
Finite-Length Scaling Laws for Iterative Coding

Systems

Finite-Length Scaling Laws for Iterative Coding

Systems

Jérémie Ezri

EPFL - Ecole Polytechnique Fédérale de Lausanne

Jérémie Ezri
21/8/1981 – 20/4/2010

In late 2007, Jérémie Ezri started to write down the first notes of what
he hoped would become his thesis. Soon thereafter, in mid January 2008, he
was diagnosed with cancer. Over the following two years, through the ups and
downs of surgery and chemo therapy, he continued to document his research.
Jérémie died on April 20, 2010. This booklet contains his thesis. It is essentially
in the form Jérémy had left it, a few months away from his defense.

Besides the results found in these notes, his scientific contributions also
include material which was published in the following papers:

J. Ezri and M. Gastpar, “On the performance of independently designed
LDPC codes for the relay channel”, ISIT, 2006, USA, 2006, pp. 977–981.

J. Ezri, A. Montanari, and R. Urbanke, “Finite-Length Scaling for Gallager
A”, 44th Allerton Conference on Communication, Control, and Computing,
2006, USA.

J. Ezri, A. Montanari, and R. Urbanke, “A generalization of the finite-
length scaling approach beyond the BEC”, ISIT, 2007, France, pp. 1011–1015.

J. Ezri, A. Montanari, S. Oh, and R. Urbanke, “Computing the threshold
shift for general channels”, ISIT, 2008, USA, pp. 1448–1452.

J. Ezri, A. Montanari, S. Oh, and R. Urbanke, “The slope scaling parameter
for general channels, decoder, and ensembles”, ISIT, 2008, USA, pp. 1443–
1447.

ii

For his thesis, Jérémie worked on an ambitious project with the same enthu-
siasm and passion that he had for music and for his hobby of creating movies.
When he started, there was little more than a general vision – how to make
the optimization of iterative codes accessible to a general audience. The idea,
inspired from statistical physics, was to derive scaling laws to describe the
difficult-to-evaluate finite-length performance of a code using quantities that
are computable in the limit of infinitely large block lengths. At the time, only
the simplest case had been solved, namely the transmission over the so called
binary erasure channel. It was far from clear whether the necessary extensions
could be carried out.

Over time, working his way methodically from simple extensions to the
general case, he showed that the general approach was not only possible, but
quite promising. By developing the necessary theory and implementing the
associated algorithms, he was able to accurately predict the performance of
modern codes. A quick look at the daunting mathematical expressions in this
thesis should make it clear what a difficult task this was and how impressive it
is that he succeeded.

Working with Jérémie never felt like work. Not even the pressure and the
stress preceding an important deadline would make him lose his mischievous
side. His impromptu imitations were legendary. Whether summer intern or
visiting Shannon award winner – no one was spared. He was also one of the
founding members of the IPG movie production team.

We have lost a great researcher, the most likely IPG member to make it to
Star Academy, our SuperStar, and a great friend – all at once.

Ruediger Urbanke
(for all of IPG)

Abstract

In the past 20 years, codes on graphs have found their way from academic
research into everyday communication systems. Most modern communications
standards use codes on graphs as their main means of establishing an efficient
and reliable link.

The literature on codes on graphs is substantial, with most of it focusing on
code constructions and their analysis when the block length tends to infinity.
This has lead to a large number of known constructions which all perform well in
the asymptotic limit. But how do these codes perform for “practical” lengths?
This is a challenging question which has considerable practical relevance.

Scaling laws are perhaps the most promising avenue for answering this
question. For codes on graphs the idea of scaling laws was previously explored
for the binary erasure channel and it was shown in this case how to compute the
scaling parameters and how to accomplish a finite-length code optimization.

We show that a similar approach can be carried through for general binary
memoryless symmetric channels. More precisely, we investigate the form of the
scaling laws as well as means of computing the scaling parameters for various
iterative decoding algorithms and irregular low- density parity-check codes. We
first show how to compute the message variance for a fixed number of iterations
for irregular low-density parity-check ensembles. From these calculations the
basic scaling parameter α can be deduced. By means of examples we demon-
strate that the predicted performance is a very good indicator for the actual
measured data. This opens up the way of using scaling laws in a constructive
fashion, as part of a finite-length optimization routine.

Our aim is to provide an easily usable finite-length optimization tool that
is applicable to the wide variety of channels, blocklengths, error probability
requirements, and decoders that one encounters in practical systems. The tool
is aimed at non-experts in the field, who need to quickly find code designs that
are comparable with the best known codes available today but do not have the
luxury of spending months in doing so.

i

Résumé

En 20 ans, les codes sur graphes sont passés de la recherche académique à des
applications concrètes dans les systèmes de communication utilisés quotidien-
nement. En particulier, les standards de communication moderne utilisent les
codes sur graphes comme un moyen privilégié d’établir un canal de communi-
cation sûr et de qualité.

Il existe de nombreux travaux relatifs aux codes sur graphes. Ces travaux
se concentrent en grande partie sur la construction de ces codes ainsi que sur
leur analyse lorsque la taille des blocs tend vers l’infini. Cela conduit à de
multiples constructions de codes avec de bonnes performances asymptotiques.
Mais quelle est la performance de ces codes pour les tailles de blocs utilisées en
pratique? Il s’agit d’une question primordiale d’une importance considérable.

Les lois d’échelle sont probablement la piste la plus prometteuse pour es-
sayer de répondre à cette question. Dans le passé, cette approche a été ap-
pliquée au cas du canal binaire à effacement pour lequel il a été montré com-
ment calculer les paramètres d’échelle et optimiser les codes de tailles finies.

Nous montrons qu’une approche similaire peut être utilisée pour l’ensemble
des canaux binaires, symétriques, sans mémoire. Plus précisément, nous étudions
la forme des lois d’échelle et les facons de calculer les paramètres d’échelle pour
différents types d’algorithmes itératifs de décodage et codes LDPC irréguliers.
Dans un premier temps, nous montrons comment calculer la variance des mes-
sages pour un nombre fixé d’itérations, pour les ensembles LDPC irréguliers.
De ces calculs nous pouvons également déduire le paramètre d’échelle de base,
α. Nous utilisons ensuite des exemples pour démontrer que les performances
prédites sont très proches des données mesurées. Ceci ouvre la porte pour
l’utilisation des lois d’échelle dans le contexte de l’optimisation des codes de
taille finie.

Notre but est d’offrir un outil d’optimisation des codes de taille finie facile a
utiliser et applicable a une grande variété de scénarios en terme de canaux, taille
de blocs, seuil de probabilité d’erreur et décodeur. Cet outil vise des utilisateurs
non-experts, désireux de construire rapidement des codes aux performances
comparables celles des meilleurs codes disponibles sur le marché.

iii

Contents

Abstract i

Résumé iii

Contents v

1 Introduction 1

1.1 History of Scaling Laws for LDPC Codes 1
1.2 Thesis Outline . 3

2 Scaling Law for Gallager A 5

2.1 Introduction . 5
2.2 Gallager A Algorithm: A Short Review 5
2.3 Derivation of Scaling Law for Gallager A 6
2.4 Comparison to Simulation Results 9
2.5 Flipping Probabilities . 9
2.6 Variance Computation . 12
2.7 Summary and Open Problems 17

3 General Scaling Law 19

3.1 EXIT-Like Curves . 19
3.2 General Derivation of Scaling Law 20
3.3 Notation . 24
3.4 Computation of Variance for Fixed ℓ 25
3.A Details of Fixed-ℓ Variance Computations 31

3.A.1 Edges in T
(ℓ)
1 . 31

3.A.2 Edges in T
(ℓ)
2 . 34

3.A.3 Edges in T
(ℓ)
3 . 34

3.A.4 Edges in T
(ℓ)
4 . 39

3.A.5 Computation of Sc . 47
3.B Details of Asymptotic Variance Computation 62

3.B.1 Edges in T1 . 62
3.B.2 Edges in T2 . 63

v

vi Contents

3.B.3 Edges in T3 . 63
3.B.4 Edges in T4 . 64
3.B.5 Sc for Iinfinite Number of Iterations and Finite Support

Tree of Size k . 66
3.B.6 Put It Together . 72

4 Flipping 75

4.1 Introduction . 75
4.2 Stability Condition for Flipping Matrix 75
4.3 Gallager A . 77
4.4 General Stability Condition For Time-Invariant Flipping Matrix 78
4.5 Time-Invariance of BP Decoder 80
4.6 Flipping after a Finite Number of Iterations 81

Bibliography 83

Index 85

Introduction 1
1.1 History of Scaling Laws for LDPC Codes

Assume that you want to optimize a sparse graph code under iterative decoding
for a fixed length. In general, it is not optimal to choose the code with the
best asymptotic (in the blocklength) performance since the convergence speed
of different ensembles to this asymptotic limit varies considerably and this
difference can therefore not be ignored. We are hence looking for good finite-
length approximations of the performance. If the approach is to be of any
practical value it must be quite flexible, amenable to the analysis of the large
collection of ensembles as well as to the variety of message-passing decoders
(quantizations of BP) that have been proposed to date.

One possible approach is to use scaling laws, which have a long and success-
ful history in statistical physics. We refer the reader to the books by Fisher
[1] and Privman [2]. The idea of scaling laws was introduced into the coding
theory literature by Montanari [3]. By means of a specific example (regular
ensemble, binary symmetric channel (BSC) with parameter ǫ) he showed that
if one plots the block error probability as a function of the “scaled variable”
z =

√
n(ǫBP − ǫ) (where ǫBP is the density evolution threshold under belief

propagation (BP)), then the curves corresponding to increasing blocklengths
quickly converge to a single “mother curve”, called the scaling function. The
results of [3] are repeated in Figure 1.1.

This suggested that if one were able to analytically determine the scaling
function as well as the scaling parameters for a given system (degree distribu-
tion, channel and decoder) then it would be possible to efficiently and accu-
rately predict the finite-length performance of iterative coding systems.

The first analytic result was derived by Amraoui, Montanari, Richardson,
and Urbanke [4, 5]. They showed that, for transmission over the binary erasure

1

2 Introduction

0.00 0.05 0.10

p

0.0

0.2

0.4

0.6

0.8

B
lo

ck
 E

rr
or

 P
ro

ba
bi

lit
y

50
100
200
300
500
1000
2000
5000

−1.0 −0.5 0.0 0.5 1.0

(p−pd)N
1/ν

0.0

0.2

0.4

0.6

0.8

1.0

B
lo

ck
 E

rr
or

 P
ro

ba
bi

lit
y

50
100
200
300
500
1000
2000
5000

Figure 1.1: Left: Simulation of the block error probability of a (3,6)-code trans-
mitted over a BSC and decoded with a belief propagation decoder. The corre-
sponding threshold is ǫBP = 0.084. Right: Rescaled block error probability with
respect to z =

√
n(ǫ − ǫBP). Note that the simulation points all cluster around a

single mother curve. Both figures are taken from [3].

channel (BEC) with parameter ǫ, the block error probability behaves like

PB(z) = Q
(z

α

)

(1 + on(1)),

where z =
√

n(ǫBP − ǫ) and where ǫBP is the threshold of the ensemble under
BP decoding. They further conjectured that, more accurately,

PB(z) = Q
(z

α

)

(1 + O(n−
1
3)), (1.1)

where z =
√

n(ǫBP − βn−
2
3 − ǫ), and where the term βn−

2
3 represents a finite-

length shift of the threshold. More precisely, ǫBP(n)− ǫBP(∞) = βn−
2
3 + on(1),

where ǫBP(n) is the finite-length threshold, i.e., the channel parameter where
the average block error probability of the ensemble of length n takes on the
value one-half.

Analytically the scaling law promises the convergence of PB(z) for a fixed z
and n tending to infinity. In practice, the scaling law provides accurate predic-
tions already for moderate blocklengths and also away from the threshold; see
e.g., the left-hand side graph in Figure 3.2. The analysis put forward in [4, 5]
was based on the so called peeling decoder by Luby, Mitzenmacher, Shokrollahi,
Spielman, and Steman, see [6]. This decoder is equivalent to the standard BP
decoder but represents the decoding process as a sequence of discrete steps,
where each step corresponds to determining a previously erased bit from its
known neighbors. It was shown in [4, 5] how to determine the scaling parameter
α from the solution of a system of differential equations, which were dubbed
covariance evolution. These equations were then solved numerically in order
to evaluate α.

An alternative way to determine α for the BEC case was proposed in [7].
Recall that density evolution computes the average number of erased messages

1.2. Thesis Outline 3

as a function of the iteration number. It was shown in [7] that α can be
computed by determining the variance of the number of variable-to-check mes-
sages. This computation was accomplished in [8] and an explicit value for α
as a function of the degree distribution pair (λ, ρ) was given. Further, explicit
expressions for β were derived. Given these explicit expressions of the scaling
parameters, it is then easy to accomplish a finite-length optimization.

1.2 Thesis Outline

All the above developments were restricted to the BEC. In Chapter 2 we take
the first step towards extending the scaling law to more general channels. More
precisely, we consider transmission over the BSC and decoding via the Gallager
algorithm A. This algorithm has the property that for most ensembles the
threshold is given by a fixed point at the beginning of the decoding process.
This somewhat simplifies the determination of the scaling law and the scaling
parameter. During our investigation we will see an interesting new feature
of general message-passing decoders – if we consider density evolution on an
infinite tree above threshold, then even though the message densities converge,
the messages themselves do not. This makes the analysis more interesting but
also much more challenging. A detailed analysis of this general phenomenon,
which we termed “flipping,” is contained in Chapter 4.

In Chapter 3 we then consider a general setup. More precisely, we define
a broad class of quantized message-passing algorithms as well as an “EXIT-
like” curve which characterizes the decoding performance. Under some mild
regularity condition on this EXIT-like curve, we then show that it is possible
to extend the alternative derivation of the scaling law for the BEC which was
introduced by Ezri, Montanari, and Urbanke in [9].

Scaling Law for Gallager A 2
2.1 Introduction

As a first step in generalizing scaling laws to more general channels we con-
sider transmission over the BSC using the simplest message-passing decoder,
namely, Gallager A. To simplify things further, we only consider ensembles
whose threshold is given by a fixed point at the start of the decoding process.

2.2 Gallager A Algorithm: A Short Review

Gallager introduced in his thesis [10] what is now called Gallager’s decoding
algorithm A. Messages are from the set {0, 1} and represent the current esti-
mate of the decoder of a particular bit. At check nodes, the message-passing
rules call for the computation of the XOR sum of the incoming messages. At
a variable node the outgoing message equals the originally received message,
except if all other incoming messages agree, in which case this common value
is sent.

The density evolution equations corresponding to this decoder were already
written down by Gallager. By convention, one round of message passing starts
with the processing at the check nodes, is followed by sending the message
to the variable nodes, then comes the processing at the variable nodes, and,
it concludes, by sending the messages from the variable nodes to the check
nodes. Let yℓ/xℓ denote the error probability of the check-to-variable/variable-
to-check messages in iteration ℓ. Define

g(x) =
1 − (1 − 2x)r−1

2
,

f(ǫ, x) =ǫ(1 − (1 − g(x))l−1) + (1 − ǫ)g(x)l−1.

5

6 Scaling Law for Gallager A

We have x0 = ǫ. Then for ℓ ≥ 1, yℓ = g(xℓ−1) and xℓ = f(ǫ, yℓ). Various
analytic properties of these equations and methods for an exact computations
of the threshold can be found in [11].

The threshold of a regular LDPC ensemble under Gallager A is determined
by one of the following three conditions: (i) the stability condition which reads
ǫSta = 1

(l−1)(r−1) (see [11]), (ii) a fixed point in the middle of the decoding

process, or (iii) a fixed point at the beginning of the decoding process, f(ǫ, ǫ) =
ǫ. The last case is unusual in the sense that it does not happen under BP
decoding. But it was shown in [11] that (i) and (ii) are the most common cases
under Gallager A. Figure 2.1 demonstrates these three cases by means of three
regular ensembles.

0.02 0.04 0.06 0.08

-0.0175

-0.015

-0.0125

-0.01

-0.0075

-0.005

-0.0025
0.05 0.1 0.15 0.2

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0.02 0.04 0.06 0.08 0.1

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

Figure 2.1: Left: the function f(ǫBP, x) for the (4, 5) regular code whose threshold
is given by the stability condition ǫBP = ǫSta = 1

12 . Middle: the function f(ǫBP, x)
for the (3, 3) regular code whose threshold is given by a “regular” fixed point and
equals ǫBP ≈ 0.2230467. Right: the function f(ǫBP, x) for the (3, 4) regular code
whose threshold is given by a fixed point at the start of the decoding process –
f(ǫBP, ǫBP) = ǫBP, ǫBP ≈ 0.106924.

One would expect that the scaling is quite different in all these three cases.
Indeed, under BP decoding and the BEC the scaling for cases (i) and (iii)
were investigated in [4] and found to be of fundamentally different nature. We
investigate the scaling for case (iii). Somewhat surprising, the scaling law has
the same form as the case (ii) under BP decoding for the BEC.

2.3 Derivation of Scaling Law for Gallager A

We restrict our attention to ensembles whose threshold is determined by a fixed
point right at the beginning of the decoding process. Consider the following
experiment. Pick a code and a channel realization at random. Let Xℓ denote
the number of erroneous variable-to-check messages in iteration ℓ. Since the
graph and the channel realization are random, this number is also a random
variable. Fix ℓ to some integer and consider the following block error probabil-
ity estimator: if Xℓ −X0 > 0, i.e., if the number of errors has increased after ℓ
iterations then we estimate that the decoding process will fail (the actual de-
coder might run for many more iterations). Otherwise we assume that it will
succeed (breaking ties in a fixed but arbitrary way). Table 2.1 shows how good
this estimate performs for two regular ensembles and 1, 2, and 4 iterations. As
we can see from this data, even after one iteration the estimate is not too bad

2.3. Derivation of Scaling Law for Gallager A 7

Ensemble 1 iter. 2 iter. 4 iter.
(3, 6) 85, 2% 90, 7% 96, 6%
(3, 4) 82, 3% 85, 8% 88.2%

Table 2.1: Performance of block error probability estimator based on observing
only the first ℓ iterations for the (3, 6)-regular and the (3, 4)-regular ensemble.
The blocklength is n = 1000. We see that e.g. in roughly 85% of the cases if the
number of erroneous messages decreased (increased) after the first iteration then
the final decoding was successful (the decoder failed).

and it improves as we increase the iteration number. Of course, if we fix the
length of the code and let ℓ increase to the true number of iterations of the
decoder then this estimator is exact.

Let us derive a scaling law for this estimator for a fixed ℓ. Define Zℓ(ǫ) =
Xℓ−X0√

nl
. Compute

σ2
ℓ (ǫ) = E[Zℓ(ǫ)

2] − E[Zℓ(ǫ)]
2.

It is not very hard to show that if we fix ℓ then Zℓ converges in distribution
(as a function of the length n) to a Gaussian. We have limn→∞ E[Zℓ(ǫ

BP)] = 0
and by definition limn→∞ E[Zℓ(ǫ

BP)2] = σ2
ℓ (ǫBP). Imagine that we change ǫ

by ∆ǫ, a very small quantity (our language below will reflect the case where
∆ǫ > 0). Note that σ2

ℓ (ǫ) is a continuous function of ǫ so that the variance
remains essentially unchanged by this small change in ǫ. But because of the
change of ǫ the expected value of Zℓ changes from zero to

lim
n→∞

1√
nl

dE[Zℓ(ǫ)]

dǫ
∆ǫ =

dzℓ(ǫ)

dǫ
∆ǫ,

where zℓ(ǫ) = xℓ − x0. This means that on average the number of errors in-
creases after one iteration. Nevertheless, there are instances for which the
number of errors decreases. More precisely, this happens with probability

Q

(√
nl

dzℓ(ǫ)

dǫ ∆ǫ

σℓ(ǫ)

)

, where we have made use of the fact that Zℓ converges in

distribution to a Gaussian. This gives us the scaling law of our estimator.

Theorem 2.1 (Scaling Law for Estimator). Consider a (λ, ρ) degree distri-
bution pair whose threshold under Gallager A is given by a fixed point at the
beginning of the decoding process. Let G denote an element of the ensemble
LDPC(n, λ, ρ). Then for w =

√
n(ǫ − ǫBP) fixed and n increasing

P (Zℓ(G, ǫ) > 0) = Q

(
w

αℓ

)

(1 + o(1)),

where

αℓ =
σℓ(ǫ)√
l

dzℓ(ǫ)
dǫ

∣
∣
∣
∣
∣
ǫ=ǫBP

.

8 Scaling Law for Gallager A

Conjecture 2.1 (Scaling Law For Gallager A). Consider a (λ, ρ) degree dis-
tribution pair whose threshold under Gallager A is given by a fixed point at
the beginning of the decoding process. Let G denote an element of the ensemble
LDPC(n, λ, ρ). Then for w =

√
n(ǫ − ǫBP) fixed and n increasing

PB(w) = Q
(w

α

)

(1 + o(1)),

where

α = lim
ℓ→∞

αℓ = lim
ℓ→∞

σℓ(ǫ)√
l

dzℓ(ǫ)
dǫ

∣
∣
∣
∣
∣
ǫ=ǫBP

.

Discussion: Note that we have phrased the scaling law regarding the error
probability of the real decoder as a conjecture. The reason is simple: the scaling
of the true probability of error follows by tracing the behavior if we first let the
number of iterations tend to infinity and then let the block length grow. Our
computations on the other hand are derived by exchanging the order of limits
and we have not shown that the scaling stays unchanged under this exchange.

There are two remaining tasks. The first one is dispensed with rather
quickly.

Lemma 2.1 (Computation of dzℓ(ǫ)
dǫ).

dzℓ(ǫ)

dǫ

∣
∣
∣
∣
ǫ=ǫBP

=
b + (1 − a − b)aℓ

1 − a
− 1,

where a = ∂f(ǫ,x)
∂x |ǫ=x=ǫBP and b = ∂f(ǫ,x)

∂ǫ |ǫ=x=ǫBP.

Proof.

dzℓ(ǫ)

dǫ
|ǫ=ǫBP

=
d(xℓ(ǫ) − x0(ǫ))

dǫ
|ǫ=ǫBP=

d(f(ǫ, xℓ−1(ǫ)) − ǫ)

dǫ
|ǫ=ǫBP

=
df(ǫ, xℓ−1(ǫ))

dǫ
|ǫ=ǫBP −1

=
∂f(ǫ, x)

∂ǫ
|ǫ=x=ǫBP +

∂f(ǫ, x)

∂x
|ǫ=x=ǫBP

dxℓ−1(ǫ)

dǫ
|ǫ=ǫBP −1

= b + a
dxℓ−1(ǫ)

dǫ
|ǫ=ǫBP −1

= b + a
zℓ−1(ǫ)

dǫ
|ǫ=ǫBP +a − 1.

By an explicit calculation we can check that the given solution fulfills this
recursion: indeed

b + a

(
b + (1 − a − b)aℓ−1

1 − a
− 1

)

+ a − 1

=
b(1 − a − b)aℓ

1 − a
− 1.

2.4. Comparison to Simulation Results 9

The second task is to determine σ2
ℓ . This is much more involved. We show

how to compute this quantity for regular ensembles in Section 2.6.

2.4 Comparison to Simulation Results

Example 2.1. If we evaluate the recursions given in Section 2.6 we get for
ℓ = 1, · · · , 11, σ2

ℓ (3, 4) = 0.13274134, 0.51677864, 1.23228379, 2.43133296,
4.28314003, 7.04461, 11.0377, 16.7088, 24.6399, 35.6128, 50.7295. This cor-
responds to αℓ(3, 4) = 1.22027, 1.122, 1.07487, 1.05214, 1.03644, 1.02608,
1.01828, 1.01248, 1.00792, 1.00432, 1.00211. We see that α∞(3, 4) ≈ 1.0.

In a similar manner the consecutive values of σ2
ℓ (3, 6) are 0.0753008, 0.393956,

1.218374, 3.1463, 7.336317, 16.1522, 34.27, 70.9914, 144.5142, 292.62843. This
corresponds to αℓ(3, 6) = 1.0705, 1.01968, 0.986506, 0.972334, 0.96299, 0.95742,
0.953647. We conclude that α∞(3, 6) ≈ 0.95.

In general, scaling laws are only guaranteed to give accurate predictions
“close” to the threshold and we have no a priori bound on the absolute size of
the error that one gets for a fixed size. Figure 2.2 compares the average block
error probability EG[PB(G, ǫ)] determined via simulations with the performance
predicted via scaling for the (3, 4) as well as the (3, 6)-regular ensemble. As we
see, in both cases the predictions are very good indicators of the performance
of the code. As one would expect, as the block length increases, the predictions
become more and more accurate.

2.5 Flipping Probabilities

Since we are working at the threshold, xℓ and yℓ+1 are constant (by definition
of the threshold) for all ℓ ≥ 1. So, in order to simplify the notation, we drop
the iteration indices and use x and y in the following.

As a first ingredient we need to know the joint conditional probability that
a variable-to-check message is in error/correct at time ℓ and in error/correct
at time ℓ − j given that its received value is in error/correct. Note that these
quantities are more involved than the equivalent quantities for the BEC: for
the BEC messages are monotone – either they will become known at some
point in time and stay so, or they are permanently the erasure message. But
there are no equivalent monotonicity property for the present case. The fact
that even on an infinite trees, above the threshold, messages in general do
not converge but continue to “flip” is a main new ingredient when analyzing
general message passing algorithms (compared to the BEC case). It makes the
analysis considerably more difficult.

Lemma 2.2. Consider a variable node vn and its outgoing message v. The
event v = E means that message v is in error and the event v 6= E means that

10 Scaling Law for Gallager A

0.065 0.075 0.085 0.095 0.105
10-5

10-4

10-3

10-2

10-1

PB

ǫ

0.02 0.025 0.03 0.035 0.04
10-5

10-4

10-3

10-2

10-1

PB

ǫ

Figure 2.2: Top: Comparison of the block error probability
E
G∈LDPC(nx3, 3

4nx4)[PB(G, ǫ)] (dots with 95% confidence intervals) determined
via simulations with the prediction given by the scaling law. The lengths are
n = 512, 1024, 2048, and 4096, respectively. Since the scaling law predicts
only large-sized errors, the ensembles were expurgated: only error events of size
at least 70, 100, 200, respectively, were counted. Bottom: Comparison of the
block error probability E

G∈LDPC(nx3, 1
2nx6)[PB(G, ǫ)] (solid line) determined via

simulations with the prediction given by the scaling law (dashed line). The lengths
are n = 2048, 4096, 8192, 16384 and 32768 respectively. Since the scaling law
predicts only large-sized errors, the ensembles were expurgated: only error events
of size at least 50, 70, 100, 200 and 200, respectively, were counted.

2.5. Flipping Probabilities 11

message v is correct. Let us define

pc,c|c(ℓ, ℓ − j) := P(vℓ 6= E, vℓ−j 6= E|vn 6= E)

pc,e|c(ℓ, ℓ − j) := P(vℓ 6= E, vℓ−j = E|vn 6= E)

pe,c|c(ℓ, ℓ − j) := P(vℓ = E, vℓ−j 6= E|vn 6= E)

pe,e|c(ℓ, ℓ − j) := P(vℓ = E, vℓ−j = E|vn 6= E)

pc,c|e(ℓ, ℓ − j) := P(vℓ 6= E, vℓ−j 6= E|vn = E)

pc,e|c(ℓ, ℓ − j) := P(vℓ 6= E, vℓ−j = E|vn = E)

pe,c|c(ℓ, ℓ − j) := P(vℓ = E, vℓ−j 6= E|vn = E)

pe,e|c(ℓ, ℓ − j) := P(vℓ = E, vℓ−j = E|vn = E)

Then

pc,c|c(ℓ, ℓ) = 1 − yl−1 pc,e|c(ℓ, ℓ) = 0

pe,c|c(ℓ, ℓ) = 0 pe,e|c(ℓ, ℓ) = yl−1

pc,c|e(ℓ, ℓ) = ȳl−1 pc,e|e(ℓ, ℓ) = 0

pe,c|e(ℓ, ℓ) = 0 pe,e|e(ℓ, ℓ) = 1 − ȳl−1

pc,c|c(ℓ, 0) = 1 − yl−1 pc,e|c(ℓ, 0) = 0

pe,c|c(ℓ, 0) = yl−1 pe,e|c(ℓ, 0) = 0,

pc,c|e(ℓ, 0) = 0 pc,e|e(ℓ, 0) = ȳl−1

pe,c|e(ℓ, 0) = 0 pe,e|e(ℓ, 0) = 1 − ȳl−1.

pc,c|c(ℓ, ℓ − j) = 1 − 2yl−1 + qe,e(ℓ, ℓ − j)l−1

pc,e|c(ℓ, ℓ − j) = yl−1 − qe,e(ℓ, ℓ − j)l−1

pe,c|c(ℓ, ℓ − j) = yl−1 − qe,e(ℓ, ℓ − j)l−1

pe,e|c(ℓ, ℓ − j) = qe,e(ℓ, ℓ − j)l−1

pc,c|e(ℓ, ℓ − j) = qc,c(ℓ, ℓ − j)l−1

pc,e|c(ℓ, ℓ − j) = ȳl−1 − qc,c(ℓ, ℓ − j)l−1

pe,c|c(ℓ, ℓ − j) = ȳl−1 − qc,c(ℓ, ℓ − j)l−1

pe,e|c(ℓ, ℓ − j) = 1 − 2ȳl−1 + qc,c(ℓ, ℓ − j)l−1

12 Scaling Law for Gallager A

where

qa,b(ℓ, ℓ − j)

=
1

4
((pc,c(ℓ, ℓ − j) + pc,e(ℓ, ℓ − j)+

pe,c(ℓ, ℓ − j) + pe,e(ℓ, ℓ − j))r−1

(−1)1{a=e} (pc,c(ℓ, ℓ − j) − pc,e(ℓ, ℓ − j)

+pe,c(ℓ, ℓ − j) − pe,e(ℓ, ℓ − j))r−1

(−1)1{b=e} + (pc,c(ℓ, ℓ − j) + pc,e(ℓ, ℓ − j)

−pe,c(ℓ, ℓ − j) − pe,e(ℓ, ℓ − j))
r−1

(−1)(1{a=e}+1{b=e}) (pc,c(ℓ, ℓ − j) − pc,e(ℓ, ℓ − j)

−pe,c(ℓ, ℓ − j) + pe,e(ℓ, ℓ − j))
r−1
)

with

pc,c(ℓ, ℓ − j) = ǭpc,c|c(ℓ, ℓ − j) + ǫpc,c|e(ℓ, ℓ − j)

pc,e(ℓ, ℓ − j) = ǭpc,e|c(ℓ, ℓ − j) + ǫpc,e|e(ℓ, ℓ − j)

pe,c(ℓ, ℓ − j) = ǭpe,c|c(ℓ, ℓ − j) + ǫpe,c|e(ℓ, ℓ − j)

pe,e(ℓ, ℓ − j) = ǭpe,e|c(ℓ, ℓ − j) + ǫpe,e|e(ℓ, ℓ − j)

2.6 Variance Computation

Considering an edge connected to a variable node vn with its variable-to-check
message v. We associate to this edge a new value

Fℓ =

{
0ℓ if vn 6= E, vℓ = E,
1ℓ if vn = E, vℓ 6= E.

Let us label all edges in the graph from 1 to nl. Consider an edge i and let us
define χi,ℓ

χi,ℓ =

{
1 if Fi,ℓ = 0i,ℓ,
−1 if Fi,ℓ = 1i,ℓ.

By noting that Xℓ−X0 =
∑

i χi,ℓ, we can compute the variance at the threshold
for ℓ ≥ 1:

2.6. Variance Computation 13

σ2
ℓ (ǫBP) = lim

n→∞
E[(Zℓ(ǫ

BP))2]

= lim
n→∞

E

[(∑

i χi,ℓ√
nl

)2
]

= lim
n→∞

∑

i,j E [χi,ℓ · χj,ℓ]

nl

= lim
n→∞

nl
∑

i E [χ1,ℓ · χi,ℓ]

nl

= lim
n→∞

∑

i

E [χ1,ℓ · χi,ℓ]

= ǭyl−1 + ǫȳl−1

+(l− 1)(ǭyl + ǫȳl)

+

ℓ∑

j=1

γj (pT1(00,ℓ, 0j,ℓ) − pT1(00,ℓ, 1j,ℓ)

−pT1(10,ℓ, 0j,ℓ) + pT1(10,ℓ, 1j,ℓ))

+
ℓ∑

j=1

γj (pT3(00,ℓ, 0j,ℓ) − pT3(00,ℓ, 1j,ℓ)

−pT3(10,ℓ, 0j,ℓ) + pT3(10,ℓ, 1j,ℓ))

+

2ℓ∑

j=1

(l− 1)γj (pT4(00,ℓ, 0j,ℓ) − pT4(00,ℓ, 1j,ℓ)

−pT4(10,ℓ, 0j,ℓ) + pT4(10,ℓ, 1j,ℓ))

(2.1)

where
γ = (l− 1)(r− 1)

pT1(00,ℓ, 0j,ℓ)

= (1, 0, 0, 0)Mj(1, 0, 0, 0)T · ǭpe,e|c(ℓ, ℓ − j)

+(1, 0, 0, 0)Mj(0, 1, 0, 0)T · ǭpe,c|c(ℓ, ℓ − j)

pT1(00,ℓ, 1j,ℓ)

= (1, 0, 0, 0)Mj(0, 0, 1, 0)T · ǫpc,c|e(ℓ, ℓ − j)

+(1, 0, 0, 0)Mj(0, 0, 0, 1)T · ǫpc,e|e(ℓ, ℓ − j)

pT1(10,ℓ, 0j,ℓ)

= (0, 0, 1, 0)Mj(1, 0, 0, 0)T · ǭpe,e|c(ℓ, ℓ − j)

+(0, 0, 1, 0)Mj(0, 1, 0, 0)T · ǭpe,c|c(ℓ, ℓ − j)

14 Scaling Law for Gallager A

pT1(10,ℓ, 1j,ℓ)

= (0, 0, 1, 0)Mj(0, 0, 1, 0)T · ǫpc,c|e(ℓ, ℓ − j)

+(0, 0, 1, 0)Mj(0, 0, 0, 1)T · ǫpc,e|e(ℓ, ℓ − j)

pT3(00,ℓ, 0j,ℓ) = pT1(00,ℓ, 0j,ℓ)

pT3(00,ℓ, 1j,ℓ) = pT1(00,ℓ, 1j,ℓ)

pT3(10,ℓ, 0j,ℓ) = pT1(10,ℓ, 0j,ℓ)

pT3(10,ℓ, 1j,ℓ) = pT1(10,ℓ, 1j,ℓ)

If j < ℓ:

pT4(00,ℓ, 0j,ℓ)

= (1, 0, 0, 0)A0Bj(0)

·
j−1
∏

k=1

Aj(k)Bj(k)

(
ǭyfe,e(ℓ, ℓ − j)

ǭ(yl−2ȳ + fe,ē(ℓ, ℓ − j)y)
0
0

)

pT4(00,ℓ, 1j,ℓ)

= (0, 0, 1, 0)A0Bj(0)

·
j−1
∏

k=1

Aj(k)Bj(k)

(
ǭyfe,e(ℓ, ℓ − j)

ǭ(yl−2ȳ + fe,ē(ℓ, ℓ − j)y)
0
0

)

pT4(10,ℓ, 0j,ℓ)

= (1, 0, 0, 0)A0Bj(0)

·
j−1
∏

k=1

Aj(k)Bj(k)

(
0
0

ǫ(ȳl−2y + fc,c̄(ℓ, ℓ − j)ȳ)
ǫȳfc,c(ℓ, ℓ − j)

)

pT4(10,ℓ, 1j,ℓ)

= (0, 0, 1, 0)A0Bj(0)

·
j−1
∏

k=1

Aj(k)Bj(k)

(
0
0

ǫ(ȳl−2y + fc,c̄(ℓ, ℓ − j)ȳ)
ǫȳfc,c(ℓ, ℓ − j)

)

If ℓ ≤ j < 2ℓ:

pT4(00,ℓ, 0j,ℓ)

= (1, 0, 0, 0)Mj−ℓÃ0Bj(j − ℓ)

·
ℓ−1∏

k=j−ℓ+1

Aj(k)Bj(k)Ã1

(
(1, 0, 0, 0)Mj−ℓ(1, 0, 0, 0)T

(1, 0, 0, 0)Mj−ℓ(0, 1, 0, 0)T

(1, 0, 0, 0)Mj−ℓ(0, 0, 1, 0)T

(1, 0, 0, 0)Mj−ℓ(0, 0, 0, 1)T

)

2.6. Variance Computation 15

pT4(00,ℓ, 1j,ℓ)

= (0, 0, 1, 0)Mj−ℓÃ0Bj(j − ℓ)

·
ℓ−1∏

k=j−ℓ+1

Aj(k)Bj(k)Ã1

(
(1, 0, 0, 0)Mj−ℓ(1, 0, 0, 0)T

(1, 0, 0, 0)Mj−ℓ(0, 1, 0, 0)T

(1, 0, 0, 0)Mj−ℓ(0, 0, 1, 0)T

(1, 0, 0, 0)Mj−ℓ(0, 0, 0, 1)T

)

pT4(10,ℓ, 0j,ℓ)

= (1, 0, 0, 0)Mj−ℓÃ0Bj(j − ℓ)

·
ℓ−1∏

k=j−ℓ+1

Aj(k)Bj(k)Ã1

(
(0, 0, 1, 0)Mj−ℓ(1, 0, 0, 0)T

(0, 0, 1, 0)Mj−ℓ(0, 1, 0, 0)T

(0, 0, 1, 0)Mj−ℓ(0, 0, 1, 0)T

(0, 0, 1, 0)Mj−ℓ(0, 0, 0, 1)T

)

pT4(10,ℓ, 1j,ℓ)

= (0, 0, 1, 0)Mj−ℓÃ0Bj(j − ℓ)

·
ℓ−1∏

k=j−ℓ+1

Aj(k)Bj(k)Ã1

(
(0, 0, 1, 0)Mj−ℓ(1, 0, 0, 0)T

(0, 0, 1, 0)Mj−ℓ(0, 1, 0, 0)T

(0, 0, 1, 0)Mj−ℓ(0, 0, 1, 0)T

(0, 0, 1, 0)Mj−ℓ(0, 0, 0, 1)T

)

If j = 2ℓ:

pT4(00,ℓ, 0j,ℓ) = (1, 0, 0, 0)Mj−ℓ

(
0

ǭ(1, 0, 0, 0)Mj−ℓ(0, 1, 0, 0)T

0

ǫ(1, 0, 0, 0)Mj−ℓ(0, 0, 0, 1)T

)

pT4(00,ℓ, 1j,ℓ) = (0, 0, 1, 0)Mj−ℓ

(
0

ǭ(1, 0, 0, 0)Mj−ℓ(0, 1, 0, 0)T

0

ǫ(1, 0, 0, 0)Mj−ℓ(0, 0, 0, 1)T

)

pT4(10,ℓ, 0j,ℓ) = (1, 0, 0, 0)Mj−ℓ

(
0

ǭ(0, 0, 1, 0)Mj−ℓ(0, 1, 0, 0)T

0

ǫ(0, 0, 1, 0)Mj−ℓ(0, 0, 0, 1)T

)

pT4(10,ℓ, 1j,ℓ) = (0, 0, 1, 0)Mj−ℓ

(
0

ǭ(0, 0, 1, 0)Mj−ℓ(0, 1, 0, 0)T

0

ǫ(0, 0, 1, 0)Mj−ℓ(0, 0, 0, 1)T

)

and

M =

ǭyl−2ge ǭyl−2go ǭyl−2go ǭyl−2ge

ǭ(1 − yl−2ge) ǭ(1− yl−2go) ǭ(1− yl−2go) ǭ(1− yl−2ge)

ǫȳl−2go ǫȳl−2ge ǫȳl−2ge ǫȳl−2go

ǫ(1− ȳl−2go) ǫ(1− ȳl−2ge) ǫ(1− ȳl−2ge) ǫ(1− ȳl−2go)

Aj(k) =

(
ǫ + ǭfe,e(ℓ − k, ℓ − j + k) ǫ(1 − ȳl−2)

ǭfē,e(ℓ − k, ℓ − j + k) ǫȳl−2 + ǭyl−2

ǫ(1 − ȳl−2) ǫfc̄,c̄(ℓ − k, ℓ − j + k)
0 ǫfc,c̄(ℓ − k, ℓ − j + k)

ǭfe,ē(ℓ − k, ℓ − j + k) 0

ǭfē,ē(ℓ − k, ℓ − j + k) ǭ(1 − yl−2)

ǫȳl−2 + ǭyl−2 ǫfc̄,c(ℓ − k, ℓ − j + k)

ǭ(1 − yl−2) ǫfc,c(ℓ − k, ℓ − j + k) + ǭ

)

16 Scaling Law for Gallager A

Bj(k) =

(
ge,e(ℓ − k − 1, ℓ − j + k) go,e(ℓ − k − 1, ℓ − j + k)
go,e(ℓ − k − 1, ℓ − j + k) ge,e(ℓ − k − 1, ℓ − j + k)
ge,o(ℓ − k − 1, ℓ − j + k) go,o(ℓ − k − 1, ℓ − j + k)
go,o(ℓ − k − 1, ℓ − j + k) ge,o(ℓ − k − 1, ℓ − j + k)

ge,o(ℓ − k − 1, ℓ − j + k) go,o(ℓ − k − 1, ℓ − j + k)
go,o(ℓ − k − 1, ℓ − j + k) ge,o(ℓ − k − 1, ℓ − j + k)
ge,e(ℓ − k − 1, ℓ − j + k) go,e(ℓ − k − 1, ℓ − j + k)
go,e(ℓ − k − 1, ℓ − j + k) ge,e(ℓ − k − 1, ℓ − j + k)

)

A0 =

(
yǭfe,e(ℓ, ℓ − j) 0

yǭfē,e(ℓ, ℓ − j) yǭyl−2

0 yǫȳl−2 + ȳǫfc,c̄(ℓ, ℓ − j)

yǫ + ȳǫ(1 − ȳl−2) yǫ(1 − ȳl−2) + ȳǫfc̄,c̄(ℓ, ℓ − j)

yǭfe,ē(ℓ, ℓ − j) + ȳǭyl−2 0

yǭfē,ē(ℓ, ℓ − j) + ȳǭ(1 − yl−2) yǭ(1 − yl−2) + ȳǭ

0 ȳǫfc,c(ℓ, ℓ − j)

ȳǫȳl−2 ȳǫfc̄,c(ℓ, ℓ − j)

)

Ã0 =

(
0 0 ǭyl−2 0

0 0 ǭ(1 − yl−2) ǭ

0 ǫȳl−2 0 0

ǫ ǫ(1 − ȳl−2) 0 0

)

Ã1 =

(
0 0 0 ǫ

ǭyl−2 ǭ(1 − yl−2) 0 0

0 0 ǫȳl−2 ǫ(1 − ȳl−2)
0 ǭ 0 0

)

fe,e(ℓ, ℓ − j) = qe,e(ℓ, ℓ − j)l−2

fe,ē(ℓ, ℓ − j) = yl−2 − qe,e(ℓ, ℓ − j)l−2

fē,e(ℓ, ℓ − j) = yl−2 − qe,e(ℓ, ℓ − j)l−2

fē,ē(ℓ, ℓ − j) = 1 − 2yl−2 + qe,e(ℓ, ℓ − j)l−2

fc,c(ℓ, ℓ − j) = qc,c(ℓ, ℓ − j)l−2

fc,c̄(ℓ, ℓ − j) = ȳl−2 − qc,c(ℓ, ℓ − j)l−2

fc̄,c(ℓ, ℓ − j) = ȳl−2 − qc,c(ℓ, ℓ − j)l−2

fc̄,c̄(ℓ, ℓ − j) = 1 − 2ȳl−2 + qc,c(ℓ, ℓ − j)l−2

ge =
1 + (1 − 2x)r−2

2
, go =

1 − (1 − 2x)r−2

2

ge,e(ℓ, ℓ − j)

=
1

4
((pc,c(ℓ, ℓ − j) + pc,e(ℓ, ℓ − j)

+pe,c(ℓ, ℓ − j) + pc,c(ℓ, ℓ − j))r−2

+ (pc,c(ℓ, ℓ − j) − pc,e(ℓ, ℓ − j)

+pe,c(ℓ, ℓ − j) − pe,e(ℓ, ℓ − j))r−2

+ (pc,c(ℓ, ℓ − j) + pc,e(ℓ, ℓ − j)

−pe,c(ℓ, ℓ − j) − pe,e(ℓ, ℓ − j))r−2

+ (pc,c(ℓ, ℓ − j) − pc,e(ℓ, ℓ − j)

−pe,c(ℓ, ℓ − j) + pe,e(ℓ, ℓ − j))r−2
”

2.7. Summary and Open Problems 17

ge,o(ℓ, ℓ − j) = ge − ge,e(ℓ, ℓ − j)

go,e(ℓ, ℓ − j) = ge − ge,e(ℓ, ℓ − j)

go,o(ℓ, ℓ − j) = 1 − 2ge + ge,e(ℓ, ℓ − j)

2.7 Summary and Open Problems

We investigated the scaling law for the Gallager algorithm A. More precisely,
we considered ensembles whose threshold is determined by a fixed point right
at the beginning of the decoding process. We saw how to derive the scaling
law and how to compute the scaling parameters. By comparing the predictions
to simulation results we confirmed that these predictions are very accurate al-
ready for moderate lengths. Two major new ingredients entered in the analysis
compared to the analysis for the BEC. First, for the present the fixed point was
located at the beginning of the decoding process. This is somewhat specific to
the Gallager A algorithm and does not seem to be the typical case for message
passing algorithms with higher quantization. The second ingredient though
seems typical for the general case. When we consider density evolution above
the threshold on an infinite tree then the desities of the messages converge but
the actual messages do not. This “flipping” of the messages introduces a sig-
nificant new component which makes the analysis both, more interesting but
also more challenging.

Many interesting questions remain open. One could investigate the scaling
of ensembles whose threshold is given by a fixed point in the middle of the
decoding process or the scaling of ensembles whose threshold is determined
by the stability condition. The latter one is likely to be of a different nature
than the preceding two. In order to use these scaling laws in a context of
optimization it is also necessary to accomplish the variance computations for
the general irregular case and to determine the error floor under Gallager A.
What are the pseudocodewords of this decoder?

General Scaling Law 3
3.1 EXIT-Like Curves

Consider transmission over a BMS channel decoded with a generic quantized
message-passing (QMP) decoder which satisfies the standard message-passing
symmetry conditions [12]. To be concrete, assume that the messages sent in
the decoder are quantized and that they take their values in a real-valued finite
alphabet {−wm, . . . , wm}, m ∈ N, where 0 = w0 < w1 < · · · < wm. We do
allow the MP decoding rules to be time dependent for a finite number of steps
before they settle on a fixed rule. Given the symmetry of the channel and the
decoder, we can assume that the all-zero codeword was transmitted.

In order to derive our scaling law we need several ingredients. First, we
need to define a suitable “EXIT-like” curve. By this we mean a scalar quantity
which characterizes the behavior of the decoder as a function of the channel
parameter. Many choices are possible. Let the channel be parameterized by h,
the entropy of the channel. For every h ∈ [0, 1], initialize the density evolution
process with (a suitably quantized version of) the density aBMS(h). Let a denote
the resulting fixed point of density evolution. (This density is a function of the
channel parameter, but to simplify notation we omit this dependence.) More
precisely, this is the variable to check node message density. Pick a function E,
E : R

2m+1 7→ R. For the sake of definiteness, let us assume that for a density
v ∈ R

2m+1, E(v) = 1− vm, where vm is the value of the maximum component
of v. Our language below will reflect this particular choice, but mathematically
many other choices are possible and might sometimes be more convenient. E.g.,
in Section 3.4 it is notationally more convenient to pick E(v) = vm. A futher
natural choice would be to pick the number of negative messages (which is equal
to the error probability). Generically, all these choices give identical result.

Define x = E(a). Note that x “measures” the performance of the decoder.

19

20 General Scaling Law

The special case xMP is the value that x takes on when h = h
MP, the threshold

value. To derive from the family of fixed point an EXIT-like curve we can
e.g. plot (h, x). Our choice of E implies that if we are below the threshold, we
expect x to be equal to 0 (at the end of the decoding process all messages are
positive and take on the highest reliability), whereas above the threshold it will
have a non-zero value. This will give us a curve which is somewhat reminiscent
of a standard EXIT curve (of the overall code), explaining our choice of name.

x

h

h
M

P

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 3.1: EXIT-like curve for the (3,6)-code over the BEC: hMP ≈ 0.42944.

Consider the EXIT-like curve depicted in Figure 3.1. Mathematically it is
given by

x(h) =

{
, (h, 0), h ∈ [0, hMP)
(h(x), x), h ∈ (hMP, 1] ↔ x ∈ (xMP, 1].

(3.1)

In order for an EXIT-like curve to be suitable for our derivation, it must have
the following property: at the threshold, the curve must have an infinite slope
and the second derivative must be strictly non-zero. One can glean from the
picture that this is true for the specific curve shown. We will say that an
EXIT-like curve is regular if it has the above property.

3.2 General Derivation of Scaling Law

We will proceed in the following way. We first rederive the scaling law for
the BEC using the EXIT-like curve instead of the density evolution curve
associated to the peeling decoder. Although the derivation will depend on
the specific channel and decoder which we assume we will see that the final
expression is meaningful in a much broader context. This will then be the
starting point for the general scaling law.

Therefore, consider transmission over the BEC. Imagine the following ex-
periment. We start with a randomly chosen graph from the ensemble and all
bits erased. Choose a random bit and reveal it to the decoder. Next run the
iterative decoding process until it is stuck and the decoder hits a fixed point.

3.2. General Derivation of Scaling Law 21

This gives rise to one fixed point pair (H, X), where H equals the number of
not yet revealed variables and where X is equal to the number of still erased
variable-to-check messages. We continue now in this fashion, each time choos-
ing at random a new bit which we then reveal and running the decoder until
it is stuck. This gives us a sequence of fixed point pairs (H(t), X(t)). Let us
denote H(t) normalized to n, the length of the ensemble, as Ĥ(t) = H(t)/n and
X(t) normalized to nΛ′(1), the number of edges, as X̂(t) = X(t)/nΛ′(1). If we
connect the points (Ĥ(t), X̂(t)), then we get a “curve”.

Such a curve is of course random, but if we increase the blocklength, then
we can observe a concentration of the individual instances around an “average
curve”. The exact description of this average curve is easy to write down in
terms of density evolution quantities.

Let X̂h denote the random variable which we get if we look at X̂(t) at the
time when Ĥ(t) = h. In a similar way, let Ĥx denote the random variable which
we get if we look at Ĥ(t) at the first time when X̂(t) = x. Imagine that we are
sitting just above the threshold at h = h

MP + ∆h. Due to the assumption that
the EXIT-like curve is regular, this corresponds to the parameter x = xMP +√

∆hc, where c is a constant. Note that E[Ĥx] = h
MP + ∆h. Let σ2

h
= E[(Ĥx −

E[Ĥx])2]. Note that σh is a continuous function of the channel parameter
so that we can consider σ

hMP = lim
h→hMP σh. Consider again the decoding

process as described above, which gives rise to the sequence of random variables
(H(t), X(t)). Assume that we measure the X-component of this process for a
particular instance t. We claim that if X̂(t) < xMP then with high probability
the decoder for this instance will finish without revealing any further bits. On
the other hand if X̂(t) > xMP then with high probability further revelations of
bits will be necessary. This is due to the shape of the EXIT-like curve: around
the point xMP the curve has an infinite slope, indicating that the decoder
is at the brink of successful decoding with the given information. Hence, if
ĤxMP < h, then the given instance would not have decoded successfully with
high probability if we had transmitted over a channel with parameter h, and
conversely it would have been successful with high probability if ĤxMP > h.
Our probability of error estimate is therefore

PB(h) = P{ĤxMP < h} = Q

(
∆h

σ
hMP

)

.

In the last step we have assumed that the distribution of ĤxMP is Gaussian
with mean h

MP and standard deviation σ
hMP . This was shown to hold in the

original derivation in [4].
In general it is not an easy task to compute σ

hMP directly. But we can relate
it to the variance of the messages which is amenable to an analytic analysis in
the following way. Due to the regularity of the EXIT-like curve, we have for
∆h sufficiently small

∆h = h
′(x)∆x = h

′(x)
Xh − E[Xh]

nΛ′(1)
.

22 General Scaling Law

If we take the square and the expectation on both sides we obtain

σ2
h

=
(h′(x))2V
nΛ′(1)

,

where V = limn→∞
E[(Xh−E[Xh])

2]
nΛ′(1) . If we take the limit x ↓ xMP, we thus have

σ2
h
|
h=hMP = lim

x↓xMP

(h′(x))2V
nΛ′(1)

=
1

nΛ′(1)

(
∂2
h(x)

∂x2

∣
∣
∣
∣
x=xMP

)2

lim
x↓xMP

(x − xMP)2V

=
1

nΛ′(1)

(
∂2
h(x)

∂x2

∣
∣
∣
∣
x=xMP

)2

lim
x↓xMP

(
(x − xMP)

1 − λ2(x)

)2

ξ.

The last step warrants some remarks. When h ↓ hMP, i.e., when the channel
parameter approaches the threshold from above, then the variance V diverges.
Indeed V has the form

ξ

(1 − λ2(x))2
+ O

(
1

1 − λ2(x)

)

,

where λ2(x) is a function so that limx↓xMP λ2(x) = 1. In fact, λ2 is the second
largest eigenvalue of a matrix related to the density evolution process.

As we remarked at the start of this section, although the derivation was
based assuming that transmission takes place over the BEC, the final expression
we have derived can be meaningfully be interpreted in a general setting. We
are therefore now able to conjecture the following scaling law.

Conjecture 3.1. Consider a BMS(h) channel and an EXIT-like curve which
is regular. Then

PB = Q

(√
n(h− h

MP − βn−
2
3)

α

)

+ (1 + o(1)), (3.2)

where α = ∂2
h(x)

∂x2

∣
∣
x=xMP limx↓xMP

(x−xMP)
1−λ2(x)

√
ξ

Λ′(1) and β is the shift parameter

of the threshold that we mentioned earlier1.

Therefore, in order to compute α, we need to compute

∂2h(x)

∂x2
|x=xMP , lim

x↓xMP

(x − xMP)

1 − λ2(x)
,

1In these notes, we do not give further details about the parameter β. Nevertheless, let
us mention that Amraoui et al. conjectured its expression for the BEC case in [8]. As for
α, the computation of β in [8] is based on the peeling decoder behavior. A new approach to
compute β in the general case has been proposed in [13]. Finally, Dembo and Montanari
proved the scaling law in the case of Poisson ensembles in [14].

3.2. General Derivation of Scaling Law 23

as well as ξ. The most difficult quantity is the last one. The computation
of ξ has been accomplished for regular ensembles in [9]. Therefore, for regular
ensembles the scaling parameter α can be computed and can be used to predict
the performance. In the left-hand graph of Figure 3.2, we compare the predic-
tion given by the scaling law, where α = 0.93, for a (3, 4)-regular code used
over a binary additive white Gaussian noise (BAWGN) channel and decoded
with a quantized BP decoder with simulation points. We see that there is a
good aggrement between the prediction and the simulation.

The aim of the remainder of this chapter is twofold. First, in order to be
of practical use, we want to compute the parameter α in the case of irregular
ensemble. In this case, as we will see later, the computation of ξ is more
challenging. Second, we want to present a detailed account of all nessary
computations, since such an account has never appeard in the literature.

In order to compute ξ for the irregular case, we proceed in steps. Let us

define for each fixed channel parameter h, V(ℓ) = limn→∞ Var(X
(ℓ)
h

/
√

nΛ′(1)),

where X
(ℓ)
h

is the number of variable-to-check messages not equal to wm after
ℓ iterations, according to our choice of E. For each channel parameter unequal
to the threshold, the limit limℓ→∞ V(ℓ) exists and is finite. But as we already
mentioned, when we let the channel parameter approach the threshold from
above, the value of this variance, i.e., V = limx↓xMP limℓ→∞ V(ℓ) diverges.

Thus, as a first step in the computation of ξ, it is useful to compute V(ℓ). This
computation is performed in Section 3.4. One can then hope to extract ξ by
taking the limit limℓ→∞ V(ℓ) when we approach the threshold from above. We
start in Section 3.3 by defining the precise model that we consider as well as
the notation and the conventions that we will use.

PB

√
n(h − h

BP)

10-1

10-3

10-5

Figure 3.2: Rescaled block error probability with respect to z =
√

n(h − h
MP),

where h = h2(σ) and where h2(·) is the binary entropy function. Note that the
simulations points all cluster around the single mother curve. This curve is the
standard Q-function.

24 General Scaling Law

3.3 Notation

Consider transmission over a family of BMS channels characterized by their
channel entropy h and decoded with a QMP decoder that satisfies the standard
message-passing symmetry conditions [12]. Further, assume that the messages
sent in the decoder are quantized and that they take their values in a real-
valued finite alphabet W = {−wm, . . . , wm} = {−m∆, . . . , m∆}, m ∈ N, where
∆ > 0, denotes the spacing between the members of the alphabet. In the
following, in order to simplify the notation, we denote a message value i∆, by its
“position” i. Let us define the operator Q : R 7→ W , such that Q(s) = sgn(s)m,
if |s| ≥ m and ⌊s + 0.5⌋ otherwise, where the function sgn(s) corresponds to
the sign of s. Let Ψ : Wd 7→ W denote the variable node message map, where
d is the node degree. We assume that this map corresponds to the addition
of the incoming messages and the quantized channel information followed by
a mapping back into the alphabet. More precisely, Ψ(c, ν̂1, . . . , ν̂d−1) = Q(c +
∑d−1

i=1 ν̂i), where ν̂i are the incoming messages and c is the channel information.
Let Φ : Wd−1 7→ W denote the check node message map, where d is the node
degree. We assume that the map Φ performes pairwise operations. More
precisely Φ(ν1, . . . , νd−1) = Q(. . . Q(Q(νi1 ⊞ νi2) ⊞ νi3) ⊞ · · ·⊞ νid−1

), where νi

are the incoming messages, ⊞ is the check rule corresponding to the decoder
and the indices i1 to id−1 are assigned randomly from {1, . . . , d − 1}.

Consider a QMP decoder whose processing rules are the ones defined above.
In order to define a QMP decoder which closely mimicks a given corresponding
non-quantized MP decoder, it is natural implement the processing rules of the
non-quantized MP decoder followed by a mapping back into the alphabet. This
is what we do at the variable node side, since the addition of two messages is
still in a set whose components are equally spaced. On the other hand, the
result of i ⊞ j, where i, j ∈ W , does not belong in general to a set whose
components are equally spaced. Thus, in order to avoid complexity explosure,
it is more convenient to perform the check node rule pairwise.

Since by our assumption both the channel and the decoder are symmet-
ric, the performance of the code is independent of the transmitted codeword.
Therefore, let us assume that the all-zero codeword was transmitted. Let a(ℓ)(h)
denote the variable-to-check node density of density evolution in iteration ℓ as-
suming that we initialize with the channel density aBMS(h). We also define
b(ℓ)(h) to be the check-to-variable density of the messages in iteration ℓ. (In
the following, in order to simplify notation, we will omit the parameter h from
our notation.) Density evolution is defined as b(j) =

∑

d ρd(a
(j−1))�(d−1),

where � denotes the check node operator on a pair of densities followed by
the quantization and a(j) = aBMS ⋆

∑

d λd(b
(j))⋆(d−1), with a(0) = aBMS, which

corresponds to the average over the ensemble of the convolution of the channel
density with (d − 1) check-to-variable densities, followed by the quantization.

As explained in the previous section, many choices of the function E are
possible and give identical result. From now to the end of these notes, we chose
E(v) = vm, where v ∈ R

2m+1. We thus have x(ℓ) = E(a(ℓ)), and the special
case xMP is the value of x corresponding to fixed point of the density evolution

3.4. Computation of Variance for Fixed ℓ 25

threshold.
Let us number the edges in the graph from 1 to nΛ′(1). To lighten the

notation, we define E = {1, . . . nΛ′(1)}. Given an edge i ∈ E , we define ν
(ℓ)
i to

be the variable-to-check message on edge i in iteration ℓ. Similarly, we define

ν̂
(ℓ)
i to be the check-to-variable message on edge i in iteration ℓ. Finally, let us

define µ
(ℓ)
i = 1{ν(ℓ)

i =m}, according to our choice of E. Note that

E[µ
(ℓ)
i] = P{ν(ℓ)

i = m} = E(a(ℓ)) = x(ℓ). (3.3)

We can then rewrite V(ℓ) as

V(ℓ) = lim
n→∞

Var

(∑

i∈E µ
(ℓ)
i

√

nΛ′(1)

)

. (3.4)

Example 3.1. [Quantized Belief Propagation] The class of quantized belief
propagation (QBP) decoders is particularly important. In this case the variable
and the check message-passing rules are respectively the maps Ψ and Φ, as
defined above. But, in order to have a proper threshold, we need to add the
following condition to the check node rule. If we consider two messages ν1 and
ν2 of highest reliability, the result of ν1⊞ν2 should also be of highest reliability.
In other words, ⊞ is the standard BP check node operator to which we add the
condition that if |ν1| = |ν2| = m, then |ν1 ⊞ ν2| = m.

3.4 Computation of Variance for Fixed ℓ

Consider 1√
nΛ′(1)

∑

i∈E µ
(ℓ)
i . This is a random variable which depends both on

the graph and on the noise realization. As stated in (3.4), its variance is equal
to V(ℓ). We have

V(ℓ) = lim
n→∞

E

[(∑

i∈E µ
(ℓ)
i

)2
]

− E
[∑

i∈E µ
(ℓ)
i

]2

nΛ′(1)

= lim
n→∞

∑

j∈E E
[∑

i∈E µ
(ℓ)
j µ

(ℓ)
i

]
−∑j∈E

∑

i∈E E[µ
(ℓ)
j]E[µ

(ℓ)
i]

nΛ′(1)

(i)
= lim

n→∞
E

[∑

i∈E
µ

(ℓ)
1 µ

(ℓ)
i

]

− E[µ
(ℓ)
1]
∑

i∈E
E[µ

(ℓ)
i]

(3.3)
= lim

n→∞
E

[∑

i∈E
µ

(ℓ)
1 µ

(ℓ)
i

]

− nΛ′(1)(x(ℓ))2, (3.5)

where, in step (i), we have used the fact that the ensemble is invariant under
permutations of its components.

The computation tree of ν
(ℓ)
i , with i ∈ E , is the tree of height ℓ which has

edge i as root and which is formed by all edges whose messages influence the

26 General Scaling Law

ℓ

ν
(ℓ)
i

Figure 3.3: Computation tree of ν
(ℓ)
i .

value of ν
(ℓ)
i . This is depicted in Figure 3.3. Consider ν

(ℓ)
1 and let T

(ℓ) be the
set of indices of all messages whose computation tree intersect the computation

tree of ν
(ℓ)
1 , where both trees have depth ℓ. This is shown in Figure 3.4. For

convenience, we also add to T
(ℓ) indices of edges which are connected to the

same variable node as an edge already in T
(ℓ). For instance, the edges (b) and

(f) in the left-hand side graph of Figure 3.4 are added to T
(ℓ), even though their

computation trees do not intersect the computation tree of the root edge. Let

G
(ℓ)
T

be the tree formed by all edges which belong to T
(ℓ). Thus, G

(ℓ)
T

is formed
by ℓ variable node layers “above” the root variable node and 2ℓ variable nodes
layers “below” the root variable, as depicted in the right-hand side of Figure
3.4.

Let us partition T
(ℓ) into four sets. Orient all edges in G from variable node

to check node. Let T
(ℓ)
1 denote the set of edges which are in the “future” as seen

by the root edge and which are directed in the same direction as the root edge

itself. More precisely, these are the edges within G
(ℓ)
T

which can be reached by
paths starting at the root edge and which point in the same direction as the

root edge. Next, let T
(ℓ)
2 denote the set of edges in the future of the root edge

but which point in the opposite direction. Let T
(ℓ)
3 be the set of edges in the

past of the root edge and which point in same direction and, finally, let T
(ℓ)
4

be the set of edges which are in the past of the root and in which point in the
opposite direction. These four types of edges are depicted in the left of Figure

3.4. Computation of Variance for Fixed ℓ 27

(a) ν
(ℓ)
1

(b)

(c)

(d)

(e)

(f)

(g)

2ℓ

ℓ

ν
(ℓ)
1

ℓ

Figure 3.4: Left: Graph representing the four types of edges contained in T
(2):

(a) root edge, (b) element of T
(2)
1 , (c) element of T

(2)
2 , (d) and (f) are elements

of T
(2)
3 and (e) and (g) are elements of T

(2)
4 ; Right: The graph G

(ℓ)
T

. It contains
ℓ layers of variable nodes “above” the root node and 2ℓ “below”. The gray area
represents the computation tree of the root edge.

3.4. Moreover, we define for i = 1, . . . , 4, Bi,k to be the set of edges which are

in T
(ℓ)
i at distance k from the root (which means k levels of variable and check

nodes). Finally, let (T(ℓ))c be the complement of T(ℓ) in {1, . . . , nΛ′(1)} and let

(G
(ℓ)
T

)c be the graph formed by the edges in (T(ℓ))c. Let us expand (3.5) as

V(ℓ) = lim
n→∞

E

[∑

i∈T(ℓ)
µ

(ℓ)
1 µ

(ℓ)
i

]

+ lim
n→∞

E

[∑

i∈(T(ℓ))c

µ
(ℓ)
1 µ

(ℓ)
i

]

− nΛ′(1)x2
ℓ

= lim
n→∞

E
[
(µ

(ℓ)
1)2

]

︸ ︷︷ ︸

x(ℓ)

+ lim
n→∞

E

[∑

i∈T(ℓ)1

µ
(ℓ)
1 µ

(ℓ)
i

]

︸ ︷︷ ︸

edges in T
(ℓ)
1

+ lim
n→∞

E

[∑

i∈T(ℓ)2

µ
(ℓ)
1 µ

(ℓ)
i

]

︸ ︷︷ ︸

edges in T
(ℓ)
2

+ lim
n→∞

E

[∑

i∈T(ℓ)3

µ
(ℓ)
1 µ

(ℓ)
i

]

︸ ︷︷ ︸

edges in T
(ℓ)
3

+ lim
n→∞

E

[∑

i∈T(ℓ)4

µ
(ℓ)
1 µ

(ℓ)
i

]

︸ ︷︷ ︸

edges in T
(ℓ)
4

+ lim
n→∞

(

E

[∑

i∈(T(ℓ))c

µ
(ℓ)
1 µ

(ℓ)
i

]

− nΛ′(1)(x(ℓ))2
)

︸ ︷︷ ︸

Sc

. (3.6)

The next lemma gives an explicit expression for V(ℓ) in terms of quantities

28 General Scaling Law

which can be computed via density evolution. Starting from (3.6), we show
how we derive this lemma in the Appendices 3.A.1-3.A.5. In Lemma 3.1 we
use the following convention for matrix products; we write

∏k
j=ℓ M(k) to mean

M(ℓ)M(ℓ−1) · · ·M(k), where ℓ ≥ k and M(j) is a matrix depending on j. Note
that if ℓ < k, the product is simply the identity matrix.

Lemma 3.1. [Fixed-ℓ Variance] Consider the irregular LDPC ensemble char-
acterized by its degree distribution (λ(x), ρ(x)). The variance V(ℓ) is given
by

V(ℓ) = x(ℓ)

+ lim
n→∞

ℓ∑

k=1

m∑

r=−m

eT
m

ℓ−k+1∏

j=ℓ

V(j)C(j−1)erP
(ℓ,ℓ−k)
m,r

+ lim
n→∞

(x(ℓ))2
ℓ∑

k=1

ρ′(1)
k
λ′(1)

k−1

+ lim
n→∞

ℓ∑

k=1

m∑

r=−m

eT
m

ℓ−k+1∏

j=ℓ

V(j)C(j−1)erP
(ℓ,ℓ−k)
m,r

+ lim
n→∞

2ℓ∑

k=ℓ+1

x(ℓ)(ρ′(1)λ′(1))(k−ℓ)eT
m

1∏

j=ℓ

V(j)C(j−1)aBMS

+ lim
n→∞

⌈(ℓ−1)/2⌉
∑

l=0

(l−1∏

j=0

B̂2l,jB2l,j+1eT
s bℓ−2l1{m=r}

)T

(FB2l,0)
l−1∏

j=0

B̂2l,jB2l,j+1eT
s bℓ−2l1{m=r}

+ lim
n→∞

⌊(ℓ−1)/2⌋
∑

l=0

(l−1∏

j=0

B̂2l+1,jB2l+1,j+1eT
s bℓ−2l−11{m=r}

)T

(
B2l+1,0

)T
FB̂2l+1,−1B2l+1,0

l−1∏

j=0

B̂2l+1,jB2l+1,j+1eT
s bℓ−2l−11{m=r}

+ lim
n→∞

ℓ∑

l=⌈(ℓ−1)/2⌉+1

(ℓ−l−1∏

j=0

B̂2l,jB2l,j+1eT
m

2ℓ−2l+1∏

k=ℓ

V(k)C(k−1)er1{s=0}
)T

FB2l,0
ℓ−l−1∏

j=0

B̂2l,jB2l,j+1eT
m

2ℓ−2l+1∏

k=ℓ

V(k)C(k−1)er1{s=0}

3.4. Computation of Variance for Fixed ℓ 29

+ lim
n→∞

ℓ∑

l=⌊(ℓ−1)/2⌋+1

(ℓ−l−2∏

j=0

B̂2l+1,jB2l+1,j+1eT
m

2ℓ−2l∏

k=ℓ

V(k)C(k−1)er1{s=0}
)T

(
B2l+1,0

)T
FB̂2l+1,−1B2l+1,0

ℓ−l−2∏

j=0

B̂2l+1,jB2l+1,j+1eT
m

2ℓ−2l∏

k=ℓ

V(k)C(k−1)er1{s=0}

+

ℓ∑

i=1

i+1∏

k=ℓ

eT
mV(k)C(k−1)

(∑

d

dE[µ
(ℓ)
1 V

G
(ℓ)
T

d](a(i) − a(i)(d))

+ V(i)
∑

d

dE[µ
(ℓ)
1 C

G
(ℓ)
T

d](b(i) − b(i)(d))
)

−
ℓ−1∑

j=1

ℓ−j+1
∏

k=ℓ

eT
mV(k)C(k−1)

(
E[µ

(ℓ)
1 (|B1,ℓ|+|B4,2ℓ|)]a(ℓ−j)−E[µ

(ℓ)
1 (|B1,ℓ|+|B4,2ℓ|)a(ℓ−j)

⋆]
)

− lim
n→∞

x(ℓ)
E[(V G

(ℓ)
T)′(1)µ

(ℓ)
1],

where

E[µ
(ℓ)
1 V

G
(ℓ)
T

d] =x(ℓ)
ℓ∑

j=1

ρ′(1)jλ′(1)j−1λd

+

ℓ∑

j=0

λde
T
m

ℓ−j+1
∏

k=ℓ

V(k)C(k−1)a(ℓ−j)(d)

+

2ℓ∑

j=ℓ+1

λd(λ′(1)ρ′(1))j−ℓeT
m

1∏

k=ℓ

V(k)C(k−1)aBMS,

E[µ
(ℓ)
1 C

G
(ℓ)
T

d] =x(ℓ)
ℓ−1∑

j=0

(ρ′(1)λ′(1))jρd

+

ℓ∑

j=1

ρde
T
m

ℓ−j+2
∏

k=ℓ

V(k)C(k−1)V(ℓ−j+1)b(ℓ−j+1)(d)

+

2ℓ∑

j=ℓ+1

ρd(λ
′(1)ρ′(1))j−ℓ−1eT

m

ℓ−j+2
∏

k=ℓ

V(k)C(k−1)V(ℓ−j+1)e0,

E[µ
(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)] = (λ′(1)ρ′(1))ℓ

(

x(ℓ) + λ′(1)eT
m

1∏

k=ℓ

V(k)C(k−1)aBMS

)

,

30 General Scaling Law

E[µ
(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)a(ℓ−j)

⋆]

=
(

x(ℓ) + λ′(1)eT
m

1∏

k=ℓ

V(k)C(k−1)aBMS

)

(λ′(1)ρ′(1))j
1∏

k=ℓ−j

V(k)C(k−1)aBMS.

The matrices V(j) and C(j) are defined in equations (3.9) and (3.8) respectively
in Appendix 3.A.1. The matrices Bl,j , B̂l,j and F are defined in equations
(3.35), (3.33) and (3.23) respectively in Appendix 3.A.4, and the matrix P(ℓ,ℓ−k)

is defined in Appendix 4.6. Moreover, the density a(j)(d) is the outgoing density
at a variable node of degree d in iteration j and similarly b(j)(d) is the outgoing
density at a check node of degree d. Finally, ek is the unit vector of length
2m + 1 whose kth component is equal to 1.

Example 3.2. As a first example, we consider the (3,4)-regular ensemble used
over a BAWGN channel. The decoding is performed by a QBP decoder with
15-quantization levels where the reliability in the decoder is bounded by 8.12.
In other words, we choose ∆ = 1.16 and the messages are wi = i∆, where
i ∈ {−7, . . . , 7}. The message-passing rules are the QBP message-passing rules
defined in Example 3.1. The threshold of this decoder for a BAWGN channel
is σBP

15,8.12 ≈ 1.2043. Figure 3.5 represents the variance V(ℓ) as a function of
the channel after ℓ = 0, . . . , 6 iterations. The crosses in Figure 3.5 represent
empirical measurements of V(ℓ) for n = 104. We see that there is an excellent
agreement with the analytic expressions.

Example 3.3. In our second example, we consider the irregular ensemble char-
acterized by λ(x) = 0.06x+0.82x2+0.12x3 and ρ(x) = 0.075x2+0.8x3+0.125x4.
Again we consider transmission over a BAWGN channel. Assume a quantized
BP decoder with 15-quantization levels, where the messages are wi = i∆, with
∆ = 1.994 and i ∈ {−7, . . . , 7}. The corresponding threshold is σBP

15,13.96 ≈
1.0489. We plot in Figure 3.6 the variance V(ℓ) as a function of the channel
after ℓ = 0, . . . , 5 iterations. We also plot some points which correspond to an
empirical evaluation of the variance for n = 104. Again, we see an excellent
agreement.

3.A. Details of Fixed-ℓ Variance Computations 31

V(ℓ)

σ
0

10

20

30

40

50

60

0.2 0.4 0.6 0.8 1.0 1.2 1.4

σ
B

P
1
5
,8

.1
2

Figure 3.5: The variance V(ℓ) as a function of the channel parameter σ for
ℓ = 0, . . . , 6. The ensemble is (3, 4)-regular, transmission takes place over a
BAWGN channel, and decoding is accomplished by a quantized BP decoder with
15-quantization levels and a maximum message of ±8.12. The threshold of this
combination is σBP

15,8.12 ≈ 1.2043. The crosses represent the empirically computed
variances for n = 104.

V(ℓ)

σ
0

10

20

30

40

0.2 0.4 0.6 0.8 1.0 1.2

σ
B

P
1
5
,1

3
,9

6

Figure 3.6: The variance V(ℓ) as a function of the channel parameter σ for
ℓ = 0, . . . , 5. The ensemble has degree distribution λ(x) = 0.06x+0.82x2+0.12x3

and ρ(x) = 0.075x2 + 0.8x3 + 0.125x4. Transmission takes place over a BAWGN
channel and decoding by a quantized BP decoder with 15-quantization levels and
a maximum message of ±13.96. The threshold of this combination is σBP

15,13.96 ≈
1.0489. The crosses represent the empirically computed variances for n = 104.

3.A Details of Fixed-ℓ Variance Computations

3.A.1 Edges in T
(ℓ)
1

lim
n→∞

E

[∑

i∈T(ℓ)1

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
n→∞

ℓ∑

k=1

E

[∑

i∈B1,k

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
n→∞

ℓ∑

k=1

m∑

r=−m

E

[∑

i∈B1,k

µ
(ℓ)
1 µ

(ℓ)
i | ν

(ℓ−k)
1 = r

]

P{ν(ℓ−k)
1 = r}

= lim
n→∞

ℓ∑

k=1

m∑

r=−m

E

[∑

i∈B1,k

µ
(ℓ)
i | ν

(ℓ−k)
1 = r

]

E[µ
(ℓ)
1 | ν

(ℓ−k)
1 = r]P{ν(ℓ−k)

1 =r}

= lim
n→∞

ℓ∑

k=1

m∑

r=−m

E

[∑

i∈B1,k

µ
(ℓ)
i | ν

(ℓ−k)
1 =r

]

P{ν(ℓ)
1 =m, ν

(ℓ−k)
1 = r}. (3.7)

32 General Scaling Law

Figure 3.7: Edges in T
(2)
1 .

We have just seen in Appendix 4.6 how to compute P{ν(ℓ)
1 =m, ν

(ℓ−k)
1 = r} (see

(4.1)). Let us therefore focus on E

[
∑

i∈B1,k
µ

(ℓ)
i | ν

(ℓ−k)
1 =r

]

.

Assume we are in iteration l. Consider a check node of degree dc=d. Pick
one edge connected to this check node and let j be the value of the incoming
message on this edge. We want to compute the expected number of outgoing
messages (on the d − 1 other connected edges) which are equal to i. This

expectation is equal to (d − 1)P{ν̂(l+1)
out =i | ν

(l)
in = j, dc = d}. Therefore, if we

pick a random edge and if we assume that its variable-to-check message has
value j, then the expected number of check-to-variable messages of value i on

the outgoing edges is equal to
∑

d ρd(d − 1)P{ν̂(l+1)
out =i | ν

(l)
in = j, dc = d}.

νroot

Figure 3.8: Tree which has an edge directed from check to variable as root and
whose root node is a variable.

3.A. Details of Fixed-ℓ Variance Computations 33

Let us define the (2m + 1) × (2m + 1) dimensional matrix C(l) as

C
(l)
i,j =

∑

d

ρd(d − 1)P{ν̂(l+1)
out =i | ν

(l)
in =j, dc=d}

=
∑

d

ρd(d − 1)
∑

j1,...,jd-2∈W
1{Φ(j,j1,...,jd-2)=i}a

(l)
j1

. . . a
(l)
jd-2

. (3.8)

Define also the vector c
(l)
k of length 2m + 1 whose indices go from −m to m.

The ith component of c
(l)
k is the expected number of check-to-variable messages

in iteration l which are equal to i, at depth k of a tree which has an edge
directed from variable to check node as root and a variable node as root node,
as depicted in Figure 3.8. We can then write

c
(l+1)
1 =C(l)a(l),

where a(l) is the variable-to-check density in iteration l. In a similar manner,
we define the matrix V(l) for variable nodes. We have

V
(l)
i,j =

∑

d

λd(d − 1)P{ν(l)
out=i | ν

(l)
in =j, dv=d}

=
∑

d

λd(d − 1)
∑

c,j1,...,jd-2∈W
1{Ψ(c,j,j1,...,jd-2)=i}(aBMS)c b

(l)
j1

. . . b
(l)
jd-2

. (3.9)

Further, let v
(l)
k be the vector whose ith component is the expected number

of variable-to-check messages at depth k of the tree which are equal to i in
iteration l. We can then write for a full layer

v
(l+1)
1 = V(l+1)C(l)a(l).

Let us define ej as the unit vector whose jth component is equal to 1. We
can then write

E

[∑

i∈B1,k

µ
(ℓ)
i

]

= (v
(ℓ)
k)m = eT

mv
(ℓ)
k = eT

m

ℓ−k+1∏

j=ℓ

V(j)C(j−1)a(ℓ−k).

If we condition on the value of the messages on the root, we obtain

E

[∑

i∈B1,k

µ
(ℓ)
i | ν

(ℓ−k)
1 =r

]

= eT
m

ℓ−k+1∏

j=ℓ

V(j)C(j−1)er.

Therefore, we can rewrite (3.7) as

lim
n→∞

E

[∑

i∈T(ℓ)1

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
n→∞

ℓ∑

k=1

m∑

r=−m

eT
m

ℓ−k+1∏

j=ℓ

V(j)C(j−1)er P{ν(ℓ)
1 = m, ν

(ℓ−k)
1 = r}. (3.10)

34 General Scaling Law

3.A.2 Edges in T
(ℓ)
2

Figure 3.9: Edges in T
(2)
2 .

Variable-to-check messages carried by edges in T
(ℓ)
2 in iteration ℓ are in-

dependent of the root message in iteration ℓ. Further, the value of the root
message as well as the value of messages in B2,k is independent of the size of
this layer. So we have

lim
n→∞

E

[
∑

i∈T(ℓ)2

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
n→∞

ℓ∑

k=1

E

[
∑

i∈B2,k

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
n→∞

(x(ℓ))2E

[

|B2,k|
]

= lim
n→∞

(x(ℓ))2
ℓ∑

k=1

ρ′(1)
k
λ′(1)

k−1
. (3.11)

3.A.3 Edges in T
(ℓ)
3

lim
n→∞

E

[∑

i∈T(ℓ)3

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
n→∞

2ℓ∑

k=1

E

[∑

i∈B3,k

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
n→∞

ℓ∑

k=1

E

[∑

i∈B3,k

µ
(ℓ)
1 µ

(ℓ)
i

]

+ lim
n→∞

2ℓ∑

k=ℓ+1

E

[∑

i∈B3,k

µ
(ℓ)
1 µ

(ℓ)
i

]

. (3.12)

Let us first look at the first term of the last expression, namely

lim
n→∞

ℓ∑

k=1

E

[∑

i∈B3,k

µ
(ℓ)
1 µ

(ℓ)
i

]

.

3.A. Details of Fixed-ℓ Variance Computations 35

Figure 3.10: Edges in T
(2)
3 .

We have

lim
n→∞

ℓ∑

k=1

E

[∑

i∈B3,k

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
n→∞

ℓ∑

k=1

E|B3,k|
[

E

[

µ
(ℓ)
1

∑

i∈B3,k

µ
(ℓ)
i | |B3,k|

]]

= lim
n→∞

ℓ∑

k=1

E|B3,k|
[∑

i∈B3,k

E[µ
(ℓ)
1 µ

(ℓ)
i | |B3,k|

]

= lim
n→∞

ℓ∑

k=1

E|B3,k|
[∑

i∈B3,k

m∑

r=−m

E[µ
(ℓ)
1 µ

(ℓ)
i | |B3,k|, ν(ℓ−k)

i = r]P{ν(ℓ−k)
i = r}

]

(i)
= lim

n→∞

ℓ∑

k=1

E|B3,k|
[∑

i∈B3,k

m∑

r=−m

E[µ
(ℓ)
1 | |B3,k|, ν(ℓ−k)

i =r]E[µ
(ℓ)
i |ν(ℓ−k)

i =r]P{ν(ℓ−k)
i =r}

]

= lim
n→∞

ℓ∑

k=1

E|B3,k|
[∑

i∈B3,k

m∑

r=−m

E[µ
(ℓ)
1 | |B3,k|, ν(ℓ−k)

i = r]P{ν(ℓ)
i = m, ν

(ℓ−k)
i = r}

]

(ii)
= lim

n→∞

ℓ∑

k=1

m∑

r=−m

E|B3,k|
[∑

i∈B3,k

E[µ
(ℓ)
1 | |B3,k|, ν(ℓ−k)

i = r]
]

P{ν(ℓ) = m, ν(ℓ−k) = r}

(3.13)

36 General Scaling Law

where in step (i) we have used the fact that knowing ν
(ℓ−k)
i , where i ∈ B3,k,

µ
(ℓ)
1 and µ

(ℓ)
i become independent. In step (ii) we can drop the index i, since

P{ν(ℓ)
i = m, ν

(ℓ−k)
i = r} does not depend on i. Let i1 be the fisrt message in

B3,k. Since E[µ
(ℓ)
1 | |B3,k|, ν(ℓ−k)

i = r] is invariant for any i ∈ B3,k, we can then
rewrite (3.13) as

lim
n→∞

ℓ∑

k=1

E

[∑

i∈B3,k

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
n→∞

ℓ∑

k=1

m∑

r=−m

E[|B3,k|µ(ℓ)
1 | ν

(ℓ−k)
i1

= r]P{ν(ℓ)=m, ν(ℓ−k)=r} (3.14)

νroot

Figure 3.11: Tree which has an edge directed from variable to check as root and
whose root node is a variable.

We know how to compute P{ν(ℓ)=m, ν(ℓ−k)=r} from Appendix 4.6. Fur-

ther, the derivation of the quantity E[|B3,k|µ(ℓ)
1 | ν

(ℓ−k)
i1

= r] is similar to the

one of E[
∑

i∈B1,k
µ

(ℓ)
i | ν

(ℓ−k)
1 = r] in Appendix 3.A.1. We proceed as follows.

Consider a variable node of degree d. Pick an edge connected to this variable

node and let ν
(l)
out be the variable-to-check message on this edge in iteration l.

Moreover let V = {ν̂(l)
in,1, . . . , ν̂

(l)
in,d−1} be the set of the check-to-variable mes-

sages on the d− 1 remaining edges in teration l (the message indices in the set

V are assigned randomly). Let ν̂
(l)
in,1 = j, we want to compute E[1{ν(l)

out=i}|V | |
ν̂

(l)
in,1 = j, dv = d]. This is equal to (d − 1)P{ν(l)

out = i | ν̂
(l)
in,1 = j, dv = d}.

Therefore, if we pick a random edge and we look at its message ν
(l)
out, we obtain

E[1{ν(l)
out=i}|V | | ν̂

(l)
in,1 = j] =

∑

d λd(d − 1)P{ν(l)
out = i | ν̂

(l)
in,1 = j, dv = d}. Now

consider a tree which has an edge directed from variable to check node as root

3.A. Details of Fixed-ℓ Variance Computations 37

and whose root node is a variable, as depicted in Figure 3.11. Let us define v
(l)
k

as the vector whose ith component is equal to the expectation of the number
of edges which are directed from variable to check node at depth k of this tree,

multiplied by 1{ν(ℓ)
root=i}, where ν

(ℓ)
root is the variable-to-check message on the

root. We thus have

v
(ℓ)
0 = V(ℓ)b(ℓ),

where V
(ℓ)
i,j =

∑

d λd(d − 1)P{ν(l)
out = i | ν̂

(l)
in,1 = j, dv = d}, as defined in

Appendix 3.A.1. In the same way, we also defined the vector c
(l)
k whose ith

component is equal to the expectation of the number of edges directed from
check to variable node at depth k of the tree, multiplied by 1{ν(ℓ)

root=i} as well as

a matrix for check nodes, C
(ℓ)
i,j =

∑

d ρd(d − 1)P{ν̂(l+1)
out = i | ν

(l)
in,1 = j, dc = d},

as defined in Appendix 3.A.1. We can the write for a full layer

c
(ℓ)
1 = V(ℓ)C(ℓ−1)a(ℓ−1),

We thus have

E[|B3,k|µ(ℓ)
1] = (c

(ℓ)
k)m = eT

mc
(ℓ)
k = eT

m

ℓ−k+1∏

l=ℓ

V(l)C(l−1)a(ℓ−k).

Conditionning on ν
(ℓ−k)
i1

= r, we obtain

E[|B3,k|µ(ℓ)
1 | ν

(ℓ−k)
i1

= r] =eT
m

ℓ−k+1∏

l=ℓ

V(l)C(l−1)er. (3.15)

So, we can finally write

lim
n→∞

ℓ∑

k=1

E

[∑

i∈B3,k

µ
(ℓ)
1 µ

(ℓ)
i

]

(3.14,3.15)
= lim

n→∞

ℓ∑

k=1

m∑

r=−m

eT
m

ℓ−k+1∏

j=ℓ

V(j)C(j−1)er P{ν(ℓ) = m, ν(ℓ−k) = r}.

(3.16)

Let us then consider the second term of (3.12). More precisely, we consider

limn→∞
∑2ℓ

k=ℓ+1 E
[∑

i∈B3,k
µ

(ℓ)
1 µ

(ℓ)
i

]
. Note that µ

(ℓ)
1 depends on the realization

of its computation tree, and thus depends on the size of the boundary of this

computation tree, i.e., µ
(ℓ)
1 depends on |B3,ℓ|. Next note that the average num-

ber of edges in B3,k, k > ℓ, is proportional to the average number of edges in
B3,ℓ. More precisely, E[|B3,k|]=(ρ′(1)λ′(1))(k−ℓ)

E[|B3,ℓ|]. Let us define S
k
i to be

the tree of height k whose root is edge i and let N(Sk
i) its noise realization. For

38 General Scaling Law

ℓ

ℓ

µ
(ℓ)
1

k

µ
(ℓ)
i

S
k
1

S
ℓ
i

B3,k

Figure 3.12: S
k
1 and S

ℓ
i , with i ∈ B3,k.

a particular realization S
k
1 , we denotes its boundary by B3,k(Sk

1). Finally, let

3.A. Details of Fixed-ℓ Variance Computations 39

j1, . . . , j|B3,k(Sk
1)| be the indices of edges which are in B3,k(Sk

1). We have

lim
n→∞

E

[∑

i∈B3,k

µ
(ℓ)
1 µ

(ℓ)
i

]

(3.17)

(i)
= lim

n→∞

∑

S
k
1

∑

N(Sk
1)

∑

S
ℓ
j1

,...,Sℓ
j
|B3,k(Sk

1
)|

∑

N(Sℓ
j1

),...,N(Sℓ
j
|B3,k(Sk

1
)|

)

∑

i∈B3,k(Sk
1)

µ
(ℓ)
1 µ

(ℓ)
i P{Sk

1}P{N(Sk
1)}P{Sℓ

j1}P{N(Sℓ
j1)} · · ·P{S

ℓ
j
|B3,k(Sk1)|

}P{N(Sℓ
j
|B3,k(Sk1)|

)}
(ii)
= lim

n→∞
x(ℓ)

∑

S
k
1

∑

N(Sk
1)

∑

i∈B3,k(Sk
1)

µ
(ℓ)
1 P{Sk

1}P{N(Sk
1)}

= lim
n→∞

x(ℓ)
∑

S
k
1

∑

N(Sk
1)

|B3,k(Sk
1)|µ(ℓ)

1 P{Sk
1}P{N(Sk

1)}

= lim
n→∞

x(ℓ)
E[|B3,k|µ(ℓ)

1]

= lim
n→∞

x(ℓ)
E[(ρ′(1)λ′(1))(k−ℓ)|B3,ℓ|µ(ℓ)

1]

= lim
n→∞

x(ℓ)(ρ′(1)λ′(1))(k−ℓ)
E[|B3,ℓ|µ(ℓ)

1]

= lim
n→∞

x(ℓ)(ρ′(1)λ′(1))(k−ℓ)eT
m

1∏

j=ℓ

V(j)C(j−1)aBMS, (3.18)

where in step (i) we were allowed to write a product of probabilities since
S

k
1 , Sℓ

j1 , . . . , S
ℓ
j
|B3,k(Sk

1
)|

are independent, and in step (ii) we have used the fact

that
∑

S
ℓ
jb

∑

N(Sℓ
jb

) µ
(ℓ)
i P{Sℓ

jb
}P{N(Sℓ

jb
)}=x(ℓ), for all b ∈ {1, . . . , |B3,k(Sk

1)|}. The

last step is similar to the computation of E[|B3,k|µ(ℓ)
1 | ν

(ℓ−k)
i1

= r] above.

3.A.4 Edges in T
(ℓ)
4

In this section, let us use a new notation as depicted in Figure 3.14. In a chain
of l layers, we label the variable nodes from 0 to l and the check nodes from 1̂ to

l. Let us also rename the ν’s as depicted in Figure 3.14. For instance, ν
(ℓ)

j→ ˆj+1

denotes the variable-to-check message in iteration ℓ which is sent from variable
node j to check node ˆj + 1. For a moment let us consider a regular code (dv,dc).

We also define ω
(ℓ)
j and ω

(ℓ)

ĵ
; ω

(ℓ)
j “summarizes” the value received from the

channel and the dv − 2 remaining incoming messages at variable node j in

iteration ℓ; similarly, ω
(ℓ)

ĵ
summarizes the dc − 2 remaining incoming messages

at check node ĵ in iteration ℓ (see Figure 3.14).

40 General Scaling Law

Figure 3.13: Edges in T
(2)
4 .

µ0̂→0 µ0→1̂ µ1̂→1
µi−1→î µî→i

µl→ ˆl+1

µ0̂←0 µ0←1̂ µ1̂←1
µi−1←î µî←i

µl← ˆl+1

ν0 ν1̂ ν1 ν1−1 νî νi νl

0 1̂ 1 i− 1 î i l.

Figure 3.14: Chain of alternating variable and check nodes.

Consider two edges separated by a distance l, where l is even.

P{ν(ℓ)

0̂←0
= m, ν

(ℓ)

l→ ˆl+1
= m}

=
∑

r,s

P{ν(ℓ)

0̂←0
= m, ν

(ℓ)

l→ ˆl+1
= m | ν

(ℓ-l/2)
ˆl/2→l/2

= s, ν
(ℓ-l/2)
ˆl/2←l/2

= r}

P{ν(ℓ-l/2)
ˆl/2→l/2

= s, ν
(ℓ-l/2)
ˆl/2←l/2

= r}

=
∑

r,s

P{ν(ℓ)

0̂←0
= m | ν

(ℓ-l/2)
ˆl/2→l/2

= s, ν
(ℓ-l/2)
ˆl/2←l/2

= r}P{ν(ℓ-l/2)
ˆl/2→l/2

= s}

P{ν(ℓ)

l→ ˆl+1
= m | ν

(ℓ-l/2)
ˆl/2→l/2

= s, ν
(ℓ-l/2)
ˆl/2←l/2

= r}P{ν(ℓ-l/2)
ˆl/2←l/2

= r}

=
∑

r,s

P{ν(ℓ)

0̂←0
= m, ν

(ℓ-l/2)
ˆl/2→l/2

= s | ν
(ℓ-l/2)
ˆl/2←l/2

= r}

P{ν(ℓ)

l→ ˆl+1
= m, ν

(ℓ-l/2)
ˆl/2←l/2

= r | ν
(ℓ-l/2)
ˆl/2→l/2

= s}, (3.19)

3.A. Details of Fixed-ℓ Variance Computations 41

where in the second step we have used the fact that conditioned on ν
(ℓ-l/2)
ˆl/2→l/2

and

ν
(ℓ-l/2)
ˆl/2←l/2

, ν
(ℓ)

0̂←0
and ν

(ℓ)

l→ ˆl+1
are independent and that ν

(ℓ-l/2)
ˆl/2→l/2

and ν
(ℓ-l/2)
ˆl/2←l/2

them-

selves are independent. The computations of the two terms in the last equation

are almost identical. Let us consider P{ν(ℓ)

0̂←0
=m, ν

(ℓ-l/2)
ˆl/2→l/2

= s | ν
(ℓ-l/2)
ˆl/2←l/2

=r}.
We have (see Figure 3.15)

P{ν(ℓ)

0̂←0
= m, ν

(ℓ-l/2)
ˆl/2→l/2

= s | ν
(ℓ-l/2)
ˆl/2←l/2

= r}

=
∑

j,k,u,v

P{ν(ℓ)

0̂←0
=m, ν

(ℓ-l/2)
ˆl/2→l/2

=s, ν
(ℓ-l/2-1)

l/2-1→ ˆl/2
=j, ν

(ℓ-l/2+1)

l/2-1← ˆl/2
=k |

ν
(ℓ-l/2)
ˆl/2←l/2

=r, ω
(ℓ-l/2-1)
ˆl/2

=u, ω
(ℓ-l/2)
ˆl/2

=v}

P{ω(ℓ-l/2-1)
ˆl/2

=u, ω
(ℓ-l/2)
ˆl/2

v}

=
∑

j,k,u,v

P{ν(ℓ-l/2+1)

l/2-1← ˆl/2
=k | ν

(ℓ-l/2)
ˆl/2←l/2

=r, ω
(ℓ-l/2)
ˆl/2

=v}

P{ν(ℓ)

0̂←0
=m, ν

(ℓ-l/2-1)

l/2-1→ ˆl/2
=j | ν

(ℓ-l/2+1)

l/2-1← ˆl/2
=k}

P{ν(ℓ-l/2)
ˆl/2→l/2

=s | ν
(ℓ-l/2-1)

l/2-1→ ˆl/2
=j, ω

(ℓ-l/2-1)
ˆl/2

=u}

P{ω(ℓ-l/2-1)
ˆl/2

=u, ω
(ℓ-l/2)
ˆl/2

=v}. (3.20)

ν
(ℓ-l/2-1)

l/2-1→ ˆl/2
ν
(ℓ-l/2)
ˆl/2→l/2

ν
(ℓ)

0̂←0
ν
(ℓ-l/2+1)

l/2-1← ˆl/2
ν
(ℓ-l/2)
ˆl/2←l/2

ω
(ℓ-l/2-1)
ˆl/2

, ω
(ℓ-l/2)
ˆl/2

0 l/2-1 ˆl/2 l/2 l.

Figure 3.15: Chain of even length l.

ν
(ℓ-l/2-1)

ˆl/2-1→l/2
ν
(ℓ-l/2-1)

l/2-1→ ˆl/2

ν
(ℓ)

0̂←0
ν
(ℓ-l/2+1)

ˆl/2-1←l/2-1
ν
(ℓ-l/2+1)

l/2-1← ˆl/2

ω
(ℓ-l/2-1)

l/2-1
, ω

(ℓ-l/2+1)

l/2-1

0 ˆl/2-1 l/2-1 ˆl/2 l.

Figure 3.16: Chain of even length l.

42 General Scaling Law

Similarly (see Figure 3.16),

P{ν(ℓ)

0̂←0
=m, ν

(ℓ-l/2-1)

l/2-1→ ˆl/2
=j | ν

(ℓ-l/2+1)

l/2-1← ˆl/2
=k}

=
∑

s,r,u,v

P{ν(ℓ-l/2+1)
ˆl/2-1←l/2-1

=r | ν
(ℓ-l/2+1)

l/2-1← ˆl/2
=k, ω

(ℓ-l/2+1)
l/2-1 =v}

P{ν(ℓ)

0̂←0
=m, ν

(ℓ-l/2-1)
ˆl/2-1→l/2-1

=s | ν
(ℓ-l/2+1)

ˆl/2-1←l/2-1
=r}

P{ν(ℓ-l/2-1)

l/2-1→ ˆl/2
=j | ν

(ℓ-l/2-1)
ˆl/2-1→l/2-1

=s, ω
(ℓ-l/2-1)
l/2-1 =u}

P{ω(ℓ-l/2-1)
l/2-1 =u, ω

(ℓ-l/2+1)
l/2-1 =v}. (3.21)

Note that in (3.21), u and v belong to {−(d−1)m, . . . , (d−1)m}, according to
our definition of the variabe node rule. Let us define the two vectors cl,i and
ĉl,i of length (2m + 1)2, where we denote the index of their yth component by
(a, b), such that y = a(2m + 1) + b, as

c
l,i
(s,r) = P{ν(ℓ)

0̂←0
=m, ν

(ℓ-l/2-i)
ˆl/2-i→l/2-i

=s | ν
(ℓ-l/2+i)

ˆl/2-i←l/2-i
=r}

ĉ
l,i
(j,k) = P{ν(ℓ)

0̂←0
=m, ν

(ℓ-l/2-i)

l/2-i→ ˆl/2-i+1
=j | ν

(ℓ-l/2+i)

l/2-i← ˆl/2-i+1
=k}.

Note that by symmetry we also have

c
l,i
(s,r) = P{ν(ℓ)

l→ ˆl+1
= m, ν

(ℓ-l/2-i)

l/2+i← ˆl/2+i+1
= s | ν

(ℓ-l/2+i)

l/2+i← ˆl/2+i+1
=r}

ĉ
l,i
(j,k) = P{ν(ℓ)

l→ ˆl+1
=m, ν

(ℓ-l/2-i)
ˆl/2+i←l/2+i

= j | ν
(ℓ-l/2+i)

ˆl/2+i→l/2+i
=k}.

We also define two (2m + 1)2 × (2m + 1)2 dimensional matrices B̂l,i
(j,k),(r,s)

and Bl,i
(j,k),(r,s) as

B̂l,i
(j,k),(r,s) =

∑

u,v

P{ν(ℓ−l/2−i)
ˆl/2−i→l/2−i

= s | ν
(ℓ−l/2−i−1)

l/2−i−1→ ˆl/2−i
= j, ω

(ℓ−l/2−i−1)
ˆl/2−i

= u}

P{ν(ℓ−l/2+i+1)

l/2−i−1← ˆl/2−i
=k | ν

(ℓ−l/2+i)
ˆl/2−i←l/2−i

= r, ω
(ℓ−l/2+i)

ˆl/2−i
= v}

P{ω(ℓ−l/2−i−1)
ˆl/2−i

= u, ω
(ℓ−l/2+i)

ˆl/2−i
= v},

and

Bl,i
(j,k),(r,s) =

∑

u,v

P{ν(ℓ−l/2−i)

l/2−i→ ˆl/2−i+1
= j | ν

(ℓ−l/2−i)
ˆl/2−i→l/2−i

= s, ω
(ℓ−l/2−i)
l/2−i = u}

P{ν(ℓ−l/2+i)
ˆl/2−i←l/2−i

=r | ν
(ℓ−l/2+i)

l/2−i← ˆl/2−i+1
= k, ω

(ℓ−l/2+i)
l/2−i = v}

P{ω(ℓ−l/2−i)
l/2−i = u, ω

(ℓ−l/2+i)
l/2−i = v}.

3.A. Details of Fixed-ℓ Variance Computations 43

According to (3.20) and (3.21), we can write cl,i=B̂l,iĉl,i+1 = B̂l,iBl,i+1cl,i+1.
Thus we can expand (3.19) as follows

P{ν(ℓ)

0̂←0
=m, ν

(ℓ)

l→ ˆl+1
= m}

(3.19)
=

∑

r,s

P{ν(ℓ)

0̂←0
= m, ν

(ℓ−l/2)
ˆl/2→l/2

= s | ν
(ℓ−l/2)
ˆl/2←l/2

= r}

P{ν(ℓ)

l→ ˆl+1
=m, ν

(ℓ−l/2)
ˆl/2←l/2

= r | ν
(ℓ−l/2)
ˆl/2→l/2

= s}

=
∑

r,s

c
l,0
(s,r)ĉ

l,0
(r,s)

=(cl,0)T Fĉl,0

=(cl,0)T FBl,0cl,0

=
(
B̂l,0Bl,1 · · · B̂l,min{l/2,ℓ−l/2}−1Bl,min{l/2,ℓ−l/2}cl,min{l/2,ℓ−l/2})T

FBl,0B̂l,0Bl,1 · · · B̂l,min{l/2,ℓ−l/2}−1Bl,min{l/2,ℓ−l/2}cl,min{l/2,ℓ−l/2},

=
(min{l/2,ℓ−l/2}−1

∏

j=0

B̂l,jBl,j+1cl,min{l/2,ℓ−l/2}
)T

FBl,0

min{l/2,ℓ−l/2}−1
∏

j=0

B̂l,jBl,j+1cl,min{l/2,ℓ−l/2}, (3.22)

where F is a (2m + 1)2 × (2m + 1)2 permutation matrix which switches the
order of the two indices. More precisely,

F(i,j),(k,l) =

{
1 if i = l and j = k,
0 otherwise.

(3.23)

If l ≤ ℓ:

c
l,min{l/2,ℓ−l/2}
(s,r) = c

l,l/2
(s,r)

= P{ν(ℓ)

0̂←0
= m, ν

(ℓ−l)

0̂→0
= s | ν

(ℓ)

0̂←0
= r}

= P{ν(ℓ−l)

0̂→0
= s}1{m=r}

= uT
s bℓ−l1{m=r}. (3.24)

If l > ℓ:

c
l,min{l/2,ℓ−l/2}
(s,r) = c

l,ℓ−l/2
(s,r)

= P{ν(ℓ)

0̂←0
= m, ν

(0)
ˆl−ℓ→l−ℓ

= s | ν
(2ℓ−l)
ˆl−ℓ←l−ℓ

= r}

= P{ν(ℓ)

0̂←0
= m | ν

(2ℓ−l)
ˆl−ℓ←l−ℓ

= r}1{s=0}

= uT
m

2ℓ−l+1∏

j=ℓ

V(j)C(j−1)ur1{s=0}. (3.25)

44 General Scaling Law

So far we have considered the case of even l. If l is odd, we define

cl,i
(s,r) = P{ν(ℓ)

0̂←0
= m, ν

(ℓ−(l+1)/2−i)
ˆ(l−1)/2−i→(l−1)/2−i

= s | ν
(ℓ−(l−1)/2+i)

ˆ(l−1)/2−i←(l−1)/2−i
= r}

ĉl,i
(j,k) = P{ν(ℓ)

0̂←0
= m, ν

(ℓ−(l+1)/2−i)

(l−1)/2−i→ ˆ(l−1)/2−i+1
= j | ν

(ℓ−(l−1)/2+i)

(l−1)/2−i← ˆ(l−1)/2−i+1
= k},

and

B̂l,i
(j,k),(r,s)

=
∑

u,v

P{ν(ℓ−(l+1)/2−i)
ˆ(l−1)/2−i→(l−1)/2−i

= s | ν
(ℓ−(l+1)/2−i−1)

(l−1)/2−i−1→ ˆ(l−1)/2−i
= j, ω

(ℓ−(l+1)/2−i−1)
ˆ(l−1)/2−i

= u}

P{ν(ℓ−(l−1)/2+i+1)

(l−1)/2−i−1← ˆ(l−1)/2−i
=k | ν

(ℓ−(l−1)/2+i)
ˆ(l−1)/2−i←(l−1)/2−i

= r, ω
(ℓ−(l−1)/2+i)

ˆ(l−1)/2−i
= v}

P{ω(ℓ−(l+1)/2−i−1)
ˆ(l−1)/2−i

=u, ω
(ℓ−(l−1)/2+i)

ˆ(l−1)/2−i
= v}

Bl,i
(j,k),(r,s)

=
∑

u,v

P{ν(ℓ−(l+1)/2−i)

(l−1)/2−i→ ˆ(l−1)/2−i+1
= j | ν

(ℓ−(l+1)/2−i)
ˆ(l−1)/2−i→(l−1)/2−i

= s, ω
(ℓ−(l+1)/2−i)
(l−1)/2−i = u}

P{ν(ℓ−(l−1)/2+i)
ˆ(l−1)/2−i←(l−1)/2−i

=r | ν
(ℓ−(l−1)/2+i)

(l−1)/2−i← ˆ(l−1)/2−i+1
= k, ω

(ℓ−(l−1)/2+i)
(l−1)/2−i = v}

P{ω(ℓ−(l+1)/2−i)
(l−1)/2−i =u, ω

(ℓ−(l−1)/2+i)
(l−1)/2−i = v}.

By symmetry we have

cl,i
(s,r) = P{ν(ℓ)

l→ ˆl+1
= m, ν

(ℓ−(l+1)/2−i)

(l+1)/2+i← ˆ(l+1)/2+i+1
= s | ν

(ℓ−(l−1)/2+i)

(l+1)/2+i→ ˆ(l+1)/2+i
= r}

ĉl,i
(j,k) = P{ν(ℓ)

l← ˆl+1
= m, ν

(ℓ−(l+1)/2−i)
ˆ(l+1)/2+i←(l+1)/2+i

= j | ν
(ℓ−(l−1)/2+i)

ˆ(l+1)/2+i→(l+1)/2+i
= k}.

3.A. Details of Fixed-ℓ Variance Computations 45

Then

P{ν(ℓ)

0̂←0
=m, ν

(ℓ)

l→ ˆl+1
= m}

=
∑

r,s

P{ν(ℓ)

0̂←0
= m, ν

(ℓ−(l+1)/2)

(l−1)/2→ ˆ(l−1)/2+1
= s | ν

(ℓ−(l−1)/2)

(l−1)/2← ˆ(l−1)/2+1
= r}

P{ν(ℓ)

l→ ˆl+1
=m, ν

(ℓ−(l−1)/2)
ˆ(l−1)/2←(l−1)/2+1

= r | ν
(ℓ−(l+1)/2)

ˆ(l−1)/2→(l−1)/2
= s}

=
∑

r,s

ĉ
l,0
(s,r)c

l,−1
(r,s)

=(ĉl,0)T Fcl,−1

=
(
Bl,0cl,0

)T
FB̂l,−1Bl,0cl,0

=(cl,0)T
(
Bl,0

)T
FB̂l,−1Bl,0cl,0

=
(min{(l−1)/2,ℓ−(l+1)/2}−1

∏

j=0

B̂l,jBl,j+1cl,min{(l−1)/2,ℓ−(l+1)/2}
)T

(
Bl,0

)T
FB̂l,−1Bl,0

min{(l−1)/2,ℓ−(l+1)/2}−1
∏

j=0

B̂l,jBl,j+1cl,min{(l−1)/2,ℓ−(l+1)/2},

(3.26)

If l ≤ ℓ:

c
l,min{(l−1)/2,ℓ−(l+1)/2}
(s,r) = c

l,(l−1)/2
(s,r)

= P{ν(ℓ)

0̂←0
= m, ν

(ℓ−l)

0̂→0
= s | ν

(ℓ)

0̂←0
= r}

= P{ν(ℓ−l)

0̂→0
= s}1{m=r}

= uT
s bℓ−l1{m=r}. (3.27)

If l > ℓ:

c
l,min{(l−1)/2,ℓ−(l+1)/2}
(s,r) = c

l,ℓ−(l+1)/2
(s,r)

= P{ν(ℓ)

0̂←0
= m, ν

(0)
ˆl−ℓ→l−ℓ

= s | ν
(2ℓ−l)
ˆl−ℓ←l−ℓ

= r}

= P{ν(ℓ)

0̂←0
= m | ν

(2ℓ−l)
ˆl−ℓ←l−ℓ

= r}1{s=0}

= uT
m

2ℓ−l+1∏

j=ℓ

V(j)C(j−1)ur1{s=0}. (3.28)

In order to simplify the notation, let us redefine cl,i such that it holds for
even and odd l:

If l ≤ ℓ:

c
l,i
(s,r) = P{ν(ℓ)

0̂←0
=m, ν

(ℓ-l/2-i)
ˆl/2-i→l/2-i

=s | ν
(ℓ-l/2+i)

ˆl/2-i←l/2-i
=r} (3.29)

= uT
s bℓ−l1{m=r}. (3.30)

46 General Scaling Law

If l > ℓ:

cl,i = uT
m

2ℓ−l+1∏

j=ℓ

V(j)C(j−1)ur1{s=0}. (3.31)

So far we have consider two variable nodes separated by a distance l for a

regular code (dv,dc). But in order to expand limn→∞ E
[∑

i∈T(ℓ)4
µ

(ℓ)
1 µ

(ℓ)
i

]
, we

need to know how to compute the correlation between the root messages and all

messages in B4,l, i.e., limn→∞ E
[∑

i∈B4,l
µ

(ℓ)
1 µ

(ℓ)
i

]
. This derivation is similar to

the one above when we considered only the correlation between two messages,

i.e., P{ν(ℓ)

0̂←0
=m, ν

(ℓ)

l→ ˆl+1
= m}, except that we need to add a factor dv − 1 in

B and dc − 1 in B̂ in order to take into account the number of messages in
B4,l. Finally for irregular ensembles, we need to average the degrees. Thus we
redefine the two matrices

B̂l,i
(j,k),(r,s) (3.32)

=
∑

d

(d − 1)ρd

∑

u,v

P{ν(ℓ−⌊(l+1)/2⌋−i)
ˆ⌈(l−1)/2⌉−i→⌈(l−1)/2⌉−i

=s |ν(ℓ−⌊(l+1)/2⌋−i−1)

⌈(l−1)/2⌉−i−1→ ˆ⌈(l−1)/2⌉−i
=j, ω

(ℓ−⌊(l+1)/2⌋−i−1)
ˆ⌈(l−1)/2⌉−i

=u}

P{ν(ℓ−⌈(l−1)/2⌉+i+1)

⌈(l−1)/2⌉−i−1← ˆ⌈(l−1)/2⌉−i
=k |ν(ℓ−⌈(l−1)/2⌉+i)

ˆ⌈(l−1)/2⌉−i←⌈(l−1)/2⌉−i
=r, ω

(ℓ−⌈(l−1)/2⌉+i)
ˆ⌈(l−1)/2⌉−i

=v}

P{ω(ℓ−⌊(l+1)/2⌋−i−1)
ˆ⌈(l−1)/2⌉−i

=u, ω
(ℓ−⌈(l−1)/2⌉+i)

ˆ⌈(l−1)/2⌉−i
=v |dc =d}

(i)
=
∑

d

(d − 1)ρd

∑

u,v

1{s=j⊞u}1{k=r⊞v}

(P(ℓ−⌊(l+1)/2⌋−i−1,ℓ−⌈(l−1)/2⌉+i))�(d-2)
)

u,v
, (3.33)

Bl,i
(j,k),(r,s) (3.34)

=
∑

d

(d − 1)λd

∑

u,v

P{ν(ℓ−⌊(l+1)/2⌋−i)

⌈(l−1)/2⌉−i→ ˆ⌈(l−1)/2⌉−i+1
=j |ν(ℓ−⌊(l+1)/2⌋−i)

ˆ⌈(l−1)/2⌉−i→⌈(l−1)/2⌉−i
=s, ω

(ℓ−⌊(l+1)/2⌋−i)
⌈(l−1)/2⌉−i =u}

P{ν(ℓ−⌈(l−1)/2⌉+i)
ˆ⌈(l−1)/2⌉−i←⌈(l−1)/2⌉−i

=r |ν(ℓ−⌈(l−1)/2⌉+i)

⌈(l−1)/2⌉−i← ˆ⌈(l−1)/2⌉−i+1
=k, ω

(ℓ−⌈(l−1)/2⌉+i)
⌈(l−1)/2⌉−i =v}

P{ω(ℓ−⌊(l+1)/2⌋−i)
⌈(l−1)/2⌉−i =u, ω

(ℓ−⌈(l−1)/2⌉+i)
⌈(l−1)/2⌉−i = v | dv = d}

(ii)
=
∑

d

(d − 1)λd

∑

u,v

1{j=C(s+u)}1{r=C(k+v)}

(

C
(
CBMS ⊙ (Q(ℓ−⌊(l+1)/2⌋−i,ℓ−⌈(l−1)/2⌉+i))⊙(d-2)

))

u,v
, (3.35)

where steps (i) and (ii) are performed according to Appendix 4.6. Note that
in order to simplify the notation we have defined the matrices above such that

3.A. Details of Fixed-ℓ Variance Computations 47

they hold for even and odd l. Then we have

limn→∞ E

[
∑

i∈T(ℓ)4

µ
(ℓ)
1 µ

(ℓ)
i

]

= limn→∞ E

[2ℓ∑

l=0

∑

i∈B4,l

µ
(ℓ)
1 µ

(ℓ)
i

]

= limn→∞

(
⌈(ℓ-1)/2⌉∑

h=0

(h-1∏

j=0

B̂2h,jB2h,j+1c2h,h
)T

(
FB2h,0

) h-1∏

j=0

B̂2h,jB2h,j+1c2h,h

le
n
g
th

l
=

2
h
≤

ℓ
(3

.2
2
,3

.2
4
)

+
⌊(ℓ-1)/2⌋∑

h=0

(h-1∏

j=0

B̂2h+1,jB2h+1,j+1c2h+1,h
)T

(
B2h+1,0

)T
FB̂2h+1,-1B2h+1,0

h-1∏

j=0

B̂2h+1,jB2h+1,j+1c2h+1,h

le
n
g
th

l
=

2
h

+
1
≤

ℓ
(3

.2
6
,3

.2
7
)

+
ℓ∑

h=⌈(ℓ-1)/2⌉+1

(ℓ-h-1∏

j=0

B̂2h,jB2h,j+1c2h,ℓ−h
)T

FB2h,0
ℓ-h-1∏

j=0

B̂2h,jB2h,j+1c2h,ℓ−h

le
n
g
th

l
=

2
h

>
ℓ

(3
.2

2
,3

.2
5
)

+
ℓ∑

h=⌊(ℓ-1)/2⌋+1

(ℓ-h-2∏

j=0

B̂2h+1,jB2h+1,j+1c2h+1,ℓ−(h+1)
)T

(
B2h+1,0

)T
FB̂2h+1,-1B2h+1,0

ℓ-h-2∏

j=0

B̂2h+1,jB2h+1,j+1c2h+1,ℓ−(h+1)

)

.

le
n
g
th

l
=

2
h

+
1

>
ℓ

(3
.2

6
,3

.2
8
)

3.A.5 Computation of Sc

Let us now concentrate on the sixth term

Sc= lim
n→∞

(

E

[∑

i∈(T(ℓ))c

µ
(ℓ)
1 µ

(ℓ)
i

]

− nΛ′(1)(x(ℓ))2
)

.

At first one might think that the root message and a message on an edge
in (T(ℓ))c are uncorrelated since their computation graphs do not intersect.
Indeed, this is the case for a regular ensemble, for which Sc is equal to − | T(ℓ) |
(x(ℓ))2. The computation of Sc for irregular ensembles is more challenging. The
number of edges in T

(ℓ) for irregular ensembles is not constant but is a random
variable which depends on the graph realization. Thus we cannot move the

48 General Scaling Law

sum over i ∈ (T(ℓ))c outside the expectation. It is clear that µ
(ℓ)
1 depends on

G
(ℓ)
T

, but as we will see in the two following sections, µ
(ℓ)
i also depends on G

(ℓ)
T

.

It is therefore natural to condition on G
(ℓ)
T

. We have

Sc= lim
n→∞

(

E

[∑

i∈(T(ℓ))c

µ
(ℓ)
1 µ

(ℓ)
i

]

− nΛ′(1)(x(ℓ))2
)

= lim
n→∞

(

E
G

(ℓ)
T

[

E

[∑

i∈(T(ℓ))c

µ
(ℓ)
1 µ

(ℓ)
i | G

(ℓ)
T

]]

− nΛ′(1)(x(ℓ))2
)

= lim
n→∞

(

E
G

(ℓ)
T

[∑

i∈(T(ℓ))c

E

[

µ
(ℓ)
1 µ

(ℓ)
i | G

(ℓ)
T

]]

− nΛ′(1)(x(ℓ))2
)

= lim
n→∞

(

E
G

(ℓ)
T

[

E

[

µ
(ℓ)
1 | G

(ℓ)
T

] ∑

i∈(T(ℓ))c

E

[

µ
(ℓ)
i | G

(ℓ)
T

]]

− nΛ′(1)(x(ℓ))2
)

.

(3.36)

Degree Distribution Correction

The message of the root node is a function of the specific realization of G
(ℓ)
T

.
For the regular case, if we consider a fixed number of iterations and the limit

of n tending to infinity, there is only one G
(ℓ)
T

which has a positive probabil-
ity (namely a regular tree of the appropriate height). But for the irregular
case many such computation graphs have a strictly positive probability in the
asymptotic limit.

Suppose, e.g., that G
(ℓ)
T

contains an unusual large number of variable nodes
of high degree (as compared to λ(x)). In this case we expect the average (over
the noise realization) reliability of the message emitted by the root node to be
higher than what is predicted by density evolution.

But G
(ℓ)
T

indirectly also influences the messages in (G
(ℓ)
T

)c. This is true since
the total number of nodes of a given degree is fixed. Therefore, in the above

case we know that (G
(ℓ)
T

)c contains fewer variable nodes of high degree than

expected. This causes a small deviation of the degree distribution of (G
(ℓ)
T

)c as

compared to λ(x) and, hence, a small deviation of average message in (G
(ℓ)
T

)c

as compared to density evolution. Even though this deviation is only of order

1/n, there are of order n messages inside (G
(ℓ)
T

)c and so this deviation gives a
non-vanishing contribution in the limit of infinite blocklengths. pp Let us write
down this effect explicitly. Given the degree distribution polynomials λ(x) and
ρ(x), define the operators λ(x) =

∑

i λix
⋆(i−1) and ρ(x) =

∑

i ρix
�(i−1), where

x is a density, ⋆ is the convolution at variable nodes, and � is the convolution
at check nodes. This extends to the respective derivatives in the natural way:
λ′(x) =

∑

i(i − 1)λix
⋆(i−2) and ρ′(x) =

∑

i(i − 1)ρix
�(i−2). Let us also define

the two operators V G
(ℓ)
T (x)=

∑

i V
G

(ℓ)
T

i x⋆i and CG
(ℓ)
T (x) =

∑

i C
G

(ℓ)
T

i x�i, where

V
G

(ℓ)
T

i and C
G

(ℓ)
T

i are the number of variable nodes and check nodes of degree

3.A. Details of Fixed-ℓ Variance Computations 49

i in G
(ℓ)
T

, respectively. Again let us extend the notation to their respective

derivatives (V G
(ℓ)
T)′(x)=

∑

i iV
G

(ℓ)
T

i x⋆(i−1) and (CG
(ℓ)
T)′(x) =

∑

i iC
G

(ℓ)
T

i x�(i−1).

Consider the degree distribution of (G
(ℓ)
T

)c. We know the overall degree

distribution and we are given the degree distribution of G
(ℓ)
T

itself. By remov-

ing G
(ℓ)
T

from the overall bipartite graph the distribution of (G
(ℓ)
T

)c changes by
∆λ(x) and ∆ρ(x), respectively. Let us compute these deviations. Consider a
bipartite graph of variable and check degree distribution λ(x) and ρ(x), respec-
tively. Assume that we remove a variable node of degree j from this graph.
Thus the total number of edges becomes nΛ′(1)−j and the new variable degree
distribution of the graph, call it λ̃(x), is

λ̃(x) =
∑

i

λ̃ix
i−1

=
∑

i

nΛ′(1)λix
i−1 − jxj−1

nΛ′(1) − j

=
∑

i

(nΛ′(1) − j)λix
i−1 + jλix

i−1 − jxj−1

nΛ′(1) − j

= λ(x) +
jλ(x) − jxj−1

nΛ′(1) − j

= λ(x) +
jλ(x) − jxj−1

nΛ′(1)
+ O(1/n2).

The number of edges in G
(ℓ)
T

is equal to (V G
(ℓ)
T)′(1)=

∑

i iV
G

(ℓ)
T

i . Therefore,

if we remove G
(ℓ)
T

from the complete graph the variable degree distribution
changes by

∆λ(x) =
(V G

(ℓ)
T)′(1)λ(x) − (V G

(ℓ)
T)′(x)

nΛ′(1)
+ O(1/n2). (3.37)

Similarly, the check degree distribution changes by

∆ρ(x) =
(CG

(ℓ)
T)′(1)ρ(x) − (CG

(ℓ)
T)′(x)

nΛ′(1)
+ O(1/n2). (3.38)

Let us write the variable and the check degree distribution of (G
(ℓ)
T

)c as λ̃(x) =
λ(x) + ∆λ(x) and ρ̃(x) = ρ(x) + ∆ρ(x), respectively.

Consider the effect of this small deviation on density evolution. As defined
earlier, let a(j) be the variable-to-check node message density in iteration j
and let ∆̃a(j) be the deviation of this quantity due to the deviation of the
degree distribution. Let b(j) and ∆̃b(j) be the equivalent quantities for messages
flowing from check to variable nodes. Assume that ∆̃a(j) and ∆̃b(j) are of order
O(1/n) (the recursion and the initialization will show that this is indeed the

50 General Scaling Law

case). Consider first the evolution at check nodes. We have

b(j) − ∆̃b(j)

=ρ̃(a(j−1) − ∆̃a(j−1))

=
∑

i

ρ̃i(a
(j−1) − ∆̃a(j−1))�(i−1)

=
∑

i

ρ̃i

(
(a(j−1))�(i−1) − (i − 1)∆̃a(j−1)

� (a(j−1))
�(i−2)

+ O(1/n2)
)

=
∑

i

ρ̃i(a
(j−1))

�(i−1) − ∆̃a(j−1)
�

∑

i

ρ̃i(i − 1)(a(j−1))
�(i−2)

+ O(1/n2)

=ρ̃(a(j−1)) − ∆̃a(j−1)
� ρ′(a(j−1)) + O(1/n2). (3.39)

Next comes the evolution of the densities at the varible-node side. We have

a(j) − ∆̃a(j)

=aBMS ⋆ λ̃(b(j) − ∆̃b(j))

(3.39)
= aBMS ⋆ λ̃(ρ̃(a(j−1)) − ∆̃a(j−1)

� ρ′(a(j−1)) + O(1/n2))

=aBMS ⋆ λ̃(ρ(a(j−1))+∆ρ(a(j−1))−∆̃a(j−1)
� ρ′(a(j−1)))+O(1/n2)

=aBMS ⋆
∑

i

λ̃i(ρ(a(j−1))+∆ρ(a(j−1))−∆̃a(j−1)
� ρ′(a(j−1)))⋆(i−1)+O(1/n2)

=aBMS ⋆
∑

i

(

λ̃iρ(a(j−1))⋆(i−1)

+ λ̃i(i − 1)(∆ρ(a(j−1))−∆̃a(j−1)
� ρ′(a(j−1))) ⋆ ρ(a(j−1))⋆(i−2)

)

+O(1/n2)

=aBMS ⋆
∑

i

λ̃iρ(a(j−1))⋆(i−1) + aBMS ⋆ (∆ρ(a(j−1)) − ∆̃a(j−1)
� ρ′(a(j−1)))

⋆
∑

i

(i − 1)λ̃iρ(a(j−1))⋆(i−2) + O(1/n2)

=aBMS ⋆ λ̃(ρ(a(j−1))) + aBMS ⋆ (∆ρ(a(j−1)) − ∆̃a(j−1)
� ρ′(a(j−1)))

⋆ λ′(ρ(a(j−1))) + O(1/n2)

=aBMS ⋆ λ(ρ(a(j−1))) + aBMS⋆∆λ(ρ(a(j−1)))+aBMS ⋆ ∆ρ(a(j−1)) ⋆ λ′(ρ(a(j−1)))

− aBMS ⋆ ∆̃a(j−1)
� ρ′(a(j−1)) ⋆ λ′(ρ(a(j−1))) + O(1/n2)

=a(j) + aBMS ⋆ ∆λ(b(j)) + aBMS ⋆ λ′(b(j)) ⋆ ∆ρ(a(j−1))

− aBMS ⋆ λ′(b(j)) ⋆
(
∆̃a(j−1)

� ρ′(a(j−1))
)

+ O(1/n2). (3.40)

Note that ∆̃a(0) = 0. Since this is of order O(1/n), the recursion confirms that
∆̃a(j) and ∆̃b(j) are of order O(1/n). If we now combine (3.37) and (3.38) with

3.A. Details of Fixed-ℓ Variance Computations 51

(3.40), we get

∆̃a(j) 3.40
= −aBMS ⋆ ∆λ(b(j)) − aBMS ⋆ λ′(b(j)) ⋆ ∆ρ(a(j−1))

+ aBMS ⋆ λ′(b(j)) ⋆
(
∆̃a(j−1)

� ρ′(a(j−1))
)

+ O(1/n2)

(3.37,3.38)
= −aBMS ⋆

(
(V G

(ℓ)
T)′(1)λ(b(j)) − (V G

(ℓ)
T)′(b(j))

nΛ′(1)

)

− aBMS ⋆ λ′(b(j)) ⋆

(
(CG

(ℓ)
T)′(1)ρ(a(j−1)) − (CG

(ℓ)
T)′(a(j−1))

nΛ′(1)

)

+ aBMS ⋆ λ′(b(j)) ⋆
(
∆̃a(j−1)

� ρ′(a(j−1))
)

+ O(1/n2)

=
−1

nΛ′(1)

(

(V G
(ℓ)
T)′(1)aBMS ⋆ λ(b(j)) − aBMS ⋆ (V G

(ℓ)
T)′(b(j))

)

− 1

nΛ′(1)

(

(CG
(ℓ)
T)′(1)aBMS ⋆ λ′(b(j)) ⋆ ρ(a(j−1))

− aBMS ⋆ λ′(b(j)) ⋆ (CG
(ℓ)
T)′(a(j−1))

)

+ aBMS ⋆ λ′(b(j)) ⋆
(
∆̃a(j−1)

� ρ′(a(j−1))
)

+ O(1/n2)

=
−1

nΛ′(1)

(

(V G
(ℓ)
T)′(1)a(j) − aBMS ⋆ (V G

(ℓ)
T)′(b(j))

+ (CG
(ℓ)
T)′(1)aBMS ⋆ λ′(b(j)) ⋆ b(j) − aBMS ⋆ λ′(b(j)) ⋆ (CG

(ℓ)
T)′(a(j−1))

)

+ aBMS ⋆ λ′(b(j)) ⋆
(
∆̃a(j−1)

� ρ′(a(j−1))
)

+ O(1/n2). (3.41)

c
(j)
out(d)

c
(j)
in

(b(j))
⋆(d−2)

Figure 3.17: Variable node of degree d.

The preceding formula characterizes the deviation of the densities in (G
(ℓ)
T

)c

due to the realization of G
(ℓ)
T

. As with all previous quantities, let us now write
this quantity in a matrix notation. To that end, we need to write in a matrix
form the quantity aBMS ⋆λ′(b(j))⋆v which appears several times in (3.41) where

52 General Scaling Law

v is a vector. Let c
(j)
in be a density. We can write

aBMS ⋆ λ′(b(j)) ⋆ c
(j)
in =

∑

d

(d − 1)λdaBMS ⋆ (b(j))
⋆(d−2)

⋆ c
(j)
in

=:
∑

d

(d − 1)λdc
(j)
out(d).

where we defined c
(j)
out(d) as the outgoing density at a variable node of degree

d which has one incoming density c
(j)
in and d − 2 incoming densities b(j) (see

Figure 3.17). Let us look at the ith component of this vector. It is equal to

∑

d

(d − 1)λdc
(j)
out(d)i

=
∑

d

(d − 1)λdP{ν(j)
out = i | dv = d}

=
∑

k

∑

d

(d − 1)λdP{ν(j)
out = i | ν̂

(j)
in = k, dv = d}P{ν̂(j)

in = k}

=(V(j)c
(j)
in)i,

according to the definition of V(j) in Appendix 3.A.1. In other words, aBMS ⋆

λ′(b(j)) ⋆ c
(j)
in =V(j)c

(j)
in . Similarly, ρ′(a(j−1)) � c

(j−1)
in =C(j−1)c

(j−1)
in .

Now let us look more precisely at the quantities which appears in (3.41). Fisrt
we have aBMS ⋆ λ′(b(j)) ⋆ b(j)=V(j)b(j). Then

aBMS ⋆ λ′(b(j)) ⋆ (CG
(ℓ)
T)′(a(j−1)) =

∑

d

dC
G

(ℓ)
T

d aBMS ⋆ λ′(b(j)) ⋆ (a(j−1))�(d−1)

=
∑

d

dC
G

(ℓ)
T

d V(j)(a(j−1))�(d−1)

= V(j)(CG
(ℓ)
T)′(a(j−1)).

Finally consider the density ã(j−1) = a(j−1) − ∆̃a(j−1). We have

aBMS ⋆ λ′(b(j)) ⋆
(
ρ′(a(j−1)) � ã(j−1)

)
= aBMS ⋆ λ′(b(j)) ⋆

(
C(j−1)ã(j−1)

)
.

(3.42)

The ith component of the vector C(j−1)ã(j−1) is equal to

(
C(j−1)ã(j−1)

)

i

=
∑

k

∑

d

ρd(d − 1)P{ν̂(j)
out = i | ν

(j−1)
in = k, dc = d}P{ν(j−1)

in = k}

=
∑

d

ρd(d − 1)P{ν̂(j)
out = i | dc = d}.

3.A. Details of Fixed-ℓ Variance Computations 53

In other words C(j−1)ã(j−1) =
∑

d ρd(d − 1)(ã(j−1))�(d−1). So we can write

aBMS ⋆ λ′(b(j)) ⋆
(
C(j−1)ã(j−1)

)
=
∑

d

ρd(d − 1)aBMS ⋆ λ′(b(j)) ⋆ (ã(j−1))�(d−1)

=
∑

d

ρd(d − 1)V(j)(ã(j−1))�(d−1)

= V(j)
∑

d

ρd(d − 1)(ã(j−1))�(d−1)

= V(j)C(j−1)ã(j−1). (3.43)

Combining (3.42) and (3.43), we obtain

aBMS ⋆ λ′(b(j)) ⋆
(
ρ′(a(j−1)) � ã(j−1)

)
=V(j)C(j−1)ã(j−1) (3.44)

=V(j)C(j−1)a(j−1) + V(j)C(j−1)∆̃a(j−1).

According to (3.44), if we replace ã(j−1) by a(j−1), we have that aBMS⋆λ′(b(j))⋆
(
ρ′(a(j−1)) � a(j−1)

)
= V(j)C(j−1)a(j−1). We can then conclude that

aBMS ⋆ λ′(b(j)) ⋆
(
ρ′(a(j−1)) � ∆̃a(j−1)

)
= V(j)C(j−1)∆̃a(j−1).

Moreover, we have that

aBMS ⋆ (V G
(ℓ)
T)′(b(ℓ)) =

∑

d

dV
G

(ℓ)
T

d aBMS ⋆ (b(ℓ))⋆(d−1)

=
∑

d

dV
G

(ℓ)
T

d a(ℓ)(d),

where a(ℓ)(d) is the outgoing density at a variable node of degree d in iteration
ℓ. In the same way we can write

(CG
(ℓ)
T)′(a(ℓ−1)) =

∑

d

dC
G

(ℓ)
T

d b(ℓ)(d).

54 General Scaling Law

We can thus write ∆̃a(ℓ) as

∆̃a(ℓ) =
−1

nΛ′(1)

(
(V G

(ℓ)
T)′(1)a(ℓ) −

∑

d

dV
G

(ℓ)
T

d a(ℓ)(d)

+ (CG
(ℓ)
T)′(1)V(ℓ)b(ℓ) − V(ℓ)

∑

d

dC
G

(ℓ)
T

d b(ℓ)(d)
)

+ V(ℓ)C(ℓ−1)∆̃a(ℓ−1) + O(1/n2)

=
−1

nΛ′(1)

(∑

d

dV
G

(ℓ)
T

d (a(ℓ) − a(ℓ)(d)) + V(ℓ)
∑

d

dC
G

(ℓ)
T

d (b(ℓ) − b(ℓ)(d))
)

+ V(ℓ)C(ℓ−1)∆̃a(ℓ−1) + O(1/n2)

=
−1

nΛ′(1)

ℓ∑

i=1

i+1∏

k=ℓ

V(k)C(k−1)
(∑

d

dV
G

(ℓ)
T

d (a(i) − a(i)(d))

+ V(i)
∑

d

dC
G

(ℓ)
T

d (b(i) − b(i)(d))
)

+ O(1/n2). (3.45)

Messages Correction

The second term which gives a non-vanishing contribution in the irregular

case is due to messages that flow across the boundary from G
(ℓ)
T

to (G
(ℓ)
T

)c.

These messages influence the neighbors of G
(ℓ)
T

and thus the average densities

in (G
(ℓ)
T

)c. Indeed, assume that the density of messages which flow from G
(ℓ)
T

across the boundary to (G
(ℓ)
T

)c at time j < ℓ is not a(j) but a
(j)
⋆ . This influences

messages up to a distance ℓ − j away from the boundary.

More precisely, consider an outgoing edge at a variable node at a distance

j from the boundary of G
(ℓ)
T

. Let â
(ℓ)
j be its message density at iteration ℓ and

let nj be the number of such edges. In the same way define b̂
(j)
ℓ and mj for an

outgoing edge at a check node. Thus, if we pick uniformly at random an edge

from (G
(ℓ)
T

)
c

its message density is

â(ℓ) =
(nΛ′(1) − |G(ℓ)

T
| −∑ℓ−1

j=1 nj)a
(ℓ) +

∑ℓ−1
j=1 nj(a

(ℓ)
j − ∆̂a

(ℓ)
j)

nΛ′(1) − |G(ℓ)
T

|

= a(ℓ) − 1

nΛ′(1) − |G(ℓ)
T

|

ℓ−1∑

j=1

nj∆̂a
(ℓ)
j

︸ ︷︷ ︸

∆̂a(ℓ)

. (3.46)

3.A. Details of Fixed-ℓ Variance Computations 55

In order to compute nj∆̂a
(ℓ)
j , we can expand nj â

(ℓ)
j as follows

nj â
(ℓ)
j

=aBMS ⋆
∑

i

λi(i − 1)(b(ℓ))
⋆(i−2)

⋆ mj b̂
(ℓ)
j

=aBMS ⋆
∑

i

λi(i − 1)(b(ℓ))
⋆(i−2)

⋆
(∑

i

ρi(i − 1)(a(ℓ−1))
�(i−2)

� nj−1â
(ℓ−1)
j−1

)

=aBMS⋆
∑

i

λi(i−1)(b(ℓ))
⋆(i−2)

⋆
(∑

i

ρi(i−1)(a(ℓ−1))
�(i−2)

�nj−1

(
a(ℓ−1)−∆̂a

(ℓ−1)
j−1

))

=aBMS⋆
∑

i

λi(i−1)(b(ℓ))
⋆(i−2)

⋆
(

mjb
(ℓ)−

∑

i

ρi(i−1)(a(ℓ−1))
�(i−2)

�nj−1∆̂a
(ℓ−1)
j−1

)

=nja
(ℓ)−aBMS⋆

∑

i

λi(i−1)(b(ℓ))
⋆(i−2)

⋆
(∑

i

ρi(i−1)(a(ℓ−1))
�(i−2)

�nj−1∆̂a
(ℓ−1)
j−1

)

=nja
(ℓ)−aBMS⋆λ′(b(ℓ)) ⋆

(
ρ′(a(ℓ−1)) � nj−1∆̂a

(ℓ−1)
j−1

)
.

Thus we can derive ∆̂a
(ℓ)
j from the recursion

nj∆̂a
(ℓ)
j = aBMS ⋆ λ′(b(ℓ)) ⋆

(
ρ′(a(ℓ−1)) � nj−1∆̂a

(ℓ−1)
j−1

)
,

with

n0∆̂a
(ℓ−j)
0 = (|B1,ℓ| + |B4,2ℓ|)(a(ℓ−j) − a

(ℓ−j)
⋆).

As we did for the degree distribution correction, we can rewrite nj∆̂a
(ℓ)
j in

a matrix form as

nj∆̂a
(ℓ)
j = V(ℓ)C(ℓ−1)nj−1∆̂a

(ℓ−1)
j−1

= V(ℓ)C(ℓ−1) · · ·V(ℓ−j+1)C(ℓ−j)n0∆̂a
(ℓ−j)
0

=

ℓ−j+1
∏

k=ℓ

V(k)C(k−1)(|B1,ℓ| + |B4,2ℓ|)(a(ℓ−j) − a
(ℓ−j)
⋆).

Thus the deviation due to the messages correction can be written as

∆̂a(ℓ) =
1

nΛ′(1)− | G
(ℓ)
T

|

ℓ−1∑

j=1

ℓ−j+1
∏

k=ℓ

V(k)C(k−1)(|B1,ℓ| + |B4,2ℓ|)(a(ℓ−j) − a
(ℓ−j)
⋆).

(3.47)

Putting it Together

In order to derive Sc we need to compute for i ∈ (T(ℓ))c the expectation of µ
(ℓ)
i

for a particular realization of G
(ℓ)
T

, i.e., E[µ
(ℓ)
i | G

(ℓ)
T

] (see (3.36)). According
to the two corrections, we know that the variable-to-check density on an edge

56 General Scaling Law

picked uniformly at random from (T(ℓ))c is equal to a(ℓ) − ∆̃a(ℓ) − ∆̂a(ℓ). Thus
we can write

∑

i∈(T(ℓ))c

E[µ
(ℓ)
i | G

(ℓ)
T

] = |(T(ℓ))c|E
(
a(ℓ) − ∆̃a(ℓ) − ∆̂a(ℓ)

)

= |(T(ℓ))c|
(

E
(
a(ℓ)
)
− E

(
∆̃a(ℓ)

)
− E

(
∆̂a(ℓ)

))

= |(T(ℓ))c|
(

x(ℓ) − E
(
∆̃a(ℓ)

)
− E

(
∆̂a(ℓ)

))

. (3.48)

We can now expand (3.36) as

Sc= lim
n→∞

(

E
G

(ℓ)
T

[

E
[
µ

(ℓ)
1 | G

(ℓ)
T

] ∑

i∈(T(ℓ))c

E
[
µ

(ℓ)
i | G

(ℓ)
T

]]

− nΛ′(1)(x(ℓ))2
)

(3.48)
= lim

n→∞

(
E

G
(ℓ)
T

[
|(T(ℓ))c|E

[
µ

(ℓ)
1 | G

(ℓ)
T

](
x(ℓ) − E

(
∆̃a(ℓ)

)
-E
(
∆̂a(ℓ)

))]
-nΛ′(1)(x(ℓ))2

)

= lim
n→∞

(
E

G
(ℓ)
T

[(
nΛ′(1)-|T(ℓ)|

)
E
[
µ

(ℓ)
1 | G

(ℓ)
T

](
x(ℓ)-E

(
∆̃a(ℓ)

)
-E
(
∆̂a(ℓ)

))]
-nΛ′(1)(x(ℓ))2

)

= lim
n→∞

nΛ′(1)
(
E

G
(ℓ)
T

[
E[µ

(ℓ)
1 | G

(ℓ)
T

]x(ℓ)
]
− (x(ℓ))2

)

− lim
n→∞

nΛ′(1)
(
E

G
(ℓ)
T

[
E
(
∆̃a(ℓ)

)
E[µ

(ℓ)
1 | G

(ℓ)
T

]
]
+ E

G
(ℓ)
T

[
E
(
∆̂a(ℓ)

)
E[µ

(ℓ)
1 | G

(ℓ)
T

]
])

− lim
n→∞

E
G

(ℓ)
T

[
|T(ℓ)|E[µ

(ℓ)
1 | G

(ℓ)
T

]x(ℓ)
]

+ lim
n→∞

(
E

G
(ℓ)
T

[
|T(ℓ)|E[µ

(ℓ)
1 | G

(ℓ)
T

](E
(
∆̃a(ℓ)

)
+ E

(
∆̂a(ℓ)

)
)
])

(i)
= lim

n→∞
nΛ′(1)

(
x(ℓ)

x(ℓ)

︷ ︸︸ ︷

E
G

(ℓ)
T

[
E[µ

(ℓ)
1 | G

(ℓ)
T

]
]
−(x(ℓ))2

)

︸ ︷︷ ︸

=0

− lim
n→∞

nΛ′(1)
(
E
[
E
(
∆̃a(ℓ)

)
µ

(ℓ)
1

]
+ E

[
E
(
∆̂a(ℓ)

)
µ

(ℓ)
1

])

− lim
n→∞

x(ℓ)
E

G
(ℓ)
T

[
|T(ℓ)|E[µ

(ℓ)
1 | G

(ℓ)
T

]
]

(ii)
= − lim

n→∞
nΛ′(1)E

(
E
[
∆̃a(ℓ)µ

(ℓ)
1

])
(3.49)

− lim
n→∞

nΛ′(1)E
(
E
[
∆̂a(ℓ)µ

(ℓ)
1

])
(3.50)

− lim
n→∞

x(ℓ)
E
[
(V G

(ℓ)
T)′(1)µ

(ℓ)
1

]
,

where in step (i) limn→∞
(
E

G
(ℓ)
T

[
|T(ℓ)|E[µ

(ℓ)
1 | G

(ℓ)
T

](E
(
∆̃a(ℓ)

)
+ E

(
∆̂a(ℓ)

)
)
])

=0,

since ∆̃a(ℓ) and ∆̂a(ℓ) are of order 1/n, and in step (ii) we replaced |T(ℓ)| by

(V G
(ℓ)
T)′(1). According to the derivations in Sections 3.A.5 and 3.A.5, we are

3.A. Details of Fixed-ℓ Variance Computations 57

now able to expand (3.49) as

lim
n→∞

nΛ′(1)E
[
µ

(ℓ)
1 ∆̃a(ℓ)

]

= lim
n→∞

nΛ′(1)E
[−µ

(ℓ)
1

nΛ′(1)

ℓ∑

i=1

i+1∏

k=ℓ

V(k)C(k−1)
(∑

d

dV
G

(ℓ)
T

d (a(i) − a(i)(d))

+ V(i)
∑

d

dC
G

(ℓ)
T

d (b(i) − b(i)(d))
)]

+ O(1/n2)

=E

[

−µ
(ℓ)
1

ℓ∑

i=1

i+1∏

k=ℓ

V(k)C(k−1)
(∑

d

dV
G

(ℓ)
T

d (a(i) − a(i)(d))

+ V(i)
∑

d

dC
G

(ℓ)
T

d (b(i) − b(i)(d))
)]

= −
ℓ∑

i=1

i+1∏

k=ℓ

V(k)C(k−1)
(∑

d

dE[µ
(ℓ)
1 V

G
(ℓ)
T

d](a(i) − a(i)(d))

+ V(i)
∑

d

dE[µ
(ℓ)
1 C

G
(ℓ)
T

d](b(i) − b(i)(d))
)

,

and (3.50) as

lim
n→∞

nΛ′(1)E
[
µ

(ℓ)
1 ∆̂a(ℓ)

]

= lim
n→∞

nΛ′(1)E
[µ

(ℓ)
1

nΛ′(1)− | G
(ℓ)
T

|

ℓ−1∑

j=1

ℓ−j+1
∏

k=ℓ

V (k)C(k−1)(|B1,ℓ|+|B4,2ℓ|)(a(ℓ−j)−a
(ℓ−j)
⋆)

]

=E

[

µ
(ℓ)
1

ℓ−1∑

j=1

ℓ−j+1
∏

k=ℓ

V(k)C(k − 1)(|B1,ℓ| + |B4,2ℓ|)(a(ℓ−j) − a
(ℓ−j)
⋆)

]

=

ℓ−1∑

j=1

ℓ−j+1
∏

k=ℓ

V(k)C(k−1)
E
[
µ

(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)(a(ℓ−j) − a

(ℓ−j)
⋆)

]

=

ℓ−1∑

j=1

ℓ−j+1
∏

k=ℓ

V(k)C(k−1)
E
[
µ

(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)(a(ℓ−j) − a

(ℓ−j)
⋆)

]

=

ℓ−1∑

j=1

ℓ−j+1
∏

k=ℓ

V(k)C(k−1)
(

E
[
µ

(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)

]
a(ℓ−j) − E

[
µ

(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)a(ℓ−j)

⋆

])

Finally it remains to expand E[µ
(ℓ)
1 V

G
(ℓ)
T

d], E[µ
(ℓ)
1 C

G
(ℓ)
T

d], E
[
µ

(ℓ)
1 (|B1,ℓ|+ |B4,2ℓ|)

]

and E
[
µ

(ℓ)
1 (|B1,ℓ|+ |B4,2ℓ|)a(ℓ−j)

⋆

]
in order to be able to compute Sc. Let us look

at each of these terms separately.

58 General Scaling Law

E[µ
(ℓ)
1 V

G
(ℓ)
T

d]

Let us define V
G

(ℓ)
T

d (j) as the number of variable nodes of degree d at distance

j of the root in the future of G
(ℓ)
T

if j is positive and in the past of G
(ℓ)
T

if j is
negative. Thus we have

V
G

(ℓ)
T

d =

ℓ∑

j=1

V
G

(ℓ)
T

d (j) +

2ℓ∑

j=0

V
G

(ℓ)
T

d (−j)

Then we can write

E[µ
(ℓ)
1 V

G
(ℓ)
T

d] = E

[

µ
(ℓ)
1

(ℓ∑

j=1

V
G

(ℓ)
T

d (j) +

2ℓ∑

j=0

V
G

(ℓ)
T

d (−j)
)]

=

ℓ∑

j=1

E[µ
(ℓ)
1 V

G
(ℓ)
T

d (j)] +

2ℓ∑

j=0

E[µ
(ℓ)
1 V

G
(ℓ)
T

d (−j)].

First we compute

ℓ∑

j=1

E[µ
(ℓ)
1 V

G
(ℓ)
T

d (j)] = E[µ
(ℓ)
1]

ℓ∑

j=1

E[V
G

(ℓ)
T

d (j)]

= x(ℓ)
ℓ∑

j=1

ρ′(1)jλ′(1)j−1λd.

Secondly, we can expand
∑2ℓ

j=0 E[µ
(ℓ)
1 V

G
(ℓ)
T

d (−j)] in the same way we expand

E[|B3,k|µ(ℓ)
1 | ν

(ℓ−k)
i1

= r] in Appendix 3.A.3. If j ≤ ℓ

E[µ
(ℓ)
1 V

G
(ℓ)
T

d (−j)] = eT
m

ℓ−j+1
∏

k=ℓ

V(k)C(k−1)λda
(ℓ−j)(d).

Further, note that if j > ℓ, then E[V
G

(ℓ)
T

d (−j)] = E[|B3,ℓ|(λ′(1)ρ′(1))j−ℓλd]. We
can thus write if j > ℓ

E[µ
(ℓ)
1 V

G
(ℓ)
T

d (−j)] = E[µ
(ℓ)
1 |B3,ℓ|(λ′(1)ρ′(1))j−ℓλd]

= E[µ
(ℓ)
1 |B3,ℓ|](λ′(1)ρ′(1))j−ℓλd

=

1∏

k=ℓ

V(k)C(k−1)aBMS(λ
′(1)ρ′(1))j−ℓλd.

3.A. Details of Fixed-ℓ Variance Computations 59

Combining everything, we obtain

E[µ
(ℓ)
1 V

G
(ℓ)
T

d] =x(ℓ)
ℓ∑

j=1

ρ′(1)jλ′(1)j−1λd

+

ℓ∑

j=0

eT
m

ℓ−j+1
∏

k=ℓ

V(k)C(k−1)λda
(ℓ−j)(d)

+

2ℓ∑

j=ℓ+1

eT
m

1∏

k=ℓ

V(k)C(k−1)aBMS(λ
′(1)ρ′(1))j−ℓλd. (3.51)

E[µ
(ℓ)
1 C

G
(ℓ)
T

d]

The computation is similar to the previous one. First let us define C
G

(ℓ)
T

d (j) as
the number of check nodes of degree d at distance j of the root in the future

of G
(ℓ)
T

if j is positive and in the past of G
(ℓ)
T

if j is negative. Thus we have

C
G

(ℓ)
T

d =

ℓ−1∑

j=0

C
G

(ℓ)
T

d (j) +

2ℓ∑

j=1

C
G

(ℓ)
T

d (−j).

Similarly to what we did above, we expand

E[µ
(ℓ)
1 C

G
(ℓ)
T

d] = E

[

µ
(ℓ)
1

(ℓ−1∑

j=0

C
G

(ℓ)
T

d (j) +

2ℓ∑

j=1

C
G

(ℓ)
T

d (−j)
)]

=

ℓ−1∑

j=0

E[µ
(ℓ)
1 C

G
(ℓ)
T

d (j)] +

2ℓ∑

j=1

E[µ
(ℓ)
1 C

G
(ℓ)
T

d (−j)].

First we compute

ℓ−1∑

j=0

E[µ
(ℓ)
1 C

G
(ℓ)
T

d (j)] = E[µ
(ℓ)
1]

ℓ−1∑

j=0

E[C
G

(ℓ)
T

d (j)]

= x(ℓ)
ℓ−1∑

j=0

(ρ′(1)λ′(1))jρd.

Secondly, we look at the second term
∑2ℓ

j=1 E[µ
(ℓ)
1 C

G
(ℓ)
T

d (−j)]. Again we have
to distinguish between two cases. If j ≤ ℓ

E[µ
(ℓ)
1 C

G
(ℓ)
T

d (−j)] = eT
m

ℓ−j+2
∏

k=ℓ

V(k)C(k−1)V(ℓ−j+1)ρdb
(ℓ−j+1)(d),

60 General Scaling Law

and if j > ℓ

E[µ
(ℓ)
1 C

G
(ℓ)
T

d (−j)] = eT
m

ℓ−j+2
∏

k=ℓ

V(k)C(k−1)V(ℓ−j+1)e0(λ
′(1)ρ′(1))j−ℓ−1ρd.

Combining everything, we obtain

E[µ
(ℓ)
1 C

G
(ℓ)
T

d] =x(ℓ)
ℓ−1∑

j=0

(ρ′(1)λ′(1))jρd

+

ℓ∑

j=1

eT
m

ℓ−j+2
∏

k=ℓ

V(k)C(k−1)V(ℓ−j+1)ρdb
(ℓ−j+1)(d)

+
2ℓ∑

j=ℓ+1

eT
m

ℓ−j+2
∏

k=ℓ

V(k)C(k−1)V(ℓ−j+1)e0(λ
′(1)ρ′(1))j−ℓ−1ρd.

(3.52)

E[µ
(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)]

First note that

E[µ
(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)] = E[µ

(ℓ)
1 |B1,ℓ|] + E[µ

(ℓ)
1 |B4,2ℓ|]

= E[µ
(ℓ)
1]

︸ ︷︷ ︸

x(ℓ)

E[|B1,ℓ|]
︸ ︷︷ ︸

(λ′(1)ρ′(1))ℓ

+E[µ
(ℓ)
1 |B4,2ℓ|].

Let us rewrite E[µ
(ℓ)
1 |B4,2ℓ|] as

E[µ
(ℓ)
1 |B4,2ℓ|] = E

[

µ
(ℓ)
1

∑

d

(d − 1)V
G

(ℓ)
T

d (−2ℓ)
]

=
∑

d

(d − 1)E
[

µ
(ℓ)
1 V

G
(ℓ)
T

d (−2ℓ)
]

.

The computation of E[µ
(ℓ)
1 V

G
(ℓ)
T

d (−2ℓ)] has already been performed in Ap-
pendix 3.A.5. So we have

E[µ
(ℓ)
1 |B4,2ℓ|] =

∑

d

(d − 1)λd(λ
′(1)ρ′(1))ℓeT

m

1∏

k=ℓ

V(k)C(k−1)aBMS

= λ′(1)(λ′(1)ρ′(1))ℓeT
m

1∏

k=ℓ

V(k)C(k−1)aBMS.

We can thus write

E[µ
(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)] = (λ′(1)ρ′(1))ℓ

(

x(ℓ) + λ′(1)eT
m

1∏

k=ℓ

V(k)C(k−1)aBMS

)

.

3.A. Details of Fixed-ℓ Variance Computations 61

E[µ
(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)a(ℓ−j)

⋆]

E[µ
(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)a(ℓ−j)

⋆] = E[µ
(ℓ)
1 |B1,ℓ|a(ℓ−j)

⋆] + E[µ
(ℓ)
1 |B4,2ℓ|a(ℓ−j)

⋆]

= E[µ
(ℓ)
1]E[|B1,ℓ|a(ℓ−j)

⋆] + E[µ
(ℓ)
1 |B4,2ℓ|a(ℓ−j)

⋆]

= x(ℓ)
E[|B1,ℓ|a(ℓ−j)

⋆] + E[µ
(ℓ)
1 |B4,2ℓ|a(ℓ−j)

⋆].

Now let us make the following observation. First let us number the edges in
B4,ℓ from i1 to i|B4,ℓ|. Then for all edges ij ∈ B4,ℓ, j ∈ {1, . . . , |B4,ℓ|}, let us
call Bij the boundary of its support tree of edge height ℓ. We can thus write

|B4,2ℓ|=
∑|B4,ℓ|

j=1 |Bij |. So we can write

E[µ
(ℓ)
1 |B4,2ℓ|a(ℓ−j)

⋆] = E|B4,ℓ|
[
E[µ

(ℓ)
1 |B4,2ℓ|a(ℓ−j)

⋆ | |B4,ℓ|]
]

= E|B4,ℓ|
[
E[µ

(ℓ)
1 | |B4,ℓ|]E[|B4,2ℓ|a(ℓ−j)

⋆ | |B4,ℓ|]
]

= E|B4,ℓ|
[

E[µ
(ℓ)
1 | |B4,ℓ|]E

[|B4,ℓ|∑

j=1

|Bij |a
(ℓ−j)
⋆ | |B4,ℓ|

]]

= E|B4,ℓ|
[

E[µ
(ℓ)
1 | |B4,ℓ|]

|B4,ℓ|∑

j=1

E[|Bij |a
(ℓ−j)
⋆ | |B4,ℓ|]

]

= E|B4,ℓ|
[
E[µ

(ℓ)
1 | |B4,ℓ|]|B4,ℓ|E[|Bi1 |a

(ℓ−j)
⋆ | |B4,ℓ|]

]

= E|B4,ℓ|
[
E[µ

(ℓ)
1 | |B4,ℓ|]|B4,ℓ|

]
E|B4,ℓ|

[
E[|Bi1 |a

(ℓ−j)
⋆ | |B4,ℓ|]

]

= E[µ
(ℓ)
1 |B4,ℓ|]E[|Bi1 |a

(ℓ−j)
⋆].

First we compute

E[µ
(ℓ)
1 |B4,ℓ|] = E

[
µ

(ℓ)
1

∑

d

(d − 1)V
G

(ℓ)
T

d (−ℓ)
]

=
∑

d

(d − 1)E[µ
(ℓ)
1 V

G
(ℓ)
T

d (−ℓ)]

(i)
=
∑

d

(d − 1)λde
T
m

1∏

k=ℓ

V(k)C(k−1)aBMS

= λ′(1)eT
m

1∏

k=ℓ

V(k)C(k−1)aBMS,

62 General Scaling Law

where the derivation of E[µ
(ℓ)
1 V

G
(ℓ)
T

d (−ℓ)] in step (i) has been performed in
Appendix 3.A.5. We still need to compute

E[|B1,ℓ|a(ℓ−j)
⋆] = V(ℓ)C(ℓ)

E[|B1,ℓ−1|a(ℓ−j−1)
⋆]

=
1∏

k=ℓ−j

V(k)C(k−1)
E[|B1,j |a(0)

⋆]

=

1∏

k=ℓ−j

V(k)C(k−1)(λ′(1)ρ′(1))jaBMS.

Finally we note that E[|Bi1 |a
(ℓ−j)
⋆] = E[|B1,ℓ|a(ℓ−j)

⋆] for all ij ∈ B4,ℓ. We can
thus write

E[µ
(ℓ)
1 (|B1,ℓ| + |B4,2ℓ|)a(ℓ−j)

⋆]

=
(

x(ℓ) + λ′(1)eT
m

1∏

k=ℓ

V(k)C(k−1)aBMS

)

(λ′(1)ρ′(1))j
1∏

k=ℓ−j

V(k)C(k−1)aBMS.

3.B Details of Asymptotic Variance Computation

3.B.1 Edges in T1

lim
ℓ→∞

lim
n→∞

E

[∑

i∈T(ℓ)1

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
ℓ→∞

lim
n→∞

k∑

k=1

m∑

r=−m

uT
m

ℓ−k+1∏

j=ℓ

V(j)C(j−1)ur P{ν(ℓ)
1 = m, ν

(ℓ−k)
1 = r}

=uT
m

k∑

k=1

(VC)kPm

=uT
mVC(I − VC)−1(I − (VC)k)Pm. (3.53)

We can then write (3.53) as

=uT
mVC(I − VC)−1Pm − uT

mVC(I − VC)−1(VC)k

2m+1∑

i=m

piei

=uT
mVC(I − VC)−1Pm − uT

mVC(I − VC)−1
2m+1∑

i=m

λk

i piei

3.B. Details of Asymptotic Variance Computation 63

3.B.2 Edges in T2

lim
ℓ→∞

lim
n→∞

E

[
∑

i∈T(ℓ)2

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
ℓ→∞

lim
n→∞

(x(ℓ))2
k∑

k=1

ρ′(1)
k
λ′(1)

k−1

=x2ρ′(1)
1 − (λ′(1)ρ′(1))k

1 − λ′(1)ρ′(1)
. (3.54)

3.B.3 Edges in T3

lim
ℓ→∞

lim
n→∞

ℓ∑

k=1

E

[∑

i∈B3,k

µ
(ℓ)
1 µ

(ℓ)
i

]

(i)
= lim

ℓ→∞
lim

n→∞
uT

m

2k∑

k=1

m∑

r=−m

ℓ−k+1∏

j=ℓ

V(j)C(j−1)urP{ν(ℓ) = m, ν(ℓ−k) = r}

=uT
m

2k∑

k=1

(VC)kPm

=uT
mVC(I − VC)−1(I − (VC)2k)Pm

=uT
mVC(I − VC)−1Pm − uT

mVC(I − VC)−1
2m+1∑

i=0

λ2k

i piei.

64 General Scaling Law

3.B.4 Edges in T4

lim
ℓ→∞

lim
n→∞

E

[∑

i∈T(ℓ)4

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
ℓ→∞

lim
n→∞

E

[2k∑

l=0

∑

i∈B4,l

µ
(ℓ)
1 µ

(ℓ)
i

]

= lim
ℓ→∞

lim
n→∞

(
k∑

h=0

(h-1∏

j=0

B̂2h,jB2h,j+1c2h,h
)T

FB2h,0
h-1∏

j=0

B̂2h,jB2h,j+1c2h,h

+
k−1∑

h=0

(h-1∏

j=0

B̂2h+1,jB2h+1,j+1c2h+1,h
)T

(
B2h+1,0

)T
FB̂2h+1,-1B2h+1,0

h-1∏

j=0

B̂2h+1,jB2h+1,j+1c2h+1,h

)

= lim
n→∞

(
k∑

h=0

(

(B̂B)hc
)T

FB0(B̂B)hc +

k−1∑

h=0

(

(B̂B)hc
)T

BT FB̂0B(B̂B)hc

)

=

k−1∑

h=0

((B̂B)hc)T K(B̂B)hc + ((B̂B)kc)T FB0(B̂B)kc. (3.55)

where in the last step we define K = FB0 + BT FB̂0B in order to simplify the
notation.

3.B. Details of Asymptotic Variance Computation 65

We can then rewrite (3.55) as:

k−1∑

h=0

((B̂B)hc)T K(B̂B)hc + ((B̂B)kc)T FB0(B̂B)kc

=

k−1∑

h=0

((B̂B)h

(2m+1)2
∑

i=0

ciẽiK(B̂B)h

(2m+1)2
∑

i=0

ciẽi

+ ((B̂B)k

(2m+1)2
∑

i=0

ciẽiFB0(B̂B)k

(2m+1)2
∑

i=0

ciẽi

=

k−1∑

h=0

((2m+1)2
∑

i=1

λ̃h
i ciẽi + hλ̃h−1

2 c3ẽ2

)T

K
(2m+1∑

i=1

λ̃h
i ciẽi + hλ̃h−1

2 c3ẽ2

)

+
((2m+1)2

∑

i=1

λ̃k

i ciẽi + kλ̃k−1
2 c3ẽ2

)T

FB0

(2m+1∑

i=1

λ̃k

i ciẽi + kλ̃k−1
2 c3ẽ2

)

=

k−1∑

h=0

((2m+1)2
∑

i,j=1

λ̃h
i λ̃h

j cicj ẽ
T
i Kẽj + h2λ̃

2(h−1)
2 c2

3ẽ
T
2 Kẽ2

+

(2m+1)2
∑

i=1

hλ̃h−1
2 λ̃h

i c3ci(ẽ
T
2 Kei + ẽT

i Kẽ2)
)

+

(2m+1)2
∑

i,j=1

λk

i λ̃
k

jcicj ẽ
T
i FDẽj + k

2λ̃
2(k−1)
2 c2

3ẽ
T
2 FDẽ2

+

(2m+1)2
∑

i=1

kλ̃k−1
2 λ̃k

i c3ci(ẽ
T
2 FDẽi + ẽT

i FDẽ2)

=

(2m+1)2
∑

i,j=1

1 − (λ̃iλ̃j)
k

1 − λ̃iλ̃j

cicj ẽ
T
i Kẽj

+
1 + λ̃2

2 − λ̃2k

2 − λ̃
2(k−1)
2 (k + λ̃2

2 − kλ̃2
2)

(1 − λ̃2
2)

3
c2
3ẽ

T
2 Kẽ2

+

(2m+1)2
∑

i=1

λ̃i

(1 − (λ̃2λ̃i)
k

(1 − λ̃2λ̃i)2
− k(λ̃2λ̃i)

k−1

1 − λ̃2λ̃i

)

c3ci(ẽ
T
2 Kẽi + ẽT

i Kẽ2)

+

(2m+1)2
∑

i,j=1

λ̃k

i λ̃
k

jcicj ẽ
T
i FDẽj + k

2λ̃
2(k−1)
2 c2

3ẽ
T
2 FDẽ2

+

(2m+1)2
∑

i=1

kλ̃k−1
2 λ̃k

i c3ci(ẽ
T
2 FDẽi + ẽT

i FDẽ2). (3.56)

66 General Scaling Law

We can thus finaly write,

lim
ℓ→∞

lim
n→∞

E

[∑

i∈T(ℓ)4

µ
(ℓ)
1 µ

(ℓ)
i

]

=
1 − λ̃2k

1

1 − λ̃2
1

c2
1ẽ

T
1 Kẽ1 +

1 − λ̃2k

2

1 − λ̃2
2

c2c3

(
ẽT
2 Kẽ3 + ẽT

3 Kẽ2

)

+

(2m+1)2
∑

i,j=3

1 − (λ̃iλ̃j)
k

1 − λ̃iλ̃j

cicjẽ
T
i Kẽj

+

(2m+1)2
∑

i=3

λ̃i

(1 − (λ̃2λ̃i)
k

(1 − λ̃2λ̃i)2
− k(λ̃2λ̃i)

k−1

1 − λ̃2λ̃i

)

c3ci(ẽ
T
2 Kẽi + ẽT

i Kẽ2)

+ λ̃2k

1 c2
1ẽ

T
1 FB0ẽ1 + λ̃2k

2 c2c3

(
ẽT
2 FB0ẽ3 + ẽT

3 FB0ẽ2

)
+

(2m+1)2
∑

i,j=3

λ̃k

i λ̃
k

jcicj ẽ
T
i FB0ẽj

+

(2m+1)2
∑

i=3

kλ̃k−1
2 λ̃k

i c3ci(ẽ
T
2 FB0ẽi + ẽT

i FB0ẽ2). (3.57)

3.B.5 Sc for Iinfinite Number of Iterations and Finite Support

Tree of Size k

Size Correction

lim
ℓ→∞

lim
n→∞

x(ℓ)
E
[
(V G

(ℓ)
T)′(1)µ

(ℓ)
1

]

= lim
ℓ→∞

x(ℓ)
∑

d

dE
[
V

G
(k)
T

d µ1

]

= lim
ℓ→∞

(
(x(ℓ))2

∑

d

dλd

k∑

j=1

ρ′(1)jλ′(1)j−1+ (3.58)

+ x(ℓ)
2k∑

j=0

uT
m

ℓ−j+1
∏

h=ℓ

V(h)C(h−1)
∑

d

dλda
(ℓ−j)(d)

)

=x2ρ′(1)(1 + λ′(1))

k−1∑

j=0

ρ′(1)jλ′(1)j + xuT
m

2k∑

j=0

(VC)j
∑

d

dλda(d)

=x2ρ′(1)(1 + λ′(1))
1 − (ρ′(1)λ′(1))k

1 − ρ′(1)λ′(1)
+ x

2m+1∑

i=1

1 − λ2k+1
i

1 − λi
âiu

T
mei,

where in the last step we define the vector â =
∑

d dλda(d).

3.B. Details of Asymptotic Variance Computation 67

Degree Distribution Correction

lim
ℓ→∞

lim
n→∞

nΛ′(1)E
(
E[∆̃aµ1]

)

= − lim
ℓ→∞

uT
m

ℓ∑

i=1

i+1∏

h=ℓ

V(h)C(h−1)
(∑

d

dE[µ
(ℓ)
1 V

G
(k)
T

d](a(i) − a(i)(d))

+ V(i)
∑

d

dE[µ
(ℓ)
1 C

G
(k)
T

d](b(i) − b(i)(d))
)

l=ℓ−i
= − lim

ℓ→∞
uT

m

ℓ−1∑

l=0

ℓ−l+1∏

h=ℓ

V(h)C(h−1)
(∑

d

dE[µ
(ℓ)
1 V

G
(k)
T

d](a(ℓ−l) − a(ℓ−l)(d))

+ V(ℓ−l)
∑

d

dE[µ
(ℓ)
1 C

G
(k)
T

d](b(ℓ−l) − b(ℓ−l)(d))
)

= − uT
m

∑

l≥0

(VC)l
(∑

d

dE[µ1V
G

(k)
T

d](a − a(d)) + V
∑

d

dE[µ1C
G

(k)
T

d](b − b(d))
)

,

where

lim
ℓ→∞

E[µ
(ℓ)
1 V

G
(k)
T

d] = lim
ℓ→∞

x(ℓ)
k∑

k=1

ρ′(1)kλ′(1)k−1λd

+ lim
ℓ→∞

2k∑

k=0

λdu
T
m

ℓ−k+1∏

l=ℓ

V(l)C(l−1)a(ℓ−k)(d)

=xρ′(1)

k−1∑

k=0

(ρ′(1)λ′(1))kλd

+
2k∑

k=0

λdu
T
m(VC)ka(d).

Note that in the first equality, we already take into account the fact that ℓ > 2k.
We also have

lim
ℓ→∞

E[µ
(ℓ)
1 C

G
(k)
T

d] = lim
ℓ→∞

x(ℓ)
k−1∑

k=0

(ρ′(1)λ′(1))kρd

+ lim
ℓ→∞

2k−1∑

k=0

ρdu
T
m

ℓ−k+1∏

l=ℓ

V(l)C(l−1)V(ℓ−k+1)b(ℓ−k+1)(d)

=x

k−1∑

k=0

(ρ′(1)λ′(1))kρd

+

2k−1∑

k=0

ρdu
T
m(VC)kVb(d).

68 General Scaling Law

We finally have

lim
ℓ→∞

lim
n→∞

nΛ′(1)E
(
E[∆̃aµ1]

)

= − uT
m

∑

l≥0

(VC)l
(∑

d

dE[µ1V
G

(k)
T

d](a − a(d)) + V
∑

d

dE[µ1C
G

(k)
T

d](b − b(d))
)

= − uT
m

∑

l≥0

(VC)l

(
∑

d

dλd

(

xρ′(1)

k−1∑

k=0

(ρ′(1)λ′(1))k + uT
m

2k∑

k=0

(VC)ka(d)
)

(a − a(d))

+ V
∑

d

dρd

(

x

k−1∑

k=0

(ρ′(1)λ′(1))k + uT
m

2k−1∑

k=0

(VC)kVb(d)
)

(b − b(d))

)

= − x
1 − (ρ′(1)λ′(1))k

1 − ρ′(1)λ′(1)
uT

m

∑

l≥0

(VC)l
(∑

d

dλdρ
′(1)(a − a(d)) + V

∑

d

dρd(b − b(d))
)

− uT
m

∑

l≥0

(VC)l
(

uT
m

∑

d

2k∑

k=0

(VC)kdλda(d)(a − a(d))

+ VuT
m

∑

d

2k−1∑

k=0

(VC)kdρdVb(d)(b − b(d))
)

. (3.59)

Let us look at the first part of (3.59). We have an expression of the form
∑

l≥0(VC)l∆c, where ∆c is a vector of weight 0. The first eigenvalue of VC is
equal to λ′(1)ρ′(1), but it turns out that the first coefficient of the expansion
of a vector of weight 0 in the basis formed by the eigen vectors of VC is equal
to 0. We can thus write the firs part of (3.59) as

−x
1 − (ρ′(1)λ′(1))k

1 − ρ′(1)λ′(1)
uT

m(I − VC)−1
(∑

d

dλdρ
′(1)(a − a(d)) + V

∑

d

dρd(b − b(d))
)

,

(3.60)

even though that the first eigenvalue of VC is larger than 1.

3.B. Details of Asymptotic Variance Computation 69

Let us expand...

− uT
m

∑

l≥0

(VC)l
(

uT
m

∑

d

2k∑

k=0

(VC)kdλda(d)(a − a(d))

+ VuT
m

∑

d

2k−1∑

k=0

(VC)kdρdVb(d)(b − b(d))
)

= − uT
m

∑

l≥0

(VC)l
(

uT
m

∑

d

2m+1∑

i=1

2k∑

k=0

λk
i ãi(d)ei(a − a(d))

+ VuT
m

∑

d

2m+1∑

i=1

2k−1∑

k=0

λk
i b̃i(d)ei(b − b(d))

)

= − uT
m

∑

l≥0

(VC)l
(2m+1∑

i=1

1 − λ2k+1
i

1 − λi

∑

d

ãi(d)uT
mei(a − a(d))

+

2m+1∑

i=1

1 − λ2k

i

1 − λi

∑

d

b̃i(d)uT
meiV(b − b(d))

)

. (3.61)

Let us define the two vectors āi =
∑

d ãi(d)uT
mei(a−a(d)) and b̄i =

∑

d b̃i(d)uT
meiV(b−

b(d)). We can then rewrite (3.61) as

− uT
m

∑

l≥0

(VC)l
(2m+1∑

i=1

1 − λ2k+1
i

1 − λi

∑

d

ãi(d)uT
mei(a − a(d))

+

2m+1∑

i=1

1 − λ2k

i

1 − λi

∑

d

b̃i(d)uT
meiV(b − b(d))

)

= −
(2m+1∑

i=1

1 − λ2k+1
i

1 − λi
uT

m

∑

l≥0

(VC)lāi +

2m+1∑

i=1

1 − λ2k

i

1 − λi
uT

m

∑

l≥0

(VC)lb̄i

)

= −
(2m+1∑

i=1

1 − λ2k+1
i

1 − λi

2m+1∑

j=2

1

1 − λj
āi,ju

T
mej +

2m+1∑

i=1

1 − λ2k

i

1 − λi

2m+1∑

j=2

1

1 − λj
b̄i,ju

T
mej

)

.

(3.62)

Note that in the last step the sum over j starts at 2. This can be done because
as we said above, the first coefficient of the expansion of a vector of weight 0
in the basis formed by the eigen vectors of VC is equal to 0.

Messages Correction

lim
ℓ→∞

lim
n→∞

nΛ′(1)E
(
E[∆̂aµ1]

)

= lim
ℓ→∞

uT
m

ℓ−1∑

j=1

ℓ−j+1
∏

h=ℓ

V(h)C(h−1)
(
E[µ

(ℓ)
1 (|B1,k| + |B4,2k|)]a(ℓ−j) − E[µ

(ℓ)
1 (|B1,k| + |B4,2k|)a(ℓ−j)

⋆]
)
,

70 General Scaling Law

where

lim
ℓ→∞

E[µ
(ℓ)
1 (|B1,k| + |B4,2k|)] = lim

ℓ→∞
(λ′(1)ρ′(1))kx(ℓ)

+ lim
ℓ→∞

uT
m

ℓ−2k+1∏

l=ℓ

V(l)C(l−1)
∑

d

(d − 1)λda
(ℓ−2k)(d)

=(λ′(1)ρ′(1))kx + uT
m(VC)2k

∑

d

(d − 1)λda(d)

=(λ′(1)ρ′(1))kx + uT
m(VC)2kVb,

Let us look at limℓ→∞ E[µ
(ℓ)
1 (|B1,k|+|B4,2k|)a(ℓ−j)

⋆] = limℓ→∞ E[µ
(ℓ)
1 |B1,k|a(ℓ−j)

⋆]+

limℓ→∞ E[µ
(ℓ)
1 |B4,2k|a(ℓ−j)

⋆]. We have

lim
ℓ→∞

E[µ
(ℓ)
1 |B1,k|a(ℓ−j)

⋆]

= lim
ℓ→∞

m∑

r=−m

E[µ
(ℓ)
1 |B1,k|a(ℓ−j)

⋆ | ν
(ℓ−j−k)
1 = r]P{ν(ℓ−j−k)

1 = r}

= lim
ℓ→∞

m∑

r=−m

E[µ
(ℓ)
1 | ν

(ℓ−j−k)
1 = r]E[|B1,k|a(ℓ−j)

⋆ | ν
(ℓ−j−k)
1 = r]P{ν(ℓ−j−k)

1 = r}

= lim
ℓ→∞

m∑

r=−m

P{ν(ℓ)
1 = m, ν

(ℓ−j−k)
1 = r}E[|B1,k|a(ℓ−j)

⋆ | ν
(ℓ−j−k)
1 = r]

=

m∑

r=−m

Pm,r(VC)ker

=(VC)kPm

where P is the variable flipping matrix at fixed point and Pm is its mth row.
Then

lim
ℓ→∞

E[µ
(ℓ)
1 |B4,2k|a(ℓ−j)

⋆]

= lim
ℓ→∞

lim
n→∞

m∑

r=−m

(k−1∏

j=0

B̂2k,jB2k,j+1cinit(m)
)T

FB2k,0
k−1∏

j=0

B̂2k,jB2k,j+1cinit(r)ur

=

m∑

r=−m

(

(B̂B)kcinit(m)
)T

FB0(B̂B)kcinit(r)ur

where

lim
ℓ→∞

(
cinit(i)

)

(s,r)
= P{ν(ℓ)

0̂←0
= i, ν

(ℓ−k)

0̂→0
= s | ν

(ℓ)

0̂←0
= r}

= lim
ℓ→∞

P{ν(ℓ−k)

0̂→0
= s}1{i=r}

= lim
ℓ→∞

eT
s bℓ−k1{i=r}

= eT
s b1{i=r}.

3.B. Details of Asymptotic Variance Computation 71

Finally we have

lim
ℓ→∞

lim
n→∞

nΛ′(1)E
(
E[∆̂aµ1]

)

=uT
m

∑

j≥1

(VC)j

(
(

(λ′(1)ρ′(1))kxa − (VC)kPm

)

+
(

uT
m(VC)2kVba −

m∑

r=−m

(

(B̂B)kcinit(m)
)T

FB0(B̂B)kcinit(r)ur

)
)

=uT
mVC(I − VC)−1

(
(

(λ′(1)ρ′(1))kxa − (VC)kPm

)

+
(2m+1∑

i=1

λ2k

i viu
T
meia −

m∑

r=−m

(

(B̂B)kcinit(m)
)T

FB0(B̂B)kcinit(r)ur

)
)

,

where in the last step we again use the fact that the first coefficient of the
expansion of a vector of weight 0 in the basis formed by the eigen vectors of
VC is equal to 0.

72 General Scaling Law

3.B.6 Put It Together

T1 + T2 + T3 + T4 + ddc + mc + sc

=uT
mVC(I − VC)−1Pm − uT

mVC(I − VC)−1
2m+1∑

i=1

λk

i piei

+ x2ρ′(1)
1 − (λ′(1)ρ′(1))k

1 − λ′(1)ρ′(1)

+ uT
mVC(I − VC)−1Pm − uT

mVC(I − VC)−1
2m+1∑

i=1

λ2k

i piei

+
1 − λ̃2k

1

1 − λ̃2
1

c2
1ẽ

T
1 Kẽ1 +

1 − λ̃2k

2

1 − λ̃2
2

c2c3

(
ẽT
2 Kẽ3 + ẽT

3 Kẽ2

)

+

(2m+1)2
∑

i,j=3

1 − (λ̃iλ̃j)
k

1 − λ̃iλ̃j

cicjẽ
T
i Kẽj

+

(2m+1)2
∑

i=3

λ̃i

(1 − (λ̃2λ̃i)
k

(1 − λ̃2λ̃i)2
− k(λ̃2λ̃i)

k−1

1 − λ̃2λ̃i

)

c3ci(ẽ
T
2 Kẽi + ẽT

i Kẽ2)

+ λ̃2k

1 c2
1ẽ

T
1 FB0ẽ1 + λ̃2k

2 c2c3

(
ẽT
2 FB0ẽ3 + ẽT

3 FB0ẽ2

)
+

(2m+1)2
∑

i,j=3

λ̃k

i λ̃
k

jcicj ẽ
T
i FB0ẽj

+

(2m+1)2
∑

i=3

kλ̃k−1
2 λ̃k

i c3ci(ẽ
T
2 FB0ẽi + ẽT

i FB0ẽ2)

+ x
1 − (ρ′(1)λ′(1))k

1 − ρ′(1)λ′(1)
uT

m(I − VC)−1
(∑

d

dλdρ′(1)(a − a(d)) + V
∑

d

dρd(b − b(d))
)

+

2m+1∑

i=1

1 − λ2k+1
i

1 − λi

2m+1∑

j=2

1

1 − λj
āi,ju

T
mej +

2m+1∑

i=1

1 − λ2k

i

1 − λi

2m+1∑

j=2

1

1 − λj
b̄i,ju

T
mej

− uT
mVC(I − VC)−1

(

(λ′(1)ρ′(1))kxa −
2m+1∑

i=1

λk

i piei

)

− uT
mVC(I − VC)−1

(
2m+1∑

i=1

λ2k

i viu
T
meia

−
m∑

r=−m

((2m+1)2
∑

i=1

λ̃k

i ciẽi + kλk−1
2 c3ẽ2

)T

FB0

((2m+1)2
∑

i=1

λ̃k

i ci(r)ẽi + kλ̃k−1
2 c3(r)ẽ2

)

ur

)

− x2ρ′(1)(1 + λ′(1))
1 − (ρ′(1)λ′(1))k

1 − ρ′(1)λ′(1)
− x

2m+1∑

i=1

1 − λ2k+1
i

1 − λi
âiu

T
mei.

(3.63)

3.B. Details of Asymptotic Variance Computation 73

T1 + T2 + T3 + T4 + ddc + mc + sc

=2uT
mVC(I − VC)−1Pm − uT

mVC(I − VC)−1
2m+1∑

i=1

λ2k

i piei

+
1 − λ̃2k

1

1 − λ̃2
1

c2
1ẽ

T
1 Kẽ1 +

1 − λ̃2k

2

1 − λ̃2
2

c2c3

(
ẽT
2 Kẽ3 + ẽT

3 Kẽ2

)

+

(2m+1)2
∑

i,j=3

1 − (λ̃iλ̃j)
k

1 − λ̃iλ̃j

cicj ẽ
T
i Kẽj

+

(2m+1)2
∑

i=3

λ̃i

(1 − (λ̃2λ̃i)
k

(1 − λ̃2λ̃i)2
− k(λ̃2λ̃i)

k−1

1 − λ̃2λ̃i

)

c3ci(ẽ
T
2 Kẽi + ẽT

i Kẽ2)

+ λ̃2k

1 c2
1ẽ

T
1 FB0ẽ1 + λ̃2k

2 c2c3

(
ẽT
2 FB0ẽ3 + ẽT

3 FB0ẽ2

)
+

(2m+1)2
∑

i,j=3

λ̃k

i λ̃
k

jcicj ẽ
T
i FB0ẽj

+

(2m+1)2
∑

i=3

kλ̃k−1
2 λ̃k

i c3ci(ẽ
T
2 FB0ẽi + ẽT

i FB0ẽ2)

+ x
1 − (ρ′(1)λ′(1))k

1 − ρ′(1)λ′(1)
uT

m(I − VC)−1
(∑

d

dλdρ
′(1)(a − a(d)) + V

∑

d

dρd(b − b(d))
)

+

2m+1∑

i=1

1 − λ2k+1
i

1 − λi

2m+1∑

j=2

1

1 − λj
āi,ju

T
mej +

2m+1∑

i=1

1 − λ2k

i

1 − λi

2m+1∑

j=2

1

1 − λj
b̄i,ju

T
mej

− (λ′(1)ρ′(1))kxuT
mVC(I − VC)−1a

− uT
mVC(I − VC)−1

(
2m+1∑

i=1

λ2k

i viu
T
meia

−
m∑

r=−m

((2m+1)2
∑

i=1

λ̃k

i ciẽi + kλk−1
2 c3ẽ2

)T

FB0

((2m+1)2
∑

i=1

λ̃k

i ci(r)ẽi + kλ̃k−1
2 c3(r)ẽ2

)

ur

)

− x2ρ′(1)λ′(1)
1 − (ρ′(1)λ′(1))k

1 − ρ′(1)λ′(1)
− x

2m+1∑

i=1

1 − λ2k+1
i

1 − λi
âiu

T
mei. (3.64)

We know that the terms wich multiplies λk

1 and λ2k

1 should be equal to
0. According to the derivations above, the term which multiplies λk

1, i.e.,
(ρ′(1)λ′(1))k is equal to:

−x
1−ρ′(1)λ′(1)u

T
m(I−VC)−1

(
∑

d dλdρ
′(1)(a−a(d))+V

∑

d dρd(b−b(d))
)

−xuT
mVC(I−

VC)−1a + x2 ρ′(1)λ′(1)
1−ρ′(1)λ′(1) ,

and the one which multiplies λ2k

1 is equal to:

−uT
mVC(I−VC)−1p1e1− 1

1−λ̃2
1

c2
1ẽ

T
1 Kẽ1+c2

1ẽ
T
1 FB0ẽ1− λ1

1−λ1

∑2m+1
j=2

1
1−λj

ā1,ju
T
mej−

74 General Scaling Law

1
1−λ1

∑2m+1
j=2

1
1−λj

b̄1,ju
T
mej−uT

mVC(I−VC)−1

(

v1u
T
me1a−c1

∑m
r=−m c1(r)ẽ

T
1 FB0ẽ1

)

+

x λ1

1−λ1
â1u

T
me1.

One can check that for any particular example, these two terms are indeed
equal to 0. According to this observation, we are now able to let the size of

G
(ℓ)
T

going to infinity, which means taking the limit k → ∞. To that end, we
will use the fact that for i ≥ 2, λi < 1, when x > xMP. We can thus write

lim
k→∞

(T1 + T2 + T3 + T4 + ddc + mc + sc)

=
2λ2

(1 − λ2
2)

2
c2
3ẽ

T
2 Kẽ3 +

1

(1 − λ2)2
(
ā2,2u

T
me2 + b̄2,2u

T
me2

)
+ O

(
1

1 − λ2

)

.

(3.65)

Flipping 4
4.1 Introduction

In this chapter we look more in depth at the “flipping” phenomenon. As briefly
discussed earlier, this refer to the following. Assume we are transmitting above
the threshold. Consider an infinite tree and consider density evolution. Then
generically for a well-defined message- passing algorithm the message densities
converge but the actual individual messages do not – they flip. Although
this flipping can be observed routinely when decoding sparse graph codes, it
is usually attributed to the cycles which are present in a finite-length code.
We show that in fact this phenomenon is also present on a tree. Besides
being of independent interest when trying to understand sparse graph codes,
the flipping properties are crucial in deriving the scaling law. There is one
prominent exception to the above rule. For the BP decoding we will show that
even above threshold the messages themselves converge.

In the sequel we assume a message passing algorithm over an alphabet M.
This alphabet can either be discrete. In this case we assume that it is of the
form M = {−m, · · · , m}, where m ∈ N. Or it can be continuous. Our notation
will reflect the case of a discrete alphabet.

4.2 Stability Condition for Flipping Matrix

We assume an infinite tree and an infinite number of iterations so that all
densities have converged. We also think of transmitting above the threshold so
that we get a not-trivial fixed point of density evolution.

Let p and q denote the stationary flipping probabilities. More precisely,
we pick two time instances which are fixed non-zero time apart (time here is
measured by an integer since it refers to an iteration). We will see that the

75

76 Flipping

actual value of the time separation does not play a role. Since further we
assumed that the system has already converged to its steady state, the actual
time instance does not play a role either. Hence we will not specify either of
them further.

Then pi,j is the joint probability that at the first time instance the mes-
sage emitted by a given variable node along a given edge is i and that at the
later time instance this message is j. Some thought shows that the flipping
probabilities must fulfill the following fixed point equations:

q = p�(r−1),

p = V (c ⋆ q⋆(l−1)),

To be more precise. Assume that the message-passing decoder fulfills the fol-
lowing conditions. At the check nodes the message passing rule can be specified
pairwise. This means that if we have a node of degree r then the output can
be computed by performing r − 2 pair-wise operations. At the variable nodes
we assume that the sum of all incoming messages (including the received one)
is a sufficient statistic. If these conditions are fulfilled then the following com-
putations are made somewhat simpler, but they are not absolutely necessary.
With this restriction let us first look at the check node side. It suffices to define
the pairwise convolution of two flipping matrices at the check node side. For
two input flipping matrices p(1) and p(2) we then have

(p(1)
� p(2))i,j =

∑

i1,i2,j1,j2

p
(1)
i1,j1

p
(1)
i2,j2

1{c(i1,i2)=i}1{c(j1,j2)=j}.

This defines p�(r−1) and, hence, q.
At the variable nodes c⋆q⋆(l−1) has the following meaning. Let q(1) and q(2)

denote two flipping matrices, where the matrices might be over an extended
alphabet, i.e., the matrices are no longer necessarily over M. It is easiest to
assume that the matrices are infinite with entries in Z but that only a finite
submatrix has non-zero entries. We define

(q(1)
� q(2))i,j =

∑

i1,i2,j1,j2

q
(1)
i1,j1

q
(1)
i2,j2

1{i1+i2=i}1{j1+j2=j}.

Finally, the projection operator V maps a possibly extended matrix back onto
the alphabet M by mapping any element outside the range {−m, · · · , m} back
to either the element −m or m.

Note that the flipping probabilities must have the following marginals. We
must have

∑

i

pi,j =
∑

i

pj,i = xj ,

∑

i

qi,j =
∑

i

qj,i = yj .

4.3. Gallager A 77

If there is no flipping then the flipping matrices must therefore be the
following. Let p̄ and q̄ denote the following “stable” flipping probabilities. We
have

p̄i,j = xiδi,j ,

q̄i,j = yiδi,j ,

where x and y are the fixed point densities at the output of the variable and
check node, respectively.

To show that there is flipping we will show that these “stable” matrices are
not stable.

4.3 Gallager A

Let us look at the example of the Gallager algorithm A and a (l, r) ensemble.
In this case a flipping matrix has the form

p =

(
a x−1 − a

x−1 − a x1 − x−1 + a

)

q =

(
a y−1 − a

y−1 − a y1 − y−1 + a

)

The time invariant matrices have the from

p̄ =

(
x−1 0
0 x1

)

q̄ =

(
y−1 0
0 y1

)

We will now show that these matrices are not stable. Assume we have a small
perturbation.

p =

(
x−1 + ∆ −∆

−∆ x1 + ∆

)

Consider first the check step. We think of ∆ as very small. Then up to terms
linear in ∆

(
y−1 + (r− 1)∆ −(r− 1)∆
−(r− 1)∆ y1 + (r− 1)∆

)

Now close the circle by considering the variable node step.
(

x−1 + ∆̃ −∆̃

−∆̃ x1 + (r− 1)∆̃

)

78 Flipping

where ∆̃ = (l − 1)(r− 1)(yl−2
−1 (1 − ǫ) + yl−2

1 ǫ)∆. Therefore if

(l − 1)(r− 1)(yl−2
−1 (1 − ǫ) + yl−2

1 ǫ) > 1

then the time invariant matrix is not stable.

Consider e.g. the (3, 3) ensemble. In this case we have at the threshold
y−1 = 0.284307 and ǫ∗ = 0.2230463. A quick check shows that the left hand
side is equal to 1.5221 and that it is increasing for increasing channel parame-
ters. We conclude that we should expect a non-trivial flipping matrix. Indeed
this is what we observe.

We know from the above that the time-invariant matrix is a fixed point of
the recursion but is not stable. In particular, if we start with a = x−1 − δ, for
δ sufficiently small, then we get a value of a strictly smaller than x−1 − δ after
one recursion. On the other hand, the matrix with a = 0 is not a fixed point of
density evolution and gives us a value strictly larger than 0 after one iteration.
From this we conclude that the recursion has at least one stable fixed-point
matrix. If we can show that it has exactly one then it follows that for any time
difference the flipping probabilities converge to this fixed point matrix.

4.4 General Stability Condition For Time-Invariant Flipping

Matrix

Consider the time-invariant flipping matrices

p̄i,j = xiδi,j ,

q̄i,j = yiδi,j .

To simplify matters assume for right now that x is component-wise strictly
positive. Consider any small deviation from it. Represent this deviation as

p = p̄ +
∑

−m≤i<j≤m

∆(i,j)A(i,j),

where A(i,j) is a (2m + 1) × (2m + 1) matrix defined by

A
(i,j)
l,k =

−1, l = k = i,

−1, l = k = j,

1, l = i, k = j

1, l = j, k = i,

0, otherwise.

4.4. General Stability Condition For Time-Invariant Flipping Matrix 79

Consider now the evolution of this deviation for one round. First consider the
convolution at check nodes. Up to terms linear in the deviation we have

q = p�(r−1)

= (p̄ +
∑

−m≤i<j≤m

∆(i,j)A(i,j))�(r−1)

= p̄�(r−1) + (r− 1)p̄�(r−2)
�

∑

−m≤i<j≤m

∆(i,j)A(i,j)

= q̄ + (r − 1)
∑

−m≤i<j≤m

∆(i,j)p̄�(r−2)
� A(i,j)

Let us define Ã(i,j) = p̄�(r−2)
� A(i,j). Then we have

Ã
(i,j)
k,l =

∑

h

x
�(r−2)
h

(1{c(h,i)=k}1{c(h,j)=l} + 1{c(h,j)=k}1{c(h,i)=l}
)

−
∑

h

x
�(r−2)
h

(1{c(h,i)=k}1{c(h,i)=l} + 1{c(h,j)=k}1{c(h,j)=l}
)

and we can write

Ã(i,j) =
∑

−m≤l<k≤m

Ã
(i,j)
k,l A(k,l).

Then

q = q̄ + (r − 1)
∑

−m≤i<j≤m

∆(i,j)
∑

−m≤k<l≤m

Ã
(i,j)
k,l A(k,l)

= q̄ +
∑

−m≤k<l≤m

(r− 1)
∑

−m≤i<j≤m

∆(i,j)Ã
(i,j)
k,l A(k,l)

= q̄ +
∑

−m≤k<l≤m

∆̃(k,l)A(k,l)

Consider the vector ∆ of length
(
2m+1

2

)
with components ∆k = ∆φ(k) where φ

is a bijective map from {1, . . . ,
(
2m+1

2

)
} to a ”valid” pair (i, j).

Then we have

∆̃ = (r− 1)C∆

where Ci,j = Ã
φ(j)
φ(i) .

80 Flipping

Now let us consider a variable step.

p = V

c ⋆

q̄ +
∑

−m≤k<l≤m

∆̃(k,l)A(k,l)

⋆(l−1)

= V

c ⋆

q̄⋆(l−1) + (l− 1)
∑

−m≤k<l≤m

∆̃(k,l)q̄⋆(l−2) ⋆ A(k,l)

= V
(

c ⋆ q̄⋆(l−1)
)

+
∑

−m≤k<l≤m

(l− 1)∆̃(k,l)V
(

c ⋆ q̄⋆(l−2) ⋆ A(k,l)
)

Let us define Â(k,l) = V
(
c ⋆ q̄⋆(l−2) ⋆ A(k,l)

)
. Thus

p = p̄ +
∑

−m≤k<l≤m

(l − 1)∆̃(k,l)
∑

−m≤i<j≤m

Â
(k,l)
i,j A(i,j)

= p̄ +
∑

−m≤i<j≤m

∑

−m≤k<l≤m

(l− 1)∆̃(k,l)Â
(k,l)
i,j A(i,j)

= p̄ +
∑

−m≤i<j≤m

∆̂(i,j)A(i,j)

As before, we have

∆̂ = (l − 1)V ∆̃

where Vi,j = Â
φ(j)
φ(i) .

It follows that after one complete iteration the deviation coefficients have
evolved according to the equation

∆̂ = γV C∆.

Therefore, if γV C has a spectral radius strictly larger than 1 then this recursion
is not stable and flipping occurs. But if the spectral radius is smaller than 1
then this fixed point is stable.

4.5 Time-Invariance of BP Decoder

Let us show that the messages of the BP converge on a tree. In the sequel
it is convenient to assume that the messages which are passed along the tree
are posteriors. Consider a tree of depth ℓ. We will then show that for most
instances of channel realizations the posterior of the message sent along the
root edge changes by at most δℓ and that δℓ tends to zero as ℓ tends to infinity.

4.6. Flipping after a Finite Number of Iterations 81

For notational simplicity assume that the channel has a discrete output
alphabet. The statement remains true however for the general case. Let X
denote the value of the root bit, X ∈ {±1}. Let Yi, i = 0, 1, · · · , denote
the collection of observations of the tree channel at level i. Let Y ℓ

0 denote all
observations up to level ℓ.

Lemma 4.1. [Convergence of Messages for the BP Decoder] Consider trans-
mission over a tree channel. Then

∑

x,yℓ
0

p(yℓ
0)|p(x | yℓ

0) − p(x | yℓ−1
0)|

≤
√

2

√

H(X | Y ℓ
0) − H(X | Y ℓ−1

0).

Further, if

G = {yℓ
0 : ‖p(x | yℓ

0) − p(x | yℓ−1
0)‖1 ≤ ρ},

then

P{Y ℓ
0 6∈ G} ≤

√
2

ρ

√

H(X | Y ℓ
0) − H(X | Y ℓ−1

0).

Discussion: Note that H(X | Y ℓ
0) is decreasing as a function of ℓ. Further,

it is upper bounded by 1 and lower bounded by 0. It follows that it converges
to a limit. Therefore, H(X | Y ℓ−1

0) − H(X | Y ℓ1
0) converges to 0 as a function

of ℓ. The statement therefore says that for most instances of the observations
the messages change only slightly as we add one more layer of observations.

Proof. We have

∑

x,yℓ
0

p(yℓ
0)|p(x | yℓ

0) − p(x | yℓ−1
0)|

=
∑

x,yℓ
0

|p(x, yℓ
0) − p(x | yℓ−1

0)p(yℓ
0)|

≤
√

2D(p(x, yℓ
0)‖p(x | yℓ−1

0)p(yℓ
0))

=
√

2

√

H(X | Y ℓ
0) − H(X | Y ℓ−1

0),

where the second step is the so-called “Pinsker inequality.”

4.6 Flipping after a Finite Number of Iterations

In the previous sections we considered the flipping probabilities once the system
has reached steady state. But it is also of interest to compute the flipping
probabilities in the transient phase before the decoder has converged. We will

82 Flipping

see that in this case the flipping probabilities can be expressed by means of a
recursion.

Consider ν(j) to be a variable-to-check message in iteration j. Let us show
how to compute P{ν(ℓ) = r, ν(ℓ−k) = s}, where r and s are two message values.
We call this the ”flipping” probability recursion.

Consider a variable-to-check message ν and let us define the 2m+1×2m+1

dimensional variable-to-check flipping matrix as P
(t1,t2)
i,j = P{ν(t1) = i, ν(t2) =

j}. Note that the indices i and j go from −m to m. In the same way considering
a check-to-variable message ν̂, we define the 2m + 1 × 2m + 1 dimensional

check-to-variable flipping matrix as Q
(t1,t2)
i,j = P{ν̂(t1) = i, ν̂(t2) = j}. Finally

we define the 2m + 1 × 2m + 1 dimensional “channel” matrix as (CBMS)i,j =1{i=j}(aBMS)i, where aBMS is the density coming from the channel. Consider the
matrix K of size (2k+1)×(2k+1) and the matrix L of size (2l+1)×(2l+1). We
define the operator ⊙ : R

(2k+1)×(2k+1)×R
(2l+1)×(2l+1) 7→ R

(2(k+l)+1)×(2(k+l)+1)

such that

(K ⊙ L)i,j =
∑

r,s∈{−k,...,k}

∑

u,v∈{−l,...,l}
Kr,sLu,v1{r+u=i}1{s+v=j}.

Consider two matrices M and N of size 2m + 1 × 2m + 1, we also define the
operator � : R

(2m+1)×(2m+1) × R
(2m+1)×(2m+1) 7→ R

(2m+1)×(2m+1) such that

(M � N)i,j =
∑

r,s,u,v∈{−m,...,m}
Mr,sNu,v1{Q(r⊞u)=i}1{Q(s⊞v)=j},

where ⊞ is the operator which corresponds to the check node rule and Q

is the operation which performs the quantization as defined in Section 3.3.
Finally, by an abuse of notation, we extend the definition of the operator
Q, to the framework of flipping matrices. So, we define the operator Q :
R

(2k+1)×(2k+1) 7→ R
(2m+1)×(2m+1), where k ≥ m, as

(
Q(P)

)

i,j
=

Pi,j if |i| < m and |j| < m,
∑

u≥m Psgn(i)u,j if |i| = m and |j| < m,
∑

v≥m Pi,sgn(j)v if |i| < m and |j| = m,
∑

u≥m,v≥m Psgn(i)u,sgn(j)v if |i| = m and |j| = m,

where sgn(i) corresponds to the sign of i. We can now write the recursion

P(t1,t2) =
∑

d

λdQ
(
CBMS ⊙ (Q(t1,t2))⊙(d-1)

)

Q(t1,t2) =
∑

d

ρd(P
(t1-1,t2-1))�(d-1),

with the initial condition Q
(t1-t2,0)
i,j = (b(t1-t2))i1{j=0}. Finally we have

P{ν(ℓ) = r, ν(ℓ−k) = s} = P(ℓ,ℓ−k)
r,s (4.1)

Bibliography

[1] M. E. Fisher, “Proc. of the Enrico Fermi school, Varenna, Italy, 1970,
course n. 51,” in Critical Phenomena, International School of Physics En-
rico Fermi, Course LI, edited by M. S. Green. (Academic, New York,
1971), 1971.

[2] V. Privman, “Finite-size scaling theory,” in Finite Size Scaling and Nu-
merical Simulation of Statistical Systems, V. Privman, Ed. World Scien-
tific, 1990, pp. 1–98.

[3] A. Montanari, “Finite-size scaling of good codes,” in Proc. of the Allerton
Conf. on Commun., Control, and Computing, Monticello, IL, USA, Oct.
2001.

[4] A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke, “Finite-length
scaling for iteratively decoded LDPC ensembles,” in Proc. of the Allerton
Conf. on Commun., Control, and Computing, Monticello, IL, USA, Oct.
2003.

[5] ——, “Finite-length scaling for iteratively decoded LDPC ensembles,” ac-
cepted IEEE Trans. on Information Theory.

[6] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. A. Spielman, and V. Ste-
mann, “Practical loss-resilient codes,” in Proc. of the 29th annual ACM
Symposium on Theory of Computing, 1997, pp. 150–159.

[7] A. Amraoui, A. Montanari, and R. Urbanke, “Analytic determination of
scaling parameters,” in Proc. of the IEEE Int. Symposium on Inform.
Theory, Seattle, WA, July 2006, conference.

[8] ——, “How to find good finite-length codes: From art towards science,”
Euro. Trans Telecomms., vol. 18, no. 5, pp. 491–508, Apr. 2007.

[9] J. Ezri, A. Montanari, and R. Urbanke, “A generalization of the finite-
length scaling approach beyond the BEC,” in Proc. of the IEEE Int. Sym-
posium on Inform. Theory, Nice, France, June 2007, conference.

83

84 Bibliography

[10] R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on
Inform. Theory, vol. 8, pp. 21–28, jan 1962.

[11] L. Bazzi, T. Richardson, and R. Urbanke, “Exact thresholds and optimal
codes for the binary-symmetric channel and Gallager’s decoding algorithm
A,” IEEE Trans. Inform. Theory, vol. 50, no. 9, pp. 2010–2021, Sept. 2004.

[12] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge Uni-
versity Press, 2008.

[13] J. Ezri, A. Montanari, S. Oh, and R. Urbanke, “Computing threshold shift
for general channels,” in Proc. of the IEEE Int. Symposium on Inform.
Theory, Toronto, Canada, July 2008, conference.

[14] A. Dembo and A. Montanari, “Finite size scaling for the core of large
random hypergraphs,” 2007, e-print: math.PR/0702007.

Index

⊙, 82
�, 82

aBMS: density from the channel, 24
a(j): variable-to-check node message

density in iteration j, 24
a(j)(d): outgoing density at a variable

node of degree d in iteration
j, 53

∆̂a(j): deviation of a(j) due to the mes-
sages correction, 55

∆̃a(j): deviation of a(j) due to the de-
viation of the degree distri-
bution, 49

b(j): check-to-variable node message
density in iteration j, 24

b(j)(d): outgoing density at a check
node of degree d in iteration
j, 53

∆̃b(j): deviation of b(j) due to the de-
viation of the degree distri-
bution, 49

Bl,i, 46
B̂l,i, 46

Bi,k: set of edges in T
(ℓ)
i at distance k

from the root, 27

C
G

(ℓ)
T

i : number of check nodes of de-

gree i in G
(ℓ)
T

, 48

CG
(ℓ)
T (x):

∑

i C
G

(ℓ)
T

i x�i, 48

(CG
(ℓ)
T)′(x):

∑

i iC
G

(ℓ)
T

i x�(i−1), 49
CBMS: (CBMS)i,j = 1{i=j}(aBMS)i, 82

C(l): C
(l)
i,j=

∑

d ρd(d − 1)P{ν̂(l+1)
out =i |

ν
(l)
in =j, dc=d}, 33

Q, 24, 82
cl,i, 42
ĉl,i, 42

E : {1, . . . , nΛ′(1)}, 25
E : R

2m+1 7→ R s.t. E(v) = vm, 19
ej : unit vector whose jth component

is equal to 1, 33

G
(ℓ)
T

: tree formed by all edges which
belong to T

(ℓ), 26

h: channel entropy, 19

∆λ(x), 49
λ̃(x): λ(x) + ∆λ(x), 49

µ
(ℓ)
i : 1{ν(ℓ)

i =m}, 25

N(Sk
i): noise realization of Sk

i , 37

ν
(j)
i : variable-to-check message on edge

i in iteration j, 25

ν̂
(j)
i : check-to-variable message on edge

i in iteration j, 25

ν
(j)

i→ ˆi+1
: message in iteration j from

variable node i to check node
ˆi + 1, 39

ν
(j)

î→i+1
: message in iteration j from

check node î to variable node
i + 1, 39

85

86 Index

ω
(ℓ)
j : summary of the dv −2 remaining

incoming messages at variable
node j in iteration ℓ, 39

ω
(ℓ)

ĵ
: summary of the dc −2 remaining

incoming messages at check
node ĵ in iteration ℓ, 39

Φ: check node message map, 24

P(t1,t2): P
(t1,t2)
i,j = P{ν(t1)=i, ν(t2)=j},

82
Ψ: variable node message map, 24

Q(t1,t2): Q
(t1,t2)
i,j = P{ν̂(t1)=i, ν̂(t2)=j},

82

∆ρ(x), 49
ρ̃(x): ρ(x) + ∆ρ(x), 49

S
k
i : tree of height k whose root is edge

i, 37

T
(ℓ): set of indices of all messages whose

computation tree intersect the

computation tree of ν
(ℓ)
1 , 26

T
(ℓ)
1 : set of edges in the future of the

root edge and which point in
the same direction, 26

T
(ℓ)
2 : set of edges in the future of the

root edge and which point in
the opposite direction, 26

T
(ℓ)
3 : set of edges in the past of the root

edge and which point in the
same direction, 26

T
(ℓ)
4 : set of edges in the past of the root

edge and which point in the
opposite direction, 26

V(ℓ): Var(limn→∞
1√

nΛ′(1)

∑

i∈E µ
(ℓ)
i),

23, 25

V
G

(ℓ)
T

i : number of variable nodes of de-

gree i in G
(ℓ)
T

, 48

V G
(ℓ)
T (x):

∑

i V
G

(ℓ)
T

i x⋆i, 48

(V G
(ℓ)
T)′(x):

∑

i iV
G

(ℓ)
T

i x⋆(i−1), 49

V(l): V
(l)
i,j=

∑

d λd(d−1)P{ν(l)
out=i | ν

(l)
in =j, dv=d},

33

