sign(xli)

n
and also the variance:

v =
∑n−1

l=0 (ylr−asign(xlr))
2+(yli−asign(xli))

2

2n
and the signal to noise ratio is then
SNR= 10∗ log(a2

v)
The correctness of this assertion is left as an exercise to the reader.

Random Midamble Random

Figure 25.1: The example slot

79/121

Defining New Modules Chapter 25. From Conception to Measurement

25.1.1 The Files

Now that we know what it is about, let’s have a look at the written files. For your information you will
learn where the templates for the files come from in every section. The discussion then is only about
the parts that have been added. In the directoryModules/Signals, there is a directory calledSNR. in
there you find the code for the SNR-module. The MSR knows aboutthis directory because of the file
Modules/Signals/Makefilethat has an entrySNR in the list ofDIRS. You can have a look at this Makefile
to see it.

The template files come from theConventionsdirectory and are called:

Conventions/multi_*.c
Conventions/Makefile.module

Most of the modules come in two parts: one sending part and onereceiving part. But as they usually are
used in a pair, they are put together into one module. So as notto be confused with different modules, they
are renamed to:

multi_template.c -> snr.c
multi_template_send.c -> snr_send.c
multi_template_rcv.c -> snr_rcv.c
Makefile.module -> Makefile

25.1.1.1 snr.c

Now look first at the filesnr.cand look at the places that contain some documentation. It isreally important
to keep this documentation up-to-date, so that other peopleknow what it’s about:

SNR - measure the signal to noise ratio of a transmitted slot.
In order to do this, we send a slot of known random data that
is measured on the other side.

This is all that is needed. Not a big description, just enoughto know what it’s about.
What it does is the following: once the modulesnr is loaded into the memory, the functionspcmoduleinit

is called, which in turn callsrcv moduleinit from snr rcv.c andsendmoduleinit from snr send.c. These
two functions are responsible to tell the CDB about their name, their input and output as well as their
paramters.

25.1.1.2 snrsend.c

This is the part that prepares the slot.
documentation. At the top of the file, you see again a short description of the module

snr_send.c - sends a slot of random symbols

and a bit further down (after the copyright message) a bit more of description.

This module expects some random input that is then modulated
using QPSK modulation so that the noise can be mesured. It can
send the QPSK symbols either on the axis or in the corners.

80/121

Defining New Modules Chapter 25. From Conception to Measurement

config-structure We want the user to be able to change the amplitude of what we send over the channel.
So, edit the config-structure, and make it something like:

typedef struct {
// The amplitude of the generated QPSK-signal
int amplitude; // 32767
// The QPSK-type, 0->in the corner, 1->on the axes
int type; // 0

} config_t;

It may seem strange that we take an integer for the amplitude,but you have to know that the signals are all
in 16-bit integers, so what usually is between+1 and−1 is now between+32767 and−32768 .

private-structure Once the user changed the configuration, we will store it in our private variable. This
is more for convenience than anything else:

typedef struct {
int amplitude;
int type;

} private_t;

The other structure may be left empty, we don’t need it for this example. Just after the structures is a
function called

send init Why another initialisation function, you might ask. Well, remember from chapter 8.2 that
first the module is registered with the CDB, before it is possible to instantiate it. So, this function is what
is called each time this module is instantiated. In our example, we just want to put a default-value in the
amplitude-part of the configuration, so add this line:

config->amplitude = 32767;
config->type = 0;

32767 is the maximum number that we can have in a 16-bit signedvariable.
sendconfigure input This function is called whenever the MSR wants to know what the size of the

input should be, given the size of the output. So, for each 2 bit of input, we create one symbol with the
QPSK representation. This means that two bits of input create one symbol of output, at least for an even
number of symbol-outputs. The only tricky part here is that the input is not counted in bits, but rather in
bytes. Sosizeinput =

2∗sizeout put
8 , which is written in this function as

size_in(0) = (size_out(0) + 7) * 2 / 8;

This assures that we always have enough bits to write to the output.
sendconfigure output The same as before, but this time the opposite direction:

size_out(0) = size_in(0) * 8 / 2;

send reconfigWe use this function to copy the configuration-data to our private structure:

private->amplitude = config->amplitude;
private->type = config->type;

81/121

Defining New Modules Chapter 25. From Conception to Measurement

sendpdata Now comes finally the processing function. This is where the main action takes place. Let’s
first define some variables:

// Definition of variables - don’t touch
stats_t *stats;
int i, amp;
U8 *in;
SYMBOL_COMPLEX *out;

To get to the input and output-buffers, we have to do the following:

in = buffer_in(0);
out = buffer_out(0);

The first line deletes thedatabit on the input-port, signaling the MSR that the input-portis free again to
receive some data. Furthermore it returns a pointer to the input-buffer of this module. The second line gets
the output-buffer of this module and sets thedatabit on the output-port. Once this function returns, the
MSR checks for thedata-bit in the output-port and, if it is set, handles the processing to the next module.

OK, now we just have to process the data:

// Fill the slot with random QPSK symbols
for (i=0; i<size_out(0); i++){

switch(2){
case 1:

// The amplitude in this case is
// Sqrt(Reˆ2 + Imˆ2) and thus the
// desired amplitude has to be divided by
// sqrt(2)
amp = private->amplitude / sqrt(2);
out[i].real = (2 * (*in & 1) - 1) * amp;
*in = *in >> 1;
out[i].imag = (2 * (*in & 1) - 1) * amp;
*in = *in >> 1;
break;

case 2:
amp = private->amplitude;
if (*in & 1){

*in = *in >> 1;
out[i].real = (2 * (*in & 1) - 1) * amp;
out[i].imag = 0;

} else {
*in = *in >> 1;
out[i].imag = (2 * (*in & 1) - 1) * amp;
out[i].real = 0;

}
*in = *in >> 1;
break;

}
// Get the next input-byte of random
if (i && !(i % 4)){

in++;
}

}

82/121

Defining New Modules Chapter 25. From Conception to Measurement

You might not be completely fond of this example, but it works(yet to check).
sendcustom messageThis function is not needed and can be deleted
sendmodule init Registers this module with the CDB. The CDB first wants to be informed about the

type of module to be attached1. In our case, we have one input, one output, one config-parameter and 0
stats-parameter:

desc = swr_spc_get_new_desc(1, 1, 2, 0);

Then we have to tell about the config-parameter, the input-type and the output-type:

UM_CONFIG_INT(’’amplitude’’);
UM_CONFIG_INT(’’type’’);
UM_INPUT(SIG_U8, 0);
UM_OUTPUT(SIG_SYMBOL_COMPLEX, 0);

In order for the MSR to know what functions to call in what case, we have to define ’call-back functions’.
As these are always the same, they are already pre-defined in the templates, and we only have to delete the
sendcustommsgentry. Now the module-description is complete, save for thename:

send_id = swr_cdb_register_spc(&desc, "snr_send");

25.1.1.3 snrrcv.c

Let’s start with the comment in the beginning of the file:

This module receives the stream from the matched filter
and the stream of random-signals that are supposed to be
the same that have been used by the snr_send. It then
calculates the amplitude, the variance and the snr.

This means that this module has two inputs: one from the channel, and another one from the random-
module.

config-structure Again we have the possibility to change the type:

typedef struct {
// The QPSK-type, 0->in the corner, 1->on the axes
int type;

} config_t;

stats-structureSo we’re able to retrieve the SNR from the outside, we have to write it in this structure:

typedef struct {
double snr;

} stats_t;

1For further information, look at 8.2.2

83/121

Defining New Modules Chapter 25. From Conception to Measurement

rcv init Let’s just start with a SNR of -2.3:

stats->snr = -2.3;
config->type = 0;

rcv reconfigure

private->type = config->type;

The functionsrcv configureinput andrcv configureoutputcan be deleted, as this module is at the end of
the chain.

rcv pdata Here goes the working function. It’s just about implementing the above formula. Let’s go
through step by step. Definition of variables:

stats_t *stats;
SYMBOL_COMPLEX *in, *buf_rnd;
U8 *in_rnd;
double signal = 0., noise = 0.;
int i;

Then we have to make sure that we have both the signal from the channel and the random-data:

if (!data_available(0) !data_available(1)){
PR_DBG(4, "Not all data available yet\n");
return 0;

}

Now we reconstruct so that we can implement the formula givenabove. Instead of calculating and then
taking the sign of it, we directly calculate with an amplitude of±1 . Again, once for the QPSK-signals on
the axes, and once for the signals tilted byπ

4

in_rnd = buffer_in(1);
buf_rnd = swr_malloc(size_in(0) * sizeof(SYMBOL_COMPLEX));
for (i=0; i<size_in(0); i++){

switch(private->type){
case 0:

buf_rnd[i].real = (2 * (*in_rnd & 1) - 1);
*in_rnd = *in_rnd >> 1;
buf_rnd[i].imag = (2 * (*in_rnd & 1) - 1);
*in_rnd = *in_rnd >> 1;
break;

case 1:
if (*in_rnd & 1){

*in_rnd = *in_rnd >> 1;
buf_rnd[i].real = (2 * (*in_rnd & 1) - 1);
buf_rnd[i].imag = 0;

} else {
*in_rnd = *in_rnd >> 1;
buf_rnd[i].imag = (2 * (*in_rnd & 1) - 1);
buf_rnd[i].real = 0;

84/121

Defining New Modules Chapter 25. From Conception to Measurement

}
*in_rnd = *in_rnd >> 1;
break;

}
// Get the next input-byte of random
if (i && !(i % 4)){

in_rnd++;
}

}

Now we can calculate the amplitude of the signal:

in = buffer_in(0);
// Calculate signal energy
for (i=0; i<size_in(0); i++){

signal += (double)(in[i].real) * buf_rnd[i].real +
(double)(in[i].imag) * buf_rnd[i].imag;

}
signal = signal / size_in(0);

And the noise-variance:

for (i=0; i<size_in(0); i++){
noise += pow((double)in[i].real - signal * buf_rnd[i].rea l, 2) +

pow((double)in[i].imag - signal * buf_rnd[i].imag, 2);
}
noise = noise / size_in(0) / 2;

Finally we can calculate the snr:

PR_DBG(2, "signal_amp: %i, noise_amp: %g\n",
(int)signal, noise);

// And write the snr
swr_sdb_get_stats_struct(context->id, (void**)&stats);
if (noise > 0){

stats->snr = 10 * (log10(signal) * 2 - log10(noise));
}
swr_free(buf_rnd);

Again, thercv usermsg is not used and can be deleted.rcv module init We have only 1 input, no output,
1 config-variable and 1 stats-variable, and lots of functions are not used:

desc = swr_spc_get_new_desc(1, 0, 1, 1);
UM_STATS_DOUBLE(’’snr’’);
UM_INPUT(SIG_SYMBOL_COMPLEX, 0);
desc->fn_init = rcv_init;
desc->fn_reconfigure = rcv_reconfig;
desc->fn_process_data = rcv_pdata;
desc->fn_finalize = rcv_finalize;
rcv_id = swr_cdb_register_spc(&desc, "snr_rcv");

85/121

Testing Chapter 25. From Conception to Measurement

25.1.1.4 Makefile

In the makefile we have to tell the final name of the module, as well that we use the math-library:

MODULE_NAME = snr
MATH = true

25.1.2 Compile it

Now you can try to compile it by typingmakeon the command-line. If there are any errors, try to fix them,
the above lines should work, they have been tested. In order to include this module even better in the MSR,
you can add the name of the directory to the fileModules/Signals/Makefilein the lineDIRS = . Like this
a top-levelmakewill also update the SNR-module.

25.2 Testing

Up to now only the module has been written. It is not yet in a usable state, as it is only registered with the
CDB, but not yet instantiated. Theoretically we could writeeverything in the module to make an instance,
but this would turn upside-down the idea of modules. So what we need is an own program that implements
the chain and runs it, just to look how good it runs.

Perhaps as a surprise, this program will again be a module, but this time a module that does actually
something. Implementing a simple chain. So there is a function calledum moduleinit that will be called
upon inserting the module. This function itself creates a new thread that will be used to create the chain.
In order to be compatible for further RTLinux implementation, we have to do this two-step calling.

25.2.1 The Directory

In the MSR, there is a directory calledTest which holds already different tests. The test for the SNR is of
course in a directory calledTest/SNR. The templates for the test-module are in

Conventions/test_template.c
Conventions/Makefile.module

Again, for easier handling they are renamed:

test_template.c -> test_snr.c
Makefile.module -> Makefile

25.2.2 Makefile

The makefile wants to know the name of the module, which istest snr, as well as the modules to load in
order for the MSR to function correctly. In our case, these are the modulesrandom, snr, midamble, rrcand
block:

MODULE_NAME = test_snr
DEPENDS = random snr chest rrc block

86/121

Testing Chapter 25. From Conception to Measurement

25.2.3 testsnr.c

Let’s have a look at the documentation:

Make a simple chain:
random - snr_send - chest_send - rrc - block -

rrc_rcv - chest_rcv - snr_rcv
and additionally:
random - snr_rcv(2)

Then we can create our main-function, which is calledstart it for the test-program.

25.2.3.1 startit

The first thing we have to do is to create achainof modules. A chain is a logical suit of signal-processing
modules, that take some input and produce some output that ishandled further down the chain.

When using theswr chaincreate functionwe give a list of all modules, that will be automatically
connected together, and finish the list with ENDCHAIN. In this call toswr chaincreate, you see three
different kind of macros,NEW SPCVAR, NEW SPC and OLDSPCIN all of which are described in
8.2.2. In short, while the former allows you to give a variable where a reference to the module will be
stored, the latter just creates the module and connects it, without giving the reference of the created module.
The third takes an already defined module for further connections.

swr_sdb_id rnd, mafi, snr_rcv;
test_chain = swr_chain_create(

NEW_SPC_VAR(’’random’’, rnd),
NEW_SPC_VAR(’’snr_send’’),
NEW_SPC(’’chest_send’’),
NEW_SPC(’’rrc’’),
NEW_SPC_VAR(’’block’’),
NEW_SPC_VAR(’’rrc_rcv’’, mafi),
NEW_SPC_VAR(’’chest_rcv’’, mafi),
NEW_SPC_VAR(’’snr_rcv’’, snr_rcv),
END_CHAIN);

swr_sdb_set_config_int(mafi, "cacl_taps", 8);
test_chain_2 = swr_chain_create(

NEW_SPC_VAR(’’random’’, rnd2),
OLD_SPC_IN(snr_rcv, 1),
END_CHAIN);

So we have created a chain. The modules have the following function:

random create random bytes

snr send our module created above, takes some random bytes as input, and creates a QPSK output

chestsend inserts the training-sequence in the middle of the stream

rrc Root Raised Cosine pulse-shape filtering

block a very simple channel-simulation

rrc rcv Applies again the Root Raised Cosine filtering

chestrcv uses the training-sequence to make a channel-estimation and does a matched-filtering on the
received samples

87/121

Testing Chapter 25. From Conception to Measurement

snr rcv our module to calculate the SNR

If we compile and test our module withmake; make user, this chain will be created and the program
will exit. What we forgot is to really use this chain. For this, therandommodule listens to user-messages,
and begins creating a random-output whenever it receives such a user-message. But first we have to make
sure that both random-modules create the same values:

swr_sdb_set_config_int(rnd, "seed", 0x1234);
swr_sdb_set_config_int(rnd2, "seed", 0x1234);

Then we adjust a bit the amplitudes, so that we don’t run all the time on the edge:

swr_sdb_set_config_int(snr_send, "amplitude", 16384 / 4);
swr_sdb_set_config_int(mid, "amplitude", 16384 / 4);

To make it a bit more nice, we have a look at different values, using thesigmaparameter of theblock
module:

for (i=0; i<50; i+=5){
swr_sdb_set_config_double(block, "sigma", i);
swr_sdb_send_msg(rnd, SUBS_MSG_USER, NULL, -1);
swr_sdb_send_msg(rnd2, SUBS_MSG_USER, NULL, -1);
PR("Amp: %2i:%2i, Noise: %3i:%3i SNR : %5.5g - %5.5g = %5.5g\ n",

swr_sdb_get_stats_int(mafi, "mid_amp"),
swr_sdb_get_stats_int(snr_rcv, "amp"),
swr_sdb_get_stats_int(mafi, "noise_var"),
swr_sdb_get_stats_int(snr_rcv, "var"),
swr_sdb_get_stats_double(mafi, "snr"),
swr_sdb_get_stats_double(snr_rcv, "snr"),
swr_sdb_get_stats_double(mafi, "snr") -
swr_sdb_get_stats_double(snr_rcv, "snr"));

}

And after amake; make useryou should see something like:

Amp: 63:63, Noise: 1:1 SNR : 34.40 - 34.24 = 0.15426
Amp: 62:62, Noise: 5:6 SNR : 28.52 - 28.10 = 0.42007
Amp: 62:62, Noise: 27:26 SNR : 21.50 - 21.58 = -0.077267
Amp: 62:62, Noise: 66:63 SNR : 17.61 - 17.83 = -0.21601
Amp: 62:61, Noise: 122:111 SNR : 14.96 - 15.34 = -0.37944
Amp: 61:61, Noise: 190:187 SNR : 12.89 - 13.07 = -0.18071
Amp: 58:59, Noise: 179:219 SNR : 12.72 - 12.01 = 0.70692
Amp: 65:64, Noise: 317:322 SNR : 11.23 - 11.06 = 0.16854
Amp: 66:63, Noise: 421:393 SNR : 10.14 - 10.15 = -0.016712
Amp: 65:65, Noise: 528:555 SNR : 9.026 - 8.83 = 0.18867

So you see that our method gives more or less the same results as thesnr calculated in thematchedfilter.

88/121

Going Over the Air Chapter 25. From Conception to Measurement

25.3 Going Over the Air

OK, now that the module is written, a simple test-case shows that our module works, we can go on and
write a simple radio that transmits the SNR-slot and then receives it and shows the result. We will make a
simple radio that has a master, the BaseStation, that transmits the synchronisation-signal, and a client, the
MobileStation, that synchronises to it and sends a SNR-slotin return.

25.3.1 The Directories and Files

It will be a radio, so we find the code in the directoryRadios/SNR. The base for this radio is the simple-
radio that can be found atRadios/Simpleand contains the following files:

simple_radio.h
Makefile
BS/Makefile
BS/radio_bs.c
MS/Makefile
MS/radio_ms.c

To reflect the fact that it isn’t thesimpleradio anymore, we have to adjust the names in the Makefiles. The
first lines inBS/Makefilecontains:

MODULE_NAME = radio_snr_bs
DEPENDS = rrc synch energy mapper chest random \

rndstr spread sink cch macro_sch snr

and inMS2/Makefile reads:

MODULE_NAME = radio_snr_ms
DEPENDS = rrc synch energy mapper chest random \

rndstr spread sink macro_synch macro_sch snr

25.3.2 README

This file also reflects the changes and has a very small documentation in it.

25.3.3 MS/radioms.c

There is a lot of things to say about the basic system. You can find an introduction in 31. Here we just try
to focus on the things necessary to run our SNR-module over a real channel.

A very short simplification: when the mobile synchronises for the first time to the base-station, it creates
the necessary chains. This happens in the functionsynchronised. Near the end of this function, you have
to replace the declaration of the UP-chain with the following chain:

// And setup a simple UP-chain...
ch_up = swr_chain_create(

NEW_SPC_VAR("random", rnd),
NEW_SPC("snr_send"),
NEW_SPC("chest_send"),
NEW_SPC("rrc"),

2Microsoft

89/121

Going Over the Air Chapter 25. From Conception to Measurement

OLD_SPC_IN(stfa, 1),
CHAIN_END);

swr_stfa_notice_sdb(stfa, 1, rnd);
PR("Ready to go");

You see a new macro in the functionswr chaincreatehere, which is calledOLD SPCIN and uses thestfa
module. The macro tells the function that this module has already been created before. The modulestfa is
quite important in the MSR: it creates the link between the modules and the actual hardware. So an input
to the stfa is like a connection to the antenna.

As we don’t know exactly when the mobile will be synchronisedwith the base-station, we set the seed
of the randommodule every frame to the same value. Like this we’re sure that both the BS and the MS2

have the same random-values. To achieve this, the functiondo sendup is handy. It is called once in a
frame, and we can put the following line in there:

swr_sdb_set_config_int(rnd, "seed", 0x1234);

That’s it for the mobile-station part.

25.3.4 radiobs.c

This part of the radio sets up the chains for reception anywayand then just waits on what happens. As it
gives the synchronisation and doesn’t need to wait for it, itis much more simple thanradio ms.c. So we
can directly change the construction of the UP-chain in the functionstart it to:

PR("Setting uplink in slot 1\n");
ch_rach = swr_chain_create(

OLD_SPC_OUT(stfa, 1),
NEW_SPC("rrc_rcv"),
NEW_SPC_VAR("chest_rcv", mafi),
NEW_SPC("snr_rcv"),
CHAIN_END);

ch_rach_2 = swr_chain_create(NEW_SPC_VAR("random", rnd),
OLD_SPC_IN(snr_rcv, 1),
CHAIN_END);

swr_sdb_set_config_int(sch, "mafi0", mafi);
while (looping++){

usleep(1000000);
PR("mafi0: %g, mafi1: %g\n",

swr_sdb_get_stats_double(mafi, "snr"),
swr_sdb_get_stats_double(snr_rcv, "snr"));

}

One last important thing we don’t have to forget: once a framewe have to tell the random-module to
generate some data. This is best done in the function calleddo senddown, which is used once a slot. So
we can insert there:

swr_sdb_set_config_int(rnd, "seed", 0x1234);
swr_sdb_send_msg(rnd, SUBS_MSG_USER, NULL, -1);

90/121

Going Over the Air Chapter 25. From Conception to Measurement

25.3.5 Running it with the channel-simulation

Again, to help track down errors, it is more adviseable to runit first in simulation-mode, like this you can
track down errors much more simple. In order to do so, change to the directoryRadios/SNRand type
maketo compile it, andmake server; make showbsmswhich should bring up two windows, one showing
the mobilestation and another showing the basestation. If something goes wrong with the compilation, fix
it and runmakeagain. If something goes wrong with the display, typemake kill; make cleanprocwhich
should clean-up the directories, and then you can trymake server; make showbsmsagain.

25.3.6 Running the real thing

Now that you did all this work and the modules returned some decent values, you can be pretty sure that it
shouldn’t run havoc in real-time mode. So let’s try it. First, you have to run the radio on the basestation,
issuing amake rf showfrom theRadios/SNR/BSdirectory. Then, on the other machine, you can runmake
rf show from theRadios/SNR/MS2 directory. If everything is set up correctly, the hardware is OK and all
things are nicely connected and plugged in (this will give another chapter or two, installing the hardware),
you should again see two windows, one from the basestation and one from the mobilestation, and the values
this time are REAL values. If you come this far, congratulations!

91/121

Chapter 26

Tools

A couple of different tools exist for the MSR, to show the internal state of the MSR, to act as a channel-
server or build LDPC-codes. In this chapter you’ll learn about the different tools and how to use them more
accurately. If you have trouble with a tool, you can read hereif you find some help.

26.1 Visualize

This tool is used to show the internal state of the MSR. It depends on the STFA-module to draw the other
signal-processing modules. So, if there is no STFA module inthe chain (which is the case for most of the
programs in theTest-directory), Visualize can’t show the complete chain.

26.1.1 Starting it

To run it, simply typemake showand enter. This sets up the path so that theqwt library can be found. The
executable first searches for a real-time MSR that puts its data into /proc/sradio, then it searches for the
most recent entry in/tmp/username/proc.*If it doesn’t find any of these, it stops with an error. Optionally
you can also give a path to thesradio/sdb/ directory on the command-line.

Once the correct path has been found, the different modules are displayed on the screen. Optional
modules that are not connected to anything are not shown on the screen. The whole display is updated
once a second.

26.1.2 Mouse handling

With the left mouse-button you can drag around the whole screen, which is mostly useful on small screens,
when not all chains fit on the screen.

The right mouse-button opens an option to exit the program when pressed on an empty part of the
visualize-display. When pressed over a module, a menu pops up, where you can choose different display-
options: stats and outputs. If a module has more than two stats-entries, you can choose which ones to
display by choosing the corresponding entries. Each selected entry is put on top of the list of stats inside the
block representing the module. Some of the stats-entries represent blocks of data, which will be displayed
in a window apart.

26.1.3 Plotting of values

There is a possiblity to plot thestats-values into a seperate window. This can be used to log valuesof a
certain module, or even to draw plots of one value agains the other. In order to create a plot, go to theFile
menu and choseStats Plot XYor Stats Plot Y(t). Now you can click on a module in order to get a list of
statsthat shall be plotted. If you choseStats Plot XY, you have to chose a second module and a second
stats. Once the stats have been chosen, the plot-window updates once a second with a new value.

92/121

Channel-server Chapter 26. Tools

You can chose a new value for the udpate-time. The time is given in 1/100s of seconds. Be aware
that for performance reasons the screen-update is only twice a second, even if the data-update-value is less
than 50. No samples will get lost, only the update will appearslow. To enable long measurements without
degrading performance of thevisualizetool, only the 1000 most recent samples are shown. This assures
that you can have 1 million or more samples, and still havevisualizereact to your requests. If you chose
to export to matlab, all samples will be exported. If you choseexport to ps, only the visible samples will
be plotted.

26.1.4 Exporting values

Each plot-window has the possibility to export the values either as a postscript-file or to a matlab-file. In
order to have a small preview of the data you’ll export, you can click on the graphic. This will freeze the
update, and allow you to ’chose’ which data you want to export.

If there is lots of data, a general update will only show 1000 samples. When you click on the button.

26.1.5 Known bugs

During simulation-mode, it may be that an update of the screen occurs at the same time as an update from
the MSR, which results in broken or incomplete chains. Usually this should ’heal’ during the next update.
If the same happens with a plot-window, it may be that you haveto close this particular window, and reopen
it again.

26.2 Channel-server

The channel-server takes the inputs of different radios, mixes them together and sends them back to the
different radios.

26.2.1 Starting it

When you’re in theMain/ structure somewhere, usually it is enough to typemake serverto start the
channel-server. This is only necessary once.

26.2.2 Known bugs

For the moment the channel-server and the simulations have to be run on the same computer. If you change
something in the implementation of the channel-server, youhave to restart it. The most simple way is to
typekillall server followed by amake server.

26.3 LDPC-code generation

In Tools/LDPC you find a program that takes descriptions of LDPC-codes and puts them in a module-
readable way.

26.3.1 Starting it

First you need some descriptions of LDPC-codes. For this youhave to ask Abdelaziz on how to do this.
Then you can typewrite code1 code2for puttingcode1andcode2into a file calledgraphs.cwhich has to
be copied intoModules/Coding/LDPC. After a recompilation you’re ready to use the new codes.

26.3.2 Known bugs

The length of the code is fixed for the moment at 4000 bits.

93/121

Chapter 27

Debugging

In a perfect world we wouldn’t need this chapter. In a realistic world, however, one has to take into account
possible errors. While every care has taken to make the framework of the MSR as error-free as possible,
there still are bugs left. For sure. But usually they are difficult to find. So, if your module doesn’t work,
chances are big that you don’t use the framework as it’s supposed to be. This chapter will help you finding
where the bug is. It is then up to you to find how it has to be fixed.

27.1 Debugging in user-space

When the software-radio runs in real-time, it is very difficult to debug the radio. This is due to the fact that
no delay is permitted in either radio, or else synchronisation will be lost. On the other hand, in user-space,
we don’t have this issue. If one radio is stopped, all other radios will be stopped, too, and synchronisation
will NOT be lost. For this reason, debugging in user-space isusually the only way to debug a misbehaving
module.

This section gives an overview of how to use the GDB to detect some simple errors, like division by
zero, log(0) or other exceptions.

27.1.1 Using Gdb with Tests

The first thing to do when a module doesn’t run and stops with asegmentation faultis to usemake de-
bug instead ofmake user. This will call the GNU-debugger, run the module and stop on the offending
instruction. The most common commands after this are:

ba show the backtrace, where the most recent function is on top

print prints a variable of the current context

up moves one function deeper on the stack. If it stops on a function you don’t know, you can use
up a couple of times until you are in the MSR

list lists the current context. Takes as argument a file and it’s line-number, likelist sdb.c:234

27.1.2 Debugging a Simulation

When running a simulation of two radios, the above doesn’t work anymore. You have to start a channel-
server, and the two radios. The most simple way to so is to run the server and the BS in one window, and
the MS1 in another window.

Sometimes the two radios behave nicely, but it is only after changing some configuration-value with
the visualize-tool that the system crashes. For this reasonwe start a visualize-tool in a third window, after
the BS and MS1 are started. shell1, shell2 and shell3 denote three different windows or shells.

1Microsoft

94/121

Debugging in user-space Chapter 27. Debugging

shell1:SRadio/Radios/Simple/BS$ make server debug
shell2:SRadio/Radios/Simple/MS$ make debug
shell3:SRadio/Radios/Simple$ make show

This starts the server and the BS, then starts the MS1. The third line starts the visualize-tool, if you wish to
do so. If an error is encountered, gdb will stop in one of the two windows, and you can use the commands
described above to see what is wrong.

27.1.3 Using ddd

For better debugging, for example if your module doesn’t crash, but doesn’t do what you expect it to do,
you can useddd. To start it, you go to the same directory where usually you typemake userand typemake
ddd. After this, you have to typebreak main.c:36and press F3 to start the program. Once it stops on the
breakpoint, all necessary libraries have been loaded and also the modules you want to debug (given that
you didn’t make any errors in setting up theMakefile).

Now you can enter the name of a function to debug on top in the white box and press onlookup to
the right of the box. Clicking with the right mouse-button ona line you can set a breakpoint. Repeat this
procedure as often as necessary, then click oncont and watch what happens.next, step, right-clicking on
variables are other nice options to take. Try it, break it. Debugging is an art!

27.1.3.1 Known bugs

DO NOT typerun in the command-line of ddd. This runs the program without anycommand-line op-
tions that have been carefully crafted to work with ddd. Do use the run-button or the menuProgram-
\textgreaterRun Again. Optionally you can use the F3-key.

95/121

Chapter 28

Getting Started

In this chapter you’ll learn how to set-up your computer so asto be able to run the MSR in simulation
mode. If you want to work with the MSR, you should read this chapter. First you have to make sure that all
necessary software is installed on your system, then you have to download the necessary package, compile
it, and finally you can run the example.

28.1 Prerequisites

The MSR runs without problems on a linux-system. For the simulation-part, an installation of the RTLinux
is not necessary. The MSR relies on some new packages, like a new linker and a QT-package. These
should be available with RH7.3 and newer, Mandrake 8.2 and newer as well as Debian 3.1/sarge. The most
common missing programs are:

linker check withld versionwhether it is something newer or equal than 12.13.90

qt check withqmake versionand see if the version of QT is bigger or equal than 3.0

libqwt is used to display the graphics on screen. If you don’thave it installed, ask your system-
administrator to install it. Alternatively you can also install it in your home-directory.

If one of these is missing, please contact your system administrator or install the missing packages.

28.2 Installing the MSR

It is possible to use the MSR without the proper RF-hardware.For this you will use a channel-simulation.
In this section you learn how to download and compile the MSR.

28.2.1 Download the software

From http://lcmpc10.epfl.ch/Menu/Download you can download the latest version of the MSR, which has
a name like msr-*.tgz Once it is on your computer, you can place it in a convenient directory and untar
it using tar xzf msr-*tgzThis will create a directory namedMain and a lots of subdirectories and files in
there. Generally you will find README files in most of the directories. They are useful if you need to
know what goes on in this special place. Do not hesitate to read them.

28.2.2 Compile the software

The software consists of two parts: the graphic display and the signal-processing modules. For the graph-
ical part, you have to change intoMain/Tools/Visualizeand runqmake visualize.profollowed by amake.
If everything goes well, you should have an executable called visualize. After this you can change in the
Main directory and runmakethere. Supposing that everything goes well, you’re ready torun the examples.

96/121

http://lcmpc10.epfl.ch/Menu/Download

Running the examples Chapter 28. Getting Started

28.2.3 Common errors

28.2.3.1 While compiling ’Visualize’ I get ’libqwt not found’

Make sure that libqwt is installed and check eventually the path in visualize.pro.

28.3 Running the examples

There are a couple of pre-defined radios in the subdirectoryRadios/. The most simple is inRadios/Simple/.
Using the following commands, you can display both the BS andthe MS1 of this simple example:

cd Radios/Simple
make server
make show_bsms

If the installation of the MSR has been carried out successfully, you should see now two windows popping
up, showing the basestation that emits the synchronisation-signal, as well as the mobile-station that listens
to this signal.

You can also run the other examples that you find in this directory, namelyMultiuser andLDPC just
to get an idea what the software-radio is all about. And remember: the same c-code also runs in real-time
on RF-hardware!

1Microsoft

97/121

Chapter 29

Testing

Once a new module has been written, or if something new shouldbe tried, a new testing-module should be
written. A testing-module usually consists of a simple chain with some output that tells the user whether
the test has succeeded or not. It is the first step towards writing a Radio and using a new or modified module
in real-time.

29.1 Files

If you want to start a new test, create a new directory underTest/ and add the name to the line

DIRS = FirstChain Memory ...

of the fileTest/Makefile. Like this your test will be automatically built when usingmake whole. Nextcd
in your new directory and copy some files:

cp ../../Conventions/test_template.c ../../Convention s/Makefile.module .

The test template.cshould be renamed to something fitting the patterntest *.c, and this name should be
appended to the line

MODULE_NAME ==

of the Makefile (which has been renamed fromMakefile.module). Now you are ready to modify your
test *.c file and test it out, using

make
make user

You can also have a look into different files that you find in thedirectoryTesting/* to see different tech-
niques on how to do strange things.

98/121

Main Chapter 29. Testing

29.2 Main

The main-part of the module is in the functionstart it. It is called once when the module is loaded. For a
small testing-module you want to make perhaps only a small chain, something like

swr_chain_create(NEW_SPC_VAR(’’random’’, rnd),
NEW_SPC(’’modulator’’),
NEW_SPC(’’demodulator’’),
NEW_SPC_VAR(’’sink’’, sink),
CHAIN_END);

This leads to an empty chain, because all modules (with the exception of theSTFA and theblock module)
have an input- and output-size of 0. So we need to set one module to a given size:

swr_sdb_set_config_int(sink, ’’size’’, 128);

And while we’re at it, we can tell thesink module, that it should count the occurences of the different
values:

swr_sdb_set_config_int(sink, ’’flag’’, 2);

For further explanation, you can turn to the explanation of thesink module.
Now that the chain has been created and configured, it still needs to be activated at least once, so that

something happens:

swr_sdb_seng_msg(rnd, SUBS_MSG_USER, NULL, -1);

Which sends a user-defined message to therandommodule. It will now traverse the whole chain and the
sink module will output the occurances of the different values. To compile and start it, type the following
commands:

make
make user

As the size of the sink-input is only 128, this will not be veryrepresentativ for the random-number gen-
erator. You may increase the size of the sink-input to something like 65536 or even more, to see how the
random-number generator works.

99/121

Chapter 30

Using CVS

In this chapter you’ll get an overview of the CVS1-structure we’re using for our software-radio. It is
assumed that you already worked sometimes with CVS1 and that you know about the basic ideas and
advantages of CVS1.

CVS1 stands for Concurrent Versioning System, and is the most widespread used tool to make sure
that a group of developers can access the code at the same timewithout creating havoc. While it has some
disadvantages, it is a well-tested, stable tool that does its job right.

The first section talks about the structure used, while the other sections talk about how to use the CVS1

with this structure.

30.1 Structure

Usually one has a structure with one primaryBranch where all developers commit their changes to. In
our case this was not desired, as sometimes a developer changes huge structures during their work, and
while the changes last, the code is unstable. Furthermore the code has to run on more than one machine
at the same time, while needing localized compiling underroot. This made it impossible to have a shared
directory on all machines. So, what we need is:

• Seperate Development by giving each developer an own Branch

• Distributing of the new code using CVS1-command ’up’

• Easy merging through the CVS1-command ’join’

The first two points are easily done in CVS1. You can create branches, check them out, and then work
in these quite comfortably. The difficulty arises when one tries to merge the changes back into the main-
branch, perhaps even from different developers.

Here is an overview about what is happening in a case when we want to synch two branches, called
Main andNicou. ”a”, ”b” and ”c” are the original versions of three files, while ”b’” and ”c’” are modified
versions of these files. ”d” and ”e” are new files that have beenadded later.

The ’server’-column displays what is stored on the cvs-server, that is, whenever you call ”cvs commit”,
your ’local’ changes are stored on the server, and with ”cvs update”, the changes stored in ’server’ are
written to ’local’.

Main Nicou
server local server local
a b c a b c a b c a b c

tag: lswN tag: lswM

1Concurrent Versions System

100/121

Starting a new Branch Chapter 30. Using CVS

Both Main and Nicou start synchronized. They have a tag called lswN for the Main-Branch andlswM
for the Nicou-Branch. Now both work in their respective Branch and check in their changes, and we get
the following picture:

a b’ c d a b’ c d a b c’ e a b c’ e

The tag is still with the first version, that is ”a b c”. Now let’s get the changes from Main to Nicou:

SRadio.Nicou> Conventions/synch

By taking the difference betweenlswN and what is actually stored in the Main-Branch, we get this:

a b’ c d a b’ c d a b c’ e a b’ c’ d e

Now it is very important not to commit these changes, becausefirst we need to take everything that has
been changed in the Nicou-Branch to the Main-Branch:

SRadio.Main> Conventions/synch

And we get:

a b’ c d a b’ c’ d e a b c’ e a b’ c’ d e

Now we can commit on both sides, writing the changes from ’local’ to the ’server’. Then, we update
the tags:

SRadio.Nicou> Conventions/tag

and finally we get this picture:
Now we can start again with changing in both branches.

30.2 Starting a new Branch

There are two things to do when starting a new branch: first thenew branch has to be created, then the
appropriate tags have to be written to the cvs-tree.

Let’s say we want to create a new branch called ’Brian’. For the first part, it is enough to write in a
checked-out Main-branch the following line:

SRadio.Main> cvs tag -b Branch_Brian

Then we have to make sure that everything is correctly tagged:

SRadio.Main> Conventions/tag Brian

This is all that is needed. Now you can proceed to 30.3 to see how to set up the system for the new user.

101/121

Checking Out for the First Time Chapter 30. Using CVS

a b’ c’ d e a b’ c’ d e a b’ c’ d e a b’ c’ d e
tag: lswN tag: lswM

30.3 Checking Out for the First Time

It is a good idea to have the following set-up if you’re not familiar with CVS1:

brian@radio1: > echo "export CVS_RSH=ssh" >> /.bashrc
brian@radio1: > echo -e "cvs -q\nup -dP \ncommit -m ’’" > /.cv src

Then you have to log out and log in again, so that these parameters are available to your bash-shell. These
commands help in everyday cvs. It might also be more comfortable to run the tool SRadio.Brian/Conventions/lussh
and follow it’s directions to create a password-less login to user ’sradio’ on lcmpc10.epfl.ch.

Now we can actually check-out a version of this new branch. For this, change into the home-directory
of brian, and write this:

brian@radio1: > cvs -d sradio@lcmpc10.epfl.ch:/home/sra dio/cvs co -r
Branch_Brian SRadio
brian@radio1: > mv SRadio SRadio.Brian

This gives you a check-out of the branch Brian in the directory SRadio.Brian. All changes that are done in
this directory are kept seperate from the other parts of the software-radio, so you can commit and update at
will, without disturbing other developers.

102/121

Chapter 31

Creating a simple radio

In this chapter you’ll learn how to create a very simple radioconsisting of a transmitter and a receiver. You
should know the very basics of a digital transmission. For a short introduction in this matter, you can also
go and read chapter 19.

In figure 31.1 you see the goal of this tutorial: two radios, called MasterandClient with the following
functions:

• Master: send the synchronisation, training-sequence andan image

• Client: synchronize, do a channel estimation and decode the image

Both the master and the client can be represented by a simple chain. So it will be very easy to implement
these two radios as shown in the rest of this tutorial.

After explaining some more general things about the software-radio, we’ll explain first the master,
then the client. You can find the basic files with all the basic setup already done in the sub-directory
Radios/ICSSimpleof the SRadio-project.Master/radiomaster.ccontais the basic setup of the master and
Client/radioclient.c the basic setup of the client.

31.1 General Setup

This section is just a very brief introduction to the software-radio. For a more complete overview, follow
the references. First some overview of the software-radio,then an explanation of the C-files.

31.1.1 Overview

As explained in chapter 11, the software-radio can be run either in simulation- or in real-time-mode. While
it is possible to have both the master and the client on the same computer in simulation mode, this is not
possible in real-time mode. The first part of this HOWTO worksonly in simulation-mode, so you need
neither hardware nor two computers to run the examples.

In simulation mode, the master and the client connect to achannel-serverwhich simulates a simple
wireless connection with some noise and a fading-channel. Both the master and the client run indepen-
dently of each other and the only connection is the channel-server. Each one has a complete software-radio
environment with a CDB and a SDB (see also 8.2.2), so that theycan communicate only through the
channel-server. This corresponds to the real transmissionwhere the two radios can only communicate
through the channel.

31.1.2 Files

Because the master and the client are independent entities,they are put in a seperate directory. In each
directory a small template-file can be found that contains the initialisations necessary for the software-
radio. For this tutorial, two functions are important:

103/121

General Setup Chapter 31. Creating a simple radio

image_send

modulator

spreadind

chest_send

sync_send

rrc

Slot 0 Slot 1 Slot 2 STFA Slot 0 Slot 1 Slot 2

sync_rsv

rrc_rsv

chest_rsv

despread

slicer

image_rsv

Figure 31.1: A very simple radio

104/121

Master Chapter 31. Creating a simple radio

image_send modulator spread chest_send synch_send rrc

Figure 31.2:

• start it comparable to themain-function in C-programs or theconstructorin a C++-class

• um moduleexit which corresponds to thedestructor-function in a C++-class.

In the startit-function the radio initialises some modules and/or chains (see 8.2.1) which are cleaned-up in
the ummoduleexit-function.

31.2 Master

The master needs to send an image, encode it using a spreading-sequence, add a trainig-sequence for
the channel estimation and put a synchronisation-signal ontop of this, so that the client can synchronise.
Looking at figure 31.1, we can directly deduce the necessary chain:

The most simplest way to do that is to create a chain with all the modules inside. In order to do that,
open the file for the master inRadios/ICSSimple/Master/radiomaster.cand put the following text in the
functionstart it :

swr_sdb_id img, spread;
PR("Setting up send-chain\n");
send_ch = swr_chain_create(

NEW_SPC_VAR("image_send", img),
NEW_SPC("mapper"),
NEW_SPC_VAR("spread", spread),
NEW_SPC("chest_send"),
NEW_SPC("synch_send"),
NEW_SPC("rrc_complex_send"),
NEW_SPC_VAR("stfa_ics", stfa),
CHAIN_END);

For more explanation on the NEW* commands, see 16.2.1.1. In short we useNEW SPC to instantiate a
new module andNEW SPCVAR to instantiate a module and get a reference-id back. Now thatthis chain
is created, we need to tell the STFA1 that this is a transmission-chain. We use the following command:

swr_stfa_notice_sdb(stfa, 0, img);

Now everytime the STFA wants to send slot 0, it will call the img-instantiation of the ”imagesend”-module.
Finally we set up the STFA in transmission-mode and tell the spread-module to use a spreading-factor of
two2:

swr_sdb_set_config_int(stfa, "tx", 1);
swr_sdb_set_config_int(spread, "factor", 2);

Now we’re ready to start the STFA:

1read 8.2.4 for more information
2which is equivalent to a simple repetition code

105/121

Master Chapter 31. Creating a simple radio

swr_stfa_go(stfa);

That’s it for the startit function. Because we use thesendch and thestfaglobally, we need to define these
above the startit-function like this:

struct chain_t *send_ch;
swr_sdb_id stfa;

And, last but not least, we need to clean up the chain in case the radio gets stopped. This is done by
inserting the following lines at the end of theum moduleexit-function:

if (stfa){
PR("Stopping the STFA\backslashn");
swr_stfa_stop(stfa);
PR("Deleting Sending-chain\backslashn");
swr_chain_destroy(send);

}

31.2.1 Testing the Master

Now that the master is written, we can test it. First of all, make sure that you can compile it, using

make

and that there are neither warnings nor errors. Then you can call

make show_local

and if everything is OK, you should see a window coming up thatdisplays the STFA as a horizontal
white bar and the chain attached to it. Right-clicking on theimagesend-module you can choseDisplay
Data and thenpicture which will pop up a window with the picture sent in it. Keepingthis window and
right-clicking on rrc complexsend, thenDisplay outputsandport out 0 shows the output of this chain
in complex format. In this new window you can click onComplexand choseFFT to see a fast-fourier
transform of the same output. You can also change the behaviour of some of the modules. For example you
can change thefactor3 of thespread-module. Right-click on thespread-module and choseChange config.
Now you can increase or decrease thefactor-value. If you still have the image-window open, you can see
how the image changes when increasing or decreasing thefactor-value. The next subsection explains why
this happens.

31.2.2 Slots and Blocks in the Software-Radio

This is a small excurse in the internals of the software-radio. It’s goal is to give you some more under-
standing of how our implementation works. It is not elemental but quite useful to understand the rest of the
software-radio.

3this is the spreading-factor or the spreading-length of thecode

106/121

Client Chapter 31. Creating a simple radio

The software-radio works with fixed blocks of data. Everything that goes over the air has to fit into one
slot. In the current implementation, a slot is of length 2560symbols4. Every time the software-radio wants
to send a slot, the output of the chain has to fit in 2560 symbols.

Starting from the STFA, the software-radio calculates the maximum size available by asking each
module how much symbols it needs:

1
n

2078
n ∗2 4156

n

module use symbols left
stfa guard-period 90 2470
synchsend synchronisation 256 2214
chestsend training-sequence 136 2078
spread spreading-sequence
mapper bit-to-symbols bits

This means that the imagesend-module has a variable-sized output that can vary from 4156 to 4156
32 =

129 bits5, depending on the spreading-factor chosen. Every time the output-size of the imagesend-module
changes, it adjusts the image-size so that it fits in the givenplace.

For this reason you see the image changing when you change thespreading-factor of the spreading-
module.

31.3 Client

Looking at figure 31.1 we can see that we have to implement the following chain:
There are two small subtelties when implementing this receiver-chain: first, we put thesynchrcv-

module in front of therrc rcv-module. Looking at the master, we’d expect to first do the rrc-reception and
then the synchronisation. But as the rrcrcv-module downsamples by a factor of two, it is better to do the
synchronisation at the higher sample-rate, in order to havea more exact synchronisation.

Second, the actual module-names are quite long: syncrcv is calledsynchcomplexics rcv and rrcrcv
is calledrrc complexics rcv. This is due to the development-process of the software-radio and the wish to
keep old things running.

Besides these small details, the client is built more or lessin the same way as the server. All these
lines go inRadios/ICSSimple/Client/radioclient.c. Before thestart it -function, we declare thestfa and
thercv ch:

swr_sdb_id stfa;
struct chain_t *rcv_ch;

In thestart it -function, we declare the needed variables and the reception-chain:

swr_sdb_id synch, mafi, despread, slicer;
rcv_ch = swr_chain_create(NEW_SPC_VAR("stfa_ics", stfa),

NEW_SPC_VAR("synch_complex_ics_rcv", synch),

4this is an artefact of the first UMTS-implementation. You canchange the slot-length in multiples of 128 symbols
5The spreading-module has a maximum spreading-length of 32

stfa synch_rcv rrc_rcv chest_rcv despread slicer image_rcv

Figure 31.3:

107/121

Client Chapter 31. Creating a simple radio

NEW_SPC("rrc_complex_ics_rcv"),
NEW_SPC_VAR("chest_rcv", mafi),
NEW_SPC_VAR("despread", despread),
NEW_SPC_VAR("slicer", slicer),
NEW_SPC("image_rcv"),
CHAIN_END);

This chain is the same as in figure 31.1 and described above. Some of the modules need some configuration
so that the radio works correctly. We have to do these things:

• Gain: adjust the gain of the RF-cards, so that the cards don’t saturate

• Synchronisation: tell the module the id of the STFA so it canadjust for the desynchronisation

• Despreading: set the despreading-factor to 2

• Matched Filter: calculate 8 taps and align them

• Slicer: set the id of the matched filter so that it can know theamplitude of the signal

All these values are in the configurable part of the modules, so we can set them using the swrsdbset config*-
functions:

swr_sdb_set_config_int(stfa, "attn_tx", 31);
swr_sdb_set_config_int(stfa, "attn_rx", 15);
swr_sdb_set_config_int(synch, "stfa_id", stfa);
swr_sdb_set_config_int(despread, "factor00", 2);
swr_sdb_set_config_int(mafi, "calc_taps", 8);
swr_sdb_set_config_int(mafi, "align", 1);
swr_sdb_set_config_int(slicer, "mafi_id", mafi);

Now everything is ready to start the STFA:

swr_stfa_go(stfa);

We need to do some initialisation, just in case something will go wrong. Insert this line in the beginning of
the functionum moduleinit :

stfa = 0;

And at the end we need to clean things up, so insert these linesat the end ofum moduleexit:

if (stfa){
PR("Stopping stfa\backslashn");
swr_stfa_stop(stfa);
PR("Destroying rcv-chain\backslashn");
swr_chain_destroy(rcv_ch);

}

108/121

RF-transmission Chapter 31. Creating a simple radio

31.3.1 Testing the Client

Compile it with makeand correct eventual errors. Once everything compiles nicely, you can go in the
directoryRadios/ICSSimpleand type

make show_mc

This will start the master, then the client and will bring up the visualize-tool so that you can see the modules
in action. Once the visualize-tool is started, you can see that there are now two tabs, one for the master and
the other for the client. Clicking on these tabs you can switch between the two radios.

31.3.2 Testing the transmission

If everything up to here works as described, congratulations. You just finished your first very simple radio-
transmission using the software-radio. While running the master and the client, you can now visualize
different modules and change the configuration-parameters, in order to see what happens.

31.3.3 Synchronisation

A small word on synchronisation: the implementation we did in this tutorial is the most simplest possibility.
Every frame the synchronisation-module will search for a synchronisation-signal. If it decides that there is
no synchronisation, it shifts half a slot and will try again in the next frame.

The worst-case scenario is that the synchronisation-signal is just on the opposite side of the searching-
direction, which will make the synchronisation-module searching the whole frame. In real time, one frame
corresponds to 30ms and holds 15 slots, so that it will be searched completely in 1sec.

For a radio-application, 1 second is quite a long time. For this reason, a second method exists which
is a bit more complicated but finds the synchronisation-signal on the first go. Amacro-modulecalled
macrosynchics attaches a synchronisation-module to each slot of the stfa.Once a whole frame is received,
it loops over all synchronisation-modules and choses the one with the strongest synchronisation-signal,
discarding all others.

This allows the software-radio to synchronise in much more efficient way. As this method includes
callback-functions and handling the macro-module, we decided to go the easy way and just scan the whole
frame.

31.4 RF-transmission

Now everything should be ready to be able to transmit over theair. Once the simulation works, there are
usually no big bugs left that can hinder the test over the air.

As you will have to transmit from one computer to the other, the code needs to be installed on two
computers where each computer has the appropriate hardwareinstalled. Once this is done, it is usually
more efficient to work on one computer only and tossh in the other computer and run the software-radio
remotely. This gives you the advantage of having all the output on one screen.

To start the master, simply go into theRadios/ICSSimple/Master-directory and call

make rf_show

which should start the real-time part of the software-radioand show up the transmission-window. On the
other computer, go into theRadios/ICSSimple/Clientdirectory and issue the same command:

make rf_show

109/121

RF-transmission Chapter 31. Creating a simple radio

If all goes well, you should have now two windows where one shows the master and the other the client.
You can now play around with the values to see how the software-radio reacts. Interesting configuration-
parameters include the attntx on the master-side, the attnrx on the client side. Both can be found in the
stfa, the horizontal white line in the middle of the window.

Other things to experiment with is the calctaps of the chestrcv-module or the factor and sequence
configuration of the spread and despread-module.

31.4.1 Going Further

Now that you have this simple radio running, it is possible tochange the spreading-module with something
else, for example a convolution-module or even an ldpc-module. You can also add other chains to the stfa
in a similar manner than the ones we did. If you do so, don’t forget that you don’t need a synchronisation-
module anymore on the additional chains. One synchronisation-module per frame is enough.

110/121

Part V

Practice

111/121

Chapter 32

Introduction

This document started out as a work-description on what has been going on with the software-radio. It now
is a reference for the RF-interface of the software-radio aswell as a setup-guide for the hardware-part of
the software-radio. For the software-part, see the document ”A tutorial to the software-radio”.

32.1 Motivation

During Summer/Fall 2004 different projects have been done on the software-radio that asked for special
implementations on the level of the ICS-cards. Four useful branches co-existed:

1. Normal MIMO at 2.4GHz with 1MS/s

2. Radar-application at 2.4GHz with 100kS/s

3. 802.11-reception at 2.4GHz with 20MS/s

4. GPS-reception at IF of 24MHz and 4MS/s at 32 bits per complex sample

1-3 were done using the normal FPGA-programm, while 4 is onlypossible with a rewritten FPGA. This
is due to the fact that the PCI can’t transfer the data representing a raw GPS-signal. The rewritten FPGA-
program represents one sample using 32 bits, whereas the original FPGA-program represents one sample
using 128 bits.

In order to have a program that can handle all these situations, a new interface to the ICS-cards was
built. The goal of this interface is to set the basic parameters of the ICS-cards in a more user-friendly way.
These parameters are:

• Sampling-frequency

• Bandwith

• Data-type

• Number of channels

• Center-frequency

• Detect the FPGA-programm type

All frequencies are given in Hz and the sampling-rates in Complex Samles per second (CSs). 1 CS corre-
sponds to 2 Real Samples.

112/121

Intended reader Chapter 32. Introduction

32.2 Intended reader

This document has been written to keep track of the changes inthe programming and to help further
engineers keeping track of what is going on. Depending on which part of the document you’re interested
in, the necessary background differs. In order to build the different target applications, you should have
good knowledge in informatics and a good understanding of the UNIX-shell. For the reference-part you
have to be a good programmer and have some background of the software-radio. A good start is ”A tutorial
on the software-radio”.

32.3 Parts

The different parts in this document include:

• Motivation what you are reading

• Usecases describes the four goals and how to test them

• Subsystems which gives an overview of the different parts of the software-radio hardware

• Interface is the main part and describes in detail the new functions used to interact with the hardware

• Tidbits collects different thoughts about the project that came up during the writing of this document

32.4 Conventions

32.4.1 Directories

All given directories are relative to your SRadio.Branch-directory. The position of this branch is marked
$SRADIO. This has to be installed for you by the system administrator, as well as a CVS1-access to the
source-code. So if your system-administrator installed a branch under

/home/foo/SRadio.Bar

and a command asks you to

cd $SRADIO/Test/Radar

Then this means you have to enter the following directory:

/home/foo/SRadio.Bar/Test/Radar

32.4.2 Commands

Commands are written in typewriter-code, like this:

cvs -d sradio@lcmpc10.epfl.ch:/home/sradio/cvs \
co -b Branch_Report SRadio

Special meanings are explained in brackets, for example:

make rf_tail
[wait for 5 seconds]
make rmall

1Concurrent Versions System

113/121

Conventions Chapter 32. Introduction

32.4.3 Radio-platforms

There are two radio-platforms, calledradio1 andradio2. The work represented in this document requires
root-privileges to be run, so ask your system-administrator for the root-password and how to log in.

If you are in the local network of the software-radio, you canlogin to radio1andradio2 with

ssh root@radio1

or

ssh root@radio2

114/121

Chapter 33

Test Configurations

This section describes the sample configurations. Both soft- and hardware-setup is described for each
configuration. It is a good starting point for new users.

The following configurations are described here:

• GPS for the reception and storage of a GPS-signal

• Radio demonstrates a simple send/receive-setup

• Radar is a simple game using radar-measurements of a movingball

• WLAN captures one or more 802.11-packets

33.1 Setup

This subsection contains some general overview of the different hardware-subsystems.

33.1.1 RF-cards

Fig. 33.1 shows the input/output connectors of the RF cards (power supply omitted).

33.1.2 Rohde & Schwarz

All settings given in the figures start from a presetted stateof the signal-generator or -analyzer. You find a
button labeledPresetthat sets the machine into a well-known state.

Figure 33.1: The important connections on a RF-card

115/121

GPS Chapter 33. Test Configurations

33.1.3 ICS-cards

In the following picture (TODO) you can see the ICS-cards on the back of the computer. All the input and
output-labels are visible.

33.1.4 FPGA

As described in section 23, the FPGA can be programmed with two versions of the code: one for the GPS-
reception, and another one for everything else. Please be sure to chose the appropriate code, or the given
application will not work.

Refer to section 23 on how to reprogram the PFGA.

33.1.5 Power supply

Wrong settings of the power-supply may destroy the attachedhardware, so take care and be sure to follow
these instructions:

1. Switch up 1 & 2

2. Connect the power supply

3. Switch down 1

4. Adjust voltage and current using 3 & 4

5. Switch down 2

33.2 GPS

For a clean reception of a GPS signal, it is advised to have a view as wide as possible of the open sky.
Chose a roof-top or a wide field with no obstruction. Then you can start with the reception of a 60-second
piece of data:

Before doing so, test this given setup with a much shorter sequence, 2 seconds, as described below.
Once everything is working all right, use the longer sequence.

33.2.1 Hardware-setup

The setup of the hardware for the GPS-acquisition can be seenin Figure??. If you extend the cable of the
GPS-antenna, the received signal may be too weak!

33.2.2 Software-setup

First you have to re-program the FPGA, so that the correct code is loaded in the ICS-card. Refer to Section
23 on how to do this. For a first test, it is advised to use only a short testing sequence, see the paragraph
below. This short sequence can be used to test whether enoughsatellites are visible. Once the FPGA is
repgrammed do the following:

cd
<latex>SRADIO/Test/GPS
make rf_tail

[wait for the message "*** Acquisition done ***"]

../../Tools/Dbg/dbg 2 0 > ../../Matlab/GPS/gps_yymmdd_h hmm.dat

116/121

GPS Chapter 33. Test Configurations

Figure 33.2:

Whereyymmddhhmm stands for the current date and time. This is just a convenient way to remember
when the samples were collected. Be aware that each second ofmeasurement takes about 25MBytes. So
60 seconds of measurement take 1.5GByte!

Then you can check which satellites are visible from the antenna location using using the program in
\$SRADIO/Matlab/GPS/:

matlab -nojvm -nosplash
[wait for Matlab to start up]
acquisition(’gps_yymmdd_hhmm.dat’, 100000);

this should show you a plot with a noise-floor around 10000 anda number of points sticking distinctively
out to 14000−20000 . Then chose the highest point and run the following command:

acquisition_scan(’gps_yymmdd_hhmm.dat’, 100000, #sat#);

wheresatcorresponds to the highest peak seen in the previous plot.

33.2.2.1 Short testing sequence

Before getting a 60-second piece of data, it is adviseable totest it on a short sequence to see whether
enough satellites are visible or if there is a problem with the setup.

In the file\$SRADIO/Test/GPS/testgps.cadjust thebuffer len:

// Now buffer_len is in seconds of recording
swr_sdb_set_config_int(gps, "buffer_len", #2#);

Now the radio will only record 2 seconds of data which will be much shorter to write to the disk using the
above-mentioned method.

117/121

Radio system Chapter 33. Test Configurations

Figure 33.3: Radio-setup

33.3 Radio system

The first goal of the software-radio was to enable a two-way transceiver on a 2.4GHz link. Use the setup
described here:

33.3.1 Hardware-setup

For a radio transmission, the setup in Figure 33.3 must be done on both radios. It is necessary to have
frequency doubler exactly as shown in the figure and not attached to the output of the 8-way splitter, as one
may try to do to get rid of the 2-way splitter. Otherwise the clock-signal for the ICS-554 card would be too
weak.

33.3.2 Software-setup

In order to be sure that the STD-software is loaded in the FPGA, process as described in section 23. If that
is not the case, reprogram the FPGA with the STD-software.

The software needs to be run on both radios,radio1 and radio2. On one radio you have to run the
sender (BS), on the other radio the receiver (MS1). To start the sender, run the following commands:

1Microsoft

118/121

Radar-system Chapter 33. Test Configurations

cd $SRADIO/Radios/Image/BS

make rf_show

For the receiver you have to log in to the other radio and run the following commands:

cd $SRADIO/Radios/Image/MS

make rf_show

on the receiver side. If it doesn’t work, go through the following checklist:

• all cables correctly connected

• power is applied to all elements (50MHz clock and RF-cards)

• RF-cards are connected with the right flatband-connector

• Using the Rohde\& Schwarz signal analyzer to check for a singal at 2.38GHz

33.4 Radar-system

The radar-system uses only one radio-platform, and the setup is similar to 33.3.

33.4.1 Hardware-setup

For this setup, the duplicator is not needed, and only two RF-cards are necessary. Align the two antennas,
so that they point in the direction of the object. If possible, the player should be behind the antennas, so
that his movement is hidden to the radar. Else it is difficult to tell apart the movement of the player with
the movement of the object.

33.4.2 Software-setup

Be sure to have the correct code loaded into the FPGA, else refer to 23 on how to program the correct code.
When everything is set up, you can start the radio on the software-platform:

cd \$SRADIO/Test/Radar
make rf_tail

Then, on a computer connected to the software-platform, connect the camera, make sure it is detected, and
run:

cd \$SRADIO/Tools/PlayRadar
./run

Eventually you have to adjust the following two variables:

REMOTE points to the software-radio platform

RADIO DIR is the remote directory

119/121

Radar-system Chapter 33. Test Configurations

Figure 33.4: Radar-system

33.4.3 Camera-setup

For this radar-system you can have a camera attached to the computer, so that the different people using
the system can be shown live! Unfortunatly, this requires some setup to your computer. The source code
for the driver can be found under:

http://www.saillard.org/linux/pwc/debian/

and once it is installed, things should run nicely.

33.4.4 Amplitude settings

The amplitude settings are done in case the two antennas are 1m apart and on the same height, pointing in
the same direction. If you chose to use them in a different setting, it can be necessary to adjust the values
attn rx andattn tx in the file\$SRADIO/Test/Radar/testradar.cto more convenient values. Lower values
mean lower attenuations. So if you put the antennas further apart, it may be useful to chose a lower value
for attn rx.

You can also run

cd \$SRADIO/Test/Radar
make rf_show

and use the configuration-window from theradarrf -module while looking at the output ofradarrf and
the fft -stats of theradarfft -module. Once you find a good pair of values where the output shows a dotted
circle and the fft shows a clean peak, copy these values totest radar.cand re-run it.

120/121

WLAN Chapter 33. Test Configurations

Figure 33.5: WLAN-setup

33.5 WLAN

The goal is to aquire a part of a WLAN-signal and to decode the most important bits.

33.5.1 Hardware-setup

For this test, take a wireless access point and set it to channel 6 at a center frequency of 2437MHz. This
takes care of EPFLs network that is tuned to channel 1 and 12 at2412MHz and 2467MHz. The bandwith
of the signal is 22MHz.

The setup can be seen in fig. 33.5.

33.5.2 Software-setup

If you used the GPS beforehand, you have to re-program the FPGA first. For this, refer to 23. Once this is
done, you can start the aquisition:

cd \$SRADIO/Test/WLAN
make rf_tail
../../Tools/Dbg/dbg 2 0 > ../../Matlab/WLAN/wlan_captur e.dat

Then you can use the programs in\$SRADIO/Matlab/WLAN to decode the received WLAN-signal.

121/121

Part VI

Future thoughts

122/121

Chapter 34

STFA

The STFA being a complex module and having evolved over two years, it would be a good idea to re-write
it once completely. Here are some ideas on what should be mended and what thoughts should go into a
re-structuration of the STFA.

34.1 Antenna

The antenna should be a module on its own with an output for thereceived samples and an input for the
sent samples. These two ports should then be connected to thestfa. Advantages:

• Configuration If for a given antenna we have special parameters, we can define them as easily as in
any module

• Clarification It gives a more constant concept in the software-radio

• Universality For the moment the software-radio is very TDD-based with the STFA. If the antenna is
really an independant module, it would be much more easy to implement other stuff

34.2 Chains

The way chains are linked to the STFA is very kludgy. While things are quite OK for RX-chains, it is
really not optimal for TX-chains. Consider figure 34.1 whereon the left-hand side you see the actual
implementation. The user has to define which modules have to be called at which moment with two
function-calls like:

swr_stfa_notice_sdb(stfa, 2, source1);
swr_stfa_notice_sdb(stfa, 5, source2);

In order to simplify things and thus taking away possible sources of error, it would be much better, if
the STFA would consider the chains on its own, like show in theright-hand part of the figure.

For the TX1-chain, not much would change, only the two above-mentioned function-calls could be left
out, because the STFA would call the RRC-module with a message like SUBSMSG PRODUCEDATA .
The RRC-module in turn would call the Map-module, which would call the Source1-module. Then, the
Source1-module produces some data, and everything is like before.

img /var/www/html/ipgwww/data/media/stfatx kludge.ps

Figure 34.1: Actual and proposed design of the TX-chain alertion

123/121

Chains Chapter 34. STFA

For the TX2-chain, the distribution of the time of calculation would even be more uniform. If you
consider the left-hand side, all the calculations for all the modules is done during slot 3 and 4, even though
about half of the calculations are not needed before slot 7! Now, if the STFA would be smart enough to
not only call the modules with a messageSUBSMSG PRODUCEDATA , but also tag the modules passed
this way, only the necessary calculations would be carried out.

So, at the beginning of slot 3, the RRC would be notified withSUBS MSG PRODUCEDATA and
tagged active. Then the Map-, Split-, and finally the Source2-module would be notified. Once the Source2-
module produced its data, the inverse way will be taken. An important point is to note that the Split-module
produces both branches of data, but that only the left branchis followed.

Then, at the beginning of slot 51, the RRC of slot 7 would be notified, which would notify the Map-
module, which would see that it has some data to process, and stop the notification of further modules. It
then processes the data, hands it to the RRC, which processesits data, too, and hands it to the STFA.

34.2.1 Implementation

In fact, it is not really necessary to tag the data. Each module could just

• Check inputs for whether all necessary inputs are filled with data

• Notify upper modules if this is not the case

• Process the data

The idea is that the notification of the upper modules happenssynchronously, that is, the notification only
returns once it has been carried out. The module can then assume that the data is available.

There are a lot of special cases, just a few here:

• Multiple inputs of a module, where one or more may be inactive, that is, not connected

• Loops for creating incremental coding

1Coincidence: this is the same slot as the result of the left branch

124/121

Chapter 35

Visualize

Reading through the reference-part of the visualize-tool,one gets the impression that this tool has been
glued together (like oh so many others) more randomly than anything else. Well, unfortunatly, this is true.
One project would be to re-design the classes of this tool, and then re-write a more nice version of it.

The steps to do so could include the following:

• Understand and look at the existing code. Using a tool like Umbrello, one can get quite fast a basic
understanding of which classes use which classes.

• Design a new class-model, where each class has a well-designed purpose.

• Rewrite the whole tool, doing mostly copy-paste constructs. 1

1Important: go step-by-step with easy testable parts

125/121

Part VII

Index

126/121

Index

Antenna
Architecture, 16–17
Common, 16
Driver, 16
Hardware, 17
Simulation, 17

CDB
Architecture, 14
Reference, 30–32

swr cdb register spc, 32
swr spcdefineconfig parameter, 30
swr spcdefineinput, 31
swr spcdefineoutput, 32
swr spcdefinestatsparameter, 31
swr spcget new desc, 30

Channel-server, 87
Overview, 6

Code
Architecture, 23

CVS, 94

Data Types
Block, 39
DOUBLE, 40
DOUBLE COMPLEX, 40
S32, 40
S8, 40
SAMPLE S12, 40
SAMPLE S16, 40
SYMBOL COMPLEX, 39
SYMBOL COMPLEX S32, 40
SYMBOL MMX, 40
U32, 40
U8, 40

DBG
closelist, 46
get block, 45
get image, 45
get output, 45
get profiling, 46
list modules, 44
list new modules, 44
list tag modules, 44
new list, 45

ping, 46
processdata, 46
readlist, 45
set config, 45
showall, 44
showconfig, 45
showinput, 45
showoutput, 45
showstats, 45

Debugging, 88
ddd, 89
Simulation, 88
Tests, 88

From Conception to Measurement, 73–85
Defining new modules, 73

Hardware
Architecture, 22
ICS, 52
Philips, 52
STM, 52

Instantiation, 33

LDPC-code generator, 87

Macros
buffer in, 41
buffer out, 41
call module, 41
dataavailable, 41
makethread, 41
private, 41
size in, 41
size out, 41
UM CONFIG COMPLEX, 40
UM CONFIG DOUBLE, 40
UM CONFIG DOUBLE COMPLEX, 40
UM CONFIG INT, 40
UM CONFIG POINTER, 40
UM CONFIG STR128, 40
UM INPUT, 41
UM OUTPUT, 41
UM STATS BLOCK, 41
UM STATS COMPLEX, 41

127/121

INDEX INDEX

UM STATS DOUBLE, 41
UM STATS DOUBLE COMPLEX, 41
UM STATS IMAGE, 41
UM STATS INT, 41
UM STATS POINTER, 41
UM STATS STR128, 41

Make, 42
base, 42
bsms, 42
clean, 42
cleanproc, 42
cvs commit, 42
cvs up, 42
ddd, 43
debug, 43
kill, 42
mc, 43
modules, 42
rf, 43
rf show, 43
rf tail, 43
rmall, 42, 43
server, 42
shortwait bsms, 43
shortwait mc, 43
show, 42
showbsms, 42
showmc, 43
tools, 42
user, 43
usershow, 43
userwait, 43
userwait 10, 43
userwait 20, 43
userwait 30, 43
userwait 5, 43
userwait 60, 43
wait bsms, 43
wait mc, 43
whole, 42

Messages, 35
Modes of Operation, 19–21

Local-Loop, 19
Simulation or Real-Time, 19
Test, 19
Two-Radio System, 20

Module, 38–41
Example

config, 75, 77
configureinput, 75
configureoutput, 75
init, 75, 78
Makefile, 80
moduleinit, 77

pdata, 78
private, 75
reconfig, 75
reconfigure, 78
sendpdata, 76
stats, 77

finalize, 39
msg, 39
pdata, 38
reconfig, 38
resize, 38

NEW SPC*, 33

OLD SPC*, 33
Operation System, 18

PARAMETER DEBUG, 31
PARAMETER HIDE, 31

Real-time mode
Overview, 5

SDB
Architecture, 14
config-structure, 34
Instantiation, 33
Reference, 32–35
stats-structure, 34

SET STATUS, 37
Signal Flow, 47–52
Signal Processing

Architecture, 13–15
CDB, 14
DBG, 13
Framework, 13–15
Modules and Chains, 14
SDB, 14
STFA, 15
Subsystem, 14

signal-types, 32
Simulation mode

Overview, 5
Software-radio

Definition, 4
STFA, 53
SUBS MSG *, see Subsystem/Messages
SUBS STATUS *, see Subsystem/Flags
Subsystem

Flags, 36
SET STATUS, 37
SUBS STATUS LISTED, 37
SUBS STATUS MULTI IN, 37
SUBS STATUS PREPARE, 37
SUBS STATUS PREPARESWALLOW, 37

128/121

INDEX INDEX

SUBS STATUS RECONF, 37
SUBS STATUS RESIZEBOTH, 37
SUBS STATUS RESIZEDOWN, 37
SUBS STATUS RESIZENONE, 37
SUBS STATUS RESIZEUP, 37
SUBS STATUS THREAD, 37
SUBS STATUS TRACKED, 37
SUBS STATUS WORKING, 37

Messages
SUBS MSG CONNECT, 35
SUBS MSG DATA, 36
SUBS MSG DISCONNECT, 35
SUBS MSG EXIT, 36
SUBS MSG NEW TRACK, 35
SUBS MSG NO TRACK, 35
SUBS MSG PING, 36
SUBS MSG PREPARE, 36
SUBS MSG RECONFIG, 36
SUBS MSG RESIZE, 36
SUBS MSG THREAD, 36
SUBS MSG USER, 36

Ports
SUBS PORTDATA, 38
SUBS PORTGOT RESIZE, 38
SUBS PORTOTHER FREE, 38
SUBS PORTOTHER MALLOC, 38
SUBS PORTOWN MALLOC, 38
SUBS PORTPASSEDTHROUGH, 38
SUBS PORTTHIS FREE, 38

Reference, 35–38
swr cdb register spc, 32
swr chaincreate, 33
swr connectionadd, 33
swr sdb free config struct, 34, 39
swr sdb free statsstruct, 34
swr sdbget config struct, 34, 39
swr sdbget statsstruct, 34
swr sdb instantiateid, 38
swr sdb instantiatename, 33, 38
swr sdbset config complex, 34
swr sdbset config double, 34
swr sdbset config int, 34
swr sdbset config pointer, 34
swr sdbset config symbol, 34
swr sdbset configure, 39
swr sdbshowprofile, 35
swr spcdefineconfig parameter, 30
swr spcdefineinput, 31
swr spcdefineoutput, 32
swr spcdefinestatsparameter, 31
swr spcget new desc, 30

Testing, 92
Files, 92

Main, 93
Two-Radio System, 20

Client, 21
Master, 21
Modules, 20
Setup, 20

UM CONFIG *, 30
UM INPUT, 31
UM OUTPUT, 32
UM STATS *, 31

Visualize, 86
Architecture, 11–12
Classes

CanvasView, 26
ConfWind, 28
FifoCmd, 29
Image, 28
Interface, 26
Mapper, 29
Module, 26, 29
ModuleGenerator, 26
PlotWin, 28
RadioView, 26
Show, 28

FifoCmd, 12
Mapper, 12
Overview, 5
Reference, 26–29
User I/O, 11

129/121

List of Figures

2.1 Dumb hardware and intelligent software 4

3.1 Structure of the software-radio in both modes 5

6.1 The three main components and their respective subdivisions 10

8.1 The debug-interface in RF- and simulation-mode 13
8.2 Two simple chains and a module in detail 14
8.3 The CDB and SDB .. . 14
8.4 Two modules and all possible connections 15

11.1 The most simple two-way communication example 20

15.1 The classes involved in bringing up the main view 27
15.2 The different display-options 28

19.1 The common part of the signal-flow 48
19.2 QPSK signal space 48
19.3 Position of the midamble 49
19.4 The signal preparation for ICS 50
19.5 The signal preparation for STM 51

20.1 The frames and slots 53
20.2 Inputs and outputs of the STFA 54
20.3 A typical set-up of the STFA 54
20.4 The different size-parameters 55
20.5 Two transmit and one receive-chain as an example 56

21.1 Reception-chain 59
21.2 The whole chain and the most important part of it 59

25.1 The example slot 73

31.1 A very simple radio 98
31.2 .. 99
31.3 .. 101

33.1 The important connections on a RF-card 109
33.2 .. 111
33.3 Radio-setup 112
33.4 Radar-system 114
33.5 WLAN-setup 115

34.1 Actual and proposed design of the TX-chain alertion 117

130/121

	I Introduction
	How to read this document
	Overview of this part

	Motivation
	Why Software-Radio?

	System Overview
	Simulation Mode
	Real-Time Mode
	Communication

	Usage
	Past
	Present
	Future

	Outlook
	Multi-point to Multi-point
	Low-Tech Communication

	II Architecture
	Overview
	GUI
	User I/O
	Chains
	Stats
	Output-ports
	Plots
	Export
	Re-configuration
	Process-Data

	Mapper
	FifoCmd

	Signal Processing
	DBG
	Framework
	Modules and Chains
	CDB and SDB
	Subsystem
	STFA

	Antenna
	Common
	Driver
	Hardware or Simulation
	Hardware
	Simulation

	Operating System
	Modes of Operation
	Test
	Simulation or Real-Time
	Local-Loop
	Two-Radio System
	Setup
	Modules
	Master
	Client

	Hardware
	Code
	Directory Structure

	III Reference-Manuals
	Overview
	GUI
	General Interface
	Interaction
	Plotting
	Configuration
	Signal and Outputs
	Image

	Internal
	Mapper
	FifoCmd
	Module

	Signal Processing
	CDB
	swr_spc_get_new_desc
	swr_spc_define_config_parameter
	swr_spc_define_stats_parameter
	Flags for define_*_parameter
	Types for define_*_parameter
	swr_spc_define_input
	Port Types
	Port Flags

	SDB
	Instantiation
	swr_chain_create
	swr_sdb_instantiate_name
	swr_connection_add

	Manipulating stats- and config-structures
	Accessing own Structures
	Accessing other Structures

	Other Functions

	Subsystem
	Messages
	Basic Handling
	Data Propagation
	Reconfiguration

	Subsytem-Flags
	Propriety
	User-defined
	State

	Port-Flags
	Block-related
	Signal-passing

	Module
	General introduction
	Data Structures
	Data Types
	For Config and Stats

	Macros
	module_init
	other functions

	Makefile
	Make Arguments
	Common
	Radios
	Code

	DBG-interface
	Command-syntax
	list_modules
	list_tag_modules
	list_new_modules
	show_all
	show_*
	get_output
	get_block
	get_image
	set_config
	new_list
	read_list
	close_list
	process_data
	get_profiling
	ping

	Signal Flow
	Common
	Transmitting
	Receiving

	Hardware
	ICS-hardware
	Philips-hardware
	STM-hardware

	Important Modules
	STFA
	Synchronisation
	Important Parameters
	Structural
	Timing

	Attaching Chains
	Overcoming the Time-Limits

	Subsystems
	Nyquist
	Reception-chain
	More detail
	w_rx
	sig_type

	Interface
	New commands defined
	int swr_ant_ics_init(fs_rx, fs_tx, ch_rx, ch_tx, sig_type);
	fs_rx
	fs_tx
	ch_tx
	ch_tx
	sig_type

	double swr_ant_ics_get_fs_rx(void);
	double swr_ant_ics_get_fs_tx(void);
	void swr_ant_ics_rx(ch, fc, W);
	ch
	fc
	W

	void swr_ant_ics_rx_freq(ch, fc);
	ch
	fc

	void swr_ant_ics_tx(ch, fi_tx);
	ch
	fi_tx

	void swr_ant_ics_clk(f_adc dac_mult, f_dac);
	f_adc
	dac_mult
	f_dac

	void swr_ant_ch_start(void);
	void swr_ant_ch_stop(void);
	int swr_ant_ch_io(slot);
	slot
	return

	void swr_ant_ch_set_synth(ch, RF, side);
	ch
	RF
	side

	void swr_ant_ch_set_freq_diff(ch, freq_diff);
	ch
	frec_diff

	write_ddcs(void);

	FPGA
	Directories
	Testing the version

	Tidbits
	DMA-considerations
	Conclusion

	Server
	Resampler
	Samples, Chips and Symbols

	IV HOWTOs
	From Conception to Measurement
	Defining New Modules
	The Files
	snr.c
	snr_send.c
	snr_rcv.c
	Makefile

	Compile it

	Testing
	The Directory
	Makefile
	test_snr.c
	start_it

	Going Over the Air
	The Directories and Files
	README
	MS/radio_ms.c
	radio_bs.c
	Running it with the channel-simulation
	Running the real thing

	Tools
	Visualize
	Starting it
	Mouse handling
	Plotting of values
	Exporting values
	Known bugs

	Channel-server
	Starting it
	Known bugs

	LDPC-code generation
	Starting it
	Known bugs

	Debugging
	Debugging in user-space
	Using Gdb with Tests
	Debugging a Simulation
	Using ddd
	Known bugs

	Getting Started
	Prerequisites
	Installing the MSR
	Download the software
	Compile the software
	Common errors
	While compiling 'Visualize' I get 'libqwt not found'

	Running the examples

	Testing
	Files
	Main

	Using CVS
	Structure
	Starting a new Branch
	Checking Out for the First Time

	Creating a simple radio
	General Setup
	Overview
	Files

	Master
	Testing the Master
	Slots and Blocks in the Software-Radio

	Client
	Testing the Client
	Testing the transmission
	Synchronisation

	RF-transmission
	Going Further

	V Practice
	Introduction
	Motivation
	Intended reader
	Parts
	Conventions
	Directories
	Commands
	Radio-platforms

	Test Configurations
	Setup
	RF-cards
	Rohde & Schwarz
	ICS-cards
	FPGA
	Power supply

	GPS
	Hardware-setup
	Software-setup
	Short testing sequence

	Radio system
	Hardware-setup
	Software-setup

	Radar-system
	Hardware-setup
	Software-setup
	Camera-setup
	Amplitude settings

	WLAN
	Hardware-setup
	Software-setup

	VI Future thoughts
	STFA
	Antenna
	Chains
	Implementation

	Visualize

	VII Index

