Modular Software Radio

Linus

February 23, 2007

Contents

Introduction 2
How to read this documert 3
1.1 Overviewofthispart e 3
Motivation 4
2.1 Why Software-Radio? e e 4
Svstem Overview 5
3.1 Simulation Moce e e e e e 5
3.2 Real-TimeMocle e e 5
3.3 Communicaticn e e e e e e e 6
Usaqz 7
4.1 Past . .. e 7
4.2 PresSet. . . . e e e e e e 7
4.3 FUtura . . . 7
Outlook 8
5.1 Multi-pointto Multi-point 8
5.2 Low-Tech Communication @ i i e e e e e 8
Architecture 9
Overview 10
GUI 11
71 UserllO . . . e e e 11

711 Chairs e e 11

T2 SHAIS . . . e e e e e 12

7.1.3 Output-pDOrLS e 12

7.1.4 Plois e e 12

715 EXDOT. . . . e 12

7.1.6 Re-configuration e 12

7.1.7 Process-Data e e e e e e e 12
7.2 MaDDETr . . . e e 12
7.3 FifoCmd e e e e 12
Siagnal Processing 13
8.1 DBG . . . e 13
8.2 Framewolk e 13

821 Modulesand Chans i e 14

822 CDBandSDB e 4

CONTENTS CONTENTS

8.2.3 Subsvstem 14

8.2.4 STRA . . . 51
9 Antenné 16
9.1 CommOoN 16
9.2 DIIVEI . o o e 16
9.3 Hardware or Simulation e e 17
931 Hardware e 17
932 Simulation 17
10 Operating Systern 18
11 Modes of Operation 19
111 TeSt . . e 19
11.2 SimulationorReal-Time e 19
11.3 Local-Loop o e e 19
11.4 Two-Radio SVStEm e 20
1141 SetLp . . . o e e 20
11.4.2 Modules 20
1143 MaSIer . . . o e 21
11.4.4 Client 21
12 Hardware 22
13 Cod: 23
13.1 Directory SIruCtur@ e e 23
Il Reference-Manuals 24
14 Overviev/ 25
15 GUI 26
15.1 GeneralInterface e 26
152 Interaction e 27
15.2.1 Plotting e 28
15.2.2 Configuration e 28
15.2.3 Signaland Qutputs e 28
1524 ImMage e 28
153 Internal L e 29
1531 Manner e e 29
1532 FifoCmd e 29
15.3.3 Module 29
16 Sianal Processirg 30
161 CDB . . . L 30

16.1.1 swrspcgetnewdess 30

16.1.2 swrsncdefineconfiaparameter Lo Lo 30

16.1.3 swrspncdefinestatsparameter. L L 31

16.1.4 Flags fordefin& parameter o 31

16.1.5 Tvnesfordefin& parameter. 31

16.1.6 swrspcdefineinput 31
16.1.7 PortTVDES L e e 32
16.1.8 PortFlags e 32
16.2 SDB . . L 32

CONTENTS CONTENTS

16.2.1 Instantiation 33
16.2.1.1 swrchaincreat2 33
16.2.1.2 swrsdhinstantiatename oL 33
16.2.1.3 swrconnectionadd L. Lo 33
16.2.2 Maninulating stats- and config-structareso 34
16.2.2.1 Accessingown Structures 34
16.2.2.2 Accessingother Structures 34
16.2.3 OtherFunctions. e 35
16.3 Subsvstem L 35
16.3.1 MESSA0BS o e e e 35
16.3.1.1 BasicHandling 35
16.3.1.2 DataPropagaton 36
16.3.1.3 Reconfiguration e 36
16.3.2 Subsvtem-Flegs. e 36
16.3.2.1 Pronriely 37
16.3.2.2 Userdefinad 37
16.3.2.3 State 37
16.3.3 Port-Flags e 38
16.3.3.1 Block-related 38
16.3.3.2 Signal-passing 38
16.4 Modulz . . . L e 38
16.4.1 Generalintroduction e e 38
16.4.2 Data Structures e e 39
16.4.3 DataTvDReS o e e 39
16.4.3.1 ForConfioandStats 39
16.4.4 MACICS o o e e e 40
16.4.4.1 modulenit 40
16.4.4.2 otherfunctions. e 41
17 Makefile: 42
17.1 Make Arguments e e e 42
17.1.10 CommON . . . oo e e e e e e e e e 42
17.1.2 Radios e e e 42
17.1.3 Code e e 43
18 DBG-interface: 44
18.1 Command-SYNtaxo e e e 44
18.1.1 listmodules. 44
18.1.2 listtaamodules L 44
18.1.3 listnewmodules 44
18.1.4 showal e 44
18.1.5 showr o e 45
18.1.6 gefoutDut L e 45
18.1.7 aethlock e 45
18.1.8 getimage 45
18.1.9 sefconfig 45
18.1.20newlist L 45
18. 1. 10 readist e 45
18.1.12closdisl e 46
18.1.13procesdatia L e 46
18.1. 14 aetrofilinc 46
18.1.15DING 46

31127,

19

20

21

22

CONTENTS CONTENTS
Siagnal Flov/ 47
19.1 CommMON . . . L e e a7

19.1.1 Transmittirg L 47
19.1.2 ReCeiVirg o o o o e 47
19.2 Hardware e 49
19.2.1 ICS-hardware e 52
19.2.2 Philins-hardware e e 52
19.2.3 STM-hardware e e 52
Imnortant Modules 53
20.1 STRA L o 53
20.1.1 Synchronisation L e 54
20.1.2 Important Parameters e 55
20.1.2.1 Structural 55
20.1.2.2 TiIMING . . . o o e 55
20.1.3 AttachingaChails e e 56
20.1.3.1 Overcominathe Time-Lirits 56
Subsvstenis 58
21.1 Nvauist . . . o e e 58
21.2 Recention-chein e 58
21.3 Moredeteil L e 60
2131 WX Lo e 60
21.3.2 SIOLVDE . . . L 60
Interface: 61
22.0.3 Newcommandsdefined 61
22.1 intswranticsinit(fs rx. fs tx. chrx. chtx. sigtvne); 62
2200 fSIX . o 62
22,12 fSIX . o 62
22.1.3 chtx . . 62
2214 chix . 62
22,15 SIOtVDEe . . L. 62
22.2 double swanticsaetfsrx(void) 64
22.3 double swantics getfstx(void) 64
22.4 void swranticsrx(ch. fc. W); 64
2240 CO L 64
2242 T e 64
2243 VI o 46
22.5 void swranticsrx frea(ch.fc); oo 64
2251 €O L. 64
22.5.2 f 64
22.6 void swranticstx(ch. fitx) 65
2261 CO L 65
22.6.2 filx . .. 65
22.7 void swrantics clk(f.adc dacmult.fdac); L. 65
22,71 fade ..o 65
22.7.2 daamul: . L 65
22.7.3 fdac .. 65
22.8 void swrantchstart(void); 65
22.9 void swrantchston(void); L 65
22.10intswrantchio(slot); 65
22.10.0sl0t L L 66
22.10218tUIN . . L L e e 66

CONTENTS CONTENTS

22.11void swrantch setsvnth(ch. RF. side)); 66
22101 1Ch 66
221012RF . 66
22.11.3SI0€ . . e 66

22.12void swrant ch setfrea diff(ch. freadiff; 67
22.02.0Ch .o 67
2212 2frecdiff . . . L 67

22.13writeddes(void ;. . L L e 67

23 FPGA 68
23.1 DIreCtori€S o e e e e e 68
23.2 Testinatheversion e 69

24 Tidbits 70

24.1 DMA-considerations e 70
24.1.1 Conclusion L 70

242 SEIVEN L e e e 71

24.3 Resamblar e e 71

24.4 Samples. Chinsand Symbols e 71

IV HOWTOs 72

25 From Concention to Measurement 73

25.1 DefininaNew Modules e 73

25.1.1 TheFiles e 74
25111 SNIC . . . o 74
251.1.2 snsend.C 74
25113 SNIMCV.C . . L o ot e e e e 77
25.1.1.4 Makefile 80

25.1.2 Comnileit 80

252 Testing 80
2521 TheDireCtory e 80
25.2.2 Makefile e 80
2523 1eSNIC . . . e e 81

25.2.3.1 starft .. e 81

25.3 GoingOverthe Air e e 83
25.3.1 TheDirectoriesand Files e 83
2532 READMIZ 83
25.3.3 MS/radioms.cc L e 83
2534 radiobs.c . . L 84
25.3.5 Running it with the channel-simulation 85
25.3.6 Runninatherealthing 85

26 Tools 86

26.1 Visualize e 86
26.1.1 Startingit e e e 86
26.1.2 Mousehandling. e 86
26.1.3 Plottingofvalues e 86
26.1.4 Exportinavaluas e 87
26.1.5 Knownbugs e 87

26.2 Channel-sernver 87
26.2.1 Startingit e e 87
26.2.2 Knownbugs e 87

CONTENTS CONTENTS

26.3 LDPC-code generation e e 87

26.3.1 Startingit e 87

26.3.2 Knownbugs e 87

27 Debuaainy 88

27.1 Debugdin@ in USEr-SDACE v v i i i e e e e e e 88

27.1.1 UsinaGdbwithTests e 88

27.1.2 Debugginga Simulation e 88

27.1.3 Usinadedo 89
27.1.3.1 Knownbugs L

28 Getting Started 90

28.1 Prerequisitas L e 90

28.2 Installinathe MSR e 90

28.2.1 Downloadthesoftware e 90

28.2.2 Compilethesoftwerre e 90

2823 COMMONEITCIS it e e e e e e e e e e e 91

28.2.3.1 While compiling 'Visualize’ | get’libawt notfoudi 91

28.3 Runningtheexamples. e 91

29 Testing 92

291 Files e 92

292 Main . . . L e 93

30 Usina CVS$ 94

30.1 Structure L e e e 94

30.2 StartinaanewBranch. L e 95

30.3 Checkina Outforthe First Tirne i 96

31 Creating a simple radio 97

31.1 General Setup e 97

3L.1.1 OVEIVIEW . . . o e 97

3112 Files. 97

312 Master e e e 99

31.2.1 Testinathe Masier e e 100

31.2.2 Slots and Blocks in the Software-Radio 100

LB Cliert . . . e 101

31.3.1 TestinatheClient e 103

31.3.2 Testingthetransmission 103

31.3.3 Synchronisation e 103

31.4 RF-transmisSiON o e 103

3141 GoinaFurthar.o e 104

V Practice 105

32 Introduction 106

32,1 Motivation e e 106

322 Intendedreacler e 107

323 Pars . . . e 107

32,4 Conventions e 107

32.4.1 DIreCtOrie'S e 107

3242 Commands, 107

32.4.3 Radio-platforms 108

6/127.

CONTENTS

33 Test Configuration:s

33.1 Setup
33.1.1
33.1.2
33.1.3
33.14
33.15

33.2 GPS
33.21
33.2.2

334.1
33.4.2
3343

Rohde & Schwerz

Hardware-setup
Software-set up
33.2.2.1 Short testing seauence
33.3 Radio system

33.3.1 Hardware-setup

33.3.2 Software-setup
33.4 Radar-system
Hardware-setup
Software-set up

3344
33.5 WLAN
3351
33.5.2

VI Future thoughts

34 STFA

34.1 Antenna
34.2 Chairs
34.2.1 Implementation

35 Visualize

VIl Index

Camera-setup
Amplitude settings

Hardware-setup
Software-set up

CONTENTS

7/127.

Part |

Introduction

8/127.

Chapter 1

How to read this document

Before going into details about what is a software-radid,&hat it can be used for, | will give an overview
of this document, so that you know where to start first.
This document is separated into six parts:

* Introduction - this is what you're reading right now. It @ some basic definitions and ideas about
the signal-processing part as well as the chosen impletiemta

 Architecture - here you'll learn more about the design &f tlifferent aspects of the software-radio

» Reference Manual - when you need to know about a certairtitmbow to use it or what it does,
this is the place to go. Usually you'll need the knowledgerfrihe Technical Document know
everything.

e How-to - a more practical approach, this could also be ddilgorial, as you learn how to use the
software-radio step-by-step, without an explanationtiergory details.

« Tipsntricks - a collection of common pitfalls and how to a/them, plus some help on how to do
more unusual things.

 Future Thoughts - lots of things | wanted to do with the saftsvradio, both technically and experi-
mentally, but that | didn’t have any time left. Wanna go fér it

At the beginning of each part, you will find a short overviewtloé different chapters and what they talk
about.
1.1 Overview of this part

* Motivation - why we want to have a software-radio
» System Overview - the basic building blocks of the softwa@io
» Usage - what we are doing with it right now

» Outlook - possible future enhancements

9/127.

Chapter 2

Motivation

This introduction describes our motivation for buildingrarisceiver based on software-radio, hereafter
calledsoftware-radio testbednd gives an overview of the general philosophy.

2.1 Why Software-Radio?

We talk about Software Radio when the map between the datdifgpand receiving) and the
data-carrying antenna signal are completely (within hamimits) specified by the software.
Any map that conforms with the hardware limitations (poviEamdwith, hardware imperfec-
tions) may be implemented by means of an appropriate cod&i(Boldi, 2003)

If you like the idea of a flexible transceiver and are not tongarned with size and energy consumption,
then you want your transceiver to be software-radio basedinstance, let us say that you have a software
radio mobile phone. This mobile phone is a general purposganication device with a piece of software
that makes it behave like a mobile phone. You can turn yourilagone into a GPS receiver, ora TV
receiver, or a Wi-Fi interface, just by down-loading a pietsoftware (assuming there is a server that has
the software you need).

For the technically oriented person: in a software-basadlsimitter, the software creates the samples
corresponding to the signal to be transmitted. A genergd@se hardware converts these samples into the
signal that will be sent to the antenna. Similarly, in a saftsvbased receiver, the general purpose hardware
takes the signal captured by the antenna and produces tresgonding samples. The software does the
rest. The hardware is not aware of the standard you are uglifgst converts back and forth between
samples and waveforms.

Fig 2.1. shows the two main components of a software-defirreteiver. The hardware implements
a two-way mapping between waveforms and samples. Exceptdgoossibility of controlling the power
of the transmitted signal, the amplification of the receigeghal, as well as some other parameters that
are not relevant for this discussion, this mapper perfoimessame operation regardless of the standard
implemented by the transceiver.

img /variwww/html/ipgwww/data/media/dunttardware.ps

Figure 2.1: Dumb hardware and intelligent software

10/12:.

Chapter 3

System Overview

The software-radio helps to make it possible to implemerigiaag-processing algorithm which works on
samples that are transmitted and received over the air.

Because the debugging is an important part of the implertientaf a signal-processing algorithm, the
software-radio can be runin eithgimulation moder in real-time modeFig. 3.7. shows the software-radio
in both modes.

The Graphical User InterfacéGUI") is the only visible part of the software-radio and allows tiser
to visualize the state of the differeModulesas well as to change their configuration. T@kannelis a
general interface that represents eith&imulationor has access to théardware

3.1 Simulation Mode

In simulation mode no hardware is used, and the whole trasssom is simulated in software, including
Gaussian noise and multi-path fading. There are no rea-tiomstraints which makes it very easy to debug
the algorithm to be implemented.

Of course, if you don’t have access to the right hardwars,igihe only possibility to use the software-
radio. However, thechannel-servewhich links multiple channels together, is written to siemel a real
channel with high enough accuracy to test and verify sigmatessing algorithms.

3.2 Real-Time Mode

In real-time mode only the Graphical User Interface runs mtuk, while the rest of the software-radio runs
in Real-Time mode, made available through the use of RTLiflms is necessary, as the transmission and
reception of the samples has to meet time-constraints thatat possible to meet in simple Linux.

As of spring 2004, there exists two hardware-platform tHiawathe software-radio to do actual tran-
sception of samples over the air. The older one, producedTifiGoelectronics, offers a simple SISO-
interface, that is, one antenna at each end of the trangmisghe newer interface, produced by ICS-Ltd,
allows the software-radio to take advantage of a MIMO-clehnmith up to four antennas at each end of
a transmission. A MIMO-channel is defined as a channel thati@re than one transmitting antenna and
more than one receiving antenna. These channels have tergsting properties, mainly the possibility
to multiply the available channel-capacity by a functiorired available antennas.

1Graphical User Interface

img /varlwww/html/ipgwww/data/media/simulatioral-time.ps

Figure 3.1: Structure of the software-radio in both modes

11127,

Communication Chapter 3. System Overview

3.3 Communication

The software-radio is built to have a two-way communicati®a, if you have more than one instance of a
software-radio running, they can communicate together.

If the software-radio is run in real-time mode, only one amste of a software-radio can run on a
computer. So if you want to communicate in real-time, youchaideast two computers.

In simulation mode, the number of instances per computetlislimited by its calculation-power (and
the patience of the user ;). Bhannel-Serveconnects all channels of all instances of the softwaresradi
together and makes it possible that everybody can listerhtit e other radios are sending.

12/12:.

Chapter 4

Usage

At EPFL, the Federal Institute of Technology in Lausanneif&xand, we use the software-radio both in
class and for research purposes.

This chapter gives an overview of what we did with the sofewveadio until the end of 2003, what we
are doing now in winter/spring 2004, and what we are plantondp during the rest of this year.

4.1 Past

In class, it has been used to demonstrate the different paetgadio-transmission, such as modulation,
spreading, coding and matched filtering.

For research, we used it succesfully to demonstrate thelingati LDPC-codes over the air and to
verify their theoretical performance.

4.2 Present

We are looking in the challenges arising from MIMO transnueghat is coded with LDPC-codes. There
are timing constraints to be solved, as well as theoreticallenges with regard to the MIMO channel to
be met.

4.3 Future

Different projects for the software-radio are in preparvatiThese include a better matched filter (channel
estimation), ZigBee implementation and the obligatory GleSoder.

1312:.

Chapter 5

Outlook

For the time being, the software-radio is taking a directiowards point-to-point communications in
MIMO-channels. We would very much like to study the implioas of multi-point to multi-point com-
munications, as well as low-tech implementations of a compation.

5.1 Multi-point to Multi-point

Point-to-point communications are quite well known. Intfaaery commercially available transmission
technology today only works in a point-to-point configuoatj usually surrounded with a method to be sure
that only one person is sending at the same time on the sameefrey.

Different theories describe the possiblity of having mdrart one sender at the same time and being
able to reconstruct the signal at the other end. It would Ipg Weresting to study these theories in a real
environmentin order to give a feed-back about problemsmayiwhen implementing such theories.

5.2 Low-Tech Communication

The current hardware in use is capable taking advantagevefaleMH:? of spectrum to transmit and
receive. HAM-radios only have a couple of kHz of spectrumilatée for the transcpetion. It would be
interesting to study transmission using a sound-card andlsldadio, perhaps to propose a better and
faster transmission than AX.25.

IMegahertz

14/12:.

Part Il

Architecture

15127,

Chapter 6

Overview

In this part you'll learn about the architecture behind tbé&ware-radio. If you're looking for a precise
information, you may be better off by looking at theferencepart of this document.

We like to split the software-radio in three parts: (UBignal Processing and the Antenna, as can
be seen in figur2 6.1. For each of these elements, you can fihdmer that describes it in more detalil.
Additionally to these aspects, there are more general draglon't fit that nicely into the pictures. Here
is an overview of the chapters in this part of the documeniati

GUI! Is the Graphical User Interface, that allows to interachwiite software-radio on a user-level

Signal Processing is the ensemble of all interchangeabitejpants that make the active part of the
software-radio

Antenna represents the transmission and reception parecfoftware-radio, either in simulation or
in real-time mode

Operating system how the different parts of RTLinux andiplay together
Modes of Operation gives an overview of the different moofethe software-radio
Hardware which shows the architecture of the ICS-hardware

Code the different directories in the tar-ball of the scfterradio

1Graphical User Interface

img /var/www/html/ipgwww/data/media/architectuogerview.ps

Figure 6.1: The three main components and their respecib@igisions

16/12:.

Chapter 7

GUI

For taking measurements and changing the behaviour of ftvwage-radio we developed this Graphical
User Interface, calletVisualize It is capable of showing the internal states of all activedoies (parts of
the software-radio), their signals and changing the condiion of these modules while the software-radio
is running.

By looking at figure: 6.1, we distinguish three main-partstaf GU!:

« User 1/O is the input and output towards the user. It showstains, updates the statistics and offers
windows to configure the modules

e Mapper arranges the modules in the software-radio to shain

» FifoCmd interfaces with the software-radio

7.1 Userl/O

Different ways of interfacing the software-radio exist.€lliser can display:

< Chains which is an overview of the general state of the smftwadio
« Stats representing internal values of the modules, sivajlees or plots
e Output-ports that are the signals that pass from one mddukes next

* Plots tracing stats of different modules against eachrathm time
There exist two ways of actively interacting with the softeradio:

« Re-configuration by changing parameters of one or more esdu

» Process Data which informs a module to immediately do sbimgty processing it's input

7.1.1 Chains

When theVisualizetool is started, it displays an overview of all active ctsafar the first antenna of the
first radio it finds. In fig. @screenshot of visualize star@igou see the STFA in the middle, surrounded
by a sending and a receiving chain. Each module in the chaiithiaame displayed, as well as up to two
parameters of its internal state.

1Graphical User Interface

1712:.

Mapper Chapter 7. GUI

7.1.2 Stats

A stats can either be a single value dvlack of values. Examples of single values include SNR, variance,
BER or counters, whil&locksof values can include channel-vectors, slots or a wholedram

7.1.3 Output-ports

Each module has zero to many output-ports that can be despliaya seperate window. As these signals
can be of complex nature, one can chose to display only theaelst the imaginary, or the absolute part.
Additionally, one can chose to display the FFT of the fir&t%/ samples of the signal.

7.1.4 Plots
You may also be interested in a plot of one stats-variablene or of two stats-variables one against the
other. TheVisualizetool opens each new plot in a seperate window.

7.1.5 Export

All plotting-windows can be exported either as postscfilgt-or as a Matlab-function (which are also
compatible with Octave).

7.1.6 Re-configuration

When asking for a re-configuration window, thésualize-tool will update the software-radio with every
new value you fill in. This is very useful for educational arebdgging purposes.

7.1.7 Process-Data

This is mainly a debugging-function and allows to seridada-msgo one of the modules, which will then
process whatever is in its input.

7.2 Mapper

This is an important part of th&isualize-tool, as it's not a straightforward task to identify chaisd

display them correctly. It is basically the original vensiaritten by two 4th year students, but extended to
work with more than one STFA, or other main-modules.

7.3 FifoCmd

This is the interface to the software-radio and takes caoeiaihe communication between the two. Ev-
erything is driven by the/isualize-tool, which means that the software-radio does only replyetjuests
from the GUI and never initiates a request by itself.

18127,

Chapter 8

Signal Processing

Our goal was to find a suitable tradeoff between code re-udgarformance of the software-radio. This
is why we chose to have a modular framework, running on a Rt-platform. In the following sections,
you will learn about the following items:

+ DBG the interface to the GI¥Il
« Framework which makes it possible that modules can intevih each other and the outer world

* STFA the interface to the channel

8.1 DBG

The debug-interface allows the user to interact with thévere-radio. It accepts commands and queries
from the GUE* and replies accordingly. Looking at figL re 8.1 you can seéFifes used in both RF- and
simulation-mode.

The replies of the dbg-module can be either status-infaonabr data directly from the software-radio.
An overview of the different queries/replies can be found&n

8.2 Framework

The modules, which define the specific task of the softwadé@rare surrounded by a framework that takes
care of the book-keeping tasks necessary to guarantee axgwhihg together of the different modules.
There are three parts:

* Modules and Chains the specific description of differeghal-processing parts, like pulse-shape
filter, coding, mapping, and others

- CDB Class Data Base, where a reference to every availabikilmds stored

« SDB Subsystem Data Base, which contains a reference tg mantiated and thus active module,
as well as the glue that makes it work

Because of the complexity of the subsystem alone, it haswits subsection where an overview of its
capabilities is shown. The same goes for the STFA.

1Graphical User Interface
the FifoCmd class encapsulates all queries and commands

img /var/www/html/ipgwww/data/media/architectutbg.ps

Figure 8.1: The debug-interface in RF- and simulation-mode

19/12:.

Framework Chapter 8. Signal Processing

img /var/www/html/ipgwww/data/media/modular.ps

Figure 8.2: Two simple chains and a module in detail

img /variwww/html/ipgwww/data/media/cdédb.ps
Figure 8.3: The CDB and SDB

8.2.1 Modules and Chains

The communication system is built out of modules. Each oftioelules has a classroom-style function.
As an example, in a simple one-way communication systentrainsmitter could consist of a first module
that maps bits into signal space points and a second modailentips signal space points into samples. In
the corresponding receiver you may find a module that implesihe matched filter, and another module
that decides what was transmitted.

Signal processing modules have inputs and outputs for ks being processed. They also have a
configuration-part to control the behavior of the modulg(ehe desired amplification for an amplifier)
and statistics to display relevant information (e.g. in&#wvariables). This is shown in fia. 8.2.

Each of the modules can exist in multiple copies. The franmk\i@mmposed of CDB and SDB) makes
sure that each copy can work independently of the other spp@ unlike the class/instance-behaviour of
C++ or other object-oriented languages.

When one or more modules are linked together, we speak almfhigiaof modules. The software-radio
knows how to pass the data from one module to another, andaliltach module at the appropriate time,
that is when it has some data to process.

8.2.2 CDB and SDB

The Class Data Base (CDB) and Subsystem Data Base (SDB) imadssible to use the modules in an
object-oriented approach. While the CDB holds the stafierination about a module, such as the names
and types of the configuration-parameters, the SDB holdsrakimplementation of a module, with the
specific configuration-values that may differ from one inmpéntation to another.

An overview of the CDB and SDB can be found in fia. 8.3. It showst pf a running software-
radio that has two transmitting and two receiving < ot®n the left side you see the CDB that holds a
description of each module that has been loaded in the s@ftvealio. On the right-hand side, you see the
actual instantiations of some modules presentin the CDB.

The loading of the modules happens usually at start-uphleatreticaly it’s also possible to load further
modules once the software-radio has been started. WhitBrigaa module informs the CDB about it's
presence, and includes the input/output signal-typesname, configuration and statistics-names and -
types. After that, the module is inscribed in the CDB, buty®itnot active.

Once a module is needed in the software-radio, insantiatedthat is, a running instance of the
module is created. This includes reservation of memory eééar the different variable parts, as well as
initialisation of these parts. After a module is instargihtit can be connected to other modules and can
perform signal processing.

8.2.3 Subsystem

Usually the subsystem is a part of the SDB. But over time itheme quite complex and would deserve
an own directory in the Base/-directclyOne can think of the subsytem as the base-class for all rasdul
It offers a handful of virtual functions that allow it to intect with the modules.

3For clarity, only part of the chains are shown
4Future work hint. ...

2012:.

Framework Chapter 8. Signal Processing

img /var/iwww/html/ipgwww/data/media/architectusabsystem.ps

Figure 8.4: Two modules and all possible connections

The main goal of the subsystem is to allow interaction betw®e modules. In figur: 8.4 all the
possible interactions between two modules are shown.
Itis thus responsible for the following tasks:

« Allocating Memory for the Data, Config- and Stats-blocks
* Messaging between modules and do most tasks

« Threading the modules if necessary

Most changes in the state of a module include a message sihet ddtached modules. An overview and
short description of every message can be found in 16.3.

8.2.4 STFA

The Slot To Frame Allocator (STFA) is a module that makes threnection between the antenna and the
rest of the modules. It offers a frame-based, slotted TDErfate to the rest of the signal-processing
modules.

There exist two STFAs, one for the old hardware and one fon#ve |ICS-based hardware. The first is
called stfa, while the second is called sita.

2112:.

Chapter 9

Antenna

The antenna-part of the software-radio has the structushasn in fig. @Antenna-blowup: Common/-
Driver/HW/Server@ Their respective functions are as folo

* Common is the interface towards the signal processing part
« Driver implements a certain hardware or simulation

e Hardware or Simulation the actual transmission system

9.1 Common
The interface of the antenna offers the following paranseteihe signal-processing part:

« DMA-region a place where the received samples are writbesmid the samples to be sent are read
from

« RF-parameters frequency, amplitude and other configrpeters

< Timing an function is available that tells about the actiralng of the RX/TX part

9.2 Diriver

This is the implementation of a certain way to transmit argkiee samples. It has to take care about all
initialisations and correct handling of all exceptionseTbllowing drivers are functional:

* RF interfaces the old, STMicroelectronics based RF-syste

ICS interfaces the new, ICS-based RF-system that is cagdiMIMO-transmission

Simul for simulations of the RF-system
 Simulics for simulations of the ICS-system
« Emul does a simple copy of the data to be transmitted to theshat

« NOP does nothing, for debugging purposes

2212:.

Hardware or Simulation Chapter 9. Antenna

9.3 Hardware or Simulation

The final part of the software-radio defines the channel. Ehwil driver, for example, implements a
flat single-tap channel with no noise. TBénul drivers need a channel-server that takes multiple radios
together, mixes their signal, and sends back the calcusigedl.

The most interesting parts are the RF and ICS hardware, bedhay offer a real channel to test the
transmission with.

9.3.1 Hardware

In the following table you can find a comparison of the two heartk-systems available.

RF | ICS
Max. number of antennas 1 4
Frequency [GHZ] 19| 2.4-2.48
Bandwith [MHZ] 38| 1
Resolution 12 | 14

9.3.2 Simulation

In simulation-mode, a channel-server accepts connecfions different radios, as can be seen in fig.
@channel-server with two radios@. The channel-servericanlate multi-tap channels and add gaussian
noise to the transmitted signals. This allows for easy satmh of real-world signals, before taking the
modules on the air.

2312:.

Chapter 10
Operating System

One very important aspect of a software-radio is it's réaletcapability. In our implementation, we trans-
mit and receive slots of a duration of about 1ms. If we want tkensure that there is no blank in the
transmission, we need to make sure to do our calculatiortssrshort time-span and to do it at the right
moment.

In a modern operation system, lots of things are happenitigeatame time: graphics, sound, network,
disk-access and more. A normal program will have to wait fase tasks to finish, before it can do it's
work. This means that it's nearly impossible for a normalgreon to meet sub-ms precision. Different
approaches exist to bring a solution to this problem. We elfR¥_inux because of it's stability, availability
and because it is licensed under the diRthich means that other people can use this solution without
having to pay high software-costs.

In short, RTLinux allows to meet time-constraints of a caupf us, the precision-constraint that is
given by todays hardware. It does this by running a real-taware micro-kernel which is principally
responsible for scheduling. One of the default tasks thad with the lowest priority is the linux-kernel.
This makes sure that even if the kernel is busy doing one afititeso important things, RTLinux may put
it to sleep, execute the real-time task, and resume the-keuxel.

1GNU General Public License

24/12:.

Chapter 11

Modes of Operation

As the signal-processing part and the framework is verylilexidifferent operating-modes are possible:

« Test which includes just a simple chain that is run a limiechber of times
« Simulation or Real-Time modes which are possible for bathdl-Loop and the Two-Radio System
 Local-Loop where a radio 'talks’ to itself by receiving eyesample sent

* Two-Radio System a set of two radio, where each one talkset@ther

In the following sections, the advantages of each of thesésied.

11.1 Test

As the name indicates, this is used to test the basic furattgrof a module. Usually it includes a simple
chain that has only the most basic components in it in ordezgbthe module. Like this one can test the
module in a simple environment, before going through theameal and more complete test in a real-time
communication.

To test a mapper-module that maps bits into complex symiioMuld be enough to have the chain
as depicted in fig. @show modules: souramapper—-block—slicer—sink@ For convenience, ttemurce
can contain readable text-messages that are printed kgjrtkend can be verified by hand.

The block module exists in different variants, where MIMO channeld amulti-tap fading channels
can be simulated, both in a convenient, deterministic manne

11.2 Simulation or Real-Time

As already described in section 9.3, the software-radiobEarun either locally without the RF-hardware
and in a user-space mode, or it can be run in real-time usiagiapRF-hardware for transmission and
reception. While the former is much more easy to debug, dmylatter allows to make real-world mea-
surements and confirmation of theoretical results.

In the software-radio, both modes are transparent to the asdéhe decision between the simulation
or the real-time mode only has to be taken when running it. tReruser, in either case, the channel is
represented by the STFA.

11.3 Local-Loop

Sometimes it is too complicated to take care about all thelsygmisation and fading-problems. Then you
can chose to run your modules to test in a local-loop, and dhways be synchronised. When running in

2512:.

Two-Radio System Chapter 11. Modes of Operation

img /variwww/html/ipgwww/data/media/simpketup.ps
Figure 11.1: The most simple two-way communication example

simulation-mode, the channel-server makes sure that titesamples are received at the same time. If you
run the radio in real-time mode, then you have to make sur@btmect the output of the cards with the
input through a cable.

11.4 Two-Radio System

TODO: update for ICS-example

This section describes a basic system with two radios, iatlg the example of the radio found in
Radios/Simple/B&ndRadios/Simple/M3; It is important to know about this if you want to do more than
just run the examples. You will learn about the most impdrtandules, how to put them together and
what make the thing going.

11.4.1 Setup

Looking at fig. 11.1, you can see two parts: a master and atcliefihe communication channel in this
example consists of three slots, of which only two are ocedhi The part in the middle, where the tree
slots reside, is called STFA, which means Slot To Frame Alion. This is the most basic module that
you will find in mostly all of the software-radio. The inputthfe STFA are sent through the antenna, while
the received signal from the antenna is passed through tipeioof the STFA. As you can see in figure
6.1, the antenna is a placeholder for either a real chanrjesba simulation.

11.4.2 Modules

This is a short overview of the different modules:

schsend Synchronisation CHannel. This module generatestuttastused to communicate the config-
uration of the other clients. This includes the configuratibout which slot to use for sending,
which slot to use for receiving, and gain-control. Most dsihot used in a two-radio case.

modulator Takes bits as inputs and creates complex symiindts.default-configuration, it outputs QPSK
symbols.

spread Spreads the input-symbols with a given sequencallyshis is used to have more than one
radio sending during the same slot, in this example it is useglve some protection to the
data, as a spreader may act as a simple coder.

chestsend Inserts a training-sequence into the signal. Thisesemguis known at the receiver-end, which
uses it then to estimate the channel and to create the mafitieed

synchsend Adds a synchronisation-sequence to the signal. Thesegis done in a special way so as to
make it possible to retrieve the synchronisation-sign#hwas less calculation as possible.

rrc The Root Raised Cosine pulse-shape filter. Takes the learsgnal, upsamples by a factor
of two and generates a real output.

stfa Slot To Frame Allocation, takes the slots and prep&m@stto be sent over the channel.

rrc_rcv Applies again a Root Raised Cosine filter

IMicrosoft
2Historically, the master is called BS (for BaseStation) #relclient is called M% (for MobileStation).
3There are three slots in order to allow for a more relaxedrtani

26/12:.

Two-Radio System Chapter 11. Modes of Operation

chestrcv The counterpart tehestsend calculates the channel-estimation and the matched-ftet
applies it to the input-signal.

demodulator Makes a hard decision on the received signals.
sink Prints to the screen the received sequence of bits.
synchrcv Keeps up the synchronisation with the master.

despread Undos the operation introduced by the spreadkofars a cleaner signal. As coding module
this is suboptimal.

schrev Decodes the synchronisation-channel and sets the plitae according to it’s information.

11.4.3 Master

The masters task is to send out the synchronisation-signiéisslot 1, combined with the data-signal that
tells an eventual client its required tx-gain. The tx-gdinhe client is calculated with the power received
on slot 2. If it is below a certain threshold, the master cdes that no client is sending, and puts the
tx-power to 0. If the receiving-power is above a certain $hi@d, the tx-gain is adjusted to what the master
would like to hear. This task in fact is done automaticallythy schsend module.

11.4.4 Client

While the master is quite static, the client has to do lotsanor

1. Search for the synchronisation-signal
2. Set up the synch-slot and uplink-slot

3. Keep the synchronisation

The first pointis necessary because the client doesn’t krefaréhand the time-frame of the master. So, in
order to get it, the mobile sets upsgnchrcv module on each slot, and choses the one that has the highest
probability of a successful synchronisation. After thisypdates the offset of the STFA, so that it is in
synch with the master, and keeps @ychrcv module active, to allow for further synchronisation. All
this is done in a macro-module callatacrasynch

Once the primary synchronisation is achieved, it will sesome modules to decode and demodulate
the synchronisation-channel, as well as set up a tx-chamelbt 2.

After this it has to keep up the synchronisation, becausertaster and the client don’t have exactly
synchronised clocks.

2712:.

Chapter 12

Hardware

The current hardware is composed of three parts, as can herség. @figure of layout with ICS-rx and
tx, as well as RF-cards@ This setup is optimized towards aVIRMO-system at 2.4GHz.

2812:.

Chapter 13

Code

Once you untar the SRadio-*.tar.gz file, you find a directoryhie form of SRadio-1.0. % under which all
the code is placed.

13.1 Directory Structure

Base CDB, SDB and the channel implementations are found aengell as some general helping
functions to the MSR.

Conventions template files that can be copied to new progaighen be filled in

Modules all user-written modules are found in here, put iiféerent categories: Coding, Channel,
Data, General, Macro, Signal

Test simple chains that are used to test the basic funciii@sadf the modules
Radios full-fledged two way transmission parts

User place for all compiled user-libraries

Kernel place for all compiled kernel-libraries

Documentation where you find this manual as well as some piatsens

1the name has to start with SRadio, or else the Makefiles waorkw

2912:.

Part Il

Reference-Manuals

3012:.

Chapter 14

Overview

In this part you find a complete as possible reference to alsud the software-radio. If you're interested
in one of these components, be sure to read about the condisigesubject in the architectural part.

+ GUI' shows an overview of the classes used in\figialize program

 Signal Processing gives more details about the CDB and 2BByell as the subsystem and the
modules

< Antenna what a driver has to implement in order to be used

Hardware how to set up the hardware

Modules a detailed description of the most often used mexdul

1Graphical User Interface

3112:.

Chapter 15

GUI

The Graphical User Interface for the software-radio isediWfisualize as it visualizes the internal structure
and state of the modules. Furthermore it's possible to chaoegfiguration-parameters of the modules in
real-time, while it is running.

This chapter is split into three sections: one for the gdnetarface, one for the interaction windows,
and one for the more internal structures.

15.1 General Interface

The main classes involved in displaying the main view arexshio figure 15. 1. Only the main subclassing
from Qt is shown, subclassing from QObject and such is nowsho

There is one main-window, even if there are multiple rad@display. The main window, created by
Interface contains aQ TabWidgetwith a tab for every active radio. If there is only one actiga€io, no tab
will be shown.

Each active radio that is show is served bRadioViewmodule which is the activ®@Widgetfor the
corresponding tab. The RadioView updates the display orserand, and stops updating if it is not the
active tab. While updating it checks for new or removed medwdnd asks each module to update the
values shown in it's body.

Each RadioView instance has it's owioduleGeneratorOn instantiation, the ModuleGenerator lists
all available module and tries to determine which one is th@pmodule. In the most common situation,
this will be astfg but it might be another module. The main-module is very irtgoat for the Mapper. For
further updates, only added modules are taken into coredider

All modules are drawn upon @anvasViewwhich is subclassed fro@CanvasView CanvasView's
main job is to create the context-menu when the user clicksi¢fiht mouse-button, as well as to move the
canvas when the user drags it with the left mouse-button.

The Visualize!Classes!Mappdras a reference to all modules. He also figures out the positial
connections of all modules, so that they fit nicely onto thev@aView!. The main-module is callestfa
As we only show one channel at a time, the Mapper needs alswoiw Which is the current channel.

Finally the Module represents the software-radio module with respect to abed functionalities.
It draws itself with the name and the chosen stats-parasyatariuding the pads for the connections; it
can bring up windows for output- and stats-signals; it canthe software-radio module to perform the
signal-processirfg

Between all these modules a number of signals are passedié@n tr minimize the cross-module
method calls.

IHere is a possibility to rewrite a class
2This is only useful in debugging-mode

3212:.

Interaction Chapter 15. GUI

Interface _“}i QMainWindow !

e 7 Qe

RadioView [QWid

T~

ModuleGenerator CanvasView = QCanvasView '

\/ _____________

Mapper

Module

Figure 15.1: The classes involved in bringing up the maimvie

15.2 Interaction

There are a number of ways the user can interact with the: GUI

Chosing the stats to be displayed on the module
Showing a stats-graphic

Showing a graphic of an output-port

Configuring values of a module

Plotting stats-values

The active classes in doing this are shown in figure 15.2. dhewing list gives an overview of the used
modules and their function, for a more detailed descriptiefer to the following subsections.

Interface is the head of the visualize-tool and is the omlg t have access to the menus
Module represents a software-radio module

Block is the virtual class for the (output)port, stats atat p

Port knows how to read data from an output-port

Stats reads a stats-'block’ that represents some data

Plot has a flexible data-part that can grow over time

ConfWind shows a window with all configuration-options bétmodule

Image is a special stats-'block’ representing an image

Show allows a Block to be displayed, complete with all cohwidgets necessary

PlotWin takes care of chosing the stats to be displayed

SGraphical User Interface

3312:.

Interaction Chapter 15. GUI

Interface = QMainWindow !

S

Module PlotWin
b~
ConfWind Image Show _f:"i_ _(_J;_ft_P_l;); a i
NN R T L
_QMainWindow | | QCanvasView | | Block
,a/ \
Port Plot
Stats

Figure 15.2: The different display-options

15.2.1 Plotting

There are two possibilities of plotting: Y(t) and XY. The foer takes only one stats-argument and displays
it in time, while the latter displays one stats-argumentasftinction of a second one.

Once the user has chosen one of the two plotting-methodsntbdace class instantiatesRlotWin
and sets up the signals so that the PlotWin will be informedmeéver the user clicks on a module.

It is the software-radio that takes care of reading the sfalises and putting them into a list. The
PlotWin class reads this list once a second and updategéshai values with the values read from the
software-radio.

In a clean implementation, PlotWin would be a subclass ofxhat as PlotWin needs an initialised
window to work with, this is not possible.

15.2.2 Configuration

If the user requests a reconfiguration of a modul€pafWind class is instantiated and given the authority
to change configuration parameters. The ConfWind acts inlégntly on changes from the user and
transmits them to the software-radio.

15.2.3 Signal and Outputs

Both require the Module to instantiateéStiow but give it either a Port or a Stats as argument. Show takes
care of letting the user chose the method to display the kigeal, imaginary, complex, absolute, fft),
zoom in and out, freezing and exporting to postscript andabat

15.2.4 Image

Althogh Imageis a stats-variable, it is implemented as a class on its‘ oWhen the module is asked to
show a stats, it decides whether it has to put an Image in a @Madow or a Show.
The Image-class takes care itself about updating and pnepiiie data for display.

4One could subclass it from Block and tell Show how to treamaage

34/12:.

Internal Chapter 15. GUI

15.3 Internal

These classes deserve some more specific treatement.

15.3.1 Mapper

The mapper is described in a report of the students who wrotée report can be found in the software-
radio tree undeSRadio/Documentation/Report/Visualize.ps.bz2

Although the report is not up-to-date with most of the sofeveadio, the mapper has never been
updated in the meantime. So everything described in thetrepih regard to the mapper is still accurate.
15.3.2 FifoCmd

This is the link with the software-radio. The counterparinisSRadio/Base/DBG/*. All possible requests
and changes to the configuration are described by this class.

15.3.3 Module

Together with the Mapper, this is one of the main classesasiss consist of:

« Draw itself on the canvas with the name and the chosen gtatsneters, including the pads for the
connections and eventual performance-measurements

« Show windows for output- and stats-signals, as well as gardition

e Process some data of the module. This is mostly useful ingghg-mode and for test-cases. It
corresponds to aalLmodulein the software-radio.

3512:.

abhwNE

AWM

Chapter 16

Signal Processing

16.1 CDB

There are two classes of functions in the CDB: defining a mmdad requesting informations about defined
modules. While the latter is only used internally of the w@fite-radio, the former is also used in the
module-definition. Both type of functions are also desdatibgefly in Include/cdb.h

The Class Data Base has a reference to all announced moduties system. Only a module that
is written in here can be instantiated, get into the SDB anddimected to other modules. These are
the functions used to add a new module to the CDB. Every fandias also a counterpart-macro that is
defined ininclude/spc.h

16.1.1 swrspcgetnew.desc

First, it has to ask for a new descriptor, using the followiagction:

swr.spc.desct *swr_spc.get-new-desc (

int nbr_inputs , /I The maximum number of inputs

int nbr_outputs , /I The maximum number of outputs

int nbr_config_.params , // How many configuration parameters
int nbr_statsparams); // How many statistic parameters

This function allocates the necessary memory to store theined parameters and makes sure there is a
place in the internal database. All required in- and outpetsd to be defined, as well as all config- and

stats-parameters. This can be done using the functionahatescribed hereafter. Each of this function is
also used in a macro definedlimclude/spc.Hor easier reference.

16.1.2 swrspc.define.config parameter

Every configuration-parameter has to be defined in the orflappearance in theonfig t-structure. The
types have to be the same. Instead of using the followingtimmcyou can resort to theeM_CONFIG.* -
functions. So, to define an INTeger, you can U8d_CONFIG.INT("Name”);.

int swr_spc_define_.config_parameter(
swr.spc.desct ~cdb.desc, // The description received

parametertype-t type, /I The type of the variable
unsigned long flags , /I Eventual flags
const char xname); /I The name to use in the softwareadio

If you have the following configuration-structure:

typedef struct{
int slots;
double amplitude;
} config-t;

then you need to define the two configuration-parameterstiviliollowing macros:

UM_CONFIGINT("slots”);
UM_CONFIGDOUBLE("amp”);

36/12:.

b WNPEF

A WNE

CDB Chapter 16. Signal Processing

Note that the order and the type need to correspond, but astame!

16.1.3 swrspcdefine stats parameter

Correspondingly to defining the config-parameters, alsspatrameters need to be defined, too. The same
restrictions with regard to order and type apply. There de anacros that call this function. They are
calledUM_STATS *, where the types are the same as for the config-parameters.

int swr_spc.define.statsparameter(
swr.spc.desct »desc, // The description-handler
parametertype-t type, // The type of the stats
unsigned long flags, /I Eventual flags
const char xname); /I Name visible in the softwareradio

If you have the following stats-structure:

typedef {
complex double channel;
double SNR;

} statst;

Then you have to define them with the following macros:

UM_STATSDOUBLE_COMPLEX("H”);
UM_STATSDOUBLE("SNR”);

Note again how the order and the types need to correspondpbtiie names!

16.1.4 Flags for define*_parameter

There are two flags for the config- and stats-parametersdmabe defined when defining these parameters:

« PARAMETER DEBUG shows a parameter only when debug-mode is active uralie

« PARAMETERHIDE never shows a parameter in the visualize-tool

16.1.5 Types for define*_parameter

These are the valid types for the stats- and the config-pdeasne

UM_CONFIG. UM _STATS.
int INT INT
double DOUBLE DOUBLE
complex double DOUBLE_COMPLEX | DOUBLE_.COMPLEX
char[128] STRING128 STRING128
block t - BLOCK
imaget - IMAGE
void * POINTER POINTER
SYMBOL_COMPLEX | COMPLEX COMPLEX

16.1.6 swrspc.define.input

All inputs to the module need to be defined using this functidgain, a macro exists that englobes this
function. Contrary to the config- and stats- definitionsréhis only one macro, and you have to give it a
paramater for the type. Even if you intend to use only a suliistte inputs at any given time, you have to
define all of them.

3712:.

A WNE

A WN

WN P

SDB Chapter 16. Signal Processing

int swr_spc_define.input(

swr.spc.desct xdesc, I/l A pointer to the description
swr_signal_-type_t signaltype, // The signal type
unsigned long flags); /Il Eventual flags

All outputs to the module need to be defined using this functidgain, a macro exists that englobes
this function. Contrary to the config- and stats- definitidhsre is only one macro, and you have to give it
a paramater for the type. Even if you intend to use only a dudfgbe outputs at any given time, you have

to define all of them.
int swr_spc_define_output(
swr.spc.desct xdesc,

swr_signal_-type_t signaltype,
unsigned long flags);

swr_spc.id_-t swr_cdb_registerspc (
swr_spc.desct xxdesc,
const char xname);

16.1.7 Port Types

These are the valid signal-types for the in- and output aailt tespective type-name:

UM_(IN/OUT)PUT(SIG
us us
SYMBOL_S16 SYMBOL_S16
int S32
double DOUBLE
complex double DOUBLE_.COMPLEX
SYMBOL_COMPLEX SYMBOL_COMPLEX
SYMBOL_COMPLEXS32 | SYMBOL_COMPLEX S32
SYMBOL_MMX SYMBOL_MMX
SAMPLE S12 SAMPLE S12

16.1.8 Port Flags

The port-flags are described in 16.3 3.1 and can either kettliradded when creating the ports, or in the
_init-block of the module by a line like

port.in (0). flags = SWRPORT.OWN.MALLOC;

16.2 SDB

Once a module is defined in the CDB, it canibstantiatedWhen this is done, the SDB allocates private
space for each instantiation and makes sure that each tinmstamce is called, it has the reference to its
own private space.

Furthermore the SDB offers functions to have access to thégcand stats-structures from both the
inside and the outside of a module. The difference is, tisad&of the module you have an exact knowledge
of the structure to change, while outside of the module yauitdmow anything else than the type and the
name of the parameter to change or read.

Then the SDB offers some more special functions to accessnaitstructures like the port in- and
outputs and the profiling.

3812:.

O WNPF

SDB Chapter 16. Signal Processing

16.2.1 Instantiation
16.2.1.1 swrchain_create

Usually you will instantiate @hainof modules, using the functicswr_chaincreate It takes a number of
arguments to modules that should form a chain. The follovairgyiments are valid:

« NEW_SPC("name”) Instantiates the module "name” and connexiajitut O to the previous output
(if any) and its output O to the next input (if any)

« NEW_SPCIN("name”, in) as NEWSPC, but the input port ’in’ is connected to the output-pdrt o
the previous module

« NEW_SPCOUT("name”, out) as NEWSPC, but the output port 'out’ is connected to the input-port
of the next module

* NEW_SPCIN_OUT("name”, in, out) as NEWSPC, but the input-port 'in’ is connected to the
previous module, and the output-port 'out’ is connectedoriext module

« NEW_SPCVAR("name”, var) same as NEV8PC, but the id of the instantiated module is stored
in'var

* NEW_SPCVAR_IN("name”, var, in) same as NEVBPCIN, but the id of the instantiated module
is stored in 'var’

« NEW_SPCVAR_OUT("name”, var, out) same as NEAWPCOUT, but the id of the instantiated
module is stored in ‘var’

« NEW_SPCVARL_IN_OUT("name”, var, in, out) same as NE\BPCIN_OUT, but the id of the
instantiated module is stored in ‘var’

* OLD_SPC(var) same as NEVSPC, but instead of instantiating a new module, takes amdlre
instantiated module ‘var’

e OLD_SPCIN(var) same as NEWSPCIN, but instead of instantiating a new module, takes an
alread instantiated module 'var’

¢ OLD_SPCOUT(var) same as NEVBPCOUT, but instead of instantiating a new module, takes an
alread instantiated module ‘var’

e OLD_SPCIN_OUT(var) same as NEVBPCIN_OUT, but instead of instantiating a new module,
takes an already instantiated module var’

 CHAIN_END indicates that the chain is finished.

The function returns an identifier to the created chain, sbtthe whole chain can be deleted when not in
use anymore. In order to function correctly, at least two olesl must be given as arguments.

16.2.1.2 swrsdb.instantiate_.name

If you only want to create one instance, for example for a nthat will be connected to multiple other
modules, or for a module that doesn’t have any in- or oupuds, gan useswr.sdhinstantiatename It
takes as argument the name of the module and returns a sdblidf @an error occurs.

16.2.1.3 swrconnectionadd

Once you created a chain or some single modules, you mighttevaimeate connections 'by hand’. Then
you need the following function:

swr.conn swrconn_add (

swr_sdb.id sender, /I The id of the sending module

int output, /I The outputport of the sending module
swr_sdb_id receiver, // The id of the receiving module

int input); // The input-port of the receiving module

3912:.

=

=

=

O WNEF

~NO U~ WN PP

SDB Chapter 16. Signal Processing

16.2.2 Manipulating stats- and config-structures

There are two possibilities: either a module wants to chatsgewn structures, or a part of the software-
radio outside of the module wants to read or write one of thectitres. This can be another module, or the
visualize-tool. Due to the different sources that may bagiie config- and stats-structures, they have to
be mutex’ed, so that the information read is always up-te-dad doesn’t change in a critical way.

16.2.2.1 Accessing own Structures

For the modules own structures, a pair of functions exisetpiest the mutex to either the config- or the
stats-structure. Once the mutex is aquired, the module ceesa it as it likes, before giving back the
mutex. In order to force the user not to access the structwessde of a mutexed environment, a pointer to
the structures is passed and is initialised with the addreti®e structure, or with NULL when the mutex
is released. In this way the software-radio will immediathow a bug when the structures are accessed
outside of a mutexed environment.

In order to aquire the mutex, one of the two functions has toabed:

int swr_sdb_get_.config_struct(swrsdb.id id, void *x str);
int swr_sdb_get_stats.struct(swrsdb.id id, void *x str);

As this is usually done in the module, thentextvariable is available, so it is used like this:

config_-t »config;
swr_.sdb_get.config_struct(context>id, &config);

Now the module can read and write to the configuration-stinectThe stats-structure is used in the same
way.
To release the mutex, also two functions exist:
int swr_sdb_free_config_struct(swrsdb.id id, void »x str);
int swr_.sdb_free_statsstruct(swrsdb.id id, void *x str);
As described above, they take a pointer to a pointer of theetstin this way, using the pointer incorrectly
causes a segmentation-fault (or a kernel-Oops in realytime

16.2.2.2 Accessing other Structures

When accessing structures from other modules, one not @dyditake care about mutual exclusion, but
also one has to notify the module that something changeedaat in the case of a configuration-change.

To change the configuration of another module, one has to khevid of that module, the name of
the configuration-variable and the type. Then one can setatue using one of thewr_sdh setconfig * -
functions:

int swr_sdb_set.config-pointer(swrsdhb.id id, char *name, void xvalue);

int swr_sdb_set.config-int(swr.sdb.id id, char xname, int value);

int swr_.sdb_setconfig.complex(swtsdhb.id id, char xname, complexdouble value);
int swr_.sdb_setconfig-double(swtsdb.id id, char *name, double value);

int swr_sdb_.setconfig.symbol(swcsdb.id id, char *name, SYMBOLCOMPLEX value);

There is a special case where one wants to wait for the recoafign of the module, for example when
changing a range of configurations from the same module.H®reéason, the 'id’-parameter of the above
functions can be chosen to be negative. Internally, alliddlare positive, so a negative id always points

to a unique module and stands for: "don’t reconfigure right'hoThe other case is when reading stats-
structures of other modules. The function-names are:

void+ swr_sdb_get.statspointer(...);

int swr_sdb_get_statsint(...);

complex double swr_sdbh_get. stats_complex(S
double swr_sdb_get.statsdouble(...);
SYMBOLCOMPLEX swr.sdb_get-statssymbol(...);
block-t swr_sdb_get.statsblock(...);

imaget swr_sdb_get.statsimage(...);

All functions have\textttswrsdhid id, char *name as parameter. Here a negative sdb-id apadameter
is invalid.

40.12'.

Subsystem Chapter 16. Signal Processing

16.2.3 Other Functions

Most other functions from the SDB are only used internallgt are documented imclude/sdb.hThe only
exception is the function to read and display the profile ofcluie:

int swr.sdb_.show_profile (swr.sdb_id id);

which displays all available profiles of the given module @dete with number of calls, total time and
average time.

16.3 Subsystem

As written in 8.2.:3, the subsystem is the base-class for allutes. As such it is responsible for correct
message-passing and cleaning up of the modules. Furtheitd@eps track and acts upon different flags
that may be set in the subsytem and the ports. So there agepilarees that describe more or less entierly
the state of the subsystem:

« Messages which are passed between subsytems
» Subsystem-flags reflecting the state of the subsystem

« Port-flags showing the state of each port individually

In the following three subsections you'll find a descriptimireach of these systems.

16.3.1 Messages

Each message that is passed to a subsystem has three agjumensage-id, data and return-id. The
message-id tells the subsystem what it needs to do. Thepdatés a (void*)-pointer, and should be set
to NULL when it's not used. The return-id is used when a retomessage could be generated, and should
contain the sender-id. If the sender has no id (is not a mgdike sender-id should be set to -1.

The messages defined in the message-id can be divided irgttoages:

 Basic handling involves everything to set-up the modukkiamarely or never called during life-time
« Reconfiguration of the module is also pretty rare for moghefmodules

» Data Propagation is the workhorse of the subsystem and le®du

Each group is described in more detail in the following satdi

16.3.1.1 Basic Handling

After the initialisation of a subsystem, everything is ngéal connect this subsystem to another subsystem.

Connecting is done by sending the mess&UBS MSG_.CONNECT to both subsystems that are to
be connected together. As payload for the message one shiwald structure of type swpropagatiort.
This structure contains all necessary information: pogize, flags, block-address, sdb-id of the other end
and the direction. If one of the ports is already defined wéilpard to its size, it will communicate this to
the connect-function, which will inform the other port oktidesired size.

The SUBSMSG_DISCONNECT message works in a similar way. One has to take care that both
messages don’t inform the other subsystem of the change nétitun wanting to connect or disconnect
two modules has to inform both of the action to take.

The user can ask for tracking of certain values. Whenevebaystem is asked to track its values, it is
sent aSUBSMSG.NEW_TRACK message, after which the subsystem will check the track&tgn each
data-processing to update the corresponding tracks. 8IjiSUBS MSG.NO_TRACK is sent to tell the

1Subsystem and Module are interchangeable in this context

41.12'.

Subsystem Chapter 16. Signal Processing

subsytem to stop searching the tracking-list. This pair eésages exists because tracking is quite rare and
asks for some processing-power in order to update all nageBsts. So, as long as the subsystem didn’t
receive a SUBSVISG.NEW_TRACK-message, it won't search through the list.

Even though the software-radio is conceived as a real-tad@r some modules take more time be-
cause of their complexity. In order to assure that the rei@&oftware-radio is not affected by a complex
module, it is possible to put the module in a thread by sendiagSUBS MSG.THREAD?. When re-
ceiving this message, the subsystem sets up a thread anactitthte this thread whenever it receives a
SUBSMSG_DATA message. For all other messages, the subsystem wilhrtive context of the calling
function.

Finally, a subsystem will stop working upon receivingg&/BS MSG_EXIT-message. All input- and
output-ports have to be cleaned up before sending this mgssatherwise undefined behaviour might
occur.

16.3.1.2 Data Propagation

In a multi-threaded real-time environment one has to take tteat things don't get mixed up. For this rea-
son, before asking a module to do some calculations on dagehas to send it SUBS MSG_PREPARE
message. This message is propagated to all connected ®utpate it is further propagated. If any of
the connected modules is still working, the message rem®IIBSSTATUS WORKING, and the caller
should wait for a later time.

If the prepare-message returned 0 (for OK), that means thawoalules in the chain are prepared and
can be called by sending 8UBSMSG_DATA -message to the top module. This message will test for
SUBSSTATUS MULTI_IN and SUBSSTATUS. THREAD and react accordingly. If appropriate, it will
call the pdata-function of the module. Upon returning, thigpat-ports are checked for new data, and the
modules connected to output-ports containing new dataegmteassSUBSMSG_DATA-message.

A small test-message that survived from the depths of theldpment is theSUBSMSG_PING-
message, which has no direct effect on the subsystem.

In order to allow for user-defined messages to the modulesSBS MSG_.USER-message exists.
The payload of the message can contain whatever is accutdp@n reception of this message, the
usermsg-function of the module is called, with the payload asiargnt.

16.3.1.3 Reconfiguration

Whenever a part of the software-radio thinks that the condijon might have changed, it sendSE@BS MSG_RECONFIG
message to the corresponding module. If the receiving neoldas$ the flag SUBSTATUS RECONFIG
set, it will call the reconfig-function of the module. Furtheore the configurénputs or configureoutputs-
function is called, depending on whether the SUBBATUS RESIZE UP or -DOWN flag is set.
Upon arrival of a message, the subsystem stores all inpat-oatput-port addresses, as well as the
sizes. If something changes during the execution of the agesaSUBS MSG_RESIZE-message is sent
to all ports that changed size or the data-pointer.

16.3.2 Subsytem-Flags

These flags reflect the internal state of the susbsystem argphirin these groups:
 Propriety reflect a general state of this subsystem whiamdee or less static
» User-defined, that is, set in thimit-part of the module

 State for transient information about the module

2This is not the default setting, because threading of a neogiues a sensible overhead

4212'.

Subsystem Chapter 16. Signal Processing

16.3.2.1 Propriety

All these flags are set internally by the software-radio dmaihge very rarely.
* SUBSSTATUS THREAD module has been threaded
* SUBSSTATUS.TRACKED there is a statgrack list with this module
 SUBSSTATUS RESIZEDOWN resize-messages go down
 SUBSSTATUS RESIZEUP resize-messages go up

The RESIZE-flags are set the first time a module receives aeresessage. This is done to know in the
future which port-sizes have precedence, because in stuadisns it's not straightforward to decide what
to do if there is not a clear preference for a certain resireetion.

16.3.2.2 User-defined

All these flags can be set in thimit-part of the module by inserting a line

SET_STATUS(RESIZE_NONE);

One has to note that with the SESTATUS-command the SUBSTATUS -part of the flag has to be
omitted.

A module like the STFA only generates resize-requests, dtdever receive one. The usual logic
of the subsystem forbids this, but if you set tB&/BS STATUS RESIZENONE-flag the subsystem will
honor this behaviour.

While some modules don’t want to receive resize-requesti®ranodules like the testatarcv need
to be informed by changes on both the input and the outputhisfis the case, you have to set the
SUBS STATUS RESIZEBOTH-flag. Afterwards the module will be alerted by any size-dion its
input- and output-ports, and the subsystem won’t complaouathis strange behaviour.

The SUBSMSG_PREPARE-message traverses all attached modules. Of cibiras to stop at the
STFA, else every module will be jpreparestatus. If a module has tti®UBS STATUS PREPARESWALLOW-
flag set, then it will silently drop all requests to prepare @will not inform other modules attached to
itself.

If you have a module with multiple intputs, and you want to maldre that all connected inputs contain
up-to-date data, you can set tB&)BS STATUS MULTI _IN -flag. This will tell the subsystem to make sure
that all inputs contain data before calling the pdata-metifadhe module.

An important issue when using the MULTIN-flag is the fact that the subsystem will try to make
sure that all inputs are from the same time-instant. Forrgdson, the inputs of the module that has the
MULTI _IN-flag set need to arrive in chronological order. Taking éxample of a MIMQLDPC-decoder,
the first input has to come from the first STFA, the second iffijuh the second STFA and so on. This is
the only way that the subsytem can make sure that all inpuedoom the same frame.

16.3.2.3 State

The states described here are very short-lived. They ysinglicate a work in progress or a needed action.

« SUBSSTATUS RECONF is set when the configuration-parameters have bemgel, but before
the module’s reconfig-method has been called.

e SUBS STATUS WORKING indicates a module that is in it's pdata-method
« SUBSSTATUS PREPARE is a module that is ’locked’ and ready to process data

* SUBSSTATUSLISTED in conjunction with the debug-interface, indicatesiodule that is known
to the visualize-tool

4312'.

Module Chapter 16. Signal Processing

16.3.3 Port-Flags

These flags are individual for each input- and output-pdreyican be combined together, although not all
combinations make sense. There are mainly two groups offiaas:

* Block-related which define how the block is allocated anawakes care about malloc/free

 Data-passing which describe when a block of data is reagishen it needs to change

16.3.3.1 Block-related

Besides the usual block- (port-)handling, some modules memore special handling. These flags help
define such special ports.

« SWRPORT.OWN_MALLOC this means that the module wants to keep track on it's @about the
different malloc/free

SWRPORT.OTHERFREE another port is responsible for freeing this data

SWRPORT.OTHERMALLOC another port is allocating the memory

SWR.PORT.THIS_FREE this port is responsible for freeing the data

SWR.PORT-PASSEDTHROUGH this port passes the data through

16.3.3.2 Signal-passing

The flagSUBS PORT.DATA is set whenever a module requests a buffer by ubinderout(port) When
terminating the subsystem-call, it checks for this flag dn@tput-ports and makes sure that the appropriate
attached modules are called.

The SUBSPORT.GOT_RESIZEAflag is only used internally to mark a port that already hasrbes-
sized. Without it, one could have a ping-pong of two ports thato resize each other mutually.

16.4 Module

This section gives an overview of the module-creation aedute of it. Even though 25 gives an example
of how to create a new module, it is a good idea to read at la&sintroduction, so that you know what it
is about.

16.4.1 General introduction

Before a module can be used, it usually has to go through tleviag steps:

1. Registration with the CDB, usually moduleinit, this happens when loading the module into mem-
ory

2. Instantiation, which means setting up the needed menmatygallinginit

3. Acall toreconfigto assure that everything is OK

The points 2 and 3 are done automatically when caling sdhinstantiate* and may happen more than
once, where a new memory-block is allocated for each inistiant, in order to make sure that all copies
of the module work in an independent way.

Once this has been done, a module can be asked to do one ofithérfg tasks:

pdata Process an incoming data-block and eventually peositime output-data

reconfig Reconfigure itself because one of the configuratimiables have been changed

44,12'.

A WN

Module Chapter 16. Signal Processing

resize Re-calculate its input- and output-sizes
custom-msg React to a user-message
finalize Clean up allocated values

The names to the left are the internal names used in the malfileition. You will never call these
functions directly, but rather ask the MSR to do somethirad Will then call one of these functions. So if
you reconfigure one module usisgvr-sdhsetconfigureint you ask the MSR to set the configuration of
this module-instance to a certain value and to call the gpgatereconfigfunction.

16.4.2 Data Structures

A module has three different data-structures:

config Where other modules may ask for a change in the behaviou
stats Results from the signal-processing
private Internal structure that is not available to the wlgts

While the first two have already been discussed a bit, thd thinew. It may be used for internal tables
built depending on the configuration, it may contain a copyngbortant config-parameters or anything
else needed for a module to function correctly. An imporfaiht; the private-structure is personal to each
copy of the module, so it is not suited to keep 'global’ option

The config and stats structures are protected by mutexelsepsite open to all other modules to use.
So in order to use a config-structure, one has first to call

swr_sdb_get_.config_struct(context>id, (void*x)&config);

before being able to usmnfig- textgreatersomethingo free the structure, use

swr.sdb_free_config_struct(context>id, (void*«)&config);

after which other modules can alos access this structure.sa@me goes for the stats-structure. You don't
have to make this extra effort with the private-structueetteey are local to each instance anyway.

16.4.3 Data Types
16.4.3.1 For Config and Stats

Blocks
Blocks are a defined in the following way:

typedef struct {
void *data;
int size;
swr_signal_type_t type;
} block_t;

They can be used to give a window into an internal vector. Th&hed-filter module for example has a
block that points to the matched-filter used, so the user eartts&e matched-filter in real-time, using the
visualisation tool.

The datapointer has to point to the vectory you want to displsigeis the size in units ofype which
is one of the Data-Types described in here (Block, of course).

SYMBOL _COMPLEX
typedef struct {
short int real;

short int imag;
} SYMBOL.COMPLEX;

4512'.

A WNE

AWM

Module Chapter 16. Signal Processing

SYMBOL .COMPLEX _S32

typedef struct {
int real;
int imag;

} SYMBOL-COMPLEX;

DOUBLE_COMPLEX

typedef struct {
double real;
double imag;

} double.complex;

This structure is compatible with theomplex doublaleclaration from C. So, if you include "complex.h”,
you can declare aomplex doubleand tell the subsystem to use it as such.

SYMBOL _MMX

Describes one complex symbol in a special format. It is dikeethis:

Relmg — ImgRey

The utility of this is that if we want to do a complex multipditon, we can arrange the second complex
number in the following way:

Re)lmgRelmg

And then a special MMX-operation on these two complex numbids directly the result, separated
into real and imaginary part. This is very useful for cont@nos that need to be optimised.

Simple Data-types

us Unsigned 8-bit
S8 Signed 8-hit
u3z2 Unsigned 32-bit
S32 Signed 32-bit

SAMPLE_S12 Signed 12-bit, where the 12 upper bits are used. For thiéable hardware, the lower 4
bits signal RX/TX

SYMBOL_S16 Signed 16-bit real symbol

DOUBLE a double floating-point value

16.4.4 Macros

Each function that is defined in a module takes at least onenagt: swr.sdht *context In there all
necessary information to distinguish one instance of arathstored. As this information may be a bit
difficult to access, a lot of macros allow easy access to ifisstination. These macros are definegpc.h
which is already included in the templates.

16.4.4.1 moduleinit

This function is a bit special in that it only registers thedute with the CDB and doesn’t do any actual
signal-processing. So these are the macros you can use:

UM_CONFIG.INT adds an int-parameter to the configuration

UM_CONFIG.COMPLEX adds a complex-parameter to the configuration
UM_CONFIG.DOUBLE adds a double-parameter to the configuration
UM_CONFIG.DOUBLE_.COMPLEX adds a doubleomplex-parameter to the configuration
UM_CONFIG.STR128 adds a char[128] parameter to the configuration

46.12'.

Module Chapter 16. Signal Processing

UM_CONFIG_POINTER adds a void* parameter to the configuration

UM_STATSINT adds an int-parameter to the statistics

UM_STATS.COMPLEX adds a complex parameter to the stats

UM_STATS.DOUBLE adds a double-parameter to the statistics
UM_STATS.DOUBLE_COMPLEX adds a doubleomplex-parameter to the statistics
UM_STATS.STR128 adds a char[128] parameter to the statistics

UM_STATS POINTER adds a void* parameter to the statistics

UM_STATS BLOCK adds a block parameter to the statistics, seeef>par:Blocks</ref>
UM_STATS.IMAGE adds an image to the stats

UM_INPUT adds an input-port, for the types sesef>sub:Data-types/ref>, and allows to define a flag

UM_OUTPUT adds an output-port, for the types seef>sub:Data-types/ref>, and allows to define a
flag

16.4.4.2 other functions
private allows access to this modules private-structure

sizein(n) returns the input-size of the pomt This may also be used to assign a size to a port, so
sizein(0)=256;is valid.

sizeout(n) returns the output-size of the partAllocating sizes is possible as wittize.in.
dataavailable(n) returns true if the input-parthas some new data

buffer.in(n) returns a pointer to the input-bufferand clears the data-flag on this input-port
buffer.out(n) returns a pointer to the output-buffeand sets the data-flag on this output-port
call_Lmodule sends a MSGATA to the module

makethread puts a module in a thread

47.12'.

Chapter 17

Makefile

17.1 Make Arguments

Whenever you are in a sub-directory of the software-rad@my gan give some arguments to thmke
command. There are arguments that may be used everywhdre treg, some that are only valid in the
Radios/*subdirectories and some arguments that are only valid isubeirectories that contain code.
17.1.1 Common

These arguments may be used anywhere in the tree (excefdigedirectory):

clean Remove all object-files in all sub-trees
whole Re-compile the whole tree

base Re-compile base only

tools Re-compile tools only

modules Re-compile modules only, additionattpd coding mod data mod generalmod macrq mod signal
re-compile only this special modules-directory

show Starts the visualisation-tool
server Start the channel-server
kill End all simulations as well as the channel-server

cleanproc Remove all simulation-directories frdimp
rmall Unloads all real-time modules and stops RTLinux
cvsup Updates thevhole SRadio/*-tree using CV?3

cvscommit Commitsall changes to the SRadio/*-tree

17.1.2 Radios
Arguments that can be used in the subdirectorieRadfios

bsms Starts channel-server and both BS an$ pi8t. To stop, rumnake Kkill

1Concurrent Versions System
’Microsoft

4812'.

Make Arguments Chapter 17. Makefile

showbsms Likebsms but also runs the visualisation-tool

wait bsms Likebsms but stops the M3after 20 seconds and the BS after 30 seconds. Most useful to
check whether a radio exits nicely, before trying it in réade

shortwait bsms Likewait bsmsbut for the impatient: BS waits for 10 seconds, M8r 5 seconds. At-
tention: things might not be correctly initialised afterécends!

mc Starts channel-server and both Server and Client pastofn runmake Kill
showmc Like mc, but also runs the visualisation-tool

waitmc Like mg, but stops the Client after 20 seconds and the Server aftee@inds. Most useful to
check whether a radio exits nicely, before trying it in réade

shortwaitmc Like wait. mc but for the impatient: Server waits for 10 seconds, CliemtScseconds.
Attention: things might not be correctly initialised affeseconds!

17.1.3 Code

Useful arguments when you are developing code

user Loads the modules defined in the Makefile for simulatrmhumnloads them
usershow Likeuser but also starts the visualisation-tool

userwait Like userbut doesn’t unload the modules

userwait 5 Like user but waits for 5 seconds before unloading

userwait 10 waits for 10 seconds before unloading

userwait 20 waits for 20 seconds before unloading

userwait 30 waits for 30 seconds before unloading

userwait 60 waits for 60 seconds before unloading

ddd Start the graphical debugger in simulation-mode

debug Start gdb in simulation-mode

rf Starts the radio in real-time mode

rf _tail Like rf but also tails/'var/log/messagesherePR.DBGs will be written to

rf_show Likerf_tail but launches the visualisation-tool

rmall Unloads all modules from real-time mode

4912'.

Chapter 18

DBG-interface

18.1 Command-syntax

18.1.1 listmodules

returns a list of all available modules

Arguments none

Returns a moduleid,name list of all modules available, where modidas to be used for reference,
while name reflects the spc-name of the module. The retursieid korted on modulé.

18.1.2 listtag_modules

returns a list of all available modules and tags all moduse'seen’. See alstist new modules
Arguments none
Returns a moduleid,name list of all modules available, where modides to be used for reference,
while name reflects the spc-name of the module. The retursieid korted on modulé.

18.1.3 listnew_.modules

only returns modules that are not tagged as 'seen’. Usefylinrconjunction withlist_tag modules All
returned modules are tagged as 'seen’, too.

Arguments none

Returns a moduleid,name list of all modules available, where modides to be used for reference,
while name reflects the spc-name of the module. The retursieid korted on modulé.

18.1.4 showall

gives the whole description of a module
Arguments the id of the module

Returns
input number of inputs, followed by a type,len - list for eyanput
output number of outputs, followed by a caiconnindex,type,len list for every output, where

connid and connindex point to the module and port connected. If this portasaonnected,
connid and connindex are both -1.

config number of configs, followed by a name,type,value ftisevery configuration-item.

stats number of stats, followed by a name,type,value -dis¢¥ery configuration-item.

5012:.

Command-syntax Chapter 18. DBG-interface

18.1.5 show*

Returns only part of the description. "*” can be one of inpotitput, config, stats and will return the
corresponding information.

Arguments the id of the module

Returns Like showall, but only the asked argument

18.1.6 getoutput

returns a given output of a given module

Arguments moduleid,portnbr

Returns size,type,values where values are decimal, comma-sepleratues. For complex humbers,
each value is a (real,imag)-pair.

18.1.7 getblock

Returns the values of a block. Contrary to "shetats” and "showconfig”, "get.block” returns the values
in their binary form.

Arguments moduleid, statsindex

Returns The block of data in binary representation.

18.1.8 getimage

Returns an image that is stored in a stats. Reatiirnsfor a description of the values returned.
Arguments moduleid, statsindex
Returns The image in binary representation. The size of the retubhack is ofwidth- height: [bpgw]
. That means that a 20 x 20 black/white image = 1) will return 400 bytes.

18.1.9 setconfig

Sends a new config-value
Arguments moduleid, configindex, value value is in human-readable form.
Returns "Reconfigured” on success

18.1.10 newlist

A list is used when one wants to track a certain value in thensoé-radio, or a value-pair. The software-
radio tries its best to make sure that all value-pairs arestated, but it may happen that an older value gets
paired with a new value.

Arguments moduleid; , statsindex , moduleid, , statsindex If moduleid; is —1 then only a
single value will be tracked and the values returneddndlist will contain a value,time pair.

Returns The id of the list, in ascii

18.1.11 readlist

Returns the so far collected value-pairs. The cache is gftteh024, that means that you should collect
the data before 1024 are stored. In the most busiest scettdasoneans once every second.

Arguments list_id

Returns The first line contains the total number of value-pairs thal me sent. Then follow either
(value , value) or (value, time) pairs, each one followed by'm”.

5112:.

Command-syntax Chapter 18. DBG-interface

18.1.12 closdist

Finishes tracking of the values from this list.
Arguments list_id
Returns OK or error on error.

18.1.13 processlata

Tells a module to immediatly start processing. If the mochés inputs, all connected inputs will be
activated before processing.

Arguments moduleid

Returns OK on success

18.1.14 geitprofiling

Returns all profiling-data from a module. The software-oakkeps track of the number of calls and the
total execution-time of the following parameters: useissages, data-processing and total time.
Arguments moduleid
Returns Three lines of profiling with the time spent and the numberaifscseperated by a space. The
numbers are 64-bit integers. The time spent is returnguosin

18.1.15 ping

To test whether the software-radio is still running and yam to requests.
Arguments none
Returns "pong”

5212:.

Chapter 19

Signal Flow

For a correct understanding of what happens in the softwadi® and where to insert a new module, it
is very good to have an overview of the signal-flow that goesttph the radio. As of the writing of this
chapter, new hardware is being installed in our lab. For te&son, this chapter is seperated into three
sections:

e Common: the common signal-flow
 ICS-hardware: the signal-flow specific to the ICS-cards

* STM-hardware: the signal-flow specific to the STM-cards

19.1 Common

In figure 19..L you see an overview of the most common architeavhen building a software-radio. On
the left-hand side you see the transmitting modules whiltherright-hand side the receiving modules are
located. Each transmission is built arounglat which is a constant time-slice in the transmission.

19.1.1 Transmitting

The most common implementation starts with two blocks tleatehbits as output. Th8ourcemay be
anything, from a pseudo-random sequence to a part of a nietiraarsmission.

These bits go through @odingblock, where redundant information is added, in order taigssome
error-resistance when receiving the data. The ouput obhésation are again bits. For the coding we have
Idpc-codes, convolutional-codes or spreading-sequenlkieh allow also for to seperate multiple users if
they send at the same time-instant.

After the coding, the bits ge¥lappedinto symbols. The most common mapping is a QPSK-mapping,
where two bits define one symbol, as can be seen in f gure 18 mMapper-module supports also other
PSK-mappings or QAM-mappings. But commonly the QPSK-magjs used.

In the middle of this block, a test-sequence is inserted visicalledViidamble because of it's position
in the block, as can be seen in figure 2.9.3. The goal of thissestience is to be able to estimate the
channel at the receiving end and to perform a matched fijeafterwards, cancelling out any effects due
to the channel.

Once these four basic operations are done, the block comdmds®mplex symbols goes through the
hardware-specific part.

19.1.2 Receiving

Out of the hardware-specific part, we get again a block coegbas complex symbols. If we have a flat
fading channel with only one tap, that is a direct line-ofsjgs well as a perfect synchronisation between

5312:.

Common

Source Sink
¢ Binary T
Coding Decoding
¢ Binary A
Mapping Slicing
Y Complex T
Midamble Igfﬁ:l‘;g

\Comp]ex/

Hardware—
specific

Figure 19.1: The common part of the signal-flow

Chapter 19. Signal Flow

A Im
01 +1 00
’,
;—1 +1 Re
o .
11 -1 10

Figure 19.2: QPSK signal space

54/12:.

Hardware Chapter 19. Signal Flow

Data 1 Midamble Data 2

Figure 19.3: Position of the midamble

the sending and the receiving part (which is usually NOT teeg, then this receivd symbols would be the
same as the sent ones.

In common transmissions, this is not the case. For this reasohave theVlatched Filteringwhere
the midamble from the sending chain is used to estimate thargi-parameters. Using these channel-
parameters, one can improve the received quality of theakighhe output of this module is the filtered
signal without the midamble. This module usually produdss mformation used by other modules, such
asSNR or amplitudeof the signal.

Now that the received signal is filtered, it is ready to beeslicSlicing denotes the fact of taking a hard
decision on the received symbols. For a QPSK-signal, theram&of the symbol gives directly the two
bits. If the signal-alphabet is bigger, one has to calculaedistances between the received symbol and
all possible emitted symbols, and then taking the smallissaice. A hard decision is usually the worst
thing to do. For example the LDPC-decoder takes the complebsls directly from the matched filter
and achieves much better results.

After the slicing, we have again a block of bits, which runotigh theDecoderwhere an algorithm
tries to correct for transmission errors. As noted befoegatling on bits is notideal, but it is what happens
in most school-book examples. ..

The decoder ouputs again a block of bits that should contiarrors anymore. This block can now
be either used for the network-transmission, receptiomaf@ge, or just to count the number of residual
errors, in order to evaluate a code/decoder-pair.

19.2 Hardware

The hardwares job is to take the signal at it's sampling fezgpy, something around 1-10MHz, and to mix
it so that it falls in the carrier-frequency, 1.9GHz, or 248GHz. In order to relieve the hardware of
some very difficult filtering, it is important that the sigrent to the hardware does not occupy the whole
sampling-frequency bandwith, but rather just a portiort.of i

Furthermore it is important that, as the outgoing signaltisriéd, as less as possible intersymbol inter-
ference is produced. For this reason, we apply a root-raisethe filter, whose Fourier transform is the
square root of the commonly used raised-cosine spectruantdbt-raised cosine filter is used at both the
transmitter and the receiver, the product of the transfactions will be a raised cosine that will give rise
to an output having a minimal inter-symbol interferencenatteceiver.

The ICS- and STM-hardware differ mostly in two aspects:

e Band while the ICS-hardware wants to have the signal intese, the STM-hardware needs the
signal in passband

« Signal Unit the ICS-hardware works with complex samplekilevthe STM-hardware only works
with real samples

The figures 19.4 and 19.5 depict the steps done to the sigmaltfre fourier-transform point of view.
; 1 fof s
The range of the fourier-transform has been chosen te%ei , but one could have-5..; or —3..
without changing the meaning at all.

NIg

5512:.

Hardware Chapter 19. Signal Flow

X(f)

]
I
-172 0 172

> f
X(f)
A
| -
-172 0 12
Apply lowpass—Tfilt
X(f)
A
| ’ ’ -
—-172 0 12

Figure 19.4: The signal preparation for ICS

56/12:.

Hardware Chapter 19. Signal Flow

X(f)

-172 0 12

X(f)

—-172 0 172

Apply lowpass—Tfilt
X()

-1/2 0 172

Take the real—part «
X(f)

Hardware Chapter 19. Signal Flow

19.2.1 ICS-hardware

In figure 19.4, you can see the preperation necessary foirsgtitk signal to the ICS-hardware. The signal
is first upsampled by a factor of two. This is done by insertinggro in between two complex symbols.

Next we apply the lowpass RRC-filter and now we have a sigrldbcupies half the bandwith, but at
double the symbol rate. Thus, we didn’t loose information.

On the receiving side, exactly the contrary needs to be dbirst:we apply the RRC-filter, then we
downsample by a factor of two. The filtering is necessaryhastmight be some other signal next to ours.
And, because the reception sample-rate is twice the symab®]-we have to downsample by a factor of
two.

19.2.2 Philips-hardware

The latest hardware that is not yet installed has been desdlby Philips. It contains the A/D- and
D/A-converters directly on the same board as the RF-parte ddnnection to the PC is made via two
SCSti-cables, and the PCl-card only contains simple glue logjutcthe data on the PCl-bus or to read it
from there.

This hardware works at 1.9GHz and has a bandwith of 5MHz.

19.2.3 STM-hardware

Looking at figure 19.5, you can see that for the STM-hardwareneed to upsample by a factor of four.
The filter chosen for the pulse-shaping is a passband-fittethas a bandwith of 1/4.

Because the hardware accepts only real samples, we cap'thesignal at baseband, as a loss of the
signal would happen. You can see that by taking the realgdite signal, it gets mirrored at the axis. If
you do this with a baseband signal, information loss occurs.

These three operations are done using advanced MMX-opesatiat manage to take advantage of the
special structures of the filters and the signal.

1Small Computer System Interface

5812:.

Chapter 20

Important Modules

In this chapter you'll learn about some of the most importaatiules in the software-radio. They represent
the basic functionality and should be known by everyonewaatts to handle the software-radio.

20.1 STFA

STFA stands for Slot To Frame Allocator. Its main purpos®imap the RX- and TX-slots to the correct
moment in time. First of all you need to understand the ppiles of a slotted TDD transmission using
frames. In figure 20 1 you can see a transmission of 3 framash Eame takes the same amount of time.
Normally the frame-structure stays the same during thestrassion. Of course this wouldn't be the case
in a multi-user environment, where a frame contains thectire of the up- and downlink slots, which
would change during connection and disconnection of users.

The STFA represents this frame-structure. It is a modulb wiputs and outputs, where is the number
of slots per frame. The purpose of the STFA is to calculatestbis so that they are sent at the correct mo-
ment in time. To understand figLre 20.2 correctly, it helpisrtagine yourself the STFA as a representation
of the channel. So the inputs of the STFA are the inputs tohla@igel, which corresponds to the TX-part.
The outputs of the STFA are what comes out of the channel wkithe RX-part.

Internally, the STFA has two large sample-buffers that lnsld complete frame in memory. One buffer
is read continousl{ from by the D/A converter, while the other buffer is writtendontinoushyf by the A/D
converter. For this reason, it is important that the restitiree slot is computed before the D/A converter
needs it. It is also important that a RX-slot is processedieghe next frame.

1the transmission is done in blocks using DMA
2the transmission is done in blocks using DMA

| | | | - 3
! i | | = time

Frame n— Frame n rame n+1

| | | | | | | | I :
] | 1 | | | | 1 | = time

SlotO Slot1 Slot2 Slot3 Slot4 Slot5 Slot6 Slot7

Figure 20.1: The frames and slots

59/12:.

STFA Chapter 20. Important Modules

Sending chains

To Antenna =— | . TX-buffer L
Slot O |Slot 1 [Slot2 (Slot3 |Slot4 |Slot5 |Slot6 |Slot7 STFA
From Antenna —» . | ' RX—buffer' | |

Receiving chains

Figure 20.2: Inputs and outputs of the STFA

BS

Synchronisation Downlink
ISlot0 |Slot 1 [Slot2 Slot3 |Slot4 [Slot5 [Slot6 [slot7 | STFA
Uplink Synchronisation

Figure 20.3: A typical set-up of the STFA

20.1.1 Synchronisation

A common problem in a slotted TDD-environment is the synaoigation of two stations. If we consider
two participants in a communication, called BS and*\(®r Base Station and Mobile Station), one has to
define at what instant in time the first frame starts. If we tadl time-instantsrame(0) , then all consecutive
frames will start atframe(N) = tstart + Ndframe Where is a positive integer art;ame is the time-duration
of one frame. This also defines all slotstas(m) = tframe(N) + Mdsior With dsjor the time-duration of one
slot and O< m < slots.

We can’t know beforehant};ame(0) , and alsodframe is only known up to a certaidt , because of
clock-drifts between the two stations. One solution is tadsa synchronisation-signal in slot 0, so that one
can knowtqt(0) for every frame. Then we can firiglo:(m) for all the other slots of the frame, supposing
that the error irdg ot is negligible when calculating the time-instants of oné.slo

This setup is shown in figure 20.3. In a real system, thé’ Bt&rts out with synchronisation modules
attached to all its STFA-outputs. The reason for this is thain startup, we don’t have any information
abouttg(0) , so we have to expect the synchronisation-signal on any €hoice the synchronisation-
signal is found on a given slot, the buffers are adjusted abttte synchronisation-signal falls insboty

3Microsoft

60.12:.

STFA Chapter 20. Important Modules

slots_per_frame

i
Y

Frame I I el N

Slot]

-
guard_period_chips

-
blocks_per_slot

Figure 20.4: The different size-parameters

. Then, each timelof is received, the buffer is adjusted again, so thatsg}(m) are accurate and in
synchronisation with the BS again.

20.1.2 Important Parameters

There are three groups of parameters in the STFA:

« Structural which define the size of the different parts & 8TFA
« Timing everything that got to do with preparation of slotglaynchronization

« RF the parameters of the RF-part are also reflected in th&STF

20.1.2.1 Structural

These are quite important, as they define the basic struahgdeize of the STFA. You can’t change these
parameters once the STFA has been started, as the DMA<dramgtild be disturbed greatly by this. An
overview of the parameters is given in figure 220.4.

Theblocks per.slot parameter has a unit of 128 symbols. By taking the defaultevaf 20, this gives a
slot-length of 2560 symbols. Substracting the guard-gerie@ get a useable slot-length of 2470 symbols.

To make things even more complicate, the total numbdrletkshas to be a multiple of 16. This is
due to the fact that the DMA-transfer is done in blocks witliza ®f 16 * 128 symbolé. Taking a smaller
block-size for the DMA-transfer would result in more intapts and thus a higher system-load.

As we have a TDD-system, TX and RX slots are stacked up in tiithout any special handling, the
RF-system would have to be able to switch off the transmitiitlirom one symbol to another. Because
this is very difficult to do, eguard-periodhas been inserted. During this time, the state of the RFsdard
not defined, and no useful data is transmitted.

20.1.2.2 Timing

Usually you don’t have to change these parameters. Theykes iinto account by the synchronisation-
macro module.

4This is defined in Basg¢Antenna/ICS/ics dev.h

61.12:.

STFA Chapter 20. Important Modules

TX2

=]

—

‘SlotO |S]0t] |Slot2 Slot 3 ‘51014 |S]0t5 ‘31016 |Slot? TFA

R

Slicer

Sink

Ul

Figure 20.5: Two transmit and one receive-chain as an exampl

20.1.3 Attaching Chains

The STFA on its own doesn’t do anything. The mode of operatiod the kind of mapping done over
the air is defined by attaching chains to it. If a chain is ditatto an input of the STFA, we talk about a
transmit-chain, or TX-chain. A receive-chain or RX-charattached to the output of the STFA.

In figure 20.} you see a picture of some example-chain. In tidellmis the STFA that is responsible
to alert all modules as soon as there is some data to proceexdkig at the RX-chain, you see that it is
very simple for the STFA to know when to alert the RRC-moduléhe chain. The right moment is when
this slot has been received.

For the TX1-chain, the right moment to alert the source-n@tiizjert = tsiot(0) — dealcehainxt - Unfor-
tunatly thedcaichainxt is Not known in advance and might change during the run ofdftevare-radio. One
way to tackle this problem is to put an upper time-limit on ¢laéculation-duration, and call the top-module
that much in advance. In the actual STFA-implementatigfe hainxmax = 2* dsiot , SO that the first module
of the TX1-chain is called at the beginning of slot 0.

Another problem arises when we have constructs as in the @ °. Although it is not optimal
(See 34.2), we applied the same reasoning as with the TXib;chat is, we call the top module of the
TX2-chain two slots in advance. The disadvantage is, tleiiole chain has to finish in the time: >

20.1.3.1 Overcoming the Time-Limits

In an ideal setup, you'll be able to calculate every slot imaarfe fast enough, so that it can be sent on
time over the air. Unfortunatly, this is not always the caSemetimes you want to trade in some of the

5The two branches may also fall into two different STFAs

6212:.

STFA Chapter 20. Important Modules

real-time with the possibility to do some more calculatitimsn the time allows. The problem is different
on the sending- and on the receiving side.

The only time you'd want to send a slot that takes a very lomgtio calculate is when you want to do
repeated measurements on the slot. So what you can do istdatalthe slot once, and then send it again
and again. You can do this by setting the notice-point ndtéadp-module, but rather to the RRC-module
only. Like this only the pulse-shape will be done, takingecafran eventual desynchronisation between the
two radiost.

On the receiver side, the only reason for taking more thamllbeated time is about the same. But you
may easily take up more time than 8y , if the total amount of all receiving chains is not biggerrtha
one frame. If this might be the case, then you can use thenfisiipcommand:

make_thread(rrc_id);

This means that every time the STFA has data that needs toobegsed, it checks whether the chain is
still working, and only notifies the top-module, if no workdsne. If the chain is still working, the STFA
doesn’t send the request, and waits for the next frame tokdbeck again.

Here at EPFL we use these two techniques to measure codéeg)aspecially LDPC-coding schemes.
It is important to us that we get an actual transmission, hatyeing 10 slots per second is good enough
for our case.

SRemember that the MSnoves in time

6312:.

Chapter 21

Subsystems

The software-radio has a reception and a transmission fizath one of these has its specialities and
quirks. Here I list the names used in programming, the i@8iris and how they come across. Only the
reception-partis treated in this document, as the trarsamspart is quite simple.

21.1 Nyquist

It is very important to understand the implication of Nygaitheorem for this reception-chain. Nyquist
wrote that the sampling-frequency must be twice the bardefithe signal to sample. He also described
the aliasing that happens if you sample a signal that is ottiisfbound. For the reception-part of the
software-radio, we rely on this aliasing to capture a signan intermediate frequency of 70MHz using a
sampling-frequency of 100MHz. In a most general way, givengarameters:

fi_rx the intermediate frequency
Wi_rx the intermediate used bandwith
f_adc the sampling-frequency of the analog-to-digital cotare

then fadc must be chosen so that

fadc
2

. WirX . Wir X
N ¢ fIrX—Tr,fer—F 2r

is fulfilled. Else we get an overlapping of the aliased sigaral we loose information.
For the software-radiofi;x = 70MHz , wi;x = 20MHz, fadc= 100MHz, which fullfills the above
equation.

21.2 Reception-chain

The different parameters of fia.2.L.1 and 1a.221.2, their lauies, and a short description:

frf [2300..2500]MH 7, the transmission-frequency

attnrx [0-41]dB, the attenuation of the Rx-chain (0 gives stremigutput, 41 gives weakest)

f_adc [1-100]MHZ, the sampling frequency of the ADC.
fi_rx [1-500]MHZL, the intermediate frequency. Every frequency abéigé will be attenuated due
to the sinc of the ADC.
IMegahertz

64.12:.

Reception-chain

AN

Chapter 21. Subsystems

\i ICS
RF-card 7| ADC [—=| DDC
Frequency (2.3 —2.5)GHz (1-100)MHz (0-50)MHz (0—20)MHz
Parameters f rf f adc fi_rx
Attn_rx fs rx
W_TIX
sig_type
Figure 21.1: Reception-chain
DDC
X
ADC ®\ Decimation Filtering PCI
Freq—Gen.
Parameters fi rx ratio rx W X

Figure 21.2: The whole chain and the most important part of it

6512:.

PCI

More detail Chapter 21. Subsystems

fs_rx [O—“E‘TdC JMHz2, the final sampling frequency (the DDC does down-samplir@)ntrary to
f_adc, fsrx is measured in complex samples.

W_Ix [0.08-0.75], the portion of the final sampling frequensyx which is not cut off by the DDC
filters.

sig.type SIGCOMPLEXICS, SIGS16 for FPGADEFAULT
SIG.COMPLEXS16 for FPGAS16

21.3 More detall

The final sampling frequency is limited by the use of the DDI€thie card. A simplified structure of the
DDCs can be seen in fig.2:l.2. Due to internal limitations,dhmallest useable decimation factor of the
DDCs is 8, and the highest is 4096. For more detail, see thgaBigrdocumentation on page 11, 3.4.2
and references.

21.3.1 wrx

This parameter is also dependant on the DDC-chips. In 12 #ds is simplified by &iltering block. The
DDC itself does implement this filtering with two filters, tad cfir and ffir. The exact nature of these
filters is subject to a subsequent work and thus only preutatied filters have been used. This is why the
bandwith can only be one of 0.085, 0.17, 0.34, 0.40, 0.5®,.0.7

Another point here: the filters ifilters.c are defined for twice this bandwith. This is because of the
internal workings of the DDCs and can only be understoodughoa thorough study of the Graychip-
documentation, see also the document about the DDC by Ignace

21.3.2 sigtype

The signal-types are defined for the software-radio and eanhmsen to be one of the following. The
choice of the signal-type influences also whether the DD€sised or not.

SIG.COMPLEXICS is the standard mode of the ICS-card. In this mode, DDEsaabled and the signal
is outputted in baseband.

SIG.S16 bypassesthe DDCs and transfers the direct output offi&sAThis has been tested with one
ADC only. Itis useful for processing high-bandwith signals

SIG.COMPLEX_S16 is only possible with a re-programmed FPGA on the IC8sddDCs are enabled,
only one channel is transmitted, but not in the SIOMPLEX ICS format that takes 128bits
per sample, but in a more simple SIBOMPLEX S16 format, that only takes 32bits per
complex sample, thus allowing 4 times more storage.

66.12:.

Chapter 22

Interface

The following files have been rewritten:

Include/antenna.h
Base/Antenna/ICS/*

Base/Antenna/Common/antenna.c

In table 22.0.3 you can see the newly defined commands.

22.0.3 New commands defined

Name Short description

swr _ant _ics _init Initialises the ics-cards, should be called first

swr _ant _ics _get _fs _rx Returns the real sampling-frequency

swr_ant _ics _get _fs _tx Returns the real sampling-frequency

swr_ant _ics _rx Sets the bandwith and the if-frequency

swr _ant _ics _rx _freq Sets the if-frequency of the reception, also wh
the radio is running

swr_ant _ics _tx Sets the if-frequency of the transmission, al
while the radio is running

swr _ant _ics _clk Sets the speed of the clock-reference, as wel
the multiplication-factor of the DACs

swr _ant _ics _start Starts the transmission

swr _ant _ics _stop Stops the transmission

swr _ant _ics _io Returns the time left to reach a certain position
the reception

swr _ant _ics _set _synth Sets the synthesizer on the RF-card

swr _ant _ics _write _ddcs Writes the calculated values to the DDCs, can’t

called while the radio is running!

67.12:

ile
SO

as

in

int swr_antics_init(fs_rx, fs_tx, ch.rx, ch.tx, sigtype); Chapter 22. Interface

22.1 int swr_ant_ics.init(fs_rx, fs_tx, ch_rx, ch_tx, sig_type);

This is the first function to call to initialise the cards. $Hunction can only be called when the cards are
not running, as some very basic parameters are defined in here

22.1.1 fsrx

Type: double

Description:

sampling frequency for the reception, in Hz. Must be betwg&@kHz and 3MHz. The sampling-
frequency on the reception has some constraints, desdrilibd functionswr antics clk. This sampling-
frequency is given in complex samples, so that a samplimggacy of 10MHz gives a theoretical bandwith
of 10MHz! See als@awr antics rx

22.1.2 fstx

Type: double

Description:

sampling frequency for the transmission, in Hz. Must be leetwl10kHz and 3MHz. The sampling-
frequency of the transmission has some constraints thatesm@ibed in the functioswr.antics_clk. This
frequency is in complex samples! Please be aware that thes@e an in-built filter that cuts the useful
signal to about 75% of the bandwith of#s. So if fs.tx is 1MHz, the useful bandwith is about 750kHz.

22.1.3 chtx

Type: uint
Description:
how many rx-channels, between 0 and 4 —

22.1.4 chtx

Type: uint
Description:
how many tx-channels, between 0 and 4

22.1.5 sigtype

Type: swr_signaltypet

Description:

the desired type of the rx-channels, it depends on the pnogmathe FPGA. A version exists for
a one-channel, 32-bit complex reception mode (16bits redl B6bits imaginary), using the DDCs but
allowing for a longer aquisition time. In this modgf.tx must be 0 andh.rx 1. The different signal types
correspond to the following:

SIG.COMPLEXICS is the signal used by most of the radio-systems, as ivalto use the DDC and
works with complex signals on the reception path

SIG.S16 is used for the 802.11. Here the DDCs are completely lsgoaand raw ADC-material is
received.

SIG.S32 notimplemented yet: DDCs work in wideband real-modg onl

SIG.COMPLEX_S16 uses the modified FPGA to implement a 1-channel 32 to téimtersion, including
the DDCs. Used for GPS-reception.

6812:.

int swr_antics_init(fs_rx, fs_tx, ch.rx, ch.tx, sigtype); Chapter 22. Interface

After this function has been called, everything is set uphsd $wr.antinit can be called. All other
funtions defined in here are only for more special needs.

swr.antics.init calls swr.antics_clk(100e6, 4, 50e6 hich initialises the multipliers on the ICS-
cards.

fs_rx and fstx have to meet certain criterias, so the final values magdifom the chosen ones! To get
the real values, use the functiosisr.antics getfs_rx as well as the functioswr.antics getfs_tx, which
return the re-calculated values.

69.12:.

double swrantics_getfs_rx(void); Chapter 22. Interface

22.2 double swrant_ics_get fs_rx(void);

22.3 double swrant_ics get fs_tx(void);

These function get the actual sampling frequency as caélilay swrantics.clk. They return the actual
frequency in Hz, which may differ from the settings, becaofsine limitations of the cards.

22.4 void swrant_ics.rx(ch, fc, W);

22.4.1 ch

Type: int
Description: The affected channel, 0-3

2242 fc

Type: double
Description: The new center-frequency

2243 W

Type: double

Description: The bandwith of the final samples that contain data, relédiV&rx set by swrantics.init.
W € 0.085, 0.17, 0.34, 0.5, 0.75. If a non-existant bandwitlelected, the next-higher (or highest avail-
able) will be chosen.

fc is re-calculated to fit intc@O..f%‘] , using the availability of different Nyquist windows. Riii$ is
converted relative to the sampling-frequency:

fc
~ fsx
Then it is converted using:
1-|(f — | f])+2-1
- 2
f_p is calculated with 31 bits precision. For arfsof 100MHz this gives a precision % Hz.

fp

22.5 void swrant_ics_rx _freq(ch, fc);

Function to set only the intermediate-frequency of the pdoa-part.

2251 ch

Type: int
Description: The affected channel, 0-3

2252 fc

Type: double

Description: The new intermediate-frequency, see also the functionaswics rx

Because it is very difficult to re-program the DDC-chip witite software-radio is running, this func-
tion has been written to only re-program the intermedia¢epiency and nothing else. This function only
calculates the new value to be programmed in the DDC-chip.fifal programmation of the chip is done
in the DMA-interrupt so that the transmission is not int@ted.

7012:.

void swranticstx(ch, fi.tx); Chapter 22. Interface

22.6 void swrant_ics_tx(ch, fi_tx);

This sets the intermediate frequencytXi for the tx-channel. For the re-calculation of the intevdiate
frequency, seswr.antics.rx.
This function can be used without problems during runtime.

22.6.1 ch

Type: int
Description: The affected channel, 0-3

22.6.2 fitx

Type: double
Description: center-frequency, in Hz

22.7 void swrant_ics_clk(f_adc dacmult, f _dac);
The ICS-cards usually are clocked by an external 50MHzkcldtyou set a new clock-frequency, fx

and fstx are re-calculated and might differ. A frequency set watlr_antics.init might be possible with
f_dac=50MHz, but not fit correctly intadlac=25MHz!

22.7.1 fadc

Type: double
Description: the external frequency in Hz

22.7.2 dacmult

Type: int
Description: the multiplier. One of 1, 4..16

22.7.3 fdac

Type: double
Description: the external frequency in Hz

22.8 void swrant_ch_start(void);

Here the channel begins to send/receive data. All inigdlisntennas begin at once to send/receive.

22.9 void swrant_ch_stop(void);

Here the channel interrupts sending/receiving data. It beathat later on another transmission starts.

22.10 int swrant_ch_io(slot);

This function returns the time to wait so that the next sldt e sent/received.

7112:.

void swrantch_setsynth(ch, RF, side); Chapter 22. Interface

22.10.1 slot

Type: int
Description: read/write up to this block

22.10.2 return

Type: int
Description: The time in micro-seconds (18) to wait

22.11 void swrant_ch_setsynth(ch, RF, side);

Sets the synthesizer on a given RF-board. Due to some cintstithe RF-boards take quite some time to
behave stable in a new frequency. This is in the order of alecfpms.

22.11.1 ch

Type: int
Description: The affected channel, 0-3

22.11.2 RF

Type: double
Description: The frequency in Hz: [2.3..2.5] * 10

22.11.3 side

Type: int
Description: low- or high-injection:

0 Auto
1 low-injection

2 high-injection

7212:.

void swrantch_setfreq.diff(ch, freq.diff); Chapter 22. Interface

22.12 void swrant_ch_setfreq_diff(ch, freq _diff);

As described in the functioswrantics tx, the value for the intermediate tx-frequency has a resmhubif
32bits. With this function, you can set an offset to the 'aéficvalue.

22.12.1 ch

Type: int
Description: The affected channel, 0-3

22.12.2 frecdiff

Type: long int
Description: An offset to the set value. The stepfz%} , Where fstx includes an eventual multiplicator
(usually 4).

22.13 write.ddcs(void);

A function calledics554ddc setcic is used to set the decimation to the desired value. The malvigm is
the calculation of the attenuation of the signal. This fiorthas been tested for a wide range of decimations
and should work without problems.

7312,

Chapter 23

FPGA

For the work on the software-radio, we have two versions efRRGA:

STD which is the standard off-the-shelf version, that wddtsSIG.COMPLEX.ICS and SIGS16
GPS which is used for the GPS SIGOMPLEX_ S16

Both of these modes can be programmed using a simple Tod.ca@hibe found in the directory FPGA.
If all you want is to reprogram the FPGA, here is how to proceed

1. cdinto the directory
2. .Icompile
3. program:

 for the GPS-version:
.program gps

« for the standard-version:
.program std

Of course, if you want to switch back and forth between versjyou don'’t have to enter the "./compile”-
command every time.

23.1 Directories

Module The kernel-module to talk to the ics554-card
Program The actual programmer for the FPGA
Api The Application Programming Interface, the glue betw&éoduleandProgram

inc The include-files necessary

Allthese files are nearly identical to the software deligesa the ICS-CDs of the software-development
pack. The only change has been done toRhegram so that it accepts the command-line switches and
doesn’t wait for a key.

74/12:.

Testing the version Chapter 23. FPGA

23.2 Testing the version

Before running the radios it is a good idea to verify the vansdf the program in the FPGA. This can be
done by running the following program:

cd
$SRADIO/Test/FPGA
make test

This will tell you whether the actual program supports &itB&D or GPS mode.

7512,

Chapter 24

Tidbits

24.1 DMA-considerations

Size of the slots and FIFOs:

51% __ 51X __
216 — 16k 2x4 T 64k

For 1 slot RXx - icsb54 TX - icsb64
Samples 2560*2=5120=5k 2560%2=5120=5k
Bytes 5120*16=81920=80k 5120*4=20480=20K
FIFO-size [bytes]| 65536*8=512k 65536%4*2=512k
Max samples

The samples per slot is given by the pseudo-UMTS system ofdftevare-radio and is fixed for the
moment at 2560 samples. As we do an oversampling by a fac®this gives 2560*2=5120 samples per
slot, for both the ics554 and ics564.

The total bytes is calculated aamples bytegersamples wherebytegersampless:

4 = 16bit real + 16bit imaginary

16 = 32bit real + 32bit imaginary, but for two channels, as we’ctreat only one channel at a
time in the ics554-card

According to the ics-554 documentation E10681 Rev.B p.lHFO is sized at 65536 * 64bit-values,
which gives 512kBytes. The ics-564 documentation E10734-Re 9 gives the size 65536 16bit-samples
as “approximately one quarter of the FIFO-size”. So theltigt65536*4*2 = 512kBytes.

24.1.1 Conclusion

The DMA-size will be dependant on the slot-size. So, thelelvei 1 slot per DMA-transfer. This limits
the slot-length to 16kSamples for the Rx-part, but that &hba OK.
Care has to be taken for small slot-sizes, as the DMA-tramsfppens in two steps:

1. Fill up the FIFOs on the ics564
2. Start the transfer

3. Wait for underflow of the FIFOs and re-transmit

76/12:.

Server Chapter 24. Tidbits

24.2 Server
The old implementation of the server takes DMBA OCK-sized packets and works on these. In order to

rewrite only what is necessary, | adjusted the Base/Ant&&imaiLics in a way to chop down the slots into
DMA _BLOCK-sized packets. Too bad if it is not a multiple of theEhere is no check against that.

24.3 Resampler

A big mess that nobody understands. Hopefully the work ofstnéent this summer sheds some light on
this.

24.4 Samples, Chips and Symbols

The current setup has 2 Samples for 1 Chip, and 1 Chip for 1 8{wlithout a spreading-sequence). This
means, that there is a 2 x oversampling.

7712,

Part IV

HOWTOsS

7812:.

Chapter 25

From Conception to Measurement

Of course the main idea behind the MSR is that you're able ftewrew modules for it. This chapter
will give an introduction with an actual example of a modugeveell as an implementation of a radio-
transmission. After this you should be able to create your owdules and put them into use. An important
introduction can be found in chap er 31. You should alscealyehave run the example in chagter 28. This
part is a bit heavy on coding, but you won't be able to write mled without a good knowledge of C.

25.1 Defining New Modules

In here you will learn the most important things about a medubbw it works, how to use it, and how to
extend it. This example is already present in the tree, butogm read this section to get a feel of it.

The goal of this module will be to measure the SNR of the sigiafken though this functionality is
already implemented in a module, it is a nice idea to have aipitisy to compare the results of the two
approaches. The existing module compares the receivedngasequence with the original in order to
calculate the SNR. As the training sequence is only part cdrassmitted slot, it is a good idea to compare
this SNR with the SNR computed in here.

In order to calculate the SNR differently, we will transmiteaadom sequence and then compare it after
the transmission. This is depicted in fig. z5.1. In order towithe exact amplitude, it is important to know
the random sequence in advance. This is done by settingeth@parameter of the random-module.

Once we have the received signek y; + iyi = [YorYar---Yn—1r] + i[Yoiyii.--Yn—1i] and the transmitted
signal , we can calculate the amplitude:

a— ZIZQVirSIgnXe)-+yisignixi)

n
and also the variance:
v = Ziso0nr—asigixr))®+(yi —asign;))®

2n
and the signal to noise ratio is then
SNR= 10+ log(&)
The correctness of this assertion is left as an exercisesteetdder.

Random Midamble Random

Figure 25.1: The example slot

79/12:.

Defining New Modules Chapter 25. From Conception to Measargm

25.1.1 The Files

Now that we know what it is about, let's have a look at the writfiles. For your information you will
learn where the templates for the files come from in everyi@ectThe discussion then is only about
the parts that have been added. In the directdgdules/Signalsthere is a directory calledNR in
there you find the code for the SNR-module. The MSR knows atiositdirectory because of the file
Modules/Signals/Makefilthat has an entr$NR in the list of DIRS. You can have a look at this Makefile
to see it.

The template files come from ti@onventionglirectory and are called:

Conventions/multi_*.c
Conventions/Makefile.module

Most of the modules come in two parts: one sending part andeg®ving part. But as they usually are
used in a pair, they are put together into one module. So a® et confused with different modules, they
are renamed to:

multi_template.c -> snr.c
multi_template_send.c -> snr_send.c
multi_template_rcv.c -> snr_rcv.c
Makefile.module -> Makefile

25.1.1.1 snr.c

Now look first at the filesnr.cand look at the places that contain some documentationdally important
to keep this documentation up-to-date, so that other pdope what it's about:

SNR - measure the signal to noise ratio of a transmitted slot.
In order to do this, we send a slot of known random data that
is measured on the other side.

This is all that is needed. Not a big description, just enaioginow what it's about.

Whatit does is the following: once the modusleris loaded into the memory, the functispcmoduleinit
is called, which in turn callscv_moduleinit from snr.rcv.c andsendmoduleinit from snrsend.c These
two functions are responsible to tell the CDB about their eatheir input and output as well as their
paramters.

25.1.1.2 snrsend.c
This is the part that prepares the slot.

documentation. At the top of the file, you see again a short description of tioglute
snr_send.c - sends a slot of random symbols

and a bit further down (after the copyright message) a bitnodidescription.

This module expects some random input that is then modulated
using QPSK modulation so that the noise can be mesured. It can
send the QPSK symbols either on the axis or in the corners.

8012:.

Defining New Modules Chapter 25. From Conception to Measargm

config-structure We want the user to be able to change the amplitude of what me& ®eer the channel.
So, edit the config-structure, and make it something like:

typedef struct {
/I The amplitude of the generated QPSK-signal
int amplitude; // 32767
/I The QPSK-type, 0->in the corner, 1->on the axes
int type; // 0
} config_t;

It may seem strange that we take an integer for the amplitudg;ou have to know that the signals are all
in 16-bit integers, so what usually is betweeth and—1 is now betweer-32767 and-32768 .

private-structure Once the user changed the configuration, we will store it impoivate variable. This
is more for convenience than anything else:

typedef struct {
int amplitude;
int type;

} private_t;

The other structure may be left empty, we don’t need it fos tkample. Just after the structures is a
function called

sendinit Why another initialisation function, you might ask. Welkmember from chapter &.2 that
first the module is registered with the CDB, before it is pbkesto instantiate it. So, this function is what
is called each time this module is instantiated. In our edampe just want to put a default-value in the
amplitude-part of the configuration, so add this line:

config->amplitude = 32767;
config->type = 0;

32767 is the maximum number that we can have in a 16-bit sigagdble.

send.configuredinput This function is called whenever the MSR wants to know whatdize of the
input should be, given the size of the output. So, for eacht &fihput, we create one symbol with the
QPSK representation. This means that two bits of input ereae symbol of output, at least for an even
number of symbol-outputs. The only tricky part here is tihe input is not counted in bits, but rather in

bytes. Sizenput = %‘b”‘p‘“ , which is written in this function as

size_in(0) = (size_out(0) + 7) * 2/ 8;

This assures that we always have enough bits to write to ttpuau
send.configure_output The same as before, but this time the opposite direction:

size_out(0) = size_in(0) * 8 / 2
sendreconfig We use this function to copy the configuration-data to ourgié structure:

private->amplitude = config->amplitude;
private->type = config->type;

81.12:.

Defining New Modules Chapter 25. From Conception to Measargm

sendpdata Now comes finally the processing function. This is where tleémaction takes place. Let’s
first define some variables:

/I Definition of variables - don't touch
stats_t *stats;

int i, amp;

U8 *in;

SYMBOL_COMPLEX *out;

To get to the input and output-buffers, we have to do the fahg:

in = buffer_in(0);
out = buffer_out(0);

The first line deletes thdatabit on the input-port, signaling the MSR that the input-gderfree again to

receive some data. Furthermore it returns a pointer to thetibuffer of this module. The second line gets

the output-buffer of this module and sets tthgtabit on the output-port. Once this function returns, the

MSR checks for thelatabit in the output-port and, if it is set, handles the progesg$o the next module.
OK, now we just have to process the data:

Il Fill the slot with random QPSK symbols
for (i=0; i<size_out(0); i++)
switch(2
case 1
/I The amplitude in this case is
II Sqrt(Re™2 + Im™2) and thus the
Il desired amplitude has to be divided by
Il sqrt(2)
amp = private->amplitude / sqrt(2);
oufilreal = (2 * (*in & 1) -1)
*in = *n >> 1;
outfilimag = (2 * (*n & 1) - 1) * amp;
fin = *in >> 1,
break;
case 2:
amp = private->amplitude;
if (*in & 1)
*in = *in >> 1;
oufijreal = (2 * (*in & 1) - 1) * amp;
outfi].imag = 0;
} else {
*in = *in >> 1,
outfilimag = (2 * (*n & 1) - 1) * amp;
outfi].real = 0;
}
*in = *in >> 1;
break;
}
/I Get the next input-byte of random
if (P& 1(1%4))
IN++;
}
}

* amp;

8212:.

Defining New Modules Chapter 25. From Conception to Measargm

You might not be completely fond of this example, but it wogkst to check).

send custommessagerl his function is not needed and can be deleted

sendmodule.init Registers this module with the CDB. The CDB first wants to erimed about the
type of module to be attachdd In our case, we have one input, one output, one config-paearaed 0
stats-parameter:

desc = swr_spc_get_new desc(1, 1, 2, 0);
Then we have to tell about the config-parameter, the inpag-tnd the output-type:

UM_CONFIG_INT("amplitude”);
UM_CONFIG_INT("type”);

UM_INPUT(SIG_US8, 0);

UM_OUTPUT(SIG_SYMBOL_COMPLEX, 0);

In order for the MSR to know what functions to call in what case have to define 'call-back functions’.
As these are always the same, they are already pre-definked tarnplates, and we only have to delete the
sendcustommsgentry. Now the module-description is complete, save fortame:

send_id = swr_cdb_register_spc(&desc, "snr_send");

25.1.1.3 snrrev.c

Let’s start with the comment in the beginning of the file:

This module receives the stream from the matched filter
and the stream of random-signals that are supposed to be
the same that have been used by the snr_send. It then
calculates the amplitude, the variance and the snr.

This means that this module has two inputs: one from the aflaand another one from the random-
module.
config-structure Again we have the possibility to change the type:

typedef struct {
/I The QPSK-type, 0->in the corner, 1->on the axes
int type;

} config_t;

stats-structure So we're able to retrieve the SNR from the outside, we haverii\it in this structure:

typedef struct {
double snr;
} stats_t;

1For further information, look &t 8.2.2

8312:.

Defining New Modules Chapter 25. From Conception to Measargm
rcv_init Let's just start with a SNR of -2.3:

stats->snr = -2.3;
config->type = 0;

rcv_reconfigure
private->type = config->type;

The functionscv_configureinput andrcv_configureoutputcan be deleted, as this module is at the end of
the chain.

rcv_pdata Here goes the working function. It's just about implemegtihe above formula. Let's go
through step by step. Definition of variables:

stats_t *stats;
SYMBOL_COMPLEX *in, *buf_rnd;
U8 *in_rnd;

double signal = 0., noise = 0,;
int i

Then we have to make sure that we have both the signal fromhidrenel and the random-data:

if (!data_available(0) ldata_available(1)){
PR_DBG(4, "Not all data available yet\n");
return O;

}

Now we reconstruct so that we can implement the formula galeove. Instead of calculating and then
taking the sign of it, we directly calculate with an amplieuof 1 . Again, once for the QPSK-signals on
the axes, and once for the signals tilted’py

in_rnd = buffer_in(1);
buf_md = swr_malloc(size_in(0) * sizeof(SYMBOL_COMPLEX))
for (1 i=0; i<size_in(0); i++ X
switch(private->type A
case 0:
buf_mdf[i].real = (2 * (*in_rnd & 1) - 1);
*in_rnd = *in_md >> 1;
buf_md[il.imag = (2 * (*in_rnd & 1) - 1);
*in_rnd = *in_rd >> 1;
break;
case 1.
if (*in_rnd & 1){
*in_rnd = *in_rnd >> 1;
buf rnd[i].real = (2 * (*in_rnd & 1) - 1);
buf_rnd[i].imag = 0;
} else {
*in_rnd = *in_rnd >> 1;
buf_rnd[il.imag = (2 * (*in_md & 1) - 1),
buf_rnd[i].real = 0;

84/12:.

Defining New Modules Chapter 25. From Conception to Measargm

}
*in_rnd = *in_rd >> 1;
break;
}
/I Get the next input-byte of random
if (1&& (1% 4))
in_rnd++;
}
}

Now we can calculate the amplitude of the signal:

in = buffer_in(0);
/I Calculate signal energy
for (1 i=0; i<size_in(0); i++ X
signal += (double)(in[il.real) * buf rnd[i].real +
(double)(in[il.imag) * buf_rnd[i].imag;
}

signal = signal / size_in(0);

And the noise-variance:

for (1 i=0; i<size_in(0); i++ X
noise += pow((double)in[il.real - signal * buf_rnd[i].rea l,2)+
pow((double)infi.imag - signal * buf_rnd[i].imag, 2);

noise = noise / size_in(0) / 2;

Finally we can calculate the snr:

PR_DBG(2, "signal_amp: %i, noise_amp: %g\n",
(int)signal, noise);
/I And write the snr
swr_sdb_get_stats_struct(context->id, (void**)&stats);
if (noise > 0 ¥
stats->snr = 10 * (log10(signal) * 2 - log10(noise));
}

swr_free(buf_md);

Again, thercv_usermsgis not used and can be deletedv_module_init We have only 1 input, no output,
1 config-variable and 1 stats-variable, and lots of functiare not used:

desc = swr_spc_get_new desc(1, 0, 1, 1);
UM_STATS_DOUBLE("snr”);
UM_INPUT(SIG_SYMBOL_COMPLEX, 0);

desc->fn_init = rev_init;

desc->fn_reconfigure = rev_reconfig;
desc->fn_process_data = rcv_pdata;
desc->fn_finalize = rev_finalize;

rev_id = swr_cdb_register_spc(&desc, "snr_rcv");

8512:.

Testing Chapter 25. From Conception to Measurement

25.1.1.4 Makefile

In the makefile we have to tell the final name of the module, dktivegt we use the math-library:

MODULE_NAME = snr
MATH = true

25.1.2 Compile it

Now you can try to compile it by typingiakeon the command-line. If there are any errors, try to fix them,
the above lines should work, they have been tested. In codeclude this module even better in the MSR,
you can add the name of the directory to the fedules/Signals/Makefilan the lineDIRS = . Like this

a top-levelmakewill also update the SNR-module.

25.2 Testing

Up to now only the module has been written. It is not yet in eilesatate, as it is only registered with the
CDB, but not yet instantiated. Theoretically we could watesrything in the module to make an instance,
but this would turn upside-down the idea of modules. So wheaheed is an own program that implements
the chain and runs it, just to look how good it runs.

Perhaps as a surprise, this program will again be a modutehlsutime a module that does actually
something. Implementing a simple chain. So there is a fanatalledum.moduleinit that will be called
upon inserting the module. This function itself createsa tieead that will be used to create the chain.
In order to be compatible for further RTLinux implementatjove have to do this two-step calling.

25.2.1 The Directory

In the MSR, there is a directory calle@stwhich holds already different tests. The test for the SNRfis 0
course in a directory calle@iest/SNR The templates for the test-module are in

Conventions/test_template.c
Conventions/Makefile.module

Again, for easier handling they are renamed:

test_template.c -> test_snr.c
Makefile.module -> Makefile

25.2.2 Makefile

The makefile wants to know the name of the module, whidessésnr, as well as the modules to load in
order for the MSR to function correctly. In our case, thesethe modulesandom, snr, midamble, riand
block:

MODULE_NAME = test_snr
DEPENDS = random snr chest rrc block

86.12:.

Testing Chapter 25. From Conception to Measurement

25.2.3 testsnr.c

Let's have a look at the documentation:

Make a simple chain:

random - snr_send - chest_send - rrc - block -
rrc_rcv - chest_rcv - snr_rcv

and additionally:

random - snr_rcv(2)

Then we can create our main-function, which is cabéartit for the test-program.

25.2.3.1 startit

The first thing we have to do is to createfainof modules. A chain is a logical suit of signal-processing
modules, that take some input and produce some output thahidled further down the chain.

When using theswr_chaincreatefunctionwe give a list of all modules, that will be automatlg
connected together, and finish the list with ENIMHAIN. In this call to swr_chaincreate you see three
different kind of macrosNEW_SPCVAR, NEW_SPCand OLDSPCIN all of which are described in
8.2.2. In short, while the former allows you to give a varablhere a reference to the module will be
stored, the latter just creates the module and connectgliput giving the reference of the created module.
The third takes an already defined module for further corioest

swr_sdb_id rnd, mafi, snr_rcv;

test_chain = swr_chain_create(
NEW_SPC_VAR("random”, rnd),
NEW_SPC_VAR("snr_send”),
NEW_SPC("chest_send”),
NEW_SPC("rrc”),
NEW_SPC_VAR("block”),
NEW_SPC_VAR("rrc_rcv”, mafi),
NEW_SPC_VAR("chest_rcv”, mafi),
NEW_SPC_VAR("snr_rcv”, snr_rcv),
END_CHAIN);

swr_sdb_set_config_int(mafi, "cacl_taps", 8);

test_chain_2 = swr_chain_create(
NEW_SPC_VAR("random”, rnd2),
OLD_SPC_IN(snr_rev, 1),
END_CHAIN);

So we have created a chain. The modules have the followirgium

random create random bytes

snrsend our module created above, takes some random bytesuasang creates a QPSK output
chestsend inserts the training-sequence in the middle of thastre

rrc Root Raised Cosine pulse-shape filtering

block a very simple channel-simulation

rrc_rcv Applies again the Root Raised Cosine filtering

chestrcv uses the training-sequence to make a channel-estimatiod does a matched-filtering on the
received samples

87.12:.

Testing Chapter 25. From Conception to Measurement

snr.rcv our module to calculate the SNR

If we compile and test our module wittmake; make usethis chain will be created and the program
will exit. What we forgot is to really use this chain. For thike randommodule listens to user-messages,
and begins creating a random-output whenever it receiveds swser-message. But first we have to make
sure that both random-modules create the same values:

swr_sdb_set_config_int(rnd, "seed", 0x1234);
swr_sdb_set_config_int(rnd2, "seed", 0x1234);

Then we adjust a bit the amplitudes, so that we don’t run altithe on the edge:

swr_sdb_set_config_int(snr_send, "amplitude”, 16384 / 4);
swr_sdb_set_config_int(mid, "amplitude”, 16384 / 4);

To make it a bit more nice, we have a look at different valussngithesigmaparameter of théblock
module:

for (i=0; i<50; i+=5)

swr_sdb_set_config_double(block, "sigma", i);

swr_sdb_send_msg(md, SUBS_MSG_USER, NULL, -1);

swr_sdb_send_msg(md2, SUBS_MSG_USER, NULL, -1);

PR("Amp: %2i:%2i, Noise: %3i:%3i SNR : %5.59 - %5.59 = %5.59\ n",
swr_sdb_get_stats_int(mafi, "mid_amp"),
swr_sdb_get_stats_int(snr_rcv, "amp"),
swr_sdb_get_stats_int(mafi, "noise_var"),
swr_sdb_get_stats_int(snr_rcv, "var"),
swr_sdb_get_stats_double(mafi, "snr"),
swr_sdb_get stats_double(snr_rcv, "snr"),
swr_sdb_get_stats_double(mafi, "snr") -
swr_sdb_get_stats_double(snr_rcv, "snr'));

And after amake; make usgyou should see something like:

Amp: 63:63, Noise: 1:1 SNR : 34.40 - 34.24 = 0.15426
Amp: 62:62, Noise: 56 SNR : 2852 - 28.10 = 0.42007
Amp: 62:62, Noise: 27:26 SNR : 21.50 - 21.58 = -0.077267
Amp: 62:62, Noise: 66:63 SNR : 17.61 - 17.83 = -0.21601
Amp: 62:61, Noise: 122:111 SNR : 14.96 - 15.34 = -0.37944
Amp: 61:61, Noise: 190:187 SNR : 12.89 - 13.07 = -0.18071
Amp: 58:59, Noise: 179:219 SNR : 12.72 - 12.01 = 0.70692
Amp: 65:64, Noise: 317:322 SNR : 11.23 - 11.06 = 0.16854

Amp: 66:63, Noise: 421:393 SNR : 10.14 - 10.15 = -0.016712
Amp: 65:65, Noise: 528:555 SNR : 9.026 - 8.83 0.18867

So you see that our method gives more or less the same restittssur calculated in thenatchedfilter.

8812:.

Going Over the Air Chapter 25. From Conception to Measurédmen

25.3 Going Over the Air

OK, now that the module is written, a simple test-case shtvasdur module works, we can go on and
write a simple radio that transmits the SNR-slot and therives it and shows the result. We will make a
simple radio that has a master, the BaseStation, that titsa#ra synchronisation-signal, and a client, the
MobileStation, that synchronises to it and sends a SNR#si@turn.

25.3.1 The Directories and Files

It will be a radio, so we find the code in the directd®adios/SNRThe base for this radio is the simple-
radio that can be found &adios/Simpleand contains the following files:

simple_radio.h
Makefile
BS/Makefile
BS/radio_bs.c
MS/Makefile
MS/radio_ms.c

To reflect the fact that it isn’t theimpleradio anymore, we have to adjust the names in the Makefiles. Th
first lines inBS/Makefilecontains:

MODULE_NAME = radio_snr_bs
DEPENDS = rrc synch energy mapper chest random \
rndstr spread sink cch macro_sch snr

and inM<%/Makefilereads:

MODULE_NAME = radio_snr_ms
DEPENDS = rrc synch energy mapper chest random \
rndstr spread sink macro_synch macro_sch snr

25.3.2 README

This file also reflects the changes and has a very small dodati@nin it.

25.3.3 MS/radiams.c

There is a lot of things to say about the basic system. You carefin introduction in 21. Here we just try
to focus on the things necessary to run our SNR-module oveallachannel.

A very short simplification: when the mobile synchroniseste first time to the base-station, it creates
the necessary chains. This happens in the funajerchronisedNear the end of this function, you have
to replace the declaration of the UP-chain with the follagvitnain:

/I And setup a simple UP-chain...

ch_up = swr_chain_create(
NEW_SPC_VAR("random", rnd),
NEW_SPC("snr_send"),
NEW_SPC("chest_send"),
NEW_SPC("rrc"),

2Microsoft

8912:.

Going Over the Air Chapter 25. From Conception to Measurédmen

OLD_SPC_IN(stfa, 1),
CHAIN_END);
swr_stfa_notice_sdb(stfa, 1, rnd);
PR("Ready to go");

You see a new macro in the functiswr_chain createhere, which is calledLD_SPCIN and uses thstfa
module. The macro tells the function that this module hasaaly been created before. The modstfais
quite important in the MSR: it creates the link between thelmes and the actual hardware. So an input
to the stfa is like a connection to the antenna.

As we don’'t know exactly when the mobile will be synchronisgth the base-station, we set the seed
of the randommodule every frame to the same value. Like this we're surelibth the BS and the MS
have the same random-values. To achieve this, the fundoosendup is handy. It is called once in a
frame, and we can put the following line in there:

swr_sdb_set_config_int(rnd, "seed", 0x1234);

That'’s it for the mobile-station part.

25.3.4 radiabs.c

This part of the radio sets up the chains for reception anyavad/then just waits on what happens. As it
gives the synchronisation and doesn’t need to wait for i much more simple tharadio.ms.c So we
can directly change the construction of the UP-chain in tinefionstartit to:

PR("Setting uplink in slot 1\n");

ch_rach = swr_chain_create(
OLD_SPC_OUT(stfa, 1),
NEW_SPC("rrc_rev"),
NEW_SPC_VAR("chest_rcv", mafi),
NEW_SPC("snr_rcv"),

CHAIN_END);
ch_rach_2 = swr_chain_create(NEW_SPC_VAR("random", rnd),
OLD_SPC_IN(snr_rcv, 1),
CHAIN_END);

swr_sdb_set_config_int(sch, "mafi0”, mafi);
while (looping++){
usleep(1000000);
PR("mafi0: %g, mafil: %g\n",
swr_sdb_get stats_double(mafi, "snr"),
swr_sdb_get stats_double(snr_rcv, "snr"));

One last important thing we don’t have to forget: once a frameehave to tell the random-module to
generate some data. This is best done in the function cdbesbnddown which is used once a slot. So
we can insert there:

swr_sdb_set_config_int(rnd, "seed", 0x1234);
swr_sdb_send_msg(md, SUBS_MSG_USER, NULL, -1);

90/12:.

Going Over the Air Chapter 25. From Conception to Measurédmen

25.3.5 Running it with the channel-simulation

Again, to help track down errors, it is more adviseable toitdinst in simulation-mode, like this you can
track down errors much more simple. In order to do so, changéé directoryRadios/SNRand type
maketo compile it, andnake server; make shatasmswhich should bring up two windows, one showing
the mobilestation and another showing the basestatiolnieshing goes wrong with the compilation, fix
it and runmakeagain. If something goes wrong with the display, typake Kill: make cleanproeihich
should clean-up the directories, and then you camtake server; make shabsmsagain.

25.3.6 Running the real thing

Now that you did all this work and the modules returned soneedevalues, you can be pretty sure that it
shouldn’t run havoc in real-time mode. So let’s try it. Fingdbu have to run the radio on the basestation,
issuing amake rtshowfrom the Radios/SNR/BSlirectory. Then, on the other machine, you can muake
rf_showfrom the Radios/SNR/M5directory. If everything is set up correctly, the hardwas®iK and all
things are nicely connected and plugged in (this will givetaer chapter or two, installing the hardware),
you should again see two windows, one from the basestatidoafrom the mobilestation, and the values
this time are REAL values. If you come this far, congratuaas!

91.12:.

Chapter 26

Tools

A couple of different tools exist for the MSR, to show the imi@ state of the MSR, to act as a channel-
server or build LDPC-codes. In this chapter you'll learn attbe different tools and how to use them more
accurately. If you have trouble with a tool, you can read lifeyeu find some help.

26.1 Visualize

This tool is used to show the internal state of the MSR. It delseon the STFA-module to draw the other
signal-processing modules. So, if there is no STFA modutheérchain (which is the case for most of the
programs in thelestdirectory), Visualize can’t show the complete chain.

26.1.1 Starting it

To run it, simply typemake shovand enter. This sets up the path so thatgiv library can be found. The
executable first searches for a real-time MSR that puts & itiéo /proc/sradig then it searches for the
most recent entry iimp/username/proc.if it doesn’t find any of these, it stops with an error. Optitiypa
you can also give a path to tlseadio/sdb directory on the command-line.

Once the correct path has been found, the different moduéesliaplayed on the screen. Optional
modules that are not connected to anything are not shownesdteen. The whole display is updated
once a second.

26.1.2 Mouse handling

With the left mouse-button you can drag around the wholessgrehich is mostly useful on small screens,
when not all chains fit on the screen.

The right mouse-button opens an option to exit the prograranytressed on an empty part of the
visualize-display. When pressed over a module, a menu popshere you can choose different display-
options: stats and outputs. If a module has more than twe-stgties, you can choose which ones to
display by choosing the corresponding entries. Each salamattry is put on top of the list of stats inside the
block representing the module. Some of the stats-entrgesent blocks of data, which will be displayed
in a window apart.

26.1.3 Plotting of values

There is a possiblity to plot thetatsvalues into a seperate window. This can be used to log valfias
certain module, or even to draw plots of one value againsttheroln order to create a plot, go to théde
menu and chos8tats Plot XYor Stats Plot Y(t) Now you can click on a module in order to get a list of
statsthat shall be plotted. If you chos®tats Plot XY you have to chose a second module and a second
stats Once the stats have been chosen, the plot-window updatesaosecond with a new value.

9212:.

Channel-server Chapter 26. Tools

You can chose a new value for the udpate-time. The time isngivel/100s of seconds. Be aware
that for performance reasons the screen-update is onlgtavgecond, even if the data-update-value is less
than 50. No samples will get lost, only the update will appew. To enable long measurements without
degrading performance of the@sualizetool, only the 1000 most recent samples are shown. This@ssur
that you can have 1 million or more samples, and still hagealizereact to your requests. If you chose
to export to matlapall samples will be exported. If you chosgport to psonly the visible samples will
be plotted.

26.1.4 Exporting values

Each plot-window has the possibility to export the valugkezias a postscript-file or to a matlab-file. In
order to have a small preview of the data you’ll export, yon chick on the graphic. This will freeze the
update, and allow you to 'chose’ which data you want to export

If there is lots of data, a general update will only show 10@@gles. When you click on the button.

26.1.5 Known bugs

During simulation-mode, it may be that an update of the scoeeurs at the same time as an update from
the MSR, which results in broken or incomplete chains. Uguhls should 'heal’ during the next update.
If the same happens with a plot-window, it may be that you liawéose this particular window, and reopen
it again.

26.2 Channel-server

The channel-server takes the inputs of different radiogesmithem together and sends them back to the
different radios.

26.2.1 Starting it

When you're in theMain/ structure somewhere, usually it is enough to typeke serveto start the
channel-server. This is only necessary once.

26.2.2 Known bugs

For the moment the channel-server and the simulations lodweitun on the same computer. If you change
something in the implementation of the channel-server, lyate to restart it. The most simple way is to
typekillall serverfollowed by amake server

26.3 LDPC-code generation

In Tools/LDPCyou find a program that takes descriptions of LDPC-codes autsl fhem in a module-
readable way.

26.3.1 Starting it

First you need some descriptions of LDPC-codes. For thishaue to ask Abdelaziz on how to do this.
Then you can typevrite codel codefor putting codelandcodeZinto a file calledgraphs.avhich has to
be copied intaVlodules/Coding/LDPCAfter a recompilation you're ready to use the new codes.

26.3.2 Known bugs
The length of the code is fixed for the moment at 4000 bits.

9312:.

Chapter 27
Debugging

In a perfect world we wouldn’t need this chapter. In a reaigiorld, however, one has to take into account
possible errors. While every care has taken to make the framkeof the MSR as error-free as possible,
there still are bugs left. For sure. But usually they are diffi to find. So, if your module doesn’t work,
chances are big that you don't use the framework as it's ssggbto be. This chapter will help you finding
where the bug is. It is then up to you to find how it has to be fixed.

27.1 Debugging in user-space

When the software-radio runs in real-time, it is very diffido debug the radio. This is due to the fact that
no delay is permitted in either radio, or else synchronisatill be lost. On the other hand, in user-space,
we don’t have this issue. If one radio is stopped, all othdiomwill be stopped, too, and synchronisation
will NOT be lost. For this reason, debugging in user-spacesigally the only way to debug a misbehaving
module.

This section gives an overview of how to use the GDB to detectessimple errors, like division by
zero, lod0) or other exceptions.

27.1.1 Using Gdb with Tests

The first thing to do when a module doesn’t run and stops wisle@mentation faulis to usemake de-
bug instead ofmake user This will call the GNU-debugger, run the module and stop lo& ¢ffending
instruction. The most common commands after this are:

ba show the backtrace, where the most recent function ispn to
print prints a variable of the current context
up moves one function deeper on the stack. If it stops on aifumgou don’t know, you can use

up a couple of times until you are in the MSR

list lists the current context. Takes as argument a file dadirie-number, likelist sdb.c:234

27.1.2 Debugging a Simulation

When running a simulation of two radios, the above doesnikvemymore. You have to start a channel-
server, and the two radios. The most simple way to so is tolrarsérver and the BS in one window, and
the M<¥ in another window.

Sometimes the two radios behave nicely, but it is only aftemging some configuration-value with
the visualize-tool that the system crashes. For this reasostart a visualize-tool in a third window, after
the BS and M$are started. shell1, shell2 and shell3 denote three diffevexdows or shells.

IMicrosoft

94,12:.

Debugging in user-space Chapter 27. Debugging

shelll:SRadio/Radios/Simple/BS$ make server debug
shell2:SRadio/Radios/Simple/MS$ make debug
shell3:SRadio/Radios/Simple$ make show

This starts the server and the BS, then starts thé.NIBe third line starts the visualize-tool, if you wish to
do so. If an error is encountered, gdb will stop in one of the windows, and you can use the commands
described above to see what is wrong.

27.1.3 Using ddd

For better debugging, for example if your module doesn’shrdut doesn’t do what you expect it to do,
you can useldd To start it, you go to the same directory where usually yetyake useand typemake
ddd After this, you have to typéreak main.c:3@nd press F3 to start the program. Once it stops on the
breakpoint, all necessary libraries have been loaded audthé modules you want to debug (given that
you didn’t make any errors in setting up thiakefile).

Now you can enter the name of a function to debug on top in thigevidox and press ofookup to
the right of the box. Clicking with the right mouse-button @fine you can set a breakpoint. Repeat this
procedure as often as necessary, then clickam and watch what happensext step right-clicking on
variables are other nice options to take. Try it, break itbligging is an art!

27.1.3.1 Known bugs

DO NOT typerun in the command-line of ddd. This runs the program without aagnmand-line op-
tions that have been carefully crafted to work with ddd. De tise run-button or the mendrogram-
\ textgreaterRun AgairOptionally you can use the F3-key.

9512:.

Chapter 28

Getting Started

In this chapter you'll learn how to set-up your computer sd@be able to run the MSR in simulation
mode. If you want to work with the MSR, you should read thisptkea First you have to make sure that all
necessary software is installed on your system, then yoe teestownload the necessary package, compile
it, and finally you can run the example.

28.1 Prerequisites

The MSR runs without problems on a linux-system. For the &tn-part, an installation of the RTLinux
is not necessary. The MSR relies on some new packages, liksvdimker and a QT-package. These
should be available with RH7.3 and newer, Mandrake 8.2 anénas well as Debian 3.1/sarge. The most
common missing programs are:

linker check withld versionwhether it is something newer or equal than 12.13.90
qt check withgmake versiorand see if the version of QT is bigger or equal than 3.0
libgwt is used to display the graphics on screen. If you db@ate it installed, ask your system-

administrator to install it. Alternatively you can alsofakit in your home-directory.

If one of these is missing, please contact your system agdtramdr or install the missing packages.

28.2 Installing the MSR

It is possible to use the MSR without the proper RF-hardwioe.this you will use a channel-simulation.
In this section you learn how to download and compile the MSR.

28.2.1 Download the software

From http://icmpcl0.eptl.ch/Menu/Download you can dovadldhe latest version of the MSR, which has
a name like msr-*.tgz Once it is on your computer, you can @l&én a convenient directory and untar
it using tar xzf msr-*tgzThis will create a directory nametfain and a lots of subdirectories and files in
there. Generally you will find README files in most of the ditedes. They are useful if you need to
know what goes on in this special place. Do not hesitate to theam.

28.2.2 Compile the software

The software consists of two parts: the graphic display &edsignal-processing modules. For the graph-
ical part, you have to change inMain/Tools/Visualizeand rungmake visualize.préollowed by amake

If everything goes well, you should have an executable dalisualize. After this you can change in the
Main directory and runmakethere. Supposing that everything goes well, you're readymthe examples.

96.12:.

http://lcmpc10.epfl.ch/Menu/Download

Running the examples Chapter 28. Getting Started

28.2.3 Common errors
28.2.3.1 While compiling 'Visualize’ | get 'libgwt not found’

Make sure that libqwt is installed and check eventually thilpn visualize.pro.

28.3 Running the examples

There are a couple of pre-defined radios in the subdire®agiog. The most simple is ifRadios/Simplé
Using the following commands, you can display both the BStaedvi$? of this simple example:

cd Radios/Simple
make server
make show_bsms

If the installation of the MSR has been carried out succdlgsfiou should see now two windows popping
up, showing the basestation that emits the synchronisatgmal, as well as the mobile-station that listens
to this signal.

You can also run the other examples that you find in this dirgchamelyMultiuser and LDPC just
to get an idea what the software-radio is all about. And retremthe same c-code also runs in real-time
on RF-hardware!

IMicrosoft

97.12:.

Chapter 29

Testing

Once a new module has been written, or if something new shmutded, a new testing-module should be
written. A testing-module usually consists of a simple ohaith some output that tells the user whether
the test has succeeded or not. Itis the first step towardsg/atRadio and using a new or modified module
in real-time.

29.1 Files

If you want to start a new test, create a new directory uf@si’ and add the name to the line
DIRS = FirstChain Memory ...

of the file Test/Makefile Like this your test will be automatically built when usimgake whole Next cd
in your new directory and copy some files:

cp ../..[Conventions/test_template.c ../../Convention s/Makefile.module .
The testtemplate.cshould be renamed to something fitting the pattest *.c, and this name should be
appended to the line

MODULE_NAME ==

of the Makefile (which has been renamed froMakefile.modulg. Now you are ready to modify your
test*.c file and test it out, using

make
make user

You can also have a look into different files that you find in tfirectory Testing/*to see different tech-
nigues on how to do strange things.

9812:.

Main Chapter 29. Testing

29.2 Main

The main-part of the module is in the functistartit. It is called once when the module is loaded. For a
small testing-module you want to make perhaps only a smalh¢lsomething like

swr_chain_create(NEW_SPC_VAR("random”, rnd),
NEW_SPC("modulator”),
NEW_SPC("demodulator”),
NEW_SPC_VAR("sink”, sink),
CHAIN_END);

This leads to an empty chain, because all modules (with tbepion of theSTFA and theblock module)
have an input- and output-size of 0. So we need to set one moalalgiven size:

swr_sdb_set_config_int(sink, "size”, 128);

And while we're at it, we can tell thesink module, that it should count the occurences of the different
values:

swr_sdb_set_config_int(sink, "flag”, 2);

For further explanation, you can turn to the explanatiorhefsink module.
Now that the chain has been created and configured, it sélisieo be activated at least once, so that
something happens:

swr_sdb_seng_msg(md, SUBS_MSG_USER, NULL, -1),

Which sends a user-defined message tadmelommodule. It will now traverse the whole chain and the
sink module will output the occurances of the different values cdmpile and start it, type the following
commands:

make
make user

As the size of the sink-input is only 128, this will not be vegpresentativ for the random-number gen-
erator. You may increase the size of the sink-input to somegtlike 65536 or even more, to see how the
random-number generator works.

99/12:.

Chapter 30

Using CVS

In this chapter you'll get an overview of the C¥'Structure we're using for our software-radio. It is
assumed that you already worked sometimes with %8 that you know about the basic ideas and
advantages of CViS

CVS! stands for Concurrent Versioning System, and is the mosespitkad used tool to make sure
that a group of developers can access the code at the samweitim@t creating havoc. While it has some
disadvantages, it is a well-tested, stable tool that degslitright.

The first section talks about the structure used, while theratections talk about how to use the GVS
with this structure.

30.1 Structure

Usually one has a structure with one primayanchwhere all developers commit their changes to. In
our case this was not desired, as sometimes a developereshange structures during their work, and

while the changes last, the code is unstable. Furthermeredte has to run on more than one machine
at the same time, while needing localized compiling urrdet This made it impossible to have a shared
directory on all machines. So, what we need is:

« Seperate Development by giving each developer an own Branc
« Distributing of the new code using C¥&ommand 'up’
« Easy merging through the C¥&ommand ’join’

The first two points are easily done in CYSrou can create branches, check them out, and then work
in these quite comfortably. The difficulty arises when ornestto merge the changes back into the main-
branch, perhaps even from different developers.

Here is an overview about what is happening in a case when weé toaynch two branches, called
Main andNicou. "a”, "b” and "c” are the original versions of three files, Wwai'b” and "c’” are modified
versions of these files. "d” and "e” are new files that have lemioed later.

The 'server’-column displays what is stored on the cvs-sgithat is, whenever you call "cvs commit”,
your 'local’ changes are stored on the server, and with "qudate”, the changes stored in 'server’ are
written to 'local’.

Main Nicou
server | local server | local
abc abc abc abc
tag: IswN tag: IswM

1Concurrent Versions System

100121

Starting a new Branch Chapter 30. Using CVS

Both Main and Nicou start synchronized. They have a tag d#leN for the Main-Branch andswM
for the Nicou-Branch. Now both work in their respective Bearand check in their changes, and we get
the following picture:

ab'cd| abcd abc'e| abce

The tag is still with the first version, that is "a b ¢”. Now leget the changes from Main to Nicou:
SRadio.Nicou> Conventions/synch

By taking the difference betwedswN and what is actually stored in the Main-Branch, we get this:

ab'cd| abcd abc'e| ab'cde

Now it is very important not to commit these changes, becéitsteve need to take everything that has
been changed in the Nicou-Branch to the Main-Branch:

SRadio.Main> Conventions/synch

And we get:

ab'cd| ab cde abce| ab'cde

Now we can commit on both sides, writing the changes fromalom the 'server’. Then, we update
the tags:

SRadio.Nicou> Conventions/tag

and finally we get this picture:
Now we can start again with changing in both branches.

30.2 Starting a new Branch

There are two things to do when starting a new branch: firsntéwe branch has to be created, then the
appropriate tags have to be written to the cvs-tree.

Let's say we want to create a new branch called 'Brian’. Ferfirst part, it is enough to write in a
checked-out Main-branch the following line:

SRadio.Main> cvs tag -b Branch_Brian
Then we have to make sure that everything is correctly tagged
SRadio.Main> Conventions/tag Brian

This is all that is needed. Now you can proceed to 30.3 to segdiset up the system for the new user.

101121

Checking Out for the First Time Chapter 30. Using CVS

ab'c’de| ab'c’'de ab'c’de | ab'cde
tag: IswN tag: IswM

30.3 Checking Out for the First Time

It is a good idea to have the following set-up if you're not fhan with CVS*:

brian@radiol: > echo "export CVS_RSH=ssh" >> /.bashrc
brian@radiol: > echo -e "cvs -gq\nup -dP \ncommit -m ™ > /.cv src

Then you have to log out and log in again, so that these paesisnate available to your bash-shell. These
commands help in everyday cvs. It might also be more contitata run the tool SRadio.Brian/Conventions/lussh
and follow it’s directions to create a password-less loginger 'sradio’ on lcmpc10.epfl.ch.

Now we can actually check-out a version of this new branch.titis, change into the home-directory
of brian, and write this:

brian@radiol: > cvs -d sradio@Icmpcl10.epfl.ch:lhome/sra dio/cvs co -r
Branch_Brian SRadio
brian@radiol: > mv SRadio SRadio.Brian

This gives you a check-out of the branch Brian in the dirgc®Radio.Brian. All changes that are done in
this directory are kept seperate from the other parts of tiftevarre-radio, so you can commit and update at
will, without disturbing other developers.

102121

Chapter 31

Creating a simple radio

In this chapter you'll learn how to create a very simple rachosisting of a transmitter and a receiver. You
should know the very basics of a digital transmission. Fdr@tsntroduction in this matter, you can also
go and read chaptar 19.

In figure 31..L you see the goal of this tutorial: two radiodlechMasterand Client with the following
functions:

< Master: send the synchronisation, training-sequencearnhage
* Client: synchronize, do a channel estimation and decosléthge

Both the master and the client can be represented by a sitngile.So it will be very easy to implement
these two radios as shown in the rest of this tutorial.

After explaining some more general things about the sofwadio, we’ll explain first the master,
then the client. You can find the basic files with all the bagitug already done in the sub-directory
Radios/ICSSimpleof the SRadio-projectMaster/radiamaster.aontais the basic setup of the master and
Client/radiaclient.cthe basic setup of the client.

31.1 General Setup

This section is just a very brief introduction to the softermadio. For a more complete overview, follow
the references. First some overview of the software-rabiEn an explanation of the C-files.

31.1.1 Overview

As explained in chapter L1, the software-radio can be rireein simulation- or in real-time-mode. While
it is possible to have both the master and the client on thesamputer in simulation mode, this is not
possible in real-time mode. The first part of this HOWTO wodkdy in simulation-mode, so you need
neither hardware nor two computers to run the examples.

In simulation mode, the master and the client connect tiannel-servewhich simulates a simple
wireless connection with some noise and a fading-channeth Bxe master and the client run indepen-
dently of each other and the only connection is the chanemies. Each one has a complete software-radio
environment with a CDB and a SDB (see also §.2.2), so that taeycommunicate only through the
channel-server. This corresponds to the real transmisgloere the two radios can only communicate
through the channel.

31.1.2 Files

Because the master and the client are independent entit®sare put in a seperate directory. In each
directory a small template-file can be found that contaimsittitialisations necessary for the software-
radio. For this tutorial, two functions are important;

1031121

General Setup Chapter 31. Creating a simple radio

‘ Slot 0 ‘ Slot 1 ‘ Slot 2 ‘ STFA ‘ Slot 0 ‘ Slot 1 ‘ Slot 2 ‘

sync_rsv
rrc_rsv
chest_rsv

despread
slicer
image_rsv

Figure 31.1: A very simple radio

104121

Master Chapter 31. Creating a simple radio

image_sen modulator spread chest_sen synch_sen rrc

Figure 31.2:

« startit comparable to thenain-function in C-programs or theonstructofin a C++-class

< um_moduleexit which corresponds to theestructosfunction in a C++-class.

In the startit-function the radio initialises some modules and/or osdse¢: 8.2 1) which are cleaned-up in
the ummoduleexit-function.

31.2 Master

The master needs to send an image, encode it using a spresstjognce, add a trainig-sequence for
the channel estimation and put a synchronisation-sign&prmf this, so that the client can synchronise.
Looking at figure: 31.1, we can directly deduce the necesdainc

The most simplest way to do that is to create a chain with allntodules inside. In order to do that,
open the file for the master iRadios/ICSSimple/Master/radionaster.cand put the following text in the
functionstartit:

swr_sdb_id img, spread;

PR("Setting up send-chain\n");

send_ch = swr_chain_create(
NEW_SPC_VAR("image_send", img),
NEW_SPC("mapper"),
NEW_SPC_VAR("spread", spread),
NEW_SPC("chest_send"),
NEW_SPC("synch_send"),
NEW_SPC("rrc_complex_send"),
NEW_SPC_VAR("stfa_ics", stfa),
CHAIN_END);

For more explanation on the NEWWcommands, see 16.2.:L.1. In short we MEW_SPCto instantiate a
new module andNEW_SPCVAR to instantiate a module and get a reference-id back. Nowthisthain
is created, we need to tell the STi#hat this is a transmission-chain. We use the following c@mndh

swr_stfa_notice_sdb(stfa, 0, img);

Now everytime the STFA wants to send slot 0, it will call theghimstantiation of the "imagsend”-module.
Finally we set up the STFA in transmission-mode and tell fread-module to use a spreading-factor of
twe?:

swr_sdb_set_config_int(stfa, "tx", 1);
swr_sdb_set_config_int(spread, "factor’, 2);

Now we're ready to start the STFA:

reac 8.2.4 for more information
2which is equivalent to a simple repetition code

105121

Master Chapter 31. Creating a simple radio

swr_stfa_go(stfa);

That's it for the startit function. Because we use tlsendch and thestfaglobally, we need to define these
above the starit-function like this:

struct chain_t *send_ch;
swr_sdb_id stfa;

And, last but not least, we need to clean up the chain in caseaitio gets stopped. This is done by
inserting the following lines at the end of thw.moduleexit-function:

if (stfa){
PR("Stopping the STFA\backslashn");
swr_stfa_stop(stfa);
PR("Deleting Sending-chain\backslashn");
swr_chain_destroy(send);

31.2.1 Testing the Master

Now that the master is written, we can test it. First of all keaure that you can compile it, using
make

and that there are neither warnings nor errors. Then you akn c

make show_local

and if everything is OK, you should see a window coming up ttiaplays the STFA as a horizontal
white bar and the chain attached to it. Right-clicking on ilhagesendmodule you can chosBisplay
Dataand thenpicturewhich will pop up a window with the picture sent in it. Keepitigs window and
right-clicking on rrc_.complexsend then Display outputsand port.out 0 shows the output of this chain
in complex format. In this new window you can click @omplexand chose~FT to see a fast-fourier
transform of the same output. You can also change the balrasfisome of the modules. For example you
can change théacto® of the spreadmodule. Right-click on thepreadmodule and chos€hange config
Now you can increase or decrease fhetor-value. If you still have the image-window open, you can see
how the image changes when increasing or decreasinf@ther-value. The next subsection explains why
this happens.

31.2.2 Slots and Blocks in the Software-Radio

This is a small excurse in the internals of the softwareaadii's goal is to give you some more under-
standing of how our implementation works. It is not elemébia quite useful to understand the rest of the
software-radio.

Sthis is the spreading-factor or the spreading-length ot:thue

106121

Client Chapter 31. Creating a simple radio

The software-radio works with fixed blocks of data. Evergiththat goes over the air has to fitinto one
slot. In the currentimplementation, a slot is of length 25@Mbol:5. Every time the software-radio wants
to send a slot, the output of the chain has to fit in 2560 symbols

Starting from the STFA, the software-radio calculates theximum size available by asking each

module how much symbols it needs:
1 2078 4156
nn *2 n

module use symbols| left
stfa guard-period 90 2470
synchsend| synchronisation 256 2214
chestsend | training-sequence | 136 2078
spread spreading-sequence

mapper bit-to-symbols bits

This means that the imagend-module has a variable-sized output that can vary fr]iﬁﬁdo%ge =
129 bits$, depending on the spreading-factor chosen. Every timeutmuo-size of the imagsend-module
changes, it adjusts the image-size so that it fits in the gilace.

For this reason you see the image changing when you changptbeading-factor of the spreading-

module.

31.3 Client

Looking at figure: 31.1 we can see that we have to implementdh@nfing chain:

There are two small subtelties when implementing this kerethain: first, we put thesynchrcv-
module in front of therc_rcv-module. Looking at the master, we'd expect to first do thereaeption and
then the synchronisation. But as the_rov-module downsamples by a factor of two, it is better tolu® t
synchronisation at the higher sample-rate, in order to havere exact synchronisation.

Second, the actual module-names are quite long:_sgwics calledsynchcomplexics.rcv and rrcrcv
is calledrrc_complexics.rcv. This is due to the development-process of the softwar@-aatt the wish to
keep old things running.

Besides these small details, the client is built more or iedbe same way as the server. All these
lines go inRadios/ICSSimple/Client/radicclient.c Before thestartit-function, we declare thstfa and
thercv_ch:

swr_sdb_id stfa;
struct chain_t *rcv_ch;

In the startit-function, we declare the needed variables and the regeptiain:

swr_sdb_id synch, mafi, despread, slicer;
rcv_ch = swr_chain_create(NEW_SPC_VAR("stfa_ics", stfa),
NEW_SPC_VAR("synch_complex_ics_rcv", synch),

“this is an artefact of the first UMTS-implementation. You chiange the slot-length in multiples of 128 symbols
5The spreading-module has a maximum spreading-length of 32

\ 4

\ 4

desprea slicer image_rcv

stfa synch_rcv rrc_rcv chest_rcv

Figure 31.3:

107121

Client Chapter 31. Creating a simple radio

NEW_SPC("rrc_complex_ics_rcv"),
NEW_SPC_VAR("chest_rcv", mafi),
NEW_SPC_VAR("despread", despread),
NEW_SPC_VAR("slicer", slicer),
NEW_SPC("image_rcv"),

CHAIN_END);

This chain is the same as in figure = 1.1 and described abowee 86the modules need some configuration
so that the radio works correctly. We have to do these things:

¢ Gain: adjust the gain of the RF-cards, so that the cards dahirate
» Synchronisation: tell the module the id of the STFA so it aedjust for the desynchronisation

» Despreading: set the despreading-factor to 2

Matched Filter: calculate 8 taps and align them

Slicer: set the id of the matched filter so that it can knowahwlitude of the signal

All these values are in the configurable part of the moduteg/escan set them using the ssah setconfig*-
functions:

swr_sdb_set_config_int(stfa, "attn_tx", 31);
swr_sdh_set_config_int(stfa, "attn_rx", 15);
swr_sdb_set_config_int(synch, "stfa_id", stfa);
swr_sdb_set_config_int(despread, "factor00", 2);
swr_sdb_set_config_int(mafi, "calc_taps", 8);
swr_sdb_set_config_int(mafi, "align", 1);
swr_sdb_set_config_int(slicer, "mafi_id", mafi);

Now everything is ready to start the STFA:
swr_stfa_go(stfa);

We need to do some initialisation, just in case somethinggwilwrong. Insert this line in the beginning of
the functionum_moduleinit:

stfa = 0;
And at the end we need to clean things up, so insert thesedirtae end otim.moduleexit:

if (stfa){
PR("Stopping stfa\backslashn");
swr_stfa_stop(stfa);
PR("Destroying rcv-chain\backslashn");
swr_chain_destroy(rcv_ch);

}

108121

RF-transmission Chapter 31. Creating a simple radio

31.3.1 Testing the Client

Compile it with makeand correct eventual errors. Once everything compileslyyigeu can go in the
directoryRadios/ICSSimpleand type

make show_mc

This will start the master, then the client and will bring b wisualize-tool so that you can see the modules
in action. Once the visualize-tool is started, you can satttiere are now two tabs, one for the master and
the other for the client. Clicking on these tabs you can swiitetween the two radios.

31.3.2 Testing the transmission

If everything up to here works as described, congratulatidou just finished your first very simple radio-
transmission using the software-radio. While running tresstar and the client, you can now visualize
different modules and change the configuration-parameteosder to see what happens.

31.3.3 Synchronisation

A small word on synchronisation: the implementation we dithis tutorial is the most simplest possibility.
Every frame the synchronisation-module will search for ackyonisation-signal. If it decides that there is
no synchronisation, it shifts half a slot and will try agaithe next frame.

The worst-case scenario is that the synchronisation-kigiizst on the opposite side of the searching-
direction, which will make the synchronisation-modulersgéing the whole frame. In real time, one frame
corresponds to 30ms and holds 15 slots, so that it will beckearcompletely in 1sec.

For a radio-application, 1 second is quite a long time. F@ tbason, a second method exists which
is a bit more complicated but finds the synchronisation-daigm the first go. Amacro-modulecalled
macrasynchics attaches a synchronisation-module to each slot of the@tiae a whole frame is received,
it loops over all synchronisation-modules and choses thewith the strongest synchronisation-signal,
discarding all others.

This allows the software-radio to synchronise in much mdfieient way. As this method includes
callback-functions and handling the macro-module, wediztio go the easy way and just scan the whole
frame.

31.4 RF-transmission

Now everything should be ready to be able to transmit overniheOnce the simulation works, there are
usually no big bugs left that can hinder the test over the air.

As you will have to transmit from one computer to the otheg tlode needs to be installed on two
computers where each computer has the appropriate hardngiadled. Once this is done, it is usually
more efficient to work on one computer only andsthin the other computer and run the software-radio
remotely. This gives you the advantage of having all the wiubtp one screen.

To start the master, simply go into tiRadios/ICSSimple/Masterirectory and call

make rf_show

which should start the real-time part of the software-raahid show up the transmission-window. On the
other computer, go into thRadios/ICSSimple/Clientdirectory and issue the same command:

make rf_show

109121

RF-transmission Chapter 31. Creating a simple radio

If all goes well, you should have now two windows where onenshthe master and the other the client.
You can now play around with the values to see how the softnadi® reacts. Interesting configuration-
parameters include the attr on the master-side, the attr on the client side. Both can be found in the
stfa, the horizontal white line in the middle of the window.

Other things to experiment with is the catps of the chestcv-module or the factor and sequence
configuration of the spread and despread-module.

31.4.1 Going Further

Now that you have this simple radio running, it is possibleliange the spreading-module with something
else, for example a convolution-module or even an Idpc-rfed¥ou can also add other chains to the stfa
in a similar manner than the ones we did. If you do so, dongébthat you don’t need a synchronisation-
module anymore on the additional chains. One synchronisatiodule per frame is enough.

1101121

Part V

Practice

111121

Chapter 32

Introduction

This document started out as a work-description on what bas going on with the software-radio. It now
is a reference for the RF-interface of the software-radiovel as a setup-guide for the hardware-part of
the software-radio. For the software-part, see the doctifdetutorial to the software-radio”.

32.1 Motivation

During Summer/Fall 2004 different projects have been daméhe software-radio that asked for special
implementations on the level of the ICS-cards. Four usefaméhes co-existed:

1. Normal MIMO at 2.4GHz with 1MS/s

2. Radar-application at 2.4GHz with 100kS/s

3. 802.11-reception at 2.4GHz with 20MS/s

4. GPS-reception at IF of 24MHz and 4MS/s at 32 bits per coxgaenple

1-3 were done using the normal FPGA-programm, while 4 is olysible with a rewritten FPGA. This
is due to the fact that the PCI can't transfer the data reptesga raw GPS-signal. The rewritten FPGA-
program represents one sample using 32 bits, whereas tiiaa-PGA-program represents one sample
using 128 bits.

In order to have a program that can handle all these situgtimmew interface to the ICS-cards was
built. The goal of this interface is to set the basic paransatéthe ICS-cards in a more user-friendly way.
These parameters are:

e Sampling-frequency

» Bandwith

e Data-type

* Number of channels

« Center-frequency

e Detect the FPGA-programm type

All frequencies are given in Hz and the sampling-rates in @lem Samles per second (CSs). 1 CS corre-
sponds to 2 Real Samples.

112121

Intended reader Chapter 32. Introduction

32.2 Intended reader

This document has been written to keep track of the changéseirprogramming and to help further
engineers keeping track of what is going on. Depending orchvpart of the document you're interested
in, the necessary background differs. In order to build tHiernt target applications, you should have
good knowledge in informatics and a good understanding®fuiNIX-shell. For the reference-part you
have to be a good programmer and have some background offthessradio. A good start is "A tutorial
on the software-radio”.

32.3 Parts

The different parts in this document include:
< Motivation what you are reading
« Usecases describes the four goals and how to test them
« Subsystems which gives an overview of the different parte®software-radio hardware

« Interface is the main part and describes in detail the newtfans used to interact with the hardware

Tidbits collects different thoughts about the project tteame up during the writing of this document

32.4 Conventions
32.4.1 Directories

All given directories are relative to your SRadBsanch-directory. The position of this branch is marked
$SRADIQ This has to be installed for you by the system administraemwell as a Cviaccess to the
source-code. So if your system-administrator installedsath under

/home/foo/SRadio.Bar

and a command asks you to

cd $SRADIO/Test/Radar

Then this means you have to enter the following directory:

/home/foo/SRadio.Bar/Test/Radar

32.4.2 Commands
Commands are written in typewriter-code, like this:

cvs -d sradio@lcmpcl0.epfl.ch:lhome/sradio/cvs \
co -b Branch_Report SRadio

Special meanings are explained in brackets, for example:

make rf_tail
[wait for 5 seconds]
make rmall

1Concurrent Versions System

113121

Conventions Chapter 32. Introduction

32.4.3 Radio-platforms

There are two radio-platforms, calleddiol andradio2 The work represented in this document requires
root-privileges to be run, so ask your system-administrfaiothe root-password and how to log in.
If you are in the local network of the software-radio, you ¢agin to radiol andradio2with

ssh root@radiol
or

ssh root@radio2

114121

Chapter 33

Test Configurations

This section describes the sample configurations. Both asofi hardware-setup is described for each
configuration. It is a good starting point for new users.
The following configurations are described here:

* GPS for the reception and storage of a GPS-signal
» Radio demonstrates a simple send/receive-setup
* Radar is a simple game using radar-measurements of a moalhg

* WLAN captures one or more 802.11-packets

33.1 Setup

This subsection contains some general overview of therdiftthardware-subsystems.

33.1.1 RF-cards
Fig. 33... shows the input/output connectors of the RF cqrdaér supply omitted).

33.1.2 Rohde & Schwarz

All settings given in the figures start from a presetted stathe signal-generator or -analyzer. You find a
button labeledPresethat sets the machine into a well-known state.

RF-card
[] TX|- signal to transmit

[E— Clock reference Antcnnalj

[] BX]|- received signal

Figure 33.1: The important connections on a RF-card

115121

GPS Chapter 33. Test Configurations

33.1.3 ICS-cards

In the following picture (TODO) you can see the ICS-cardstumliack of the computer. All the input and
output-labels are visible.

33.1.4 FPGA

As described in secticn 23, the FPGA can be programmed witvassions of the code: one for the GPS-
reception, and another one for everything else. Pleasereasehose the appropriate code, or the given
application will not work.

Refer to section 23 on how to reprogram the PFGA.

33.1.5 Power supply

Wrong settings of the power-supply may destroy the attatiaedware, so take care and be sure to follow
these instructions:

Switchup 1 & 2
Connect the power supply
Switch down 1

Adjust voltage and current using 3 & 4

o M w bhoPR

Switch down 2

33.2 GPS

For a clean reception of a GPS signal, it is advised to havew @ wide as possible of the open sky.
Chose a roof-top or a wide field with no obstruction. Then yan start with the reception of a 60-second
piece of data:

Before doing so, test this given setup with a much shorteuesece, 2 seconds, as described below.
Once everything is working all right, use the longer seqeenc

33.2.1 Hardware-setup

The setup of the hardware for the GPS-acquisition can beiadggure??. If you extend the cable of the
GPS-antenna, the received signal may be too weak!

33.2.2 Software-setup

First you have to re-program the FPGA, so that the correct t®tbaded in the ICS-card. Refer to Section
2z on how to do this. For a first test, it is advised to use onl@tsesting sequence, see the paragraph
below. This short sequence can be used to test whether ersatgjlites are visible. Once the FPGA is
repgrammed do the following:

cd
<latex>SRADIO/Test/GPS
make rf_tail

[wait for the message "*** Acquisition done ***"]

..l.ITools/Dbg/dbg 2 0 > .././Matlab/GPS/gps_yymmdd_h hmm.dat

116121

GPS Chapter 33. Test Configurations

Power-supply

4.8V
GPS-Antenna +— Out HhmA
DbcC Keep this

’/ cable short!

RF+DC ‘ | RF Rohde & Schwarz Signal Analvzer
Rohde & Schwarz Center: 1575.42MHz
Signal generator TFBT-4R2C RF I b Span: OHz
Set to 98.208MHz | BiasT [RF Doput] Res. BW: 10MHz *)
0dBm 1 RF-Attn: 0dBm **)
RF on RF out 21.4MHz out T)|
) Push "Coupling”™, then "Res. BW™
**) Push "Ref”, then "RF Attn”
1ce-h54 3 °On the rearside of the machine
Clk=
Chl =
Figure 33.2:

Whereyymmddhhmmstands for the current date and time. This is just a convémiag to remember
when the samples were collected. Be aware that each secandasurement takes about 25MBytes. So
60 seconds of measurement take 1.5GByte!

Then you can check which satellites are visible from the ramadocation using using the program in
\$SRADIO/Matlab/GP8

matlab -nojvm -nosplash
[wait for Matlab to start up]
acquisition('gps_yymmdd_hhmm.dat’, 100000);

this should show you a plot with a noise-floor around 10000@ndmber of points sticking distinctively
out to 14000- 20000 . Then chose the highest point and run the followingmand:

acquisition_scan('gps_yymmdd_hhmm.dat’, 100000, #sat#);

wheresatcorresponds to the highest peak seen in the previous plot.

33.2.2.1 Short testing sequence

Before getting a 60-second piece of data, it is adviseabtedbit on a short sequence to see whether
enough satellites are visible or if there is a problem with gktup.
In the file\ $SRADIO/Test/GPS/teg}ps.cadjust thebuffer_len:

/I Now buffer_len is in seconds of recording
swr_sdb_set_config_int(gps, "buffer_len", #2#);

Now the radio will only record 2 seconds of data which will bech shorter to write to the disk using the
above-mentioned method.

117121

Radio system Chapter 33. Test Configurations

50 Mhz oscillator

500-13226
Frequency doubler
ME-3 \
S S
IN[-— 2 1
ouT
Splitter
ZFSC-2-2500
Splitter
FRC-5-
COM
12345678
—card
»Tx
C'S-554 »[0| [Antennal
CH4®-4----------- F---rrFp------4
gH -1~
ﬂ?ﬂ | —card
18— \ »Tx
Cll, [»[0] [ufennal
Ch'li——||' ————————— F---rF----=--4
| I
(CS-564 |L : . : :-_Tx—card
SH & e »[0| [Antcrmal
g r— | - - - - - - - -~ — s -
Clk re—
Ch 2 R R LR R -card
Chilfp----- |L -- »Tx
| »LO| [Antennal
| . _ _ o o o o o ____o_____dJ

Figure 33.3: Radio-setup

33.3 Radio system

The first goal of the software-radio was to enable a two-wagsgceiver on a 2.4GHz link. Use the setup
described here:

33.3.1 Hardware-setup

For a radio transmission, the setup in FigJre 33.3 must be @onboth radios. It is necessary to have
frequency doubler exactly as shown in the figure and notlag¢idto the output of the 8-way splitter, as one
may try to do to get rid of the 2-way splitter. Otherwise theal-signal for the ICS-554 card would be too
weak.

33.3.2 Software-setup

In order to be sure that the STD-software is loaded in the FR#Bécess as described in section 23. If that
is not the case, reprogram the FPGA with the STD-software.

The software needs to be run on both radi@g]iol and radio2 On one radio you have to run the
sender (BS), on the other radio the receiver #)1So start the sender, run the following commands:

IMicrosoft

118121

Radar-system Chapter 33. Test Configurations

cd $SRADIO/Radios/Image/BS

make rf_show

For the receiver you have to log in to the other radio and rerfofiowing commands:
cd $SRADIO/Radios/Image/MS

make rf_show

on the receiver side. If it doesn’t work, go through the fallog checklist:

« all cables correctly connected
« power is applied to all elements (50MHz clock and RF-cards)
e RF-cards are connected with the right flatband-connector

* Using the Rohd&& Schwarz signal analyzer to check for a singal at 2.38GHz

33.4 Radar-system

The radar-system uses only one radio-platform, and the@sg&imilar tc 33.3.

33.4.1 Hardware-setup

For this setup, the duplicator is not needed, and only twaBifels are necessary. Align the two antennas,
so that they point in the direction of the object. If possjlitee player should be behind the antennas, so
that his movement is hidden to the radar. Else it is difficoltell apart the movement of the player with
the movement of the object.

33.4.2 Software-setup

Be sure to have the correct code loaded into the FPGA, elseta:23 on how to program the correct code.
When everything is set up, you can start the radio on the soéplatform:

cd \$SRADIO/Test/Radar
make rf_tail

Then, on a computer connected to the software-platforrmectthe camera, make sure it is detected, and
run:

cd \$SRADIO/Tools/PlayRadar
Jrun
Eventually you have to adjust the following two variables:

REMOTE points to the software-radio platform
RADIO_DIR is the remote directory

119121

Radar-system Chapter 33. Test Configurations

50 Mhz oscillator

500-13226
Frequency doubler
MEK-3 A
_ S
IN[-— 2 1
ouT
. ophtter
ZFSC-2-2500
: Splitter
CS-554 : FSC-8--
H 3
%’}1 12345678
(g —
clk ‘ N
Ch 2 - —,
Ch 1=+ o
= card
I -
CS-564 : | - »flx
CHY | [0l [ufenmal
N R el e B
Clk re—! .
Ch 2] EEEEEE ' -card
Chilp----- |L -- LB
| »[L0O| [Antennal
I e o o e e e e e e e e e e e 22

Figure 33.4: Radar-system

33.4.3 Camera-setup

For this radar-system you can have a camera attached to thputer, so that the different people using
the system can be shown live! Unfortunatly, this requireessetup to your computer. The source code
for the driver can be found under:

http:/iwww.saillard.org/linux/pwc/debian/

and once it is installed, things should run nicely.

33.4.4 Amplitude settings

The amplitude settings are done in case the two antennasrea@art and on the same height, pointing in
the same direction. If you chose to use them in a differetitnggtit can be necessary to adjust the values
attn.rx andattn tx in the file \ $SRADIO/Test/Radar/tesadar.cto more convenient values. Lower values
mean lower attenuations. So if you put the antennas furihentait may be useful to chose a lower value
for attrrx.

You can also run

cd \$SRADIO/Test/Radar
make rf_show

and use the configuration-window from thadarrf-module while looking at the output eadarrf and
the fft -stats of theradarfft-module. Once you find a good pair of values where the outpawsta dotted
circle and the fft shows a clean peak, copy these valuéssteadar.cand re-run it.

1201121

WLAN Chapter 33. Test Configurations

50 Mhz oscillator
500-13226

) llﬁ? attenuator

Rohde & Schwarz —card
. Tx
Signal generator

:

Set to 88MHz: -10dBm —

» Chl
» Clk

Figure 33.5: WLAN-setup

33.5 WLAN

The goal is to aquire a part of a WLAN-signal and to decode thstimportant bits.

33.5.1 Hardware-setup

For this test, take a wireless access point and set it to @h@nat a center frequency of 2437MHz. This
takes care of EPFLs network that is tuned to channel 1 and 221&MHz and 2467MHz. The bandwith
of the signal is 22MHz.

The setup can be seenin fia. 23.5.

33.5.2 Software-setup

If you used the GPS beforehand, you have to re-program theARP&. For this, refer to 23. Once this is
done, you can start the aquisition:

cd \$SRADIO/Test/WLAN
make rf_tail
..l.ITools/Dbg/dbg 2 0 > .././Matlab/WLAN/wlan_captur e.dat

Then you can use the programs\8SRADIO/Matlab/WLANto decode the received WLAN-signal.

121121

Part Vi

Future thoughts

122121

Chapter 34

STFA

The STFA being a complex module and having evolved over tveosyét would be a good idea to re-write
it once completely. Here are some ideas on what should be edegid what thoughts should go into a
re-structuration of the STFA.

34.1 Antenna

The antenna should be a module on its own with an output forabeived samples and an input for the
sent samples. These two ports should then be connectedstiahédvantages:

« Configuration If for a given antenna we have special paramsetve can define them as easily as in
any module

« Clarification It gives a more constant concept in the sofea@adio

 Universality For the moment the software-radio is very TDBsed with the STFA. If the antennais
really an independant module, it would be much more easy péeiment other stuff

34.2 Chains

The way chains are linked to the STFA is very kludgy. Whilentig are quite OK for RX-chains, it is
really not optimal for TX-chains. Consider figure 34.1 where the left-hand side you see the actual
implementation. The user has to define which modules haves toalled at which moment with two
function-calls like:

swr_stfa_notice_sdb(stfa, 2, sourcel);
swr_stfa_notice_sdb(stfa, 5, source2);

In order to simplify things and thus taking away possiblerses of error, it would be much better, if
the STFA would consider the chains on its own, like show inrtplkt-hand part of the figure.

For the TX1-chain, not much would change, only the two abmestioned function-calls could be left
out, because the STFA would call the RRC-module with a mesklag SUBS MSG.PRODUCEDATA.
The RRC-module in turn would call the Map-module, which wbaall the Sourcel-module. Then, the
Sourcel-module produces some data, and everything isdifard

img /variwww/html/ipgwww/data/media/stfx_kludge.ps

Figure 34.1: Actual and proposed design of the TX-chairtialer

123121

Chains Chapter 34. STFA

For the TX2-chain, the distribution of the time of calcutatiwould even be more uniform. If you
consider the left-hand side, all the calculations for adl thodules is done during slot 3 and 4, even though
about half of the calculations are not needed before slot Giv,Nf the STFA would be smart enough to
not only call the modules with a messaB6/BSMSG.PRODUCEDATA, but also tag the modules passed
this way, only the necessary calculations would be carrigd o

So, at the beginning of slot 3, the RRC would be notified wvBiHBS MSG_.PRODUCEDATA and
tagged active. Then the Map-, Split-, and finally the Sounzeiule would be notified. Once the Source2-
module produced its data, the inverse way will be taken. Apdrtant point is to note that the Split-module
produces both branches of data, but that only the left branfdilowed.

Then, at the beginning of slot*3 the RRC of slot 7 would be notified, which would notify the Map
module, which would see that it has some data to process,tapdie notification of further modules. It
then processes the data, hands it to the RRC, which prodésdesa, too, and hands it to the STFA.

34.2.1 Implementation

In fact, it is not really necessary to tag the data. Each nedalld just
e Check inputs for whether all necessary inputs are filledh wta
 Notify upper modules if this is not the case

* Process the data

The idea is that the notification of the upper modules happgnshronously, that is, the notification only
returns once it has been carried out. The module can themasthat the data is available.
There are a lot of special cases, just a few here:

< Multiple inputs of a module, where one or more may be inagtifaat is, not connected

 Loops for creating incremental coding

1Coincidence: this is the same slot as the result of the leftdir

124121

Chapter 35

Visualize

Reading through the reference-part of the visualize-tong gets the impression that this tool has been
glued together (like oh so many others) more randomly thgthémg else. Well, unfortunatly, this is true.
One project would be to re-design the classes of this toal tlae@n re-write a more nice version of it.

The steps to do so could include the following:

« Understand and look at the existing code. Using a tool likebtkllo, one can get quite fast a basic
understanding of which classes use which classes.

« Design a new class-model, where each class has a wellridesmurpose.

« Rewrite the whole tool, doing mostly copy-paste conssif:t

Yimportant: go step-by-step with easy testable parts

125121

Part VII

Index

126121

Index

Antenna
Architecture 15-17
Common 15
Driver, 16
Hardware. 17
Simulation, 17

CDB
Architecture 1.4
Reference. =(-32
swr cdb register spr:. 32
swr_spcdefineconfig parameter. =0
swr_spcdefineinput, 3:.
swr_spcdefineoutput, 3:2
swr_spcdefinestatsparameter. 1
swr_spcgetnew.desc 30
Channel-server. 87
Overview, 6
Code
Architecture 23
CVS, 94

Data Types
Block, 3¢
DOUBLE, 40
DOUBLE_COMPLEX, 40
S32, 40
S8, 40)
SAMPLE S12, 40
SAMPLE S16, 40
SYMBOL_COMPLEX, 39
SYMBOL_COMPLEX S32, 40
SYMBOL_MMX, 40
u32, 40
us§, 40

DBG
closelist, 4€
getblock, 4%
getimage. 45
getoutput, 455
getprofiling, 46
list modules. 44
list.new.modules. 44
list_tagmodules. 44
new.list, 45

ping, 46
procesdata, 413
readlist, 4t
setconfig, 45
showall, 4<.
show.config, 45
showinput, 45
showoutput, 4%
showstats 45
Debugging. 88
ddd, 89
Simulation. 83
Tests 83

From Conception to Measurement, 73-85
Defining new modules. 73

Hardware
Architecture 22
ICS, 52
Philips, 52
STM, 52!

Instantiation. 33
LDPC-code generatcr. 37

Macros
buffer.in, 41
bufferout, 47.
callLmodule 41
dataavailable 41
makethread 41
private, 4.
sizein, 41
sizeout, 47.
UM_CONFIG.COMPLEX, 40
UM_CONFIG.DOUBLE, 40
UM_CONFIG.DOUBLE_COMPLEX, 40
UM_CONFIGLINT, 4C
UM_CONFIG.POINTER, 40
UM_CONFIG.STR128 4)
UM_INPUT, 41.
UM_OUTPUT, 4..
UM_STATS BLOCK, 41
UM_STATS.COMPLEX, 4.

127121

INDEX

UM_STATS.DOUBLE, 41.

UM_STATS.DOUBLE_.COMPLEX, 4..

UM_STATS.IMAGE, 41
UM_STATS.INT, 41
UM_STATS POINTER, 41
UM_STATS STR128 41
Make, 422
base. 42
bsms 42
clean, 42
cleanproc. 42
cvs.commit, 42
cvsup, 42!
ddd, 43
debug 43
kill, 42
mc, 43
modules. 42
rf, 43
rf_show, 43
rf_tail, 4
rmall, 42, 43
server 42
shortwait.bsms 43
shortwait.mc, 43
show, 422
showbsms 42
showmc, 43
tools, 42
user, 4.3
usershow, 43
userwait, 4%
userwait 10, 43
userwait 20, 43
userwait_30, 43
userwait s, 42
userwait 60, 43
wait_bsms 43
wait.mc, 43
whole, 42
Messages. 35
Modes of Operation. 2.9-21
Local-Loop, 19
Simulation or Real-Time:. 1.9
Test, 19
Two-Radio System. 20
Module, 38-41
Example
config, 75 77
configureinput, 75
configureoutput, 7!5
init, 75, 78
Makefile, 80
moduleinit, 77/

INDEX

pdata 73
private, 75
reconfig, 75
reconfigure. 78
sendpdata. /5
stats. 77

finalize, 39

msg, 39

pdata 33

reconfig. 33

resize 33

NEW_SPC*, 33

OLD_SPC*, 33
Operation System. L8

PARAMETERDEBUG, 3..
PARAMETERHIDE, 31

Real-time mode
Overview, 5

SDB
Architecture 14
config-structure. 24
Instantiation. 33
Reference. z2-35
stats-structure:. 34
SET.STATUS, 37
Signal Flow, 47-52
Signal Processing
Architecture 13-15
CDB, 1«
DBG, 13
Framework, 13-15
Modules and Chains. 14
SDB, 14
STFA, 15
Subsysten. 14
signal-types. 32
Simulation mode
Overview, 5
Software-radio
Definition, <.
STFA, 53
SUBSMSG.*, see Subsystem/Messages
SUBSSTATUS*, see Subsystem/Flags
Subsystem
Flags. 355
SET.STATUS, 37
SUBSSTATUSLISTED, 37
SUBS STATUS MULTI _IN, 37
SUBS STATUS PREPARE. 37
SUBS STATUS PREPARESWALLOW, 37

128121

INDEX

SUBS STATUS RECONF, 37
SUBS STATUS RESIZEBOTH, 37
SUBS STATUS RESIZEDOWN, 37
SUBS STATUS RESIZENONE, 37
SUBSSTATUSRESIZEUP, 3/
SUBSSTATUS THREAD, 37
SUBS STATUS TRACKED, 37
SUBS STATUS WORKING, 37
Messages
SUBSMSG_CONNECT, 35
SUBSMSG.DATA, 36
SUBS MSG.DISCONNECT, 35
SUBSMSG_EXIT, 3€
SUBSMSG.NEW_TRACK, 3%
SUBSMSG.NO_TRACK, 3&
SUBSMSG.PING, 36
SUBSMSG_PREPARE. 36
SUBSMSG._.RECONFIG, 33
SUBSMSG.RESIZE, 365
SUBSMSG._THREAD, 3¢
SUBSMSG.USER, 36
Ports
SUBS PORT.DATA, 38
SUBSPORT.GOT.RESIZE, 33
SUBSPORT.OTHER FREE, 33
SUBSPORT.OTHERMALLOC, 38
SUBSPORT.OWN_MALLOC, 38
SUBSPORT.PASSEDTHROUGH, 38
SUBSPORT.THIS_FREE, 33
Reference. =5H-38
swr cdb register spr:. 32
swr_chaincreate. 33
swr_connectionadd, 33
swr_sdhfreeconfigstruct, 34 33
swr_sdhfree statsstruct, 3
swr_sdhgetconfigstruct, 3.4 33
swr_sdhgetstatsstruct, 3
swr_sdhinstantiateid, 3¢
swr_sdhinstantiatename 33. 38
swr_sdhsetconfigcomplex 34
swr_sdhsetconfig double 34
swr_sdhsetconfig.int, 3<
swr_sdhsetconfig pointer, 34
swr_sdhsetconfig symbol, 3:}
swr_sdhsetconfigure 33
swr_sdh.show profile, 35
swr_spcdefineconfig parameter. 20
swr_spcdefineinput, 3.
swr_spcdefineoutput, 322
swr_spcdefinestatsparameter. 21
swr_spcgetnew.desc. 3)

Testing. 92
Files, 92

Main, 93
Two-Radio System. 20

Client, 21.

Master, 21

Modules 20

Setup 2D

UM_CONFIG*, 30
UM_INPUT, 31.
UM_OUTPUT, 32
UM_STATS*, 31

Visualize, 865
Architecture 11-12
Classes

CanvasView. 26
ConfWind, 28
FifoCmd, 29
Image 23
Interface 23
Mapper 29
Module, 26 23
ModuleGenerator. 2!6
PlotWin, 28
RadioView, 25
Show, 23
FifoCmd, 12
Mapper 12
Overview, 5
Reference. Z26-229
User I/O, 11

INDEX

129121

List of Figures

21

31

6.1

8.1
8.2
8.3
8.4

11.1

15.1
15.2

19.1
19.2
19.3
194
19.5

20.1
20.2
20.3
204
20.5

211
21.2

251

31.1
31.2
31.3

331
33.2
33.3
334
335

341

Dumb hardware and intelligent software 0L 4
Structure of the software-radio in bothmodes oL 5
The three main components and their respective sulmtisis. 10
The debug-interface in RF- and simulation-mode 13
Two simple chains and a module indetail 14
TheCDBandSCB e e, 14

Two modules and all possible connections L 15

The most simnle two-way communicationexample 20

The classes involved in bringing up the mainview 27
The differentdisplav-ontions 28
The common part of the signal-fow 48
OPSKsignalsnece e e 48
Position ofthe midamble e 49
The signal preparationfor ICS e 50
The signal preparationfor STM e e 51
TheframesandsIdts e 53
Innuts and outputs of the STFA o oo 54
Atypical set-upofthe STIFA 54
The different size-parameters L 55

Two transmit and one receive-chainasanexample. 56

Recention-chein e 59
The whole chain and the most importantpartofit 59
Theexamplesot e 73
Avervsimplerado 98
... 99
... 101
The important connectionsona RF-zardo oo 109
... 111
Radio-setup e e 112
Radar-system e 114
WLAN-SEtUD o e e 115

Actual and proposed desian of the TX-chain alertion 117

130121

	I Introduction
	How to read this document
	Overview of this part

	Motivation
	Why Software-Radio?

	System Overview
	Simulation Mode
	Real-Time Mode
	Communication

	Usage
	Past
	Present
	Future

	Outlook
	Multi-point to Multi-point
	Low-Tech Communication

	II Architecture
	Overview
	GUI
	User I/O
	Chains
	Stats
	Output-ports
	Plots
	Export
	Re-configuration
	Process-Data

	Mapper
	FifoCmd

	Signal Processing
	DBG
	Framework
	Modules and Chains
	CDB and SDB
	Subsystem
	STFA

	Antenna
	Common
	Driver
	Hardware or Simulation
	Hardware
	Simulation

	Operating System
	Modes of Operation
	Test
	Simulation or Real-Time
	Local-Loop
	Two-Radio System
	Setup
	Modules
	Master
	Client

	Hardware
	Code
	Directory Structure

	III Reference-Manuals
	Overview
	GUI
	General Interface
	Interaction
	Plotting
	Configuration
	Signal and Outputs
	Image

	Internal
	Mapper
	FifoCmd
	Module

	Signal Processing
	CDB
	swr_spc_get_new_desc
	swr_spc_define_config_parameter
	swr_spc_define_stats_parameter
	Flags for define_*_parameter
	Types for define_*_parameter
	swr_spc_define_input
	Port Types
	Port Flags

	SDB
	Instantiation
	swr_chain_create
	swr_sdb_instantiate_name
	swr_connection_add

	Manipulating stats- and config-structures
	Accessing own Structures
	Accessing other Structures

	Other Functions

	Subsystem
	Messages
	Basic Handling
	Data Propagation
	Reconfiguration

	Subsytem-Flags
	Propriety
	User-defined
	State

	Port-Flags
	Block-related
	Signal-passing

	Module
	General introduction
	Data Structures
	Data Types
	For Config and Stats

	Macros
	module_init
	other functions

	Makefile
	Make Arguments
	Common
	Radios
	Code

	DBG-interface
	Command-syntax
	list_modules
	list_tag_modules
	list_new_modules
	show_all
	show_*
	get_output
	get_block
	get_image
	set_config
	new_list
	read_list
	close_list
	process_data
	get_profiling
	ping

	Signal Flow
	Common
	Transmitting
	Receiving

	Hardware
	ICS-hardware
	Philips-hardware
	STM-hardware

	Important Modules
	STFA
	Synchronisation
	Important Parameters
	Structural
	Timing

	Attaching Chains
	Overcoming the Time-Limits

	Subsystems
	Nyquist
	Reception-chain
	More detail
	w_rx
	sig_type

	Interface
	New commands defined
	int swr_ant_ics_init(fs_rx, fs_tx, ch_rx, ch_tx, sig_type);
	fs_rx
	fs_tx
	ch_tx
	ch_tx
	sig_type

	double swr_ant_ics_get_fs_rx(void);
	double swr_ant_ics_get_fs_tx(void);
	void swr_ant_ics_rx(ch, fc, W);
	ch
	fc
	W

	void swr_ant_ics_rx_freq(ch, fc);
	ch
	fc

	void swr_ant_ics_tx(ch, fi_tx);
	ch
	fi_tx

	void swr_ant_ics_clk(f_adc dac_mult, f_dac);
	f_adc
	dac_mult
	f_dac

	void swr_ant_ch_start(void);
	void swr_ant_ch_stop(void);
	int swr_ant_ch_io(slot);
	slot
	return

	void swr_ant_ch_set_synth(ch, RF, side);
	ch
	RF
	side

	void swr_ant_ch_set_freq_diff(ch, freq_diff);
	ch
	frec_diff

	write_ddcs(void);

	FPGA
	Directories
	Testing the version

	Tidbits
	DMA-considerations
	Conclusion

	Server
	Resampler
	Samples, Chips and Symbols

	IV HOWTOs
	From Conception to Measurement
	Defining New Modules
	The Files
	snr.c
	snr_send.c
	snr_rcv.c
	Makefile

	Compile it

	Testing
	The Directory
	Makefile
	test_snr.c
	start_it

	Going Over the Air
	The Directories and Files
	README
	MS/radio_ms.c
	radio_bs.c
	Running it with the channel-simulation
	Running the real thing

	Tools
	Visualize
	Starting it
	Mouse handling
	Plotting of values
	Exporting values
	Known bugs

	Channel-server
	Starting it
	Known bugs

	LDPC-code generation
	Starting it
	Known bugs

	Debugging
	Debugging in user-space
	Using Gdb with Tests
	Debugging a Simulation
	Using ddd
	Known bugs

	Getting Started
	Prerequisites
	Installing the MSR
	Download the software
	Compile the software
	Common errors
	While compiling 'Visualize' I get 'libqwt not found'

	Running the examples

	Testing
	Files
	Main

	Using CVS
	Structure
	Starting a new Branch
	Checking Out for the First Time

	Creating a simple radio
	General Setup
	Overview
	Files

	Master
	Testing the Master
	Slots and Blocks in the Software-Radio

	Client
	Testing the Client
	Testing the transmission
	Synchronisation

	RF-transmission
	Going Further

	V Practice
	Introduction
	Motivation
	Intended reader
	Parts
	Conventions
	Directories
	Commands
	Radio-platforms

	Test Configurations
	Setup
	RF-cards
	Rohde & Schwarz
	ICS-cards
	FPGA
	Power supply

	GPS
	Hardware-setup
	Software-setup
	Short testing sequence

	Radio system
	Hardware-setup
	Software-setup

	Radar-system
	Hardware-setup
	Software-setup
	Camera-setup
	Amplitude settings

	WLAN
	Hardware-setup
	Software-setup

	VI Future thoughts
	STFA
	Antenna
	Chains
	Implementation

	Visualize

	VII Index

