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Abstract

In the first part of this thesis we are interested in the asymptotic performance
analysis of Non-Binary Low-Density Parity-Check (NBLDPC) codes over the
Binary Erasure Channel (BEC) decoded via the suboptimal Belief Propagation
(BP) decoder as well as the optimal Maximum-A-Posteriori (MAP) decoder.

Previously, NBLDPC codes defined with respect to a finite field have been
studied in the literature. Unfortunately, for these codes the asymptotic anal-
ysis of the BP decoder in terms of density evolution is cumbersome since the
involved densities “live” in a high dimensional space. To alleviate this problem,
we introduce ensembles defined with respect to the general linear group. For
these ensembles the density evolution equations can be written in a compact
form. We compute thresholds for different alphabet sizes for various NBLDPC
ensembles. Surprisingly, the threshold is not a monotonic function of the al-
phabet size. We also conjecture the stability condition for NBLDPC ensembles
defined with respect to finite fields over any binary memoryless symmetric
channel.

We then consider the performance of NBLDPC codes under MAP decoding
when transmission takes place over the BEC. Towards this goal, we generalize
the concepts of the peeling decoder and stopping sets to NBLDPC codes. Using
these concepts, we give a combinatorial characterization of decoding failures
for NBLDPC codes decoded via the BP decoder. We use the decoding failure
criterion and the density evolution analysis to compute the asymptotic residual
degree distribution for NBLDPC codes. The rate of this residual ensemble gives
the conditional entropy of the NBLDPC code. To compute the rate of the
residual ensemble we generalize the criterion of [1] to the non-binary setting,
which, when satisfied, guarantees that almost every code in the ensemble has
a rate equal to the design rate. We observe that the Maxwell construction of
[1], relating the performance of MAP and BP decoding via the Extended BP
GEXIT (EBP GEXIT [2]) function, holds in the setting of NBLDPC codes.

The weight and stopping set distribution of a code are related to its perfor-
mance under the MAP and the BP decoder respectively. We first concentrate
on the weight distribution of regular NBLDPC ensembles. We derive the aver-
age weight distribution of regular NBLDPC ensembles. Using this, we derive
the average of equivalent binary weight distribution of regular NBLDPC en-
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ii Abstract

sembles. We show that as the alphabet size becomes larger the equivalent
binary weight distribution converges to a straight line up to a critical value of
the normalized weight. Beyond the critical value, it converges to the weight
distribution of Gallager’s random parity check ensemble.

The average weight distribution of binary LDPC ensembles has been ex-
tensively studied in the literature. Much less is known about the probability
distribution of this quantity. In particular, the question of the concentration of
the weight distribution around the ensemble average has not been addressed.
We compute the variance of the weight distribution of binary regular LDPC
ensembles. Using this and the second moment method we obtain bounds on
the probability that a randomly chosen code has its weight distribution close
to the ensemble average. We show that a large fraction of the total number of
codes have their weight distribution close to the average. We apply the same
technique for the stopping set distribution of binary regular LDPC ensembles.
Again we show that a large fraction of total number of codes have their stopping
set distribution close to the ensemble average.

In the last part of this thesis we address the question of the existence of the
EBP GEXIT function. The EBP GEXIT function plays a fundamental role
in the asymptotic analysis of sparse graph codes. For transmission over the
BEC using binary LDPC codes, the analytic properties of the EBP GEXIT
function are relatively simple and well understood. The case of general BMS
channel is much harder and even the existence of the curve is not known in
general. We introduce some tools from non-linear analysis which can be useful
to prove the existence of EXIT like curves in some cases. The main tool is the
Krasnoselskii-Rabinowitz (KR) bifurcation theorem.

Keywords: LDPC codes, non-binary low-density parity-check codes, den-
sity evolution, MAP decoding performance, weight distribution, stopping set
distribution, second moment method, EBP GEXIT, bifurcation theorem.



Résumé

Dans la première partie de cette thèse nous nous intéressons à l’analyse asymp-
totique de la performance des codes Low-Density Parity-Check non-binaires
(NBLDPC) sur le canal à effacement binaire (BEC) décodées à l’aide d’un
décodeur Belief Propagation (BP) sousoptimal ainsi que d’un décodeur opti-
mal Maximum-A-Posteriori (MAP).

Dans la littérature, les codes NBLDPC définis à l’égard d’un corps fini
sont très populaires. Malheureusement, pour ces codes l’analyse asymptotique
du décodeur BP en termes d’évolution de densité est lourde puisque les den-
sités impliquées “habitent” dans un espace à haute dimension. Pour remédier
à ce problème, nous introduisons des ensembles définis à l’égard du groupe
linéaire général. Pour ces ensembles, les équations d’évolution de la densité
peuvent être écrites sous une forme compacte. Nous calculons des seuils pour
les différentes tailles d’alphabet et pour des ensembles NBLDPC variés. Eton-
namment, le seuil n’est pas une fonction monotone de la taille de l’alphabet.
Nous posons également la conjecture de la condition de stabilité pour les ensem-
bles NBLDPC définis à l’égard de corps finis sur tout canal binaire symétrique
sans mémoire.

Nous examinons ensuite examiner les performances des codes NBLDPC sous
décodage MAP lorsque la transmission se déroule sur le BEC. À cette fin, nous
généralisons les concepts du décodeur “peeling” et des “stopping sets” pour les
codes NBLDPC. En utilisant ces concepts, nous donnons une caractérisation
combinatoire pour les échecs de décodage des codes NBLDPC décodés via
le décodeur BP. Nous utilisons le critére d’échec de décodage et l’analyse de
l’évolution de la densité pour calculer la distribution asymptotique des degrés
résiduels pour les codes NBLDPC. Le taux de cet ensemble résiduel donne
l’entropie conditionnelle du code NBLDPC. Pour calculer le taux résiduel de
l’ensemble, nous généralisons le critère [1] au cas non-binaire, garantissant que
presque tous les codes de l’ensemble ont le taux égal au taux de construction.
Nous obsérvons également que la construction de Maxwell [1], appliquée à
l’analyse des performances MAP et BP par la fonction d’GEXIT BP étendue
(EBP GEXIT [2]) donne des bons résultats.

Les distributions du poids et des ensembles d’arrêt d’un code sont respec-
tivement liées avec les performances des décodeurs MAP et BP. Nous nous
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iv Résumé

focusons d’abord sur la distribution du poids des ensembles de codes NBLDPC
réguliers. En l’utilisant dans la suite, nous dérivons la distribution équivalente
du poids binaire moyenne pour les codes NBLDPC réguliers. Nous démontrons
que cette distribution converge vers la distribution du poids des codes de Gal-
lager avec la taille de l’alphabet.

La distribution du poids moyenne des codes LDPC binaires a été très étudiée
dans la litérature. Nous connaissons beaucoup moins sur la distribution de
probabilités de cette quantité. Notamment, la question de concentration de
la distribution du poids autour de la moyenne de l’ensemble n’a pas été en-
core explorée. Nous calculons la variance de la distribution du poids pour les
codes LDPC binaires réguliers. En l’utilisant par la suite avec la technique des
moments séconds, nous obtenons des bornes sur la probabilité que la distri-
bution du poids d’un code choisi arbitrairement d’un ensemble est proche de
la distribution du poids moyenne de cet ensemble. Nous démontrons qu’une
large fraction des codes de l’ensemble ont leur distribution du poids proche
de la moyenne. Nous utilisons la même technique pour trouver la distribution
des ensembles d’arrêt des codes LDPC binaires réguliers. Nous démontrons le
résultat similaire dans ce cas, qu’une large fraction des codes de l’ensemble ont
leur distributions des ensembles d’arrêt proches de la moyenne.

Dans la dernère partie de la thèse, nous étudions la question de l’existance
de la fonction GEXIT EBP. Cette fonction joue un rôle fondamental dans
l’analyse asymptotique des codes définis par des graphes. Quand nous sup-
posons la transmission sur le canal binaire à effacements à l’aide des codes
LDPC binaires, les propriétés de la fonction GEXIT EBP sont rélativement
simples et bien étudiées. Le cas des canaux binaires symmètriques sans mémoire
est plus compliqué et même l’existance de cette courbe n’est pas connue dans
le cas général. Nous introduisons quelques techniques issues de l’analyse non-
linéaire qui peuvent être utiles pour prouver l’exisatnce des courbes de type
EXIT dans certains cas particuliers. L’outil principal est le théorème de bifur-
cation de Krasnoselkii-Rabinowitz (KR).

Keywords: codes LDPC, codes LDPC non-binaires, évolution de densité,
performances du décodeur MAP, distribution du poids, distribution des ensem-
bles d’arrêt, méthode des moments séconds, courbe GEXIT EBP, théorème de
bifurcation.
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Introduction 1
The focus in the first part of this thesis is on the performance analysis of Non-
Binary Low-Density Parity-Check (NBLDPC) codes when transmission takes
place over Binary Memoryless Symmetric (BMS) channels. We consider two
main decoding algorithms: the locally optimal (but globally suboptimal) Belief
Propagation (BP) decoder and the globally optimal Maximum-A-Posteriori
(MAP) decoder. As the analysis for general BMS channels is difficult even in
the binary case, we restrict ourselves to the Binary Erasure Channel (BEC).

NBLDPC codes are defined with respect to an underlying algebraic struc-
ture. This algebraic structure can be a group, ring or finite field. In the
literature, codes defined with respect to a finite field have been widely studied
[3, 4, 5]. Like in the binary case, there is no method known to evaluate their
asymptotic performance efficiently for transmission over general BMS chan-
nels. However, unlike the binary case, no efficient method of evaluating their
asymptotic performance is known even for transmission over the BEC. The
main reason for this lack of analytical result is, as we will see in Chapter 2,
that the number of messages arising in the BP decoder grows as Θ

(
qlog(q)

)
,

where q is the size of the alphabet. So it becomes difficult to keep track of the
message probabilities as q increases. To circumvent this problem, we propose
NBLDPC codes defined with respect to the general linear group. We will show
in Chapter 2 that for these codes the number of message probabilities which
we need to keep track of only grows as Θ (log(q)). Due to this dimensionality
reduction the asymptotic analysis of these codes is significantly easier.

We then generalize the concepts of peeling decoder and stopping sets to
non-binary codes and prove the equivalence of the BP and the peeling decoder.
Using these generalizations, we evaluate the MAP decoding performance of
NBLDPC codes over the BEC by extending the arguments of [1] from binary
to the non-binary setting. For the MAP decoding, the performance metrics of
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2 Introduction

interest are the GEXIT function and the conditional entropy [2]. The method
to compute the conditional entropy is the following. We show that the BP
decoder when applied to the NBLDPC ensemble results in an appropriately
defined ensemble called residual ensemble. We compute the degree distribution
of this residual ensemble and determine its rate. We then show that this
rate equals the conditional entropy of the codeword given the observations at
the receiver. The technically most challenging part in this sequence is the
computation of the rate of the residual ensemble. In order to accomplish this
task we generalize the sufficiency condition of [1] to the non-binary setting. This
condition guarantees that almost all codes in the residual ensemble have a rate
equal to the design rate. Finally, we observe that the Maxwell construction
of [1], which relates the derivative of conditional entropy with respect to the
channel erasure probability and BP EXIT function, holds in the wider setting
of NBLDPC codes.

The rate depends on the total number of codewords in a code which in turn
depends on its weight distribution. We derive the average weight distribution
of regular NBLDPC ensembles. As we consider transmission over the BEC, the
binary weight distribution of the NBLDPC code is of importance. By binary
weight distribution we mean the weight distribution of the non-binary code
when the code is viewed as a binary code. More precisely, the alphabet size
of the non-binary codes we consider are given by 2m for a positive integer
m. So we can represent each symbol by m bits. Thus each codeword is also
a binary codeword. We show that as the alphabet size becomes larger the
average binary weight distribution converges to a straight line up to a critical
value of the normalized weight. Beyond the critical value, it converges to the
weight distribution of Gallager’s random parity check ensemble [6].

We are then interested in the question whether the weight distribution of a
code concentrates around its ensemble average. Due to technical difficulties we
answer this question only for regular binary LDPC ensembles. Using the second
moment method we obtain lower bounds on the probability that a randomly
chosen code has its weight distribution close to the ensemble average.

The last question we consider is of importance to prove the conjectured rela-
tionship between the asymptotic MAP and the BP decoding performance. The
EBP GEXIT function introduced in [2] is a key ingredient in this conjectured
relationship which is furnished by the Maxwell construction. The EBP GEXIT
function is a parametric function of a suitably defined set of fixed points of the
density evolution map. It is not known that the EBP GEXIT function forms
a smooth curve. However, numerical calculations suggest this to be true. We
propose a theorem from non-linear analysis called Krasnoselskii-Rabinowitz
(KR) theorem. Using the KR theorem, we prove the existence of EBP GEXIT
like functions in many cases.

In the following section we give the outline of the thesis.
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1.1 Outline

Chapter 2 We describe the BP decoder for non-binary alphabets. Then we
prove the concentration of the message probability around the ensemble aver-
age. We derive the density evolution equations for ensembles over the general
linear group and finite fields when transmission takes place over the BEC. We
discuss the stability condition for non-binary LDPC defined with respect to
the finite field when transmission takes place over any BMS channel.

Chapter 3 We generalize the concepts of peeling decoder and stopping
sets to non-binary codes. We then show that the final estimates of the peel-
ing decoder and the BP decoder are equal. Then we prove that, conditioned
on the residual degree distribution the residual graph is uniformly distributed.
Finally, we generalize the arguments of [1] to the non-binary case to prove the
concentration of the rate around the design rate. This enables us to compute
the conditional entropy of the code.

Chapter 4 We derive the average weight distribution and the equivalent
average binary weight distribution of regular non-binary LDPC ensembles de-
fined with respect to the general linear group and a finite field. We estimate
the variance of the weight distribution of regular binary LDPC ensembles. We
show that a large fraction of codes have their weight distribution concentrated
around the ensemble average. The same result is shown to hold also for the
stopping sets of regular binary LDPC ensembles.

Chapter 5 We give some relevant notations and definitions from non-linear
analysis. We then introduce the Krasnoselskii-Rabinowitz (KR) theorem which
can be useful to prove existence of fixed point. We demonstrate its applicability
by considering various ensembles.

Chapter 6 We conclude with some discussion, open problems and future
research directions.





BP Performance of Non-Binary

LDPC Codes 2
The chapter is organized in the following way: In Section 2.1 we give the
motivation for considering non-binary codes and discuss previous work. Pre-
liminaries and definitions are given in Section 2.2. Section 2.3 describes the
message-passing decoder for non-binary alphabets. In Section 2.4 we derive
the density evolution equations for ensembles over the general linear group and
finite fields. We discuss the stability condition in Section 2.5 for non-binary
alphabets over any BMS channel. We conclude in Section 2.6 with future
research directions.

2.1 Motivation and Previous Work

It is well known that using binary LDPC ensembles for transmission over BMS
channels, one can construct codes which achieve rates seemingly arbitrarily
close to capacity. In particular, for the BEC there are provable capacity-
achieving degree distributions obtained in [7, 8, 9] based on the method of
density evolution. The method of density evolution was generalized to any
BMS channel in [10]. This generalization made it possible to construct codes
for a given BMS channel which can achieve rates very close to the capacity
[11, 12]. It should be noted however that good LDPC codes for BMS channels
other than the BEC are obtained by numerical optimization. The problem
of finding explicitly capacity-achieving degree distribution for general BMS
channels is still open. In either case, the main property of the capacity achiev-
ing/approaching degree distributions for the standard LDPC ensembles of [7]
is that the underlying parity-check matrix gets denser and denser as the gap
to capacity is reduced [13].

Although binary ensembles are conjectured to constitute a powerful enough
class to achieve capacity, it is nevertheless worth exploring the potential of
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6 BP Performance of Non-Binary LDPC Codes

non-binary ensembles. Clearly, by considering non-binary alphabets we add
one more degree of freedom in our code design. This added degree of freedom
might be of particular value for small lengths (as we will see later, non-binary
codes typically have a better error floor performance). Not surprisingly we will
see in Section 2.3 that the BP decoding complexity of NBLDPC codes is higher
than that of equivalent binary codes. By “equivalent” binary code we mean a
binary code with the same degree distribution and same length (measured in
the number of bits). Though the BP decoding complexity of non-binary codes is
higher than their binary counterpart, they can offer better performance. Thus
we can have performance versus complexity tradeoffs by considering non-binary
alphabets. For example, in Fig 2.1 we plot the bit error probability of the BP
decoder versus the channel noise for the (2, 3) ensemble and different alphabet
sizes. As we can see from this figure, the bit error probability performance of
the (2, 3) ensemble improves with the alphabet size.

-4.0 -2.0 0.0

10-5

10-4

10-3

10-2

(Eb/N0)dB

Pb

m
=

1

m
=

2

m
=

3

m
=

4

Figure 2.1: Performance of regular (2, 3) ensemble with alphabet size 2m over
BAWGNC(σ) with binary length 4320.

To achieve capacity the standard approach is to fix the alphabet size (to
binary) and to increase the density of the underlying graph. We take an alter-
native route here. Suppose we fix the degree distribution and let the alphabet
size increase. Let us consider an example. Fig. 2.2 shows the Forney-Style
Factor Graph (FSFG [14]) of a simple code over GF(4) together with its corre-
sponding parity-check matrix. The addition and multiplication operations are
performed modulo the polynomial 1+z+z2. The parity-check matrix is equiv-
alent to the binary parity-check matrix shown in Fig. 2.3. E.g., the constraint
over GF(4), x1 + (1 + z)x2 = 0 is equivalent to the two binary constraints
x11 + x21 + x22 = 0 and x12 + x22 = 0 and so on. The corresponding binary
FSFG and the binary parity-check matrix are shown in Fig. 2.3. Again, we can
find an equivalent binary code corresponding to a code defined with respect
to the general linear group. The general linear group over the binary field of
dimension m is the set of all m × m invertible matrices. For example, the
following is a parity-check matrix over the general linear group of dimension
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x1 = (x11, x21)

x2 = (x21, x22)

x3 = (x31, x32)

x4 = (x41, x42)
H3,4

H2,4

H2,3

H3,2

H1,2H3,1

H1,1

1{H1,1x1+H1,2x2=0}

1{H2,3x3+H2,4x4=0}

1{H3,1x1+H3,2x2+H3,3x3=0}

=

=

=

=

H =





H1,1 H1,2 0 0
0 0 H2,3 H2,4

H3,1 H3,2 0 H3,4





=





1 1 + z 0 0
0 0 z z

1 + z z 0 1





Figure 2.2: The FSFG of a simple code over GF(4) and its associated parity-check
matrix H .

x11

x12

x21

x22

x31

x32

x41

x42

1{x11+x21+x22=0}

1{x12+x22=0}

1{x21+x41=0}

1{x31+x32+x41+x42=0}

1{x11+x12+x22+x32=0}

1{x12+x21+x22+x42=0}

=

=

=

=

=

=

=

=

Hb =











1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
1 1 0 1 0 0 1 0
0 1 1 1 0 0 0 1











Figure 2.3: The FSFG and its associated parity-check matrix corresponding to
the equivalent binary code of the code given in Fig. 2.2.

two:

H =





H1,1 H1,2 0 0
0 0 H2,3 H2,4

H3,1 0 0 H3,4





where,

H1,1 =

(
1 0
0 1

)

, H1,2 =

(
1 1
1 0

)

, H2,3 =

(
1 1
0 1

)

,

H2,4 =

(
1 0
1 1

)

, H3,1 =

(
0 1
1 1

)

, H3,4 =

(
0 1
1 0

)

.
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Its equivalent binary matrix is given by:

Hb =











1 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 1
1 1 0 0 0 0 1 0











.

Each constraint in the matrix H is equivalent to two constraints in the equiv-
alent binary matrix Hb. E.g., the constraint H1,1x1 +H1,2x2 = 0 is equivalent
to x11 + x21 + x22 = 0 and x12 + x21 = 0.

One might hope that by increasing the alphabet size the equivalent binary
matrix becomes better and better. Thus an increase in the alphabet size might
yet yield another way of achieving capacity. As we will see, the relationship
between alphabet size and performance is not a simple one and an increase
in the underlying alphabet does not necessarily lead to increased performance.
Nevertheless, there are many unexplored degrees of freedom in the system
design.

The possibility of using non-binary alphabets for LDPC codes was already
proposed by Gallager in his landmark PhD thesis [3]. The fact that by using
non-binary alphabets, the performance of LDPC codes over BMS channels can
be improved was first reported by Davey and MacKay [4]. They showed by
specific examples that NBLDPC codes can perform significantly better than
their binary counterparts for the BMS channels. Hu showed that even the
performance of cycle codes can be improved considerably with non-binary al-
phabets [5]. In [15], Sridhara and Fuja have designed codes over certain rings
and groups for coded modulation based on the principle of NBLDPC codes.
Also, the design of LDPC code construction using “lifting” of multi-edge type
designs [16, 17] and the related framework of protographs [18] can be seen as
NBLDPC ensembles. In [19] Bennatan and Burshtein presented an analysis
of random coset NBLDPC codes over arbitrary discrete-memoryless channels.
They generalized the notion of symmetry and proved stability condition for
these codes. Also they presented an EXIT chart analysis based on Gaussian
approximation for random coset codes. Declercq and Fossorier presented var-
ious message passing decoding algorithms for NBLDPC codes in [20]. An
analysis of tail-biting trellis based on NBLDPC codes was presented in [21] by
Andriyanova and Tillich.

2.2 Preliminaries and Notation

We consider transmission over a BMS channel using NBLDPC ensembles. We
denote the set of symbols of the codeword by S. As we consider transmission
over a binary-input channel it is natural to require that the cardinality of S
is a power of 2. We denote the cardinality of S by |S| = q = 2m. Thus
we can think of each symbol as a binary m-tuple. In order to transmit a
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symbol over a BMS channel we transmit the bits representing this symbol.
We define the NBLDPC ensemble in an analogous way as in the binary case.
First we define an ensemble of bipartite graphs. It is defined in terms of a pair
of degree distributions (d.d.), (λ(x) = Σiλix

i−1, ρ(x) = Σjρjx
j−1), shorthand

(λ, ρ). The coefficient λi (ρj) denotes the fraction of the total number of edges
connected to a variable (check) node of degree i (j). A variable (check) node
of degree i (j) has i (j) sockets for its connected edges. Given a pair (λ, ρ) of
d.d. and the block length n, an unlabeled ensemble of bipartite graphs G(n, λ, ρ)
is defined in the following manner. Label the sockets on the variable and check
node side in an arbitrary but fixed way. Consider a permutation π on the
number of edges. Join the socket i on the variable node side to the socket π(i)
on the check node side. The ensemble G(n, λ, ρ) contains all such bipartite
graphs generated by all the possible permutations on the number of edges with
uniform probability. Now we assign a bijective linear mapping f : S 7→ S to
each edge of every bipartite graph in the ensemble G(n, λ, ρ). The mappings are
chosen uniformly at random from a set of mappings F . The resulting ensemble
of labeled bipartite graphs is the NBLDPC ensemble. The check nodes of a
bipartite graph from the NBLDPC ensemble represent parity-check equations
of the form ∑

i

fi(xi) = 0, (2.1)

where the {xi}, xi ∈ S, are the variables which participate in the parity check
equation. Note that a code defined by parity-check equations of the form as in
Eqn(2.1) is linear as the mappings fi are linear. The design rate of an ensemble
with d.d. (λ, ρ) is the same as in the binary case:

r = 1 −
∫ 1

0 ρ(x)dx
∫ 1

0
λ(x)dx

.

Let x = (x1, . . . , xn) denote a codeword over S. We can think of each symbol as
a binarym-tuple. Hence, we can equivalently think of the codeword as a binary
codeword of length nm, x = (x11, . . . , x1m, . . . , xn1, . . . , xnm). To transmit the
codeword x over a BMS channel, we transmit its binary components and let
the corresponding received word be y = (y11, . . . , y1m, . . . , yn1, . . . , ynm).

In this thesis we will consider two variants of NBLDPC ensembles: En-
sembles over finite fields and ensembles over the general linear group. For
ensembles over finite fields, S = GF (2m), and the mappings f are of the form
f(x) = ωx, where ω ∈ GF∗ (2m), the multiplicative group of GF (2m). Hence,
by some abuse of notation F = GF∗ (2m). This implies that |F| = 2m − 1.
We will denote an LDPC ensemble of blocklength n over GF (2m) with d.d.
(λ, ρ) by EGF (n, λ, ρ,m). The ensemble over the general linear group is de-
noted by EGL (n, λ, ρ,m). We denote the general linear group over the binary
field of dimension m by GLm

2 . GLm
2 is the set of all m ×m invertible matri-

ces over the binary field. Note that the number of distinct invertible matrices
over the binary field is

∏m−1
l=0

(
2m − 2l

)
, [22]. The symbol set S of ensemble

EGL (n, λ, ρ,m) is the vector space GFm
2 of dimension m over the binary field.
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The mappings on the edges are given by f(b) = Wb, where b ∈ GFm
2 and

W ∈ GLm
2 . We will be interested in the number of distinct subspaces of di-

mension k of the vector space GFm
2 . This number is known as the Gaussian

binomial coefficient. We denote it by

[
m
k

]

, and it is given by (see [22], pp.

443):
[
m
k

]

=

{

1, if k = 0 or k = m,
∏k−1

l=0
2m−2l

2k−2l , otherwise.
(2.2)

For a subspace V of the vector space GFm
2 , we denote its dual subspace by V⊥.

The dual subspace is defined as:

V⊥ =

{

β ∈ V ⊥ :

m∑

i=1

αiβi = 0, ∀α ∈ V

}

,

where the summation is with respect to the binary field. Note that the dimen-
sion of V and V⊥ satisfies the following relation [23]:

dim (V) + dim
(

V⊥
)

= m.

The dual of the sum of two subspaces V1 and V2 is equal to the intersection
of V⊥

1 and V⊥
2 i.e.

(V1 + V2)
⊥ = V⊥

1 ∩ V⊥
2 .

If a subspace V has the basis vectors B = {b1, . . . , bk}, then we denote the set
of basis vectors for V⊥ by B⊥ = {b⊥1 , . . . , b⊥k }. We denote the linear span of
a set of vectors B by Span (B). We denote the null space of a matrix M by
nullspace (M) and its row space by rowspace (M).

2.3 Belief Propagation Decoder

The messages in the belief propagation decoder are vectors of length |S|. The
αth component of a message Ψ, denoted by ψ (α) where α ∈ S, is equal to the
posteriori probability that the symbol is α. An iteration of the BP algorithm
consists of four steps. The first step corresponds to processing the messages at
the variable node side. The second step processes the messages according to
edge labels. The third step is the check node side operation. Finally, the fourth
step transforms the messages directed towards variable nodes according to edge
labels. Note that in the first iteration the variable node processing corresponds
to sending messages based on channel observations. We now describe these
steps in detail.

1. Initial Message: The initial message Ψ
(1,1)
x,c from a variable node x to

a connected check node c is the posteriori probability distribution of
symbols (P(x = α0|y), . . . ,P(x = αq−1|y)), where αi ∈ S, i = 0, . . . , q −
1. Note that the first superscript in the message Ψ

(1,1)
x,c represents the
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iteration number and the second superscript represents the step number
in that iteration.

2. Edge Action: Before the messages reach the check nodes, we need to
consider the permutations induces by the edge labels and their associated
mapping f(x). Note that labels induce permutations since the mappings
f are invertible. More precisely, if the edge label is f then the mes-

sage vector Ψ
(l,1)
x,c =

(

ψ
(l,1)
x,c (α0) , . . . , ψ

(l,1)
x,c (αq−1)

)

gets permuted to the

message Ψ
(l,2)
x,c =

(

ψ
(l,1)
x,c

(
f−1(α0)

)
, . . . , ψ

(l,1)
x,c

(
f−1(αq−1)

))

.

3. Check Node Action: The operation on the check node side is the
convolution of the incoming messages. Lets consider a check node c. Let
its degree be 3 for the sake of simplicity. Let x, y, and z be the connected
variables and lets consider the outgoing message along the edge to z as
a function of the incoming messages along the edges connected to x and
y. The outgoing message towards variable z is then

ψ(l,3)
c,z (α) =

∑

β,γ∈S
1{α+β+γ=0}ψ

(l,2)
x,c (β)ψ(l,2)

y,c (γ)

=
∑

β∈S
ψ(l,2)

x,c (β)ψ(l,2)
y,c (−α− β) , (2.3)

where, 1{δ=0} =

{
1, if δ = 0,
0, otherwise.

In a brute force manner, the above summation can be accomplished with

complexity O(q2). However, note that ψ
(l,3)
c,z (−α) is given in terms of

a convolution of two message vectors, where the index calculations are
done with respect to the additive group of GF (2m). Note that the vector
space GFm

2 and finite field GF (2m) are isomorphic groups with respect to
addition. Hence, as suggested in [24, 10], we can use Fourier transforms
to accomplish this convolution in an efficient manner. Since the message
size is 2m, the Fourier transform is particularly simple. Write an element
of S as an m-tuple with components in GF(2), α = (α1, . . . , αm). Let
Ψ =

(
ψ (α)α∈S

)
denote a vector whose components are taking values in

C. Let Φ = (φ (α))α∈S denote its Fourier transform. The corresponding
Fourier transform pair is

φ (α) =
∑

β

ψ (β) (−1)
−α.βT

, ψ (α) =
1

2m

∑

β

φ (β) (−1)
α.βT

, (2.4)

where α.βT is the dot product of the binary representation of α and β.
Thus the check node operation is given by the component wise multipli-
cation of the Fourier transform of incoming messages and by taking the
inverse Fourier transform of the result.
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4. Inverse Edge Action: Messages are again permuted to take care of
the mappings. But in this case the permutation is the inverse of the
permutation in step 2. More precisely, if the edge label is f then the

message vector Ψ
(l,3)
c,x =

(

ψ
(l,3)
c,x (α0) , . . . , ψ

(l,3)
c,x (αq−1)

)

gets permuted to

the message Ψ
(l,4)
c,x =

(

ψ
(l,3)
c,x (f(α0)) , . . . , ψ

(l,3)
c,x (f(αq−1))

)

.

5. Variable Node Action: The messages Ψ(l+1,1) from the variable nodes
are the component-wise multiplication of the incoming messages Ψ(l,4)

and the initial message Ψ(1,1). In order to represent the result as a prob-
ability distribution, we normalize the result.

2.4 Density Evolution for the BEC

In this section we analysis the asymptotic performance of the BP decoder
for NBLDPC codes when transmission takes place over the BEC. In order to
simplify the analysis, we show as in [10] that the all-zero codeword assumption
holds. This implies that the error probability is the same for the BP decoder
in the cases when the all-zero codeword is transmitted and when any other
codeword is transmitted. We prove this in the following lemma for any BMS
channel.

Lemma 1. Consider transmission over a BMS channel using an NBLDPC
code. Then the conditional symbol error probability of the BP decoder is inde-
pendent of the transmitted codeword.

Proof. We use the BPSK mapping for the transmission of bits: {0 ↔ 1, 1 ↔
−1}. Under the BPSK mapping any BMS channel can be represented in the
product form Yt = XtZt, where Xt is the transmitted bit at time t, Zt is the
noise and Yt is the output of the channel. Note that under the BPSK mapping
the original all-zero codeword is mapped into the all-one codeword. By some
abuse of notation we continue to speak about the “all-zero” codeword. The
addition of two symbols αi = {αi1, . . . , αism} and αj = {αj1, . . . , αjm} over
GF(2) is αi⊕αj = {αi1⊕αj1, . . . , αim⊕αjm}. This is equivalent to the bit-wise
product αiαj = {αi1αj1, . . . , αimαjm} after the BPSK mapping.

We would like to compare the progress of the iterative decoder when the
all-zero codeword and a codeword x = {x1, . . . , xn} is transmitted assuming
that the noise realization is the same in both cases. For a BMS channel

P (yij |xij) = P (−yij | − xij). (2.5)

This implies P (yij |xij) = P (yijxij |1). Hence, for the same noise realization

P (y|1) =

n∏

i=1

m∏

j=1

P (Zij |1), P (y|x) =

n∏

i=1

m∏

j=1

P (xijZij |1).
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We show a one-to-one mapping between the messages flowing along the
edges in the two cases. Consider a variable node x, an edge e emanating from
x, and the corresponding check node c. We assume that the mapping f is
associated to the edge e. We recall that f : S → S is one-to-one and linear,
i.e., for α, β ∈ S

f(α⊕ β) = f(α) ⊕ f(β). (2.6)

As f is linear, f(0) = 0. We denote the messages of the decoder corresponding
to all-zero case by Γ = (γ (α0) , . . . , γ (αq−1)) and the messages for decoding
the other codeword are denoted by Ψ = (ψ (α0) , . . . , ψ (αq−1)).

1. The initial message with respect to the {±1} mapping of the bits is given
by

ψ(1,1)
x,c (α) = P(α)

P (xZ|α)
∑

β∈S P (β) P (xZ|β)

xβ=β′

= P(α)
P (xαZ|1)

∑

β′∈S P (xβ′) P (β′Z|1) ,

and similarly

γ(1,1)
x,c (α) = P(α)

P (αZ|1)
∑

β′∈S P (β′) P (β′Z|1) .

We have P (xβ′) = P (β′) as we assume that all codewords have equal

probability and the code is linear. Hence ψ
(1,1)
x,c (α) = γ

(1,1)
x,c (xα). In the

{0, 1} mapping, this translates to ψ
(1,1)
x,c (α) = γ

(1,1)
x,c (x ⊕ α). For the rest

of the proof we use the {0, 1} mapping of the bits.

2. In the lth iteration after the edge action the message satisfies

ψ(l,2)
x,c (α) = ψ(l,1)

x,c

(
f−1(α)

)
, γ(l,2)

x,c (α) = γ(l,1)
x,c

(
f−1(α)

)
.

As ψ
(l,1)
x,c (α) = γ

(l,1)
x,c (x ⊕ α), and using the linearity of f described in

(2.6), we get

ψ(l,2)
x,c (α) = γ(l,2)

x,c (α⊕ f(x)). (2.7)

3. After the check node step we look at the message coming towards the
variable node x. Let x1, . . . , xr−1 be the other variable nodes connected
to the check node c, with f1, . . . , fr−1 denoting the mappings associated
to the edges. The βth component of the Fourier transform of the message

Ψ
(l,3)
c,x is the component-wise multiplication of the βth components of the

Fourier transforms of Ψ
(l,2)
x1,c , . . . ,Ψ

(l,2)
xr−1,c. By taking the inverse Fourier
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transform we get

ψ(l,3)
c,x (α) =

1

2m

∑

β

(−1)β.αT
r−1∏

i=1

∑

βi

(−1)β.βT
i ψ(l,2)

xi,c (βi)

︸ ︷︷ ︸

βth component of the FT of Ψ(l,2)
xi,c

,

(a)
=

1

2m

∑

β,β1,...,βr−1

r−1∏

i=1

(−1)β.(α⊕P

r−1
i=1 βi)

T

γ(l,2)
xi,c (βi ⊕ fi(xi)),

βi≡βi⊕fi(xi)
=

1

2m

∑

β,β1,...,βr−1

(−1)β.(α⊕P

r−1
i=1(βi⊕fi(xi)))

r−1∏

i=1

γ(l,2)
xi,c (βi),

P

f(xi)=f(x)
=

1

2m

∑

β,β1,...,βr−1

(−1)β.(α⊕f(x)⊕P

r−1
i=1 βi)

T

r−1∏

i=1

γ(l,2)
xi,c (βi).

where in (a) we use (2.7). For x = 0, the above equation gives

γ(l,3)
c,x (α) =

1

2m

∑

β,β1,...,βr−1

(−1)β.(α⊕P

r−1
i=1 βi)

T
r−1∏

i=1

γ(l,2)
xi,c (βi).

Hence, we see that

ψ(l,3)
c,x (α) = γ(l,3)

c,x (f(x) ⊕ α) . (2.8)

4. After the inverse edge action,

ψ(l,4)
c,x (α) = ψ(l,3)

c,x (f(α)) , γ(l,4)
c,x (α) = γ(l,3)

c,x (f(α)) .

As ψ
(l,3)
c,x (α) = γ

(l,3)
c,x (f(x) ⊕ α) and using the linearity of f , we get

ψ(l,4)
c,x (α) = γ(l,4)

c,x (α⊕ x). (2.9)

5. At the variable node we perform component-wise multiplication of all the
incoming messages and the initial message. All of them satisfy the shift
property of (2.9). Hence

ψ(l+1,1)
x,c (α) = γ(l+1,1)

x,c (x⊕ α).

This implies that ψ
(l+1,1)
x,c (x) = γ

(l+1,1)
x,c (0). Thus the probability of cor-

rect decoding is the same at the completion of an iteration of message
passing.
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Hence we can analyze the performance of the BP decoder assuming that the
all-zero codeword is transmitted.

2.4.1 Density Evolution for EGL (λ, ρ,m)

In order to derive the density evolution equations for the ensemble EGL (λ, ρ,m)
we need to find the set of messages which arise in the BP decoder. In the fol-
lowing lemma we characterize all the messages which appear in the BP decoder.

Lemma 2 (Message Space Characterization). Consider transmission over the
BEC using the NBLDPC ensemble EGL (λ, ρ,m). The messages arising in the
BP decoder satisfy the following properties:

1. All the non-zero entries in a message Ψ are equal.

2. Let V = {α ∈ GFm
2 : ψ (α) 6= 0}. Then V is subspace of GFm

2 .

3. The Fourier transform Φ of a message Ψ has the property:

φ (α) =

{

1, if α ∈ V⊥,
0, otherwise,

where V⊥ is the dual subspace of V. Thus the total number of messages is equal

to
∑m

i=0

[
m
i

]

.

Proof. We prove that messages satisfy these properties at every step of an
iteration.

1. Consider a variable node in the bipartite graph. Without loss of gener-
ality assume that its initial k bits are erased. The posteriori probability
of a symbol α in the initial message Ψ(1) is 1

2k if its bit representation
satisfies the equations αk+1 = 0, . . . , αm = 0. We write these system of
equations in matrix form as Mu = 0, where

Mij =

{
1, if i = j and i > k,
0, otherwise.

Thus all the non-zero elements of message Ψ are equal and they belong
to V = nullspace (M). Hence the claim 1 and 2 of the lemma are true
for the initial message. Recall that the αth component of the Fourier
transform of a message is give by

φ (α) =
∑

β∈GFm
2

(−1)α.βT

ψ (β) =
∑

β∈V

(−1)α.βT 1

2k
. (2.10)

Clearly from (2.10), if α ∈ V⊥ then α.βT = 0 for ∀β ∈ V. Thus all the

terms add up and we have φ (α) = 1. If α /∈ V⊥, then (−1)α.βT

= 1
for half the terms in the summation in (2.10) and for the other half

(−1)α.βT

= −1. Thus φ (α) = 0 for α /∈ V⊥.
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2. Assume that the message is acted on by an edge with edge label W . Let
u′ = Wu or u = W−1u′. Thus MW−1u′ = 0. This implies that after the
edge action, the non zero entries of the permuted message correspond to
the solution space of MW−1u′ = 0. Hence again by the same reasoning
as in the previous step, all the three claims of the lemma hold. Note
that the dimension of the nullspace (M) is equal to the dimension of the
nullspace

(
MW−1

)
.

3. Now at the check node side, we take component-wise multiplication of the
Fourier transform of the incoming messages. For the sake of simplicity
consider a check node of degree three. Let V⊥

1 ,V
⊥
2 be subspaces corre-

sponding to the two Fourier transform. So the subspace corresponding to
the multiplication will be V⊥

1 ∩V⊥
2 . Now again by the same reasoning as in

the step 1, all the three claims hold. Note that
(

V⊥
1 ∩ V⊥

2

)⊥
= V1 + V2.

So the operation on the check node side corresponds to taking the linear
span of the subspaces corresponding to incoming messages.

4. The proof for inverse edge action is the same as the edge action (step 2).

5. At the variable node we have the component-wise multiplication of the
incoming messages. For the sake of simplicity consider a degree two vari-
able node. Let V1 be the subspace corresponding the incoming message
and V be the subspace corresponding to the initial message. The resul-
tant message will have the subspace of non-zero entries as V∩V1. Again
all the three claims of the lemma hold.

This characterizes the message space and there are
∑m

i=0

[
m
i

]

different mes-

sages as there are

[
m
i

]

different messages of dimension i.

Motivated by Lemma 2 we introduce the following terminology. We say that
the dimension of a message Ψ, call it dim (Ψ), is k if the number of non-zero
entries of Ψ is 2k. We associate to a message Ψ of dimension k, an (m−k)×m
matrix M and its subspace V. We have the following relations,

V = nullspace (M) , V⊥ = rowspace (M) .

With the aid of Lemma 2, we can now write down the density evolution equa-
tions for EGL (λ, ρ,m). Since we are choosing all the elements of GLm

2 uni-
formly, so after the edge action any message of dimension k is mapped to any
other message of dimension k with uniform probability. More precisely, con-
sider a message Ψ of dimension k and choose an element of GLm

2 (edge label)
uniformly at random. It is not very hard to see that the edge action will map

the message Ψ with uniform probability to any of the

[
m
k

]

messages of di-

mension k. It follows that we need not keep track of the probability of each
message but that it suffices to keep track of the total probability of the class of
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all messages of dimension k. Since a message can have m+ 1 possible dimen-
sions, density evolution can be expressed as an m + 1 dimensional recursion.
Note that a correct decoding implies that the probability of the subspace of
zero dimension (it contains only the zero element) converges to one.

In the next lemma, by using the arguments of [10] we show that the empir-
ical densities of the messages concentrate around the density evolution equa-
tions.

Lemma 3. Consider transmission over the BEC using an element of the reg-
ular ensemble EGL (n, l, r,m). Over the probability space of the elements in
EGL (n, l, r,m) and all the channel realizations, let Zi denote the number of
edges carrying a message of dimension i after variable node operation in the
lth iteration. Let P(l)

v (i) be the probability under the tree assumption that a
randomly chosen edge is carrying a message of dimension i after the vari-
able node operation. Then, there exist positive constants β = β (l, r,m, l) and
γ = γ (l, r,m, l) such that

1. For any ǫ > 0 we have

Pr {|Zi − E [Zi]| > nlǫ/2} ≤ 2e−βǫ2n. (2.11)

2. For any ǫ > 0 and n > 2mγ
ǫ we have

∣
∣
∣E [Zi] − nlP(l)

v (i)
∣
∣
∣ < nlǫ/2. (2.12)

3. For any ǫ > 0 and n > 2mγ
ǫ we have

Pr
{∣
∣
∣Zi − nlP(l)

v (i)
∣
∣
∣ > nlǫ

}

≤ 2e−βǫ2n. (2.13)

Proof. The proof is very similar to proof of [10, Thm 2]. Hence we will be
brief here. Note that Eqn(2.13) is an immediately consequence of Eqn(2.11)
and Eqn(2.12). The proof of Eqn(2.12) is exactly the same as the proof of the
corresponding claim in the binary setting proved in [10, Thm 2].

In order to prove Eqn(2.11) we define a sequence of equivalence relations
on ∆, the probability space which consist of the tuple (G,R), where G is the
graph and R is the input to the decoder. Let =j, 0 ≤ j ≤ (2l+ 1)n =: k
be a sequence of equivalence relations on ∆ which satisfies that if (G′, R′) =j(

G
′′

, R
′′

)

then (G′, R′) =j−1

(

G
′′

, R
′′

)

. Next we define Z0
i , Z

1
i , . . . , Z

m
i by

Zj
i (G,R) := E [Z(G′, R′)|(G′, R′) =j (G,R)] .

By construction Z0, Z1, . . . , Zk is a Doob’s Martingale. The bounds on the
difference |Zj+1

i (G,R) − Zj
i (G,R)| are the same as that in [10, Thm 2] when

we reveal the socket connection and decoder input. When we reveal the edge
label, the dimension of the message does not changes by changing the label.
Hence the constants during the process of revealing the labels are zero. Thus
we prove Eqn(2.11).
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In the next lemma we derive the density evolution equations for the ensem-
ble EGL(λ, ρ,m).

Lemma 4 (Density Evolution for EGL(λ, ρ,m)). Consider the NBLDPC en-

semble EGL(λ, ρ,m). Let P(l)
v (k, l) be the probability that a randomly chosen

message is of dimension k after the edge action connected to a variable node
of degree l (i.e., a message just before the check node processing). Similarly,

P(l)
c (k, r) denotes the probability that a randomly chosen message is of dimen-

sion k after the inverse edge action connected to a check node of degree r (i.e.,
a message just before the variable node processing). Then we have the following
recursive relationships between different probabilities on the check node side:

P(l)
c (k, 3) =

k∑

i=0

P(l)
v (i)

k∑

j=k−i

[
m− i
m− k

] [
i

k − j

]

2(k−i)(k−j)

[
m

m− j

] P(l)
v (j), (2.14)

P(l)
c (k, r) =

k∑

i=0

P(l)
c (i, r− 1)

k∑

j=k−i

[
m− i
m− k

] [
i

k − j

]

2(k−i)(k−j)

[
m

m− j

] P(l)
v (j),

(2.15)

where P(l)
v (i) is the average over the variable node degree distribution,

P(l)
v (i) =

∑

l

λl P(l)
v (i, l).

The equations on the variable node side for the probabilities in (l+1)th iteration
are:

P(l+1)
v (k, 2) =

m∑

i=k

(
m

i

)

ǫi(1 − ǫ)m−i
m−i+k∑

j=k

[
i
k

] [
m− i
j − k

]

2(i−k)(j−k)

[
m
j

] P(l)
c (j),

(2.16)

P(l+1)
v (k, l) =

m∑

i=k

P(l+1)
v (i, l− 1)

(m−i+k)
∑

j=k

[
i
k

] [
m− i
j − k

]

2(i−k)(j−k)

[
m
j

] P(l)
c (j),

(2.17)

where P(l)
c (j) is the average over the variable node degree distribution,

P(l)
c (j) =

∑

r

ρr P(l)
c (j, r).
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Proof. Consider a check node of degree 3. We know from Lemma 2 that the
subspace V corresponding to the resulting message Ψ is the sum of subspaces V1

and V2 corresponding to the incoming messages Ψ1 and Ψ2, i.e., V = V1 +V2,
or V⊥ = V⊥

1 ∩V⊥
2 . We would like to find out the probability that dim (V) = k

or dim
(

V⊥
)

= m − k. Assume that dim (V1) = i and dim (V2) = j. This

happens with probability P(l)
v (i) and P(l)

v (j) respectively. There are

[
m− i
m− k

]

distinct subspaces of dimension m − k in V⊥
1 . We need to count how many

subspaces of dimension m−j there are such that dim
(

V⊥
1 ∩ V⊥

2

)

= m−k. Let

B⊥
1 = {b⊥1 , . . . , b⊥m−k, b

⊥
m−k+1, . . . , b

⊥
m−i} be the basis for V1. We would like to

construct a basis set for V2 such that the first m−k vectors are {b⊥1 , . . . , b⊥m−k}.
The (m− k + 1)

th
vector can be chosen in

(
2m − 2m−i

)
ways. We subtract

2m−i as we can not choose any vector from V⊥
1 . Similarly (m− k + l + 1)th

vector can be chosen in
(
2m − 2m−i+l

)
ways. This gives the total number of

possible choices as
∏k−j−1

l=0

(
2m − 2m−i+l

)
. But not all the choices give different

subspaces. There are
∏k−j−1

l=0

(
2m−j − 2m−k+l

)
choices which gives the same

subspace. Hence there are
∏k−j−1

l=0
(2m−2m−i+l)

(2m−j−2m−k+l) =

[
i

k − j

]

2(k−i)(k−j) choices

for V⊥
2 for a fixed V⊥

1 . The factor

[
m

m− j

]

in the denominator is the total

number of subspaces of dimension m− j. This explains (2.14).
Now the equation for a check node of degree r can be derived recursively.

Assume that we know P(l)
c (i, r − 1). Then by the same argument as for the

check node of degree 3, we obtain (2.15).
The derivation of the equation for the variable node side is very similar.

Consider a variable node of degree 2. Assume that the initial message V1 is a
subspace of dimension i. This happens with probability

(
m
i

)
ǫi (1 − ǫ)

m−i
. Now

fix this subspace. Let us assume that the message coming from an edge is of
dimension j whose subspace is V2. This happens with probability P(l)

c (j). Now
we would like to find out how many subspaces of dimension j give an intersec-
tion of dimension k with a subspace of dimension i. This can be computed in
exactly the same way as for the check node of degree 3 by replacing V⊥,V⊥

1 ,V
⊥
2

by V,V1,V2. Thus we obtain (2.16) by replacing i, j, k in the right hand side
of (2.14) by m − i,m − j,m − k, respectively. The equation (2.17) is derived
similarly.

In Table 2.4.1, we list the thresholds for various ensembles. Note that for
the ensemble with d.d. pair λ(y) = y and ρ(y) = y2, initially the threshold
increases rapidly (as m is increased). Unfortunately it reaches a peak at m = 6
and then starts decreasing. For the ensemble with d.d. pair λ(y) = 0.5y+0.5y4

and ρ(y) = y5, the threshold increases by moving from m = 1 to m = 2, but
after that it starts decreasing. For λ(y) = y2 and ρ(y) = y3 the thresholds
already start decreasing by moving from the binary case to an alphabet of size
4. We have observed for various other ensembles that if there are no degree
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2 variable nodes then the threshold already starts decreasing by moving from
the binary case to an alphabet of size 4.

λ(y) = y, ρ(y) = y2

ǫsh ≈ 0.6667

m ǫIT ǫstab

1 0.5 0.5

2 0.5775 0.5811

3 0.6183 0.651

4 0.6369 0.7075

5 0.6446 0.7518

6 0.6464 0.7864

7 0.6453 0.8135

8 0.6425 0.8349

15 0.616 0.9097

λ(y) = 0.5y + 0.5y4, ρ(y) = y5

ǫsh ≈ 0.4762
m ǫIT ǫstab

1 0.4 0.4

2 0.4487 0.4832

3 0.4353 0.5605

4 0.4194 0.6266

λ(y) = y2, ρ(y) = y3

ǫsh = 0.75

m ǫIT ǫstab

1 0.6474 1.0

2 0.6348 1.0

3 0.6192 1.0

Table 2.1: Thresholds for the ensemble EGL (λ, ρ,m) for various degree distribu-
tions. ǫstab is computed from Lemma 5 by equating the left hand side of Eqn(2.18)
to unity.

We can obtain analytical upper bounds on the BP threshold by analyzing
the stability condition of the density evolution map. The stability of density
evolution map implies that when we give a small perturbation around the fixed
point corresponding to the error-free decoding, the recursion converges back to
the error-free fixed point. In the next lemma we give the stability condition.

Lemma 5. Consider the ensemble EGL (λ, ρ,m). The fixed point of the density
evolution equations corresponding to error-free decoding is stable if

λ2ρ
′(1) max

k=1,...,m







m∑

i=k

(
m

i

)

ǫi(1 − ǫ)m−i

[
i
k

]

[
m
k

]






< 1, (2.18)

where the density evolution equations are given in Lemma 4.

Proof. The probabilities Pv(i)(Pc(i)), i ∈ {0, . . . ,m} sum to one. So we can
express the probability Pv(0)(Pc(0)) in terms of Pv(i)(Pc(i)), i ∈ {1, . . . ,m}.
Thus we can write the density evolution recursion as an m dimensional recur-
sion. For correct decoding the probabilities Pv(i), i ∈ {1, . . . ,m} converge to
zero. Consider a small perturbation of the all zero vector. Let us denote the
perturbed vector by δ = (δ1, . . . , δm). By Eqns(2.14, 2.15), for the input δ, the
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output of the check node side up to the first order term is the vector

ρ′(1) (δ1, . . . , δm) .

For the variable node side, observe that only the degree two variable nodes
contribute to the first order term. So we change the order of summation in
Eqn(2.16) and rewrite it as

P(l+1)
v (k, 2) =

m∑

j=k







m−j+k
∑

i=k

(
m

i

)

ǫi(1 − ǫ)m−i

[
i
k

] [
m− i
j − k

]

2(i−k)(j−k)

[
m
j

]







P(l)
c (j).

This shows that for the input vector ρ′(1) (δ1, . . . , δm), the kth component of
the output of the variable node side is

λ2ρ
′(1)

m∑

j=k







m−j+k
∑

i=k

(
m

i

)

ǫi(1 − ǫ)m−i

[
i
k

] [
m− i
j − k

]

2(i−k)(j−k)

[
m
j

]






δj.

Thus the linearized output of the density evolution map is given by

Mδ,

where the matrix M is an m×m matrix with entries

Mkj =







λ2ρ
′(1)

∑m−j+k
i=k

(
m
i

)
ǫi(1 − ǫ)m−i

2

4

i
k

3

5

2

4

m− i
j − k

3

52(i−k)(j−k)

2

4

m
j

3

5

, j ≥ k,

0, j < k.
(2.19)

The stability of the density evolution map around the all-zero vectors is gov-
erned by the eigenvalues of the matrix M . More specifically, the density evo-
lution map is stable if the largest absolute eigenvalue of the matrix M is less
than one. As M is upper triangular, its eigenvalues are equal to its diagonal
entries. The entries of the matrix M are positive. Thus the stability condition
is given by

λ2ρ
′(1) max

k=1,...,m







m∑

i=k

(
m

i

)

ǫi(1 − ǫ)m−i

[
i
k

]

[
m
k

]






< 1,

as the left hand side is the largest eigenvalue.

Note: The stability condition given in Eqn(2.18) for m = 1 is identical to
the stability condition for binary LDPC codes derived in [12].
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2.4.2 Density Evolution for the Ensemble EGF (λ, ρ,m)

The ensemble EGF (λ, ρ,m) is a subset of the ensemble EGL (λ, ρ,m). We
prove this and we characterize the set of messages which arise during the BP
decoding of the ensemble EGF (λ, ρ,m) in the following lemma.

Lemma 6 (EGF (λ, ρ,m) as a subset of EGL (λ, ρ,m)). The mapping f (α) =
ωα, where ω ∈ GF∗ (2m) and α ∈ GF (2m) is equivalent to a mapping g (b) =
Wb, where b ∈ GFm

2 and W ∈ GLm
2 . Hence all the messages in the belief

propagation decoder are equivalent to the subspaces of the vector space GFm
2 .

In fact all the possible subspaces of the vector space GFm
2 do arise in the belief

propagation decoder.

Proof. First we note that the additive group of GF (2m) and the vector space
GFm

2 are isomorphic. Also the mapping f (α) = ωα is a linear mapping. Hence
from the isomorphism of GF (2m) and GFm

2 , we can think of the mapping f
as f : GFm

2 7→ GFm
2 . Every linear one-to-one mapping from a vector space to

the same vector space can be represented by an invertible matrix [23]. Hence
every mapping in EGF (λ, ρ,m) is equivalent to a mapping in EGL (λ, ρ,m).
Thus from lemma 2, we know that every message is equivalent to a subspace
of GFm

2 .
In order to show that all the possible subspaces arise in the message passing

decoder, we consider a variable node where the first bit is erased. The initial
message is Ψ =

{
1
2 ,

1
2 , 0, . . . , 0

}
. After the edge action, this message can be

mapped to all the other possible messages (subspace) of dimension 1. The
operation at the check node is to take the sum of subspaces. Now all the
possible subspace can be generated by taking the sum of subspaces of dimension
1. This shows that all the possible subspaces of vector space GFm

2 arise in the
belief propagation decoder.

For the derivation of density evolution equations, we observe that form ≤ 3,
after the edge action a message of same dimension gets mapped to any other
message of same dimension by equal number of mappings. Hence we can again
combine the probability of the messages of the same dimension and do the den-
sity evolution over the dimension of the messages. Thus the density evolution
equations for the ensemble EGF(λ, ρ,m) is the same as that of EGL(λ, ρ,m)
for m ≤ 3 as given in Lemma 4. However for m > 3, it is no longer true
that any message of the same dimension gets mapped to any other message
of same dimension. The set of messages of given a dimension are partitioned
into several orbits under the action of the label group. In order to accomplish
density evolution we need to keep track of each orbit. This quickly becomes
quite cumbersome. Also note that the performance of the ensemble does in gen-
eral depend on the primitive element which one chooses to represent the field.
I.e., two isomorphic fields do not in general yield identical equations. More
precisely, if we run density evolution for a fixed number of iterations then the
performance of two isomorphic fields is in general strictly different. An exam-
ple is GF (32) with fields defined with respect to the irreducible polynomials
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1 + z3 + z5 and 1 + z + z2 + z3 + z5. The difference though between these two
fields is very small and the resulting difference in the threshold is of the order
of 10−4. Note also that within this precision, the ensembles EGF(λ, ρ,m) and
EGL(λ, ρ,m) seem to have approximately the same threshold.

2.5 Stability Condition

For the general case, an analysis in terms of density evolution is in principle
possible but practically difficult. Even for codes over GF(4) densities already
“live” in R3. The BP threshold can be computed numerically by Monte Carlo
methods in the same way as this is done in the setting of turbo codes, [25].

Slightly less ambitious, one can investigate the behavior of density evolu-
tion close to the desired fixed-point and derive a stability condition. Rather
than giving a full-fledged analysis let us derive here the stability condition via
an asymptotic analysis of the number of small weight codewords. Recall that a
binary codeword is called minimal it there is no other codeword whose support
set is a proper subset of the support set of this codeword. The support set of
a codeword is the set of its non-zero positions. For a non-binary codeword we
ask in addition that the left-most position is equal to one. The stability condi-
tion we conjecture is inspired by the following phenomenon which happens for
binary LDPC codes as described in [17, Sec. 6.6]. Let P (x) be the generating
function counting the number of expected minimal constant weight codewords
in the limit of infinite blocklength. As shown in [17], the generating function
P (x) is given by

P (x) = −1

2
log (1 − λ′(0)ρ′(1)x) .

Then the convergence condition for P (x) when evaluated at x = B(a) gives
the stability condition

B(a)λ′(0)ρ′(1) < 1,

where B(a) is the Battacharya parameter for channel log-likelihood density a,

B(a) =

∫ ∞

−∞
a(y)e−

y
2 dy.

We will use this analogy to derive the stability condition for NBLDPC ensemble
EGF (λ, ρ,m). In the next lemma we derive upper and lower bounds on the
generating function of the expected number of binary minimal codewords for
non-binary ensembles.

Lemma 7. Consider the ensemble EGF (λ, ρ,m). Let P (x) =
∑

w≥0 pwx
w

denote the generating function counting the number of expected minimal binary
(low-weight) codewords in the limit of large blocklengths. More precisely, if
N(G, w) denotes the number of minimal binary codewords of weight w in the
graph G, then pw , limn→∞ EG∈EGF(λ,ρ,m)[N(G, w)]. Define

P̃ (x) , − 1

2(2m − 1)
log

(

1 − λ′(0)ρ′(1)
(1 + x)m − 1

2m − 1

)

. (2.20)
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Then
P̃ (x) ≤ P (x) ≤ (2m − 1)P̃ (x), (2.21)

where the inequality is understood to hold pointwise for the coefficients of the
respective Taylor series.

Proof. Let d denote the weight of the codeword over GF (2m). This means that
for such a codeword there are d non-zero positions of the variable nodes in the
graph. Look at the subgraph induced by these d variable nodes. We claim that
it has to form a stopping-set (in the sense of binary codes), i.e., no check node
contained in this residual graph can have degree one (this is true since a single
edge entering a check node and carrying a non-zero message can not satisfy this
check node). From the analysis of binary codes we know that in the limit of
large block lengths the expected number of minimal stopping sets of weight d
tends to (λ′(0)ρ′(1))d/(2d) and that these stopping sets all correspond to cycles
(in the bipartite graph) of length 2d. Consider now a cycle of length 2d. Such
a cycle involves d variable nodes, d check nodes and 2d edges. Assign to each of
the d variable nodes a non-zero binary m-tuple. What is the probability that
this assignment corresponds to a codeword? We claim that this probability is
equal to 1/(2m − 1)d. To see this claim, first reveal the edge labels along the
cycle for all even edges. This means: start traversing the cycle in a chosen
direction, and reveal the edge label along every second edge. Consider now the
first check node. If α and β are the labels along the two connected edges and
if x and y are the corresponding bit assignments at the connected variables,
x, y, α, β ∈ GF (2m), then the check is fulfilled iff αx = βy. Since x and y are
already fixed, and also exactly one of the labels has been already fixed, this
means that there is exactly 1 out of 2m − 1 choices which leads to a fulfilled
check node. The same argument applies to all d check nodes, which confirms
the claim. The above argument is valid for all non-zero bit assignments at the
variable node. The generating function which counts the binary weight of all
non-zero bit assignments at a variable node is (1+x)m −1. It follows therefore

that a cycle of weight d gives in expectation rise to coef
{( (1+x)m−1

2m−1

)d
, xw

}

binary codewords of weight w.
First consider the codewords over GF (2m). Due to the linearity of the

code, each cycle which gives rise to at least one codeword, gives rise to exactly
2m − 1 codewords (multiplication by all non-zero field elements). Exactly one
of those has its left-most element equal to 1, and is therefore minimal. We
are interested in binary minimal codewords though. Although it is possible to
write down the exact such number we will not need it for our purpose. It is
sufficient to note that there are at least as many binary minimal codewords as
there are minimal codewords over GF (2m) and that there are at most 2m − 1
more. This gives rise to the two stated bounds.

Note that because of Eqn(2.21), the convergence behavior of the gener-
ating function for minimal weight binary codewords P (x) and P̃ (x) defined
in Eqn(2.20) is identical. By the analogy with binary LDPC codes, the con-
vergence condition of the generating function P̃ (x) when evaluated at B(a)
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gives the stability condition for NBLDPC codes. We now present this as a
conjecture.

Conjecture 1 (Stability Condition for EGF(λ, ρ,m)). Consider the ensemble
EGF (λ, ρ,m). Assume that transmission takes place over a BMS channel with
log-likelihood density a and associated Battacharya constant B(a). If

λ′(0)ρ′(1)
(1 + B(a))m − 1

2m − 1
> 1, (2.22)

then the fixed-point corresponding to zero-error probability is not stable.

Note that Eqn(2.22) agrees with Eqn(2.18) for the case m = 2, 3 for trans-
mission over the BEC. This supports the conjecture as for m = 2, 3, the
density evolution recursion is identical for the ensemble EGL (λ, ρ,m) and
EGF (λ, ρ,m).

2.6 Conclusion

We have investigate the performance of NBLDPC ensembles. In particular, as-
suming that transmission takes place over the BEC(ǫ), we have given a compact
representation of the density evolution equations for the ensemble EGL (λ, ρ,m)
and we have discussed the stability condition.

Let us state here what we consider to be some of the most interesting
questions that remain unanswered. From the examples we have investigated,
it seems that for a fix degree distribution the threshold is a unimodal function
of the alphabet size. If there are sufficiently many degree-two variable nodes
the threshold initially rises and eventually decays again as m is increased.
Otherwise it decrease right away.

There is one degree of freedom which was already suggested in [4] and
which we have not considered so far. In all our analysis we assumed a uniform
distribution on the edge labels. In out setting it is natural to allow a non-
uniform distribution on the edge labels in such a way that the distribution
respects the underlying algebraic structure. E.g., the ensemble EGF (λ, ρ,m)
can be considered a special case of the ensemble EGL (λ, ρ,m) where we put
a uniform distribution on the labels corresponding to field elements and zero
weight on all other labels. Obviously there are many degrees of freedom that
could be explored.

It is hoped that by a proper exploitation of these degrees of freedom one
can find yet another way of approaching capacity, adding to our understanding
of capacity approaching iterative coding schemes.





MAP Performance of

Non-Binary LDPC Codes over

the BEC 3
The chapter is organized in the following way. An introduction is given in
Section 3.1. In Section 3.2 we give the definitions and notations. We discuss
the peeling decoder, stopping constellations and the equivalence of the peeling
and the BP decoder for the NBLDPC codes in Section 3.3. In Section 3.4 we
compute the residual degree distribution of the NBLDPC ensemble and derive
the expression for the average of total number of codewords in a residual en-
semble. A sufficient condition is derived in Section 3.5, which, when satisfied,
guarantees that the asymptotic rate of the residual ensemble is equal to its de-
sign rate. We then show the equality between the rate of the residual ensemble
and the conditional entropy of the transmitted codewords. Finally we conclude
in Section 3.6 with a discussion.

3.1 Introduction

Our aim is to investigate the MAP decoding performance of NBLDPC codes
when transmission takes place over the BEC. So, we will assume in the rest
of this chapter that transmission takes place over the BEC. Towards exam-
ining the MAP decoding performance of NBLDPC codes, our approach is to
generalize the arguments of [1] from the binary to the non-binary setting.

Consider the binary case. The basic idea of [1], relating the MAP perfor-
mance to the BP performance is the following. For the binary case there are
two decoders, the BP algorithm and the peeling decoder. The peeling decoder
was introduced in [7]. Although these two decoders look different, they are
in fact identical if their final estimates on bits are considered. The peeling
decoder associates to every code and erasure set a residual graph. If the era-
sure probability is below the BP threshold then the residual graph is empty as
all the bits are known almost surely. It was shown in [7] that if the erasure

27



28 MAP Performance of Non-Binary LDPC Codes over the BEC

probability is above the BP threshold then for most instances of the erasure
set and graph, the residual graph has a degree distribution close to the average
residual degree distribution. It was also shown that conditioned on the residual
degree distribution, the induced probability distribution is uniform over all the
graphs with the given degree distribution.

The entropy of the transmitted codeword conditioned on the channel ob-
servation is given by the logarithm of the number of codewords which are
compatible with the observation. Thus the idea of bounding the conditional
entropy for an erasure probability above the BP threshold is the following (for
erasure probability below the BP threshold, the conditional entropy is zero).
As we discussed the peeling decoder almost surely results in an LDPC ensemble
whose degree distribution is given by the average residual degree distribution.
Thus the normalized logarithm of the number of codewords which are compat-
ible with the typical channel observations is lower bounded by the design rate
of the average residual ensemble. The design rate only gives a lower bound
since some check equations might be dependent. A criterion was derived in [1]
which, when satisfied, guarantees that the lower bound is tight, i.e., the actual
rate of the ensemble is equal to its design rate.

We will essentially follow the same sequence of arguments for the non-binary
case. The BP decoder is defined in Chapter 2. We define the peeling decoder
and stopping sets for the non-binary case. We refer to stopping sets as stop-
ping constellations to distinguish them from the binary setting. Then we show
the equivalence of the peeling and the BP decoder by showing that both of
them get stuck in the largest stopping constellation. We show how the average
residual degree distribution can be computed by using the fixed points of the
density evolution of the BP decoder. Then we show that conditioned on the
degree distribution of the residual graphs, all the graphs which are compatible
with this degree distribution have uniform probability. We generalize the cri-
terion of [1] to the non-binary case which, when satisfied, shows that almost
all the codes in the ensemble have their rate equal to the design rate. If this
criterion is satisfied by the average residual degree distribution, then we show
that the conditional entropy of the transmitted codeword is equal to the design
rate of the average residual ensemble. Here we assume that the degree distri-
bution of a random residual graph is concentrated around the average residual
degree distribution. We also observe that the Maxwell construction, relating
the performance of the MAP and the BP decoder, also holds in the setting of
non-binary LDPC codes.

3.2 Preliminaries

We consider the NBLDPC ensemble EGL (n, λ, ρ,m) (EGL (λ, ρ,m) in the
asymptotic limit) defined in Chapter 2. We recall from Chapter 2, Lemma
2 that for transmission over the BEC, the messages which arise during BP
decoding have a very specific form. The messages are real vectors of length 2m

and the αth component of the message gives the posteriori probability that the
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corresponding symbol is α, α ∈ GFm
2 . The following properties of messages

were proved in Chapter 2, Lemma 2:

1. The non-zero entries of a message are all equal.

2. The indices corresponding to non-zero entries of a message form a sub-
space of GFm

2 . Thus each message is equivalent to a subspace. This
means that if the entries corresponding to α and β, α, β ∈ GFm

2 , are
non-zero, then so is the entry corresponding to α+ β.

3. The variable-node side operation is equivalent to taking the intersection
of the subspaces corresponding to the incoming messages.

4. The check-node side operation is equivalent to taking the sum of the
subspaces corresponding to the incoming messages.

Based on these properties, we say that the dimension of a message Ψ, call it
dim (Ψ), is k if the number of non-zero entries of Ψ is 2k. By a slight abuse of
notation, we denote the subspace of indices corresponding to non-zero entries
of a message Ψ also by Ψ. Note that the subspaces corresponding to initial
messages have a specific form. An initial message of dimension k has the set of
basis vectors {ei1 , . . . , eik

}, where ei is a vector of length m with ith component
equal to 1 and the remaining components equal to zero. This corresponds to
the message where the bits i1, . . . , ik are erased and the rest of them are known.
We denote the set of initial messages by Mini and M denotes the set of all
messages of the BP decoder. Also, we denote the set of neighbours of a node
x by N (x).

We denote the number of mappings belonging to GLm
2 which map a given

subspace of dimension k to another subspace of dimension k by g(m, k). It is
given by:

g(m, k) = |GLm
2 |
[
m
k

]−1

, (3.1)

where

[
m
k

]

is the Gaussian binomial coefficient (defined in Chapter 2, Eqn(2.2))

denoting the number of different subspaces of dimension k of GFm
2 . We obtain

Eqn(3.1) by noticing that the number of elements in GLm
2 which map a sub-

space V to V1 is equal to the number of elements in GLm
2 which map V to V2,

where the dimensions of V,V1 and V2 are equal to k.
We will use the following two simple facts f (A ∩B) = (fA)∩(fB), f (A+B) =

(fA) + (fB), where f ∈ GLm
2 and A, B are subspaces of GFm

2 .
In the next section we define the peeling decoder and stopping constella-

tions. Then we prove that the BP and the peeling decoder get stuck in the
largest stopping constellation compatible with the channel output.
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3.3 Peeling Decoder

Assign to each variable node v a subspace belonging to the set of initial mes-
sages. We call this subspace the state of the variable node; denote it by Ev,
where Ev ∈ Mini. We say that a check node c is active if there exists v ∈ N (c)

such that Ev ∩ f−1
vc

(
∑

i∈N (c)\v ficEi

)

is a strict subset of Ev, where fic is the

mapping on the edge connecting variable node i ∈ N (c) to check node c. We
call v and c an active pair.

The channel state assignment C = {Cv}v∈V is the state assignment corre-
sponding to channel erasures. Thus Cv is the subspace corresponding to the
channel erasures for the variable node v. We now define the peeling decoder.

1. Initially all the variable nodes are assigned the channel state C.

2. Consider an active pair: let v be the variable node and c be the check

node. Set Ev = Ev ∩ f−1
vc

(
∑

i∈N (c)\v ficEi

)

.

3. If there is no active pair, terminate. Otherwise repeat step (2).

Note that in the binary setting, the possible states of variable nodes are 0 and
1. Hence an active pair of nodes correspond to a check node which has the
corresponding variable node as the only variable node with state 1 (erased).
The remaining attached variable nodes are assigned the state 0 (known). This
corresponds to a check node of degree 1 in the setting of the peeling decoder
for the binary codes [7].

We now define the stopping constellation for NBLDPC codes.

Definition 1. A stopping constellation is an assignment of states E = {Ev}v∈V
, where Ev ∈ Mini and V is the set of variable nodes. The state assignment E
is such that there are no active pairs of nodes, i.e., for every variable node v

and each check node c connected to v, Ev ⊆ f−1
vc

(
∑

i∈N (c)\v ficEi

)

.

We say that a check node c satisfies the decoding failure criterion with
respect to the state assignment E if

Ev ⊆ f−1
vc




∑

i∈N (c)\v
ficEi



 , ∀v ∈ N (c). (3.2)

Next we define the union G of two stopping constellations E = {Ev}v∈V and
F = {Fv}v∈V as Gv = Ev + Fv, v ∈ V , where Ev + Fv is the sum of subspaces
Ev, Fv. We claim that G is also a stopping constellation. We want to prove
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that Gv ⊆ f−1
vc

(
∑

i∈N (c)\v ficGi

)

, ∀c ∈ N (v), ∀v ∈ V . Now,

f−1
vc




∑

i∈N (c)\v
ficGi



 = f−1
vc




∑

i∈N (c)\v
fic (Ei + Fi)



 ,

= f−1
vc




∑

i∈N (c)\v
(ficEi + ficFi)



 ,

= f−1
vc




∑

i∈N (c)\v
ficEi





+f−1
vc




∑

i∈N (c)\v
ficFi



 ,

⊇ Ev + Fv = Gv.

We say that a stopping constellation E is a subset of state assignment S if

Ev ⊆ Sv, Sv ∈ Mini, ∀v ∈ V .
As the union of two stopping constellations is a stopping constellation,

there is a unique largest stopping constellation which is a subset of a state
assignment. In the following lemma we prove that the peeling decoder gets
stuck in the largest stopping constellation which is a subset of the channel
state assignment.

Lemma 8. Consider transmission over the BEC using a NBLDPC code which
is decoded by the peeling decoder. After the termination of the peeling decoder,
the final state assignment to the variable nodes is the largest stopping constel-
lation E which is a subset of the channel state assignment C.

Proof. Let F be the final state assignment. First note that F is a stopping
constellation as this is the only condition for the peeling decoder to terminate.
Now Fv ⊆ Cv, ∀v ∈ V , which follows from the fact that every update of the state
of v by the peeling decoder satisfies this property. We prove by contradiction
that F is the largest stopping constellation which is a subset of C. If E is
the largest stopping constellation, then F must be a subset of E. Otherwise,
by taking the union of E and F we could obtain a stopping constellation
larger than E which is also a subset of C. Hence F is a strict subset of E.
Now, consider the variable node v which is the first node whose state becomes
smaller than Ev when it is acted on by the check node c. This is only possible
if there are nodes in N (c) whose state is a subset of their respective states
corresponding to E. But that is not possible as v is the first node for which
this happens. Hence we prove the claim that F = E.

We now prove the following lemma which will be useful when proving that
the BP decoder gets stuck in the largest stopping constellation which is a subset
of the channel state assignment.
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Lemma 9. Let E = {Ev}, v ∈ V, be the largest stopping constellation con-
tained in the channel state assignment C. Then during BP decoding, the state
Ev is a subset of all the outgoing and incoming messages to the variable node
v. Also the state assignment E is a subset of the BP state assignment B, where
B = {Bv}v∈V . Bv is the final estimate of the node v from the BP decoder.

Proof. Recall the notation from Chapter 2, Section 2.3 that the superscripts
of the message Ψ(l,i) indicate the iteration number l and the step number i,
i ∈ {1, . . . , 4} in the lth iteration.

The initial message from a variable node v is Cv and Ev ⊆ Cv by definition
of E. Also, the incoming message from a check node c to a variable node v in
the first iteration is

Ψ(1,4)
c,v = f−1

vc




∑

i∈N (c)\v
ficCi



 .

This implies that Ψ
(1,4)
c,v contains Ev as Ei ⊆ Ci, i ∈ N (c) and E forms a

stopping constellation. Now, by induction we can prove the desired result.

Assume that Ψ
(l−1,1)
v,c and Ψ

(l−1,4)
c,v contain the state Ev, ∀v ∈ V , ∀c ∈ N (v).

This implies that Ψ
(l,1)
v,c and Ψ

(l,4)
c,v contain Ev as E is a stopping constellation,

Ψ(l,1)
v,c = Cv ∩ ∩j∈N (v)\cΨ

(l−1,4)
j,v ,

and
Ψ(l,4)

c,v = f−1
vc

∑

i∈N (c)\v
ficΨ

(l,1)
i,c ⊇ f−1

vc

∑

i∈N (c)\v
ficEi ⊇ Ev.

The second claim of the lemma can be proved by noting that

Bv = Cv ∩
(

∩i∈N (v)Ψ
(4)
i,v

)

and as Ev ⊆ Cv, Ev ⊆ Ψ
(4)
i,v , ∀i ∈ N (v). So, we prove that Ev ⊆ Bv. Here we

have dropped the superscript corresponding to iteration number to denote the
converged messages.

Thus from the previous lemma we see that the BP estimate of a variable
node v satisfies Bv ⊇ Ev. If we prove that the BP estimates of variable nodes
also form a stopping constellation then Bv = Ev, as E is the largest stopping
constellation contained in the channel state assignment C, B contains E, and
C contains B. In the following lemma we prove that the final estimate B is a
stopping constellation.

Lemma 10. Consider transmission over the BEC using NBLDPC code which
is decoded by the BP decoder. Let Ψ(i) denote the message in the ith step

of an iteration of BP decoding when the decoder has converged. Let Ψ
(4)
c,v be

the incoming message to the variable node v from check node c and Ψ
(1)
v,c be
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the message from v to c. Let C be the channel state assignment. Then the

estimates Bv = Cv ∩i∈N (v) Ψ
(4)
i,v , ∀v ∈ V form a stopping constellation. Hence

by Lemma 9, the estimate B is the largest stopping constellation contained in
C.

Proof. We need to prove that Bv ⊆ f−1
vc

∑

i∈N (c)\v ficBi. For the sake of sim-

plicity assume that the check node c is of degree 3 and let N (c) = {v, v1, v2}.
Also note that Bv = Ψ

(4)
c,v ∩ Ψ

(1)
v,c as Ψ

(1)
v,c = Cv ∩

(

∩i∈N (v)\cΨ
(4)
i,v

)

. So we need

to prove that

f−1
vc

(

fv1c

(

Ψ(4)
c,v1 ∩ Ψ(1)

v1,c

)

+ fv2c

(

Ψ(4)
c,v2 ∩ Ψ(1)

v2,c

))

⊇ Ψ(4)
c,v ∩ Ψ(1)

v,c .

As the decoder has converged,

Ψ(4)
c,v = f−1

vc

(

fv1cΨ
(1)
v1,c + fv2cΨ

(1)
v2,c

)

,

Ψ(4)
c,v1 = f−1

v1c

(

fvcΨ
(1)
v,c + fv2cΨ

(1)
v2,c

)

,

Ψ(4)
c,v2 = f−1

v2c

(

fv1cΨ
(1)
v1,c + fvcΨ

(1)
v,c

)

.

This implies that

f−1
vc
fv1c

(

Ψ(4)
c,v1 ∩ Ψ(1)

v1,c

)

= f−1
vc
fv1cΨ

(1)
v1,c ∩

(

Ψ(1)
v,c + f−1

vc
fv2cΨ

(1)
v2,c

)

,

f−1
vc
fv2c

(

Ψ(4)
c,v2 ∩ Ψ(1)

v2,c

)

= f−1
vc
fv2cΨ

(1)
v2,c ∩

(

Ψ(1)
v,c + f−1

vc
fv1cΨ

(1)
v1,c

)

.

Let P = f−1
vc
fv1cΨ

(1)
v1,c, Q = f−1

vc
fv2cΨ

(1)
v2,c. Then we need to prove that

(

P ∩
(

Ψ(1)
v,c +Q

))

+
(

Q ∩
(

Ψ(1)
v,c + P

))

⊇ Ψ(1)
v,c ∩ (P +Q) . (3.3)

To prove this, let d ∈ Ψ
(1)
v,c ∩ (P +Q), then d ∈ Ψ

(1)
v,c . Also d = p + q,

where p ∈ P, q ∈ Q. This implies that p ∈ Ψ
(1)
v,c + Q and q ∈ Ψ

(1)
v,c + P .

Hence p ∈
(

P ∩
(

Ψ
(1)
v,c +Q

))

and q ∈
(

Q ∩
(

Ψ
(1)
v,c + P

))

. Hence p + q ∈
(

P ∩
(

Ψ
(1)
v,c +Q

))

+
(

Q ∩
(

Ψ
(1)
v,c + P

))

. This proves Eqn(3.3) and also im-

plies that B is a stopping constellation. From Lemma 9 it follows that B is the
largest stopping constellation contained in C.

In the next section we define the ensemble of codes resulted by the BP
decoder which we call residual ensemble. We then compute the design rate
and expectation of total number of codewords of the residual ensemble. Then
we show how we can derive the residual degree distribution from the fixed
points of density evolution for the BP decoder. This will enable us to compute
the conditional entropy when the block length tends to infinity.
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3.4 Residual Degree Distribution and Counting Argument

In the previous section we saw that the BP decoder assigns the state Bv to
a variable node v, Bv ∈ Mini, v ∈ V . We say that the BP state of v is Bv.
Thus in the resulting residual graph every variable node is characterized by its
degree and state. So, the residual degree distribution on the variable node side
is given by Ω = {ΩlV }, where ΩlV denotes the fraction of variable nodes which
has degree l and the symbols corresponding to these variable nodes in the set
of codewords can take values only in the subspace V , V ∈ Mini. Similarly, we
define Ωlk to be the fraction of variable nodes which can only take values in a
subspace of dimension k. More precisely,

Ωlk =
∑

V :dim(V )=k,V ∈Mini

ΩlV .

From Lemma 10 we know that the BP state assignment is such that every
check node satisfies the decoding failure criterion. In order to define the degree
distribution of the check node side, we define the set Sr which consists of all
the r-tuples of subspaces which satisfy the decoding failure criterion. More
precisely,

Sr =






(V1, . . . , Vr) : Vi ∈ M, Vi ⊆

r∑

j=1,j 6=i

Vj , ∀i ∈ {1, . . . , r}






. (3.4)

Using the definition of Sr in Eqn(3.4), we define the residual check node de-
gree distribution Φ = {Φrs}. For s ∈ Sr, Φrs denotes the fraction of check
nodes with degree r and for every such check node c, the state of its neigh-
boring variable nodes when acted by the corresponding edge labels satisfy
s = {V1, . . . , Vr}. More precisely, Vi = fvic

Bvi
, where vi ∈ N (c), Bvi

is
the BP state of vi and fvic

is the edge label of the edge connecting vi and c.
We say that the check node c is of type (r, s) and its ith socket is restricted
to the subspace Vi. We do not distinguish between two types of check nodes
(r, s1) and (r, s2), where s2 is identical to s1 up to some permutation. Hence
only one arbitrary but fixed representative is included in Sr.

We denote the ensemble of all the residual graphs with block length n
and degree distribution (Ω,Φ) by REGL (n,Ω,Φ,m) (REGL(Ω,Φ,m) in the
asymptotic limit). Thus the ensemble REGL(n,Ω,Φ,m) has nΩlV variable
nodes of degree l which can only take values in subspace V , V ∈ Mini. Simi-
larly, there are n(1−r)Φrs check nodes with type (r, s), s ∈ Sr, where Sr is de-
fined in Eqn(3.4). Here r is the design rate of the initial ensemble EGL (Λ,Γ,m)
which results in the residual ensemble. From now onwards, we say that r is
the initial rate of the residual ensemble REGL(n,Ω,Φ,m). The initial rate
appears due to the fact that in the residual graph the total number of variable
and check nodes is the same as in the original graph. All the bipartite graphs
with state assignments and edge labels such that they have degree distribution
Ω and Φ are included in the ensemble REGL (n,Ω,Φ,m). There are restriction
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on the edge labels and graph connections. For example, the sockets from a
variable node restricted to subspace V1 of dimension k can only connect to a
check node socket restricted to subspace V2 and Dim (V2) = k. The edge label
on such an edge is restricted to those mappings which map subspace V1 to V2.

In order to determine the rate of the residual degree distribution, we need
to determine the number of binary constraints imposed by a check node of
type (r, s). In the next lemma we prove that the number of binary constraints
imposed by a check node of type (r, s) is Dim (

∑
r

i=1 Vi), where s = (V1, . . . , Vr).

Lemma 11. Consider a check node of degree r which represents the parity-
check equation

r∑

i=1

xi = 0, (3.5)

where xi can only take values in the subspace Vi ⊆ GFm
2 . Then the number of

binary constraints imposed by such a check node is Dim (
∑

r

i=1 Vi).

Proof. The number of possible words are 2
P

r

i=1 Dim(Vi). To compute the total
number of codewords, note that a codeword satisfies xr =

∑
r−1
i=1 xi. This

implies that for a codeword x = (x1, . . . , xr) satisfying Eqn(3.5), xr can only

take values in
(
∑

r−1
i=1 Vi

)

∩ Vr. There are 2
P

r−1
i=1 Dim(Vi)−Dim(

P

r−1
i=1 Vi) number

of words (x1, . . . , xr−1) which satisfy

r−1∑

i=1

xi = b,

where b ∈
(
∑

r−1
i=1 Vi

)

∩ Vr. Then the number of binary constraints is given by,

log2

(
2

P

r

i=1 Dim(Vi)

2
P

r−1
i=1 Dim(Vi)−Dim(

P

r−1
i=1 Vi)2Dim((

P

r−1
i=1 Vi)∩Vr)

)
(I)
= Dim

(
r∑

i=1

Vi

)

,

where in (I) we used the fact that Dim (A ∩B) = Dim (A) + Dim (B) −
Dim (A+B). This proves the lemma.

From now onwards, we denote the number of constraints imposed by a check
node of type (r, s) by Dim(s) = Dim (

∑
r

i=1 Vi), where s = (V1, . . . , Vr). In the
next lemma we compute the design rate of the ensemble REGL (n,Ω,Φ,m).

Lemma 12. The design rate of the residual ensemble REGL (n,Ω,Φ,m) with
initial rate r is given by

rres = 1 − (1 − r)

∑

r

∑

s∈Sr
ΦrsDim(s)

∑

l

∑

V ∈Mini
ΩlV Dim (V )

. (3.6)
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Proof. Using Lemma 11, for the block length n, the number of binary con-
straints are

n(1 − r)
∑

r

∑

s∈Sr

ΦrsDim(s).

The number of “unconstrained” bits is given by

n
∑

l

∑

V ∈Mini

ΩlV Dim (V ) .

Hence the design rate of the residual ensemble is

rres = 1 − (1 − r)

∑

r

∑

s∈Sr

ΦrsDim(s)
∑

l

∑

V ∈Mini
ΩlV Dim (V )

.

The design rate rres of the ensemble REGL (n,Φ,Ω,m) is a lower bound on
the rate of every code in the ensemble REGL (n,Φ,Ω,m). This is due to the
fact that when we compute the design rate, we assume that all the parity-check
equations are independent. However, in a code some parity-check equations
might be dependent. A criterion for binary LDPC ensembles was derived in
[1] which, when satisfied, guarantees that the design rate is the actual rate.
Towards generalizing this criterion for residual ensembles REGL(n,Φ,Ω,m),
we compute the expectation ofN , the total number of codewords in a randomly
chosen code from REGL(n,Φ,Ω,m).

Lemma 13. Let N (E1, . . . , Em) be the number of codewords in a randomly
chosen element of the ensemble REGL (Φ,Ω,m, ǫ) such that, for each such
codeword there are Ek edges which are assigned non-zero values and which
are connected to variable nodes which can only take values in the subspace of
dimension k, k ∈ {1, . . . ,m}. Let N be the total number of codewords in a
randomly chosen code. Then,

E(N) =

n
P

l
lΩl1

∑

E1=0

. . .

n
P

l
lΩlm
∑

Em=0

E (N (E1, . . . , Em)) , (3.7)

and

E (N (E1, . . . , Em)) =

m∏

k=1

coef
(
∏m

k=1

∏

l

(
1 +

(
2k − 1

)
ulk
)nΩlk ,

∏m
k=1 u

Ek

k

)

g(m, k)Ek

(n
P

l
lΩlk

Ek

)

× coef

(
∏

r

∏

s∈Sr

qs (v1, . . . , vm)n(1−r)Φrs ,
m∏

k=1

vEk

k

)

,

where g(m, k) is defined in Eqn(3.1), s ∈ Sr, s = {V1, . . . , Vr} and Sr is defined
in Eqn(3.4). The function qs(v1, . . . , vm) is given by

qs(v1, . . . , vm) =
∑

(i1...ik)⊆{1,...,r}
qi1...ik

k∏

j=1

v
Dim(Vij )

. (3.8)



3.4. Residual Degree Distribution and Counting Argument 37

In Eqn(3.8), qi1...ik
is the number of permissible edge labels assigned to the

edges corresponding to (Vi1 , . . . , Vik
) which will yield a valid codeword when the

remaining edges corresponding to {V1, . . . , Vr}\{Vi1 , . . . , Vik
} carry the value

zero.

Proof. The proof is given in the Appendix 3.A.

To compute the quantity qi1...ik
appearing in Eqn(3.8), we will make use of

the following lemma.

Lemma 14. Let xi be a non-zero element of GFm
2 , Mi ∈ GLm

2 and i ∈
{1, . . . , r}. Let

Zr =

{

(M1, . . . ,Mr) :

r∑

i=1

Mixi = 0

}

,

and

NZr =

{

(M1, . . . ,Mr) :

r∑

i=1

Mixi = y

}

,

where y is some fixed non-zero element of GFm
2 . Then,

Fr = |Zr| =
|GLm

2 |r
2m

(

1 +
(−1)r

(2m − 1)r−1

)

,

Gr = |NZr| =
|GLm

2 |r
2m

(

1 − (−1)r

(2m − 1)r

)

.

Proof. Note that the sequence {Fr}∞r=1 satisfies the following recursive relation:

Fr+1 =
|GLm

2 |
2m − 1

(|GLm
2 |r − Fr) .

This follows from the fact if we look at a particular set of r terms, they must
not sum to zero in order to make sure that r+1 terms sum to zero. Also, there

are
|GLm

2 |
2m−1 elements in GLm

2 which maps a given non-zero element x to another
non-zero element y, where x, y ∈ GFm

2 . By solving the recursion, we get

Fr =
|GLm

2 |r
2m

(

1 +
(−1)r

(2m − 1)r−1

)

.

Similarly, the sequence {Gr} satisfies the recursive relation

Gr+1 =
|GLm

2 |
2m − 1

((2m − 2)Gr + Fr) .

The solution of this relationship yields

Gr =
|GLm

2 |r
2m

(

1 − (−1)r

(2m − 1)r

)

.
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In the remainder of this section, we show how we can compute the average
residual degree distribution in the limit of infinite block length. First we show
that every element of a residual ensemble has uniform probability conditioned
on the event that a random residual graph has the degree distribution of the
considered residual ensemble.

Lemma 15. Let REGL (n,Ω,Φ,m) be a residual ensemble. Conditioned on the
event that a random residual graph is an element of REGL (n,Ω,Φ,m), it has
uniform probability of being any element of the ensemble REGL (n,Ω,Φ,m).

Proof. The proof is given in the Appendix 3.B.

We denote the ensemble corresponding to the average residual degree distri-
bution by REGL (n,Ω,Φ,m, ǫ). We assume the following concentration result
on the degree distribution of a random residual graph around the average resid-
ual degree distribution.

Lemma 16. Consider transmission over the BEC(ǫ). Let REGL (n,Ω,Φ,m, ǫ)
be the average residual degree distribution of the ensemble EGL (Λ,Γ,m). Let
REGL (n,ΩG,ΦG,m, ǫ) denote the residual degree distribution of a random
residual graph G. Then, for any η > 0,

lim
n→∞

P {d ((Ω,Φ) , (ΩG,ΦG)) ≥ η} = 0.

The distance d(., .) is the L1 distance

d
(

(Ω,Φ) ,
(

Ω̃, Φ̃
))

=
∑

l,V

|ΩlV − Ω̃lV | +
∑

r

∑

s∈Sr

|Φrs − Φ̃rs|, (3.9)

where V ∈ Mini.

Asymptotically, Ω and Φ depend on the probability density of the messages
of the BP decoder which can be evaluated by density evolution. We derived
the density evolution equations for NBLDPC ensemble in Chapter 2, Lemma 4.
The fixed point probability of the event that the message from a variable(check)
node of degree l is of dimension i is denoted by Pv(i, l)(Pc(i, l)). Then

ΩlV =
Λl Pv (k, l + 1)

(
m
k

) , (3.10)

where V ∈ Mini and dim (V ) = k. Note that we use l + 1 as we take into
account all the incoming messages to compute the estimate of a symbol. We
divide by

(
m
k

)
which is the number of initial subspaces of dimension k in order

to compute the probability of a specific subspace of dimension k.
Deriving the residual degree distribution on the check node side is less

straight forward than on the variable node side. Towards this end, observe that
we can determine the BP estimate of a symbol if we know the incoming and
the outgoing message to this symbol on one of its connected edges when the BP
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decoder has converged. Hence if we know all the incoming messages to a check
node we can determine the final estimates of the symbols connected to this
check node. Thus from the fixed points of density evolution we can determine
the residual degree distribution on the check node side. More precisely, consider
a check node of degree r. Let V1, . . . , Vr be the incoming messages which are
independently distributed according to {Pv(i)}m

i=0. Then the state of the check
node is 




V1 ∩




∑

j 6=1

Vj



 , . . . , Vr ∩




∑

j 6=r

Vj










, (3.11)

which is an element of Sr, where Sr has been defined in Eqn(3.4). Thus deter-
mining Φ amounts to determining all the elements of Sr for all the check node
degrees r and to compute the probability distribution over Sr. Currently we
do not have an explicit characterization of these quantities for all values of m.
In the following subsection we will exemplify how this can be done for the case
m = 2.

3.4.1 Calculating the Check Node Distribution for m = 2

In this subsection we will assume that m = 2. Note that there are five different
subspaces of GF2

2. There is one each of dimension zero (containing the origin
only) and of dimension two (GF2

2). There are three different subspaces of di-
mension one. We number the three different subspaces of dimension one by
1, 2, 3 in an arbitrary but fixed way. The sum of two different subspaces of di-
mension one gives the subspace of dimension two. More precisely, let S1, S2, S3

be the subspaces of dimension one and T be the subspace of dimension two.
Then,

T = Si + Sj , i, j ∈ {1, 2, 3}, i 6= j. (3.12)

We denote by n0(n2) the number of subspaces of dimension 0(2) in the state
s ∈ Sr of a check node. Similarly the number of different subspaces of dimension
one is given by n1(i), i ∈ {1, 2, 3} and let

n1 =

3∑

i=1

n1(i).

Now we enumerate all the possible states of a check node of degree r which
satisfy the decoding failure criterion and derive their probabilities in terms
of the fixed points of density evolution. We recall that when the converged
incoming messages to a check node are {V1, . . . , Vr} then its state is given by
Eqn(3.11).

1. The state s for which n2 ≥ 2 satisfies the decoding failure criterion. Its
probability is given by

Φrs =
r!

n0!n1(1)!n1(2)!n1(3)!n2!
Pv(2)n2

(
Pv(1)

3

)n1(1)+n1(2)+n1(3)

Pv(0)n0 .

(3.13)
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The Eqn(3.13) can be understood by observing that

Vi ∩




∑

i6=j

Vj



 = Vi,

if
∃k ∈ {1, . . . , r}, k 6= i, dim (Vk) = 2.

Thus the socket i is restricted to its corresponding incoming message Vi.

2. When the state s is such that n2 = 1, then for s to satisfy the decoding
failure criterion we need that n1(i) > 0, n1(j) > 0, and i 6= j. In this case
also the sockets are restricted to their corresponding incoming messages.
So, the probability is the same as given by Eqn(3.13).

3. The state for which only one of n1(1), n1(2), n1(3) is positive and greater
than one with n2 = 0 satisfies the decoding failure criterion. Lets us
assume with out loss of generality (w.l.o.g.) that n1(1) > 1. The proba-
bility of such a state s is given by

Φrs =
r!

1! (n1(1) − 1)! (r− n1(1))!
Pv(2)

(
Pv(1)

3

)n1(1)−1

Pv(0)r−n1(1)−1

+
r!

1!n1(1)! (r− n1(1) − 1)!
2

(
Pv(1)

3

)n1(1)+1

Pv(0)r−n1(1)−111n1(1)<r

+
r!

n1(1)! (r− n1(1))!

(
Pv(1)

3

)n1(1)

Pv(0)r−n1(1). (3.14)

In order to understand Eqn(3.14) observe that for n2 = 0 to hold, at
most one of the incoming messages can be of dimension two. If there are
more than one incoming messages of dimension two, then the state of the
check node has n2 ≥ 2. The first term on the right hand side of Eqn(3.14)
corresponds to the case when one of the incoming message is of dimension
two, n1(1) − 1 incoming messages which are equal to S1 and the rest of
the messages are equal to the subspace of dimension zero. By Eqn(3.11),
we see that such a combination of messages result in the desired check
node state. Similarly, we derive the remaining terms of Eqn(3.14).

4. Consider the state s for which two different subspaces of dimension one
are present at least twice and the remaining subspace of dimension is
absent with n2 = 0. It can be seen that s satisfies decoding failure
criterion. Assume w.l.o.g. that n1(1) ≥ 2, n1(2) ≥ 2 with n1(3) = 0 and
n2 = 0. Its probability can be derived by using arguments similar to the
previous state and Eqn(3.12). The probability is given by

Φrs =
r!

n1(1)!n1(2)! (r − n1(1) − n1(2))!

(
Pv(1)

3

)n1(1)+n1(2)

×

Pv(0)r−n1(1)−n1(2).
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5. The state s for which all the subspaces of dimension one are present at
least once i.e. n1(i) > 0, ∀i ∈ {1, 2, 3} and n2 = 0 satisfies the decoding
failure criterion. The probability of such a state is given by

Φrs =
r!

n1(1)!n1(2)!n1(3)! (r− n1)!

(
Pv(1)

3

)n1

Pv(0)r−n1 . (3.15)

Note that in this case also each socket is restricted to its incoming mes-
sage. This explains Eqn(3.15).

6. The state for which n0 = r satisfies the decoding failure criterion. Its
probability is given by

Φrs = Pv(0)r+rPv(0)r−1 (Pv(1) + Pv(2))+3
r!

(r− 2)!

(
Pv(1)

3

)2

Pv(0)r−2.

(3.16)
The first term on the right hand side of Eqn(3.16) is obvious as it corre-
sponds to the case when all the incoming messages have dimension zero.
The second term is for the following combination of messages. One of the
message is a subspace of dimension one (two) and the remaining messages
are subspaces of dimension zero. As the dimension of the intersection of
the subspace of dimension one (two) with a subspace of dimension zero is
zero, this combination of incoming messages result in the desired state.
The other terms are similarly derived.

In the next section we show that the average conditional entropy of the
transmitted codeword is given by the design rate of the average residual en-
semble under appropriate technical conditions.

3.5 Equality between Conditional Entropy and Rate

In this section we assume that m = 2. In order to derive a sufficient con-
dition which guarantees that asymptotically almost every code in the residual
ensemble has its rate equal to design rate, we first find the generating functions
qs(v1, v2) defined in Eqn(3.8). Consider a check node of degree r with the state
s such that there are n0 sockets corresponding to subspaces of dimension zero,
n1 (i) sockets corresponding to subspace i of dimension one, i ∈ {1, 2, 3} and
n2 sockets corresponding to subspace of dimension two. Then the generating
function for this type is given by

qs (v1, v2) =
∑

J1

{(
n2

i

)

Fiv
i
2

(
n1(1)

j1

)(
n1(2)

j2

)(
n1(3)

j3

)

2j1+j2+j3

vj1+j2+j3
1

}

+
∑

J2

{(
n2

i

)

Giv
i
2

(
n1(1)

j1

)(
n1(2)

j2

)(
n1(3)

j3

)

2j1+j2+j3vj1+j2+j3
1

}

,

(3.17)
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where Fi, Gi are defined in Lemma 14, J1 corresponds to summation over terms
such that j1(1), j1(2), j1(3) are all even or all odd. J2 is the complement of J1.
A simplification of qs (v1, v2) yields

qs (v1, v2) = f (v1)

(
(1 + 6v2)

n2 + 3(1 − 2v2)
n2

4

)

+ ((1 + 2v1)
n1 − f(v1))

(
(1 + 6v2)

n2 − (1 − 2v2)
n2

4

)

, (3.18)

where,

f(v1) =

3∏

i=1

(1 + 2v1)
n1(i) − (1 − 2v1)

n1(i)

2
+

3∏

i=1

(1 + 2v1)
n1(i) + (1 − 2v1)

n1(i)

2
.

In the following lemma we upper bound the difference between the growth
rate of the expectation of total number of codewords and the design rate of the
residual ensemble.

Lemma 17. Let N be the total number of codewords of a randomly chosen
code from the ensemble REGL (n,Ω,Φ, 2). Then

lim
n→∞

log (E(N))

n
− rres ≤ θ(u1, u2).

The function θ(u1, u2) is defined in the following equation for u1 ∈ [0,∞) and
u2 ∈ [0,∞).

θ(u1, u2) =
∑

l

Ωl1 log2

(
1 + ul1

2

)

+
∑

l

Ωl2 log2

(
1 + 3ul2

4

)

+

(1 − r)
∑

r

∑

s∈Sr

Φrs log
(

hs(u1, u2)2
Dim(s)

)

− t+1(1) log2 (t+1(1)) − t+2(1) log2 (t+2(1)) , (3.19)

where,

hs(u1, u2) = p(u1)
t+2(u2)

n2 + 3t−2(u2)
n2

4
+

(
tn1
+1(u1) − p(u1)

) t+2(u2)
n2 − t−2(u2)

n2

4
,

t+1(u1) =
∑

l

lΩl1
1 + ul−1

1

1 + ul1
, t−1(u1) =

∑

l

lΩl1
1 − ul−1

1

1 + ul1
,

t+2(u2) =
∑

l

lΩl2
1 + 3ul−1

2

1 + 3ul2
, t−2(u2) =

∑

l

lΩl2
1 − ul−1

2

1 + 3ul2
,

p(u1) =

3∏

i=1

t+1(u1)
n1(i) − t−1(u1)

n1(i)

2
+

3∏

i=1

t+1(u1)
n1(i) + t−1(u1)

n1(i)

2
.
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Proof. Let E1 = ne1
∑

l
lΩl1, E2 = ne2

∑

l
lΩl2, e1 ∈ [0, 1] and e2 ∈ [0, 1].

By Eqn(3.7),

lim
n→∞

log (E(N))

n
= sup

e1,e2

lim
n→∞

log (E(N(e1, e2)))

n
.

Using Lemma 13 and the Hayman approximation of [26] for the coef term, we
get

φ (e1, e2) = lim
n→∞

log2 (E [N (e1, e2)])

n
:= inf

u1,u2,v1,v2

φ1 (e1, e2, v1, v2, u1, u2) ,

where

φ1 (e1, e2, v1, v2, u1, u2) =
∑

l

Ωl1 log2

(
1 + ul1

)
− e1 log2(u1)

∑

l

lΩl1+

∑

l

Ωl2 log2

(
1 + 3ul2

)
− e2 log2(u2)

∑

l

lΩl2

+ (1 − r)
∑

r

∑

s∈Sr

Φrs log (hs(v1, v2))

−e1 (log2(v1) + 1)
∑

l

lΩl1 − e2 (log2(v2) + log2(6))
∑

l

lΩl2

−
(
∑

l

lΩl1

)

h (e1) −
(
∑

l

lΩl2

)

h (e2) .

Hence we would like to compute supe1,e2
φ (e1, e2), where e1 ∈ [0, 1], e2 ∈ [0, 1].

Thus,
sup
e1,e2

φ (e1, e2) = sup
e1,e2

inf
v1,v2,u1,u2

φ1 (e1, e2, v1, v2, u1, u2) . (3.20)

We find an upper bound on supe1,e2
φ (e1, e2). Towards this end, first take the

derivative of φ1 (e1, e2, u1, u2, v1, v2) with respect to e1 and e2 and equate it to
zero. This gives,

e1 =
2u1v1

1 + 2u1v1
, e2 =

6u2v2
1 + 6u2v2

.

We substitute this in the expression for φ1 (e1, e2, u1, u2, v1, v2). After that we
take the derivative with respect to u1, u2 and equate these to zero. Solving for
v1 and v2 gives

v1(u1) =
1

2

∑

l
lΩl1

ul−1
1

1+ul

1
∑

l
lΩl1

1
1+ul

1

, v2(u2) =
1

6

∑

l
lΩl2

3ul−1
2

1+3ul

2
∑

l
lΩl2

1
1+3ul

2

.

Substituting the expression for v1(u1) and v2(u2) in the expression for e1 and
e2, we get

e1(u1) =

∑

l
lΩl1

ul

1

1+ul

1∑

l
lΩl1

, e2(v) =

∑

l
lΩl2

3ul

2

1+3ul

2∑

l
lΩl2

.



44 MAP Performance of Non-Binary LDPC Codes over the BEC

Let θ(u1, u2) = φ1 (e1(u1), e2(u2), v1(u1), v2(u2), u1, u2)− rres. By rearranging
terms we get the desired expression for θ(u1, u2).

Now, we give the criterion which, when satisfied, yields that almost every
code in the residual ensemble has its rate equal to its design rate.

Lemma 18. Let G be a code chosen uniformly at random from the residual
ensemble REGL (n,Ω,Φ,m) and let rG be its rate. If the function θ(u1, u2)
defined in Eqn(3.19) satisfies

θ(u1, u2) ≤ 0, ∀u1 ∈ [0,∞), u2 ∈ [0,∞),

then there exists B > 0 and a positive integer n0 such that, for n > n0 and any
η > 0,

P (|rG − rres| > η) ≤ e−Bnη.

In addition, there exist C > 0 such that, for n > n0,

E (|rG − rres|) ≤ C
log(n)

n
,

where rres is the design rate of the residual ensemble REGL (n,Ω,Φ, 2).

Proof. This follows from the same arguments as that of Lemma 7 of [1].

We prove some properties of the function θ(u1, u2) defined in Eqn(3.19)
which will help us in showing that the condition entropy of NBLDPC ensemble
EGL (Λ,Γ, 2) is given by the design rate of the average residual ensemble. We
will prove our arguments for left regular ensembles. We believe that they
also hold for irregular ensembles. In the rest of this section we assume that
Λ(x) = xl.

By Lemma 18, the maximum of the function θ(u1, u2) (defined in Eqn(3.19)
determines if the rate of of the residual ensemble is equal to its design rate.
We prove that θ(u1, u2) attains its maximum in the unit square [0, 1]2 for the
left regular residual ensemble.

Lemma 19. Consider the ensemble REGL (Ω,Φ,m) which is left regular with
left degree l. Then the function θ(u1, u2) defined in Eqn(3.19) attains its max-
imum inside the unit square. More precisely,

θ(u1, u2) ≤







θ
(

1
u1
, u2

)

, ∀u1 ∈ [1,∞), ∀u2 ∈ [0, 1],

θ (u1, x(u2)) , ∀u1 ∈ [0, 1], ∀u2 ∈ [1,∞),

θ
(

1
u1
, x(u2)

)

, ∀u1 ∈ [1,∞), ∀u2 ∈ [1,∞),

where

x(u2) =

(
ul−1

2 + 1

3ul−1
2 − 1

) 1
l−1

, ∀u2 ∈ [1,∞).
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Also, the function θ(u1, u2) depends smoothly on its residual degree distribution.
More precisely, there exist constants B1, B2, B3 > 0 such that, for any two

left regular residual degree distributions REGL (Ω,Φ, 2) and REGL
(

Ω̃, Φ̃, 2
)

having the same left degree and the same maximum check node degree, the
corresponding functions θ (u1, u2) and θ̃ (u1, u2) satisfy for u1, u2 ∈ [0, 1],

∣
∣
∣θ (u1, u2) − θ̃ (u1, u2)

∣
∣
∣ ≤ d

(

(Ω,Φ) ,
(

Ω̃, Φ̃
))

(
B1(1 − u1)

2 +B2(1 − u1)(1 − u2) +B3(1 − u2)
2
)
, (3.21)

where d(., .) is the L1 distance defined in Eqn(3.9).

Proof. We defer the proof to the Appendix 3.C.

We now show the equality between the design rate of the residual ensemble
and the average conditional entropy of the transmitted ensemble.

Lemma 20. Consider transmission over the BEC(ǫ). Let G be a code chosen
uniformly at random from the left regular NBLDPC ensemble EGL (n,Λ,Γ,m)
with left degree l and let HG (X |Y ) be its conditional entropy. Denote the aver-
age residual ensemble of EGL (n,Λ,Γ, 2) by REGL (n,Ω,Φ, 2, ǫ). Consider the
corresponding function θ(u1, u2) for REGL (n,Ω,Φ, 2, ǫ) defined in Eqn(3.19).
Assume that θ(u1, u2) has a unique global maximum at (u1, u2) = (1, 1) for
u1 ∈ [0,∞), u2 ∈ [0,∞), with

∂2θ (u1, u2)

∂u2
1

∂2θ (u1, u2)

∂u2
2

−
(
∂2θ (u1, u2)

∂u1∂u2

)2
∣
∣
∣
∣
∣
u1=1,u2=1

> 0, (3.22)

∂2θ (u1, u2)

∂u2
1

∣
∣
∣
∣
u1=1,u2=1

< 0. (3.23)

Then

lim
n→∞

1

n
E (HG(X |Y )) = rres,

where rres is the design rate of the average residual ensemble REGL (n,Ω,Φ, 2, ǫ).

Proof. This lemma is a straightforward generalization of [1, Thm. 10]. So the
proof is very similar to that of [1, Thm. 10]. The Eqns(3.22, 3.23) guarantee
that the point (u1, u2) = 1 is a maximum and imply that

∂2θ (u1, u2)

∂u2
2

∣
∣
∣
∣
u1=1,u2=1

< 0. (3.24)

By Eqns(3.23, 3.24), the assumption that the point (1, 1) is the unique global
maximum of θ(u1, u2) and

θ(1, 1) = 0,
∂θ(u1, u2)

∂u1

∣
∣
∣
∣
u1=1,u2=1

= 0,
∂θ(u1, u2)

∂u2

∣
∣
∣
∣
u1=1,u2=1

= 0,
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there exist constants δ, C1, C3 > 0 and C2 such that ∀u1 ∈ [0, 1], u2 ∈ [0, 1]

θ(u1, u2) ≤ −δ
(
C1(1 − u1)

2 + C2(1 − u1)(1 − u2) + C3(1 − u2)
2
)
,

and
(
C1(1 − u1)

2 + C2(1 − u1)(1 − u2) + C3(1 − u2)
2
)
> 0, ∀u1 ∈ [0, 1), u2 ∈ [0, 1).

Using Lemma 19, we observe that there exist η > 0 such that for every residual

degree distribution pair (Ω̃, Φ̃) which satisfies d
(

(Ω,Φ), (Ω̃, Φ̃)
)

≤ η, its corre-

sponding function θ̃(u1, u2) is upper bounded in the interval u1 ∈ [0, 1], u2 ∈
[0, 1] by

θ̃(u1, u2) ≤ − δ
2

(
C1(1 − u1)

2 + C2(1 − u1)(1 − u2) + C3(1 − u2)
2
)
.

Thus Lemma 18 is applicable to REGL
(

n, Ω̃, Φ̃, 2
)

. So, the design rate r̃res of

REGL
(

n, Ω̃, Φ̃, 2
)

is equal to its average rate r̃. Let Q(η) be the set of residual

ensembles whose degree distribution pair
(

Ω̃, Φ̃
)

satisfy d
(

(Ω,Φ), (Ω̃, Φ̃)
)

≤ η.

Let Pǫ

(

R̃
)

be the probability that a random residual graph belongs to the

residual ensemble R̃ = REGL
(

n, Ω̃, Φ̃, 2
)

. Then the conditional entropy of

the ensemble REGL(n,Λ,Γ, 2) is given by

1

n
E [HG(X |Y )] =

∑

R̃
Pǫ

(

R̃
)

r̃,

=
∑

R̃∈Q(η)

Pǫ

(

R̃
)

r̃ + γ(n, η).

By Lemma 16 and the fact that r̃ ≤ 1, the term γ(n, η) satisfies

lim
n→∞

γ(n, η) = 0.

Now,
∣
∣
∣
∣

1

n
E [HG(X |Y )] − rres

∣
∣
∣
∣

≤
∑

R̃∈Q(η)

Pǫ

(

R̃
)

|r̃ − rres| + γ′(n, η),

≤
∑

R̃∈Q(η)

Pǫ

(

R̃
)

|r̃res − rres| + γ′(n, η),

where by Lemma 18
lim

n→∞
γ′(n, η) = 0.

Note that there exists a constant C > 0 such that

|r̃res − rres| ≤ Cd
((

Ω̃, Φ̃
)

, (Ω,Φ)
)

.
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This implies that

lim
n→∞

∣
∣
∣
∣

1

n
E [HG(X |Y )] − rres

∣
∣
∣
∣
≤ Cη.

As we can chose η to be arbitrarily small, the proof is completed.

3.5.1 Example

Consider the ensemble EGL(λ, ρ, 2), where λ(x) = x, ρ(x) = x3. Note that
it is left regular with l = 2. Its BP threshold is equal to ǫBP = 0.4096. For
ǫ ≥ 0.41, the function θ (u1, u2) corresponding to the average residual degree
distribution is non-positive for u1, u2 ∈ [0, 1]. Also, the assumptions of Lemma
20 are satisfied by θ (u1, u2) for ǫ ≥ 0.41. So, by Lemma 18 the rate of the
average residual ensemble is equal to its design rate for ǫ ≥ 0.41, which in
turn, is equal to the normalized average conditional entropy of the ensemble
EGL(λ, ρ, 2) by Lemma 20. This implies that ǫ = 0.41 is the MAP threshold
ǫMAP as the design rate becomes zero for this erasure probability which is equal
to the normalized average conditional entropy.

Another approach to compute the MAP threshold is by applying the Maxwell
construction to the EBP GEXIT function [1]. In order to define the EBP
GEXIT function, let us write the check node side density evolution map given
in Eqns(2.14, 2.15) as

P(l)
c = Gc

(

P(l)
v

)

,

where P(l)
c (P(l)

v ) is the probability distribution of the dimension of the message
emanating from the check (variable) node side in the lth iteration. Similarly, we
write the density evolution map on the variable node side given in Eqns(2.16,
2.17) as

P(l+1)
v = Gv

(

ǫ,P(l)
c

)

.

Thus the density evolution recursion can be written as

P(l+1)
v = G(ǫ,P(l)

v ) = Gv

(

ǫ,Gc

(

P(l)
v

))

. (3.25)

We also define another density evolution map on the variable node side, where
we do not take into account the channel observation of a variable node. But,
we take into account all the incoming messages to this variable node. This
corresponds to estimating the variable node from extrinsic observations. Let
us denote the resulting distribution as Pl

v,ext and the corresponding map by
Gv,ext. Then,

Pl
v,ext = Gv,ext

(

P(l)
c

)

.

Now, the EBP GEXIT function is a parametric function of the fixed point pairs

(ǫh,Ph
v ) of the density evolution map given in Eqn(3.25), i.e., Ph

v = G
(

ǫh,P
h
v

)

,



48 MAP Performance of Non-Binary LDPC Codes over the BEC

where h ∈ [0, 1] is the normalized entropy of Ph
v , i.e.,

1

2

2∑

i=0

iPh
v (i) = h.

For the EBP GEXIT function, the x-coordinate is ǫh and the y-coordinate is
hext, where hext is the BP extrinsic entropy of a bit, i.e.,

hext =
Ph

v,ext(1)

3
+
ǫh Ph

v,ext(1)

3
+ Ph

v,ext(2), (3.26)

where Ph
v,ext = Gv,ext

(

Gc(P
h
v )
)

. Note that the first term of Eqn(3.26) takes

care of the fact that among the three subspaces of dimension one, the value of
a given bit is completely erased in one of them. The second term corresponds
to the subspace of dimension one in which both the bits take the same value.
So, for one to be erased another one should also be erased. The last term takes
care of the subspace of dimension two.

b

a

ǫh

hext

0.01

0.03

0.05

0.409 0.41 0.412 0.414

Figure 3.1: EBP curve for EGL
(
x, x3, 2

)
. The MAP threshold is 0.41 as computed

by the Maxwell construction. The point ǫ = 0.41 corresponds to the erasure
probability such that the areas a and b are equal.

When we compute the EBP GEXIT function for the ensemble EGL (λ, ρ, 2)
(shown in Fig. 3.1) and apply the Maxwell construction of [1], we get the MAP
threshold ǫMAP = 0.41. The Maxwell construction corresponds to finding the
erasure probability such that the areas a and b shown in Fig. 3.1 are equal. The
MAP threshold given by the Maxwell construction coincides with the upper
bound on the MAP threshold derived by computing the conditional entropy of
the average residual ensemble.

3.6 Conclusion

We have defined the stopping constellations for NBLDPC codes. Then we
showed that both the peeling and BP decoder get stuck in the largest stopping
constellation contained in the channel state assignment. After that we com-
puted the average residual degree distribution for NBLDPC ensembles. We
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generalized the criterion of [1] which, when satisfied, yields that the actual
rate of the residual ensemble is equal to its design rate. We observed that the
Maxwell construction of [1] seem to also hold in the setting of NBLDPC codes.
Some of our arguments are restricted to the case m = 2. It will be of interest
to generalize these arguments to any value of m.

3.A Proof of Lemma 13

Proof. The proof of Eqn(3.7) is straight forward. Now,

E [N (E1, . . . , Em)] =
∑

w∈W (E1,...,Em)

P (w is a codeword)

= |W (E1, . . . , Em) |P (w is a codeword) . (3.27)

Here W (E1, . . . , Em) denotes the set of words which will yield Ek edges which
are assigned non-zero values and which are connected to variable nodes which
can take values only in subspace of dimension k, k ∈ {1, . . . ,m}. Now,

|W (E1, . . . , Em) | =

m∏

k=1

coef

(
∏

l

(
1 +

(
2k − 1

)
ulk
)nΩlk

, uEk

k

)

, (3.28)

The factor 2k − 1 in the coef term is to take into account that there are
2k − 1 non-zero symbols in a subspace of dimension k. We have to compute
P (w is a codeword), where w ∈ W (E1, . . . , Em) is some fixed word. Then

P (w is a codeword) =
|G (w)|

|REGL(n,Ω,Φ,m)| , (3.29)

where G (w) ⊆ REGL(n,Ω,Φ,m) is the set of codes for which w is codeword.
Total number of graphs in REGL (n,Ω,Φ,m) is given by

|REGL (n,Ω,Φ,m)| =

m∏

k=0

(

n
∑

l

lΩlk

)

!g(m, k)n
P

l
lΩlk . (3.30)

The factorial terms correspond to permutations of edges coming from vari-
able nodes of different dimensions. There are g(m, k) mappings which map a
given subspace of dimension k to another given subspace of dimension k, where
g(m, k) is defined in Eqn(3.1). This explains the power term.

Next we count the number of graphs for which w is a codeword. This
number is given by

|G(w)| = coef

(
∏

r

∏

s∈Sr

qs(v1, . . . , vm)n(1−r)Φrs ,

m∏

k=1

vEk

k

)
(

n
∑

lΩl0

)

!

(

g(m, 0)n
P

l
lΩl0

) m∏

k=1

(

Ek!

(

n
∑

l

lΩlk − Ek

)

!g(m, k)n
P

l
lΩlk−Ek

)

.

(3.31)
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The factorial terms in Eqn(3.31) correspond to permuting edges among their
class. This means that the edges which are attached to a variable node re-
stricted to a subspace of dimension k and carrying a non-zero values can only
be permuted among themselves. The power terms correspond to assigning
permissible elements of GLm

2 to the edges which carry the value zero. The gen-
erating function qs(v1, . . . , vm) for a check node with state s is self explanatory
by its definition. By combining Eqns(3.27, 3.28, 3.29, 3.30, 3.31), we get the
desired result.

3.B Proof of Lemma 15

Proof. First consider the binary case. We show that for every residual graph
with the desired degree distribution, the probability of erasure patterns result-
ing the graph is the same. Note that the edge connection in the original graph
is the same as in the residual graph. Consider the residual graph A. Consider
two variable nodes v1 and v2 and the edges e1 (connected to v1) and e2 (con-
nected to v2). We swap the end of these edges on the check node side. Call
this new graph A′. Consider the case when v1 and v2 are erased in A (their
state has dimension equal to 1). Clearly, the erasure pattern which results in
A also results in A′. So, this is trivial. Consider the case when v1 and v2 are
known in A. If initially also v1 and v2 are known then this erasure pattern also
results in A′ (by initially we mean the output of the channel). If the erasure
pattern is such that v1 is known but v2 is erased, then for this erasure pattern
we will construct another erasure pattern of equal probability for A′. We do
this by making both v1 and v2 known initially but we erase another variable
node which was known in the erasure pattern of A. As v2 is known in A and
was erased initially, it was revealed at some stage of the peeling decoder. Be-
fore this stage, the peeling decoder is identical for both A and A′. When v2

is revealed, all the edges connected to the check node are known. So by back-
tracking the peeling decoder, we can find a node which was known initially.
Now, we erase this variable node and still the output of the peeling decoder is
the same as in the case when v2 is known. If initially v1 and v2 are erased, then
we construct an erasure pattern where both v1 and v2 are known but we erase
two other variable nodes which were known in A. By similar arguments as in
the previous case, it can again be shown that peeling decoder will result in A′.
The same sequence of arguments goes through in the non-binary case.

3.C Proof of Lemma 19

Proof. Consider the case when u1 ∈ [1,∞) and u2 ∈ [0, 1]. Note that t−2(u2)
is non-negative for u2 ∈ [0, 1]. Also

u1t+1(u1) = t+1

(
1

u1

)

, t−1

(
1

u1

)

= −u1t−1 (u1) .
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We use these relationships in p
(

1
u1

)

and obtain

p

(
1

u1

)

=
un1

1

4

(

t+1 (u1)
n1 +

3∑

i=1

t+1 (u1)
n1(i) (−t−1 (u1))

n1−n1(i)

)

.

As t−1 (u1) is non-positive for u1 ∈ [1,∞), we get

p

(
1

u1

)

≥ un1
1 p (u1) .

Noting that the function hs(u1, u2) can also be written as

hs(u1, u2) = p(u1)t−2(u2)
n2 +

t+1(u1)
n1

4
(t+2 (u2)

n2 − t−2 (u2)
n2) .

Using the above relationships, we obtain

hs

(
1

u1
, u2

)

≥ un1
1 hs (u1, u2) .

Substituting this in the expression for θ
(

1
u1
, u2

)

and using the relation that

(1 − r)
∑

r

∑

s∈Sr

Φrsn1 =
∑

l

lΩ1l, (3.32)

we obtain

θ

(
1

u1
, u2

)

≥ θ (u1, u2) ,

for u1 ∈ [1,∞) and u2 ∈ [0, 1]. Note that till now we did not use the left
regularity of the code. From now onwards we will assume that the code is left
regular. Consider the case u1 ∈ [0, 1] and u2 ∈ [1,∞). Consider the difference

θ (u1, x(u2)) − θ (u1, u2) = log2

(
1 + 3x(u2)

l

1 + 3ul2

)Ωl2

+

(1 − r)
∑

r

∑

s∈Sr

log

(
hs(u1, x(u2))

hs(u1, u2)

)

.

We write hs(u1, u2) as

hs(u1, u2) =
t+1(u1)

n1t+2(u2)
n2

4
+ t−2(u2)

n2

(

p(u1) −
t+1(u1)

n1

4

)

.

Noting that the code is left regular, this simplifies to

hs(u1, u2) =
t+1(u1)

n1

4

(

lΩl2
1 + 3ul−1

2

1 + 3ul2

)n2

+

(

lΩl2
1 − ul−1

2

1 + 3ul2

)n2 (

p(u1) −
t+1(u1)

n1

4

)

.
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Note that as u1 ∈ [0, 1] we can write hs(u1, u2) as

hs(u1, u2) = c1

(
1 + 3ul−1

2

1 + 3ul2

)n2

+ c2

(
1 − ul−1

2

1 + 3ul2

)n2

,

where c1, c2 are positive constants. Using

lΩl2 = (1 − r)
∑

r

∑

s∈Sr

Φrsn2, (3.33)

we write

Ωl2 log2

(
1 + 3ul2

)
= (1 − r)

∑

r

∑

s∈Sr

Φrs log2

(
1 + 3ul2

)n2
l .

Then,

θ (u1, x(u2)) − θ (u1, u2) =

(1 − r)
∑

r

∑

s∈Sr

Φrs log2

(

hs(u1, x(u2)) (1 + 3x(u2)
l)

n2
l

hs(u1, u2) (1 + 3ul2)
n2
l

)

︸ ︷︷ ︸

A

.

We write the term A as

c1

(

(1+3x(u2)
l−1)(1+3x(u2)

l)
1
l

1+3x(u2)l

)n2

+ c2

(

(1−x(u2)
l−1)(1+3x(u2)

l)
1
l

1+3x(u2)l

)n2

c1

(

(1+3ul−1
2 )(1+3ul

2)
1
l

1+3ul

2

)n2

+ c2

(

(1−ul−1
2 )(1+3ul

2)
1
l

1+3ul

2

)n2
.

We show that coefficients of c1 and c2 in the numerator are greater than in the
denominator. We denote the ratio of coefficients of c1 by r1(u2). Substituting
the value of x(u2) in r1(u2) gives

r1(u2) =
2 (1 + 3ul2)

l−1
l

(

3
(
1 + ul−1

2

) l

l−1 +
(
3ul−1

2 − 1
) l

l−1

) l−1
l

.

The derivative of r1(u2) is given by

dr1(u2)

du2
= g(u2)

(

(3u2 − 1)
(
1 + ul−1

2

) 1
l−1 − (1 + u2)

(
3ul−1

2 − 1
) 1

l−1

)

,

where g(u2) is a positive function of u2 for u2 ≥ 1. It can be easily shown

that dr1(u2)
du2

is positive for u2 ≥ 1. So r1(u2) is an increasing function and as
r1(1) = 1, we prove that r1(u2) ≥ 1 for u2 ∈ [1,∞). Now consider the ratio
of coefficients of c2 and denote it by r2(u2). Substituting the expression for
x(u2) in r2(u2) gives r1(u2). Hence we prove that θ(u1, x(u2)) − θ(u1, u2) is
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positive for u1 ∈ [0, 1] and u2 ∈ [1,∞). By the same arguments we can show

that θ
(

1
u1
, x(u2)

)

≥ θ (u1, u2) for u1 ∈ [1,∞) and u2 ∈ [1,∞).

We now prove Eqn(3.21). By using Eqns(3.32, 3.33) and noting that
t+1(1) = lΩl1 and t+2(1) = lΩl2, we write

θ (u1, u2) =

(1 − r)
∑

r

∑

s∈Sr

Φrs log

(

hs (u1, u2) 2dim(s)

t+1(1)n1t+2(1)n2

(
1 + ul1

2

)n1
l

(
1 + 3ul2

4

)n2
l

)

︸ ︷︷ ︸

T

.

If we upper bound the term T for each state s by a function of the form

B1(1 − u1)
2 +B2(1 − u1)(1 − u2) +B3(1 − u2)

2,

then we prove the desired statement. This can be done in the following manner.
We bound the term T corresponding to state s which has n2 = 0 and n1 > 0
by

T = log

((
1 + ul−1

1

1 + ul1

)n1

+

(
1 − ul−1

1

1 + ul1

)n1
)

+
n1

l
log

(
1 + ul1

2

)

≤ 2n1(l − 1)(1 − u1)
2.

To prove this consider the function w(u1)

w(u1) = 2n1(l− 1)(1 − u1)
2 − log

((
1 + ul−1

1

1 + ul1

)n1

+

(
1 − ul−1

1

1 + ul1

)n1
)

− n1

l
log

(
1 + ul1

2

)

.

The derivative of w(u1) is given by

dw(u1)

du1
= −4n1(l− 1)(1 − u1) − n1(l− 1)ul−2

1 ×
(

(1 + ul−1
1 )n1−1 − (1 − ul−1

1 )n1−1

(1 + ul−1
1 )n1 + (1 − ul−1

1 )n1
− u1

1 + ul1

)

,

≤ −4n1(l− 1)(1 − u1) + n1(l− 1)
ul−1

1

1 + ul1
,

≤ −4n1(l− 1) + 3n1(l− 1)u1,

≤ 0,

for u1 ∈ [0, 1]. As w(1) = 0, so w(u1) ≥ 0 for u1 ∈ [0, 1]. Similarly, we can
bound the term T for the check node state s for which n1 = 0 and n2 > 0 by

B3(1 − u2)
2
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and for state s for which n1, n2 > 0 by

B2(1 − u1)(1 − u2).

So we prove the desired result.



Weight and Stopping Set

Distribution 4
This chapter is organized in the following way. In Section 4.1 we give a moti-
vation and summary of the results. Some notations and a brief introduction to
the second moment method is given in Section 4.2. In Section 4.3 we obtain
the average weight distribution and the average binary weight distribution of
regular NBLDPC ensembles EGL (n, l, r,m) and EGF (n, l, r,m). In Section
4.4 we use the second moment method to prove the bound stated in Eqn(4.1)
on the weight distribution. We apply the second moment method to the stop-
ping set distribution in Section 4.5. A discussion in Section 4.6 concludes the
chapter.

4.1 Motivation and Summary of Results

For a code G of block length n, we define N(G,nω) as the weight distribution
function, denoting the number of codewords with normalized weight ω1. The
problem of computing the average weight distribution of binary LDPC ensem-
bles has been considered by many researchers [27, 28, 29, 30]. We compute
the average weight distribution for regular NBLDPC ensembles EGL (l, r,m)
and EGF(l, r,m). We also derive the average binary weight distribution of
these ensembles. We show that, as the alphabet size (or m) increases, the
growth rate of the average binary weight distribution converges to a straight
line up to a critical value of normalized weight. Beyond the critical value, it
converges to the growth rate of the weight distribution corresponding to the
random parity-check ensemble introduced by Gallager [6].

As we first discussed, the average weight distribution can be computed for
suitably defined ensembles. However, it is hard to characterize the weight dis-
tribution of a specific code. In fact, even the determination of the minimum

1Here and in what follows it is understood that ω is such that nω is an integer.

55
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distance is NP-complete [31]. A possible approach to study the weight distri-
bution of individual codes is to first compute the ensemble average, where the
ensemble contains the desired codes, and then to show that most codes in the
ensemble have a weight distribution close to this average.

Motivated by this approach, let us consider the exponent 1
n lnN(G,nω) and

define:

Wsp(ω) := lim
n→∞

1

n
E[lnN(G,nω)],

Wcom(ω) := lim
n→∞

1

n
ln E[N(G,nω)],

where sp stands for “statistical physics”, since Wsp(ω) can be computed by
statistical physics methods and com stands for “combinatorics”, as Wcom(ω)
can be computed by combinatorial methods. From Jensen’s inequality we know
that Wsp(ω) ≤Wcom(ω). It has been shown in [32, 33] that for regular binary
LDPC ensembles Wsp(ω) = Wcom(ω) . However, for irregular binary LDPC en-
sembles this is not the case [34]. The equality between Wcom(ω) and Wsp(ω) for
regular ensembles suggests that a randomly chosen code should have N(G,nω)
“close” to E[N(G,nω)] with high probability. In other words N(G,nω) should
be concentrated around the ensemble average. The question of the concentra-
tion of the weight distribution has not been addressed before. We partially
answer this question for regular LDPC ensembles.

Let us give a short overview of our main results. Using the second mo-
ment method, we obtain an asymptotic lower bound on the probability that
a randomly chosen code from binary regular LDPC ensemble has its weight
distribution close to the ensemble average. Under some technical conditions
(see Lemma 32), we show that for a binary regular LDPC ensemble with left
degree l and right degree r, any ǫ > 0, and for all ω such that Wcom(ω) is
positive,

lim
n→∞

P

(

1 − ǫ ≤ N(G,nω)

E[N(G,nω)]
≤ 1 + ǫ

)

≥ 1 − δ(ω, l, r)

ǫ2
, (4.1)

where δ(ω, l, r) is a function of ω and can be evaluated by solving a polynomial
equation. If Wcom(ω) ≤ 0, then E[N(G,nω)] = o(1) (Lemma 27) and by
Markov’s inequality we have

lim
n→∞

P (N(G,nω) = 0) = 1.

Clearly, for ω such that Wcom(ω) ≤ 0, the convergence of N(G,nω) to its
average follows trivially. Hence our focus will be on the weight ω such that
Wcom(ω) > 0.

Note that the convergence implied by the bound in Eqn(4.1) is pointwise,

for a fixed ω, Eqn(4.1) implies that asymptotically at least a fraction 1− δ(ω,l,r)
ǫ2

of codes in the ensemble have their weight distribution function in a window of
width ǫ around the ensemble average. In Fig. 4.1 we plot the bound in Eqn(4.1)
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for regular codes with l

r
= 0.75 and 0.5. We observe that if we fix the ratio l

r

and let l, r increase then the bound converges to 1. This implies that for large
left and right degrees, almost all the codes in the ensemble have their weight
distribution very close to the ensemble average. Note that in this case it is
well known that the growth rate of the average weight distribution converges
to that of Gallager’s random parity check ensemble [35].
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Figure 4.1: The x-axis is the relative weight ω such that Wcom(ω) > 0 and y-axis

is the bound 1 − δ(ω,l,r)
ǫ2 with ǫ = 0.95, (a) for ensembles with rate=0.25, (b) for

ensembles with rate=0.5.

Another important quantity of binary LDPC codes is the stopping set dis-
tribution. Stopping sets determine the performance of LDPC codes under
iterative decoding over the BEC. The bound obtained in Eqn(4.1) can be eas-
ily extended to the stopping set distribution. This is because the method of
determining the moments in both cases is the same. In Fig. 4.2 we plot the
bound in Eqn(4.1) for the stopping set distribution. Again, we observe that if
we fix the ratio l

r
and let l, r increase then the bound converges to 1.

Independently, authors in [36] have computed the second moment of the
weight distribution for binary regular LDPC ensembles. Based on the com-
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Figure 4.2: The x-axis is the relative stopping set size s and y-axis is the bound

1 − δ(s,l,r)
ǫ2 with ǫ = 0.95, (a) for ensembles with rate=0.25, (b) for ensembles

with rate=0.5.

putations of the second moment of weight and stopping set distribution, the
authors in [37, 38] have obtained probabilistic lower and upper bounds on the
error exponent of binary regular LDPC ensembles.

4.2 Preliminaries

4.2.1 Definitions and Notations

Consider the NBLDPC ensemble EGL (n, l, r,m) defined in Chapter 2. Let
G be a code chosen at random from EGL(n, l, r,m). Let N(G,nω) be the
weight distribution function denoting the number of codewords of weight nω
in G, where ω ∈ (0, 1) is the normalized weight. The binary weight distribution
Nb(G,nmω) of an NBLDPC code G is the number of codewords with binary
weight nmω. Note that we have normalization with respect to nm as this
is the binary length of the NBLDPC ensemble EGL (n, l, r,m). We use the



4.3. Expectation of Weight Distribution 59

same notations for the ensemble EGF(n, l, r,m). Let σ2(G,nω) denote the
variance of N(G,nω) over the binary ensemble EGL(n, l, r, 1), σ2(G,nω) =
E[N(G,nω)2] − E[N(G,nω)]2.

The support set of a word is the set of its non zero bits. The overlap between
two words is the intersection of their support sets.

A stopping set of a Tanner graph is a subset of the set of variable nodes
in its such that its neighboring check nodes are connected to it at least twice.
Consider the binary LDPC ensemble EGL (n, l, r, 1). Let S(G,ns) denote the
number of stopping sets of size ns and let σ2(G,ns) denote the variance of
S(G,ns) over the ensemble EGL(n, l, r, 1).

We denote a vector (x1, . . . , xk) by x, the transpose of x by xT , the dot
product between x and y is denoted by x.yT , xy denotes the component wise
multiplication, i.e., the vector (x1y1, . . . , xkyk). We use the notation that a
vector to the power of a vector and also a scalar to the power of a vector is
a vector i.e. , xi := (xi1

1 , . . . , x
ik

k ) and ex := (ex1 , . . . , exk). Finally, x+ :=
max(x, 0) and f ′(t) denotes the derivative of the function f(x) evaluated at t.

4.2.2 Second Moment Method

Let {Xn} be a sequence of random variables indexed by n, n ∈ N. Let σ2
n =

E[(Xn − E[Xn])2] be the variance of Xn. Then by Chebyshev’s inequality we
have for any a ≥ 0,

P(|Xn − E[Xn]| ≥ a) ≤ σ2
n

a2
.

Let limn→∞
σ2

n

E[Xn]2 = δ. If we choose a = ǫE[Xn] and ǫ such that ǫ2 > δ, then

we can draw the conclusion that

lim
n→∞

P

(

1 − ǫ ≤ Xn

E[Xn]
≤ 1 + ǫ

)

≥ 1 − δ

ǫ2
.

In order to apply this bound to N(G,nω), we need to compute the ratio

lim
n→∞

σ2(G,nω)

E[N(G,nω)]2
= lim

n→∞
E[N2(G,nω)]

E[N(G,nω)]2
− 1.

In the following section we derive the average weight distribution and the av-
erage binary weight distribution of regular NBLDPC ensemble.

4.3 Expectation of Weight Distribution

In the following lemma we derive the average weight distribution of the NBLDPC
ensemble EGL (n, l, r,m).

Lemma 21 (Average Weight Distribution of EGL (n, l, r,m)). Consider the
ensemble EGL(n, l, r,m). Its average weight distribution is given by

E[N(G,nω)] =

(
n

nω

)
(2m − 1)

nω

(
nl

nlω

)
|GLm

2 |nlω coef
(

pm(x)
nl

r , xnlω
)

, (4.2)
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where

pm(x) =
1

2m

[

(1 + |GLm
2 |x)r +

(

1 − x

2m − 1

)r

(2m − 1)

]

.

Proof. The number of codewords of weight nω is given by

N(G,nω) =
∑

w∈W
11w(G),

where W is the set of all the words of weight nω over GFm
2 and

11w(G) =

{
1, if w is a codeword of G,
0, otherwise.

Now the expectation is given by

E (N(G,nω)) =
∑

w∈W
E (11w(G)) . (4.3)

Because of the symmetry in the permutation of edges and due to uniform
probability of all the possible edge labels on every edge, 11w(G) is independent
of the word w and depends only on its weight. Thus we fix w to a word with
support set {1, . . . , nω} and its non-zero symbols are unity. Then Eqn(4.3)
reduces to

E (N(G,nω)) =

(
n

nω

)

(2m − 1)nω E (11w(G)) . (4.4)

Now,

E (11w(G)) =
number of graphs for which w is a codeword

total number of graphs
.

The total number of graphs is given by (nl)!|GLm
2 |nl. The number of graphs

for which w is a codeword is given by

(nl − nlω)!(nlω)!|GLm
2 |nl−nlωcoef

(

pm(x)
nl

r , xnlω
)

.

The factorial terms correspond to permuting the edges carrying non-zero values
and zero value. The term |GLm

2 |nl−nlω takes care of the fact that we can
put any edge label on the edges carrying the value zero. To describing the
polynomial pm(x), we recall the definition of Fi defined in the Chapter 3,
Lemma 14.

Fr =

∣
∣
∣
∣
∣
{(M1 . . . ,Mr) :

r∑

i=1

Mixi = 0,Mi ∈ GLm
2 , xi ∈ GFm

2 }
∣
∣
∣
∣
∣
,

=
|GLm

2 |r
2m

(

1 +
(−1)r

(2m − 1)r−1

)

.
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Then the polynomial pm(x) is defined by

pm(x) = 1 +

r∑

i=1

(
r

i

)

Fix
i,

= 1 +

r∑

i=1

(
r

i

) |GLm
2 |i

2m

(

1 +
(−1)i

(2m − 1)i−1

)

xi,

=
1

2m

[

(1 + |GLm
2 |x)r +

(

1 − x

2m − 1

)r

(2m − 1)

]

. (4.5)

In summary,

E (11w(G)) =
coef

(

pm(x)
nl

r , xnlω
)

(
nl

nlω

)
|GLm

2 |nlω . (4.6)

Substituting Eqn(4.6) in the expression for E (N(G,nω)) in Eqn(4.4) gives the
desired result.

Using similar arguments we obtain the average weight distribution for the
ensemble EGF(n, l, r,m) in the stated lemma.

Lemma 22 (Average Weight Distribution of EGF (n, l, r,m)). Consider the
ensemble EGF(n, l, r,m). Its average weight distribution is given by

E[N(G,nω)] =

(
n

nω

)

(
nl

nlω

)
(2m − 1)

n(l−1)ω
coef

(

pm(x)
nl

r , xnlω
)

, (4.7)

where

pm(x) =
1

2m
[(1 + (2m − 1)x)

r
+ (1 − x)

r
(2m − 1)] . (4.8)

Note: The average weight distribution of regular non binary coset LDPC
ensemble has been derived in [39]. In [40] authors have obtained average weight
distribution of regular LDPC ensemble defined over the cyclic group of integers
where group operation is performed modulo an integer.

As we consider transmission over BMS channels, the binary weight distribu-
tion is important in upper bounding the MAP block error probability as given
in [41]. In the next lemma we derive the average binary weight distribution.

Lemma 23 (Average Binary Weight Distribution of EGL (n, l, r,m)). Con-
sider the ensemble EGL (n, l, r,m). Let Nb (G,nmω) denote the binary weight
distribution of a randomly chosen code G. Then the average of Nb (G,nmω) is
given by

E (Nb (G,nmω)) =

min(n,nmω)
∑

i=nω

(
n
i

)
coef

(

((1 + x)m − 1)i , xnmω
)

coef
(

pm(x)
nl

r , xli
)

(
nl
il

)
|GLm

2 |li , (4.9)

where ω ∈ (0, 1).
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Proof. The average binary weight distribution is given by,

E (Nb (G,nmω)) =

min(n,nmω)
∑

i=nω

g(i, nmω) P (A given weight i word is codeword of G) , (4.10)

where g(i, nmω) denotes the number of words with weight i whose binary
weight is nmω and is given by

g(i, nmω) =

(
n

i

)

coef
(

((1 + x)m − 1)i , xnmω
)

.

Combining Eqn(4.6) and the expression for g(i, nmω) gives the desired result.

Using similar arguments, we obtain the average binary weight distribution
of the ensemble EGF (n, l, r,m) in the following lemma.

Lemma 24 (Average Binary Weight Distribution of EGF (n, l, r,m)). Con-
sider the ensemble EGF (n, l, r,m). Let Nb (G,nmω) denotes the binary weight
distribution of a randomly chosen code G. Then the average of Nb (G,nmω) is
given by

E (Nb (G,nmω)) =

min(n,nmω)
∑

i=nω

(
n
i

)
coef

(

((1 + x)m − 1)
i
, xnmω

)

coef
(

pm(x)
nl

r , xli
)

(
nl
il

)
(2m − 1)

li , (4.11)

where ω ∈ (0, 1) and pm(x) is defined in Eqn(4.8).

In the next lemma, we recall the Hayman method for approximating the
term coef(q(y)n, ynω) for large values of n, where q(y) is a finite degree poly-
nomial which satisfies appropriate technical conditions. The Hayman method
is based on the saddle point approximation. More details and its proof can be
found in [42, 43].

Lemma 25 (Hayman Method). Let q(y) =
∑

i qiy
i be a polynomial with non

negative coefficients such that q0 6= 0 and q1 6= 0. Define aq(y) := y dq(y)
dy

1
q(y)

and bq(y) := y
daq(y)

dy . Then for n tending to infinity so that nω ∈ N

coef(q(y)n, ynω) =
q(yω)n

ynω
ω

√
2πnbq(yω)

(1 + o(1)), (4.12)

where the term o(1) converges to zero and yω is the unique positive solution of
aq(y) = ω.
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Note that pm(x) satisfies the technical conditions of the Lemma 25 for
m ≥ 2. We give the estimate of the average weight distribution for m = 2 in
the following lemma and after that we discuss the case for m = 1.

Lemma 26 (Ensemble Average of Weight Distribution for m ≥ 2). Consider
the regular ensemble EGL (n, l, r,m), where m ≥ 2. The average weight dis-
tribution is given by

E (N(G,nω)) =
√
r

√
2πnbpm

(xω)
en(ω ln(2m−1)−h(ω)(l−1)+ l

r
ln(pm(xω))−lω ln(|GLm

2 |)−lω ln(xω)),

(4.13)

where xω is the solution of apm
(x) = rω and h(ω) = −(ω lnω+(1−ω) ln(1−ω))

and lnω is the natural logarithm of ω.

Proof. Using Stirling’s approximation we get:
(
n

nω

)

=
enh(ω)

√

2πnω(1 − ω)
(1 + o(1)). (4.14)

Using this, Lemma 21 and Lemma 25, we get the desired result.

For the case m = 1 the polynomial p1(x) contains only even powers of x. To
circumvent this we can define q(y) = p1(x) and y = x2. Then the polynomial
q(y) satisfies the technical conditions of the Lemma 25. Since q(y) = p1(x)

and y = x2, we have aq(y) = ap1(x)/2, where ap1(x) = xdp1(x)
dx

1
p1(x) . Similarly,

bq(y) = bp1(x)/4, where bp1(x) = x
dap1 (x)

dx . Also, yω = x2
ω , where xω is the

unique positive solution of ap1(x) = rω which simplifies to,

x
(1 + x)r−1 − (1 − x)r−1

(1 + x)r + (1 − x)r
= ω. (4.15)

Thus by substituting these relationships in Lemma 25, we get

coef
(

p(x)
nl

r , xnlω
)

=
2p(xω)

nl

r

(xω)nlω
√

2π nl
r
bp(xω)

(1 + o(1)). (4.16)

We summarize our results thus far.

Lemma 27 (Ensemble Average of Weight Distribution for m=1). Consider the
regular LDPC ensemble G(n, l, r). Then for ω ∈ (0, 1) such that lnω ∈ 2N,

E[N(G,nω)] =
2
√
ren( l

r
ln(p(xω))−(l−1)h(ω)−lω ln(xω))

√
2πnbp(xω)

(1 + o(1)), (4.17)

where h(ω) = −(ω lnω + (1 − ω) ln(1 − ω)), lnω is the natural logarithm of ω
and xω is the unique positive solution of equation (4.15). If nlω is odd, then
E[N(G,nω)] = 0.
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It will be of interest to characterize the growth rate of the binary weight
distribution of EGL (n, l, r,m) as m tends to infinity. In the following lemma
we show that the growth rate of the binary weight distribution converges to
the growth rate of Gallager’s random parity-check ensemble.

Lemma 28 (Convergence of EGL (l, r,m)). Consider the ensemble
EGL (n, l, r,m). Let Nb (G,nmω) denote the binary weight distribution of a
randomly chosen code G. Then

lim
m→∞

lim
n→∞

1

nm
log (E (Nb(G,nmω))) =

{

− ω
log(2) log(2l/r − 1), 0 ≤ ω < 1 − 2−l/r,

h(ω) − l

r
log(2), 1 − 2−l/r ≤ ω ≤ 1.

Proof. By Lemma 23, the binary weight distribution is given by

E (Nb (G,nmω)) =

min(n,nmω)
∑

i=nω

(
n
i

)
coef

(

((1 + x)m − 1)
i
, xnmω

)

coef
(

pm(x)
nl

r , xli
)

(
nl
il

)
|GLm

2 |li .

Let us denote the summation term corresponding to index i by Si. We nor-
malize i by n and write i = γn.

lim
m→∞

lim
n→∞

1

nm
log (E (Nb (G,nmω))) = maxγ∈[ω,1] lim

m→∞
lim

n→∞
1

nm
log (Sγn) ,

where we used the fact that for m large enough min (n, nmω) = n. Using Stir-
ling’s approximation given in Eqn(4.14) and Hayman method given in Lemma
25, we obtain

lim
n→∞

1

n
log (Sγn) = −(l− 1)h (γ) − γl log (GLm

2 ) +
l

r
log (pm (ym))

−lγ log (ym) + γ log (f (xm)) − (ωm− γ) log (xm) .

(4.18)

In order to satisfy the conditions of Lemma 25 we notice that

coef (((1 + x)m − 1)
γn
, xnmω) = coef

((
(1 + x)m − 1

x

)γn

, xnmω−γn

)

.

The xm appearing in Eqn(4.18) is the solution of the equation

x(1 + x)m−1

(1 + x)m − 1
=
ω

γ
.

Note that for large values of m, (1 + x)m − 1 ≈ (1 + x)m. Using this we get
that for m large enough

xm =
ω

γ − ω
. (4.19)
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The ym appearing in Eqn(4.18) is solution of the equation

y

r

[

(1 + |GLm
2 |y)r−1 |GLm

2 | −
(

1 − y
2m−1

)r−1
]

(1 + |GLm
2 |y)r +

(

1 − y
2m−1

)r

(2m − 1)
= γ.

Note that for large values of m, 1 + |GLm
2 |y ≫ 1 − y

2m−1 . This gives

ym =
γ

1 − γ

1

GLm
2

. (4.20)

Substituting for xm, ym from Eqn(4.19, 4.20) in Eqn(4.18) gives for γ ∈ [ω, 1]

f(γ) , lim
m→∞

lim
n→∞

1

nm
log (Sγn) = γ log

(
γ

γ − ω

)

−ω log

(
ω

γ − ω

)

− l

r
γ log(2).

We now compute the derivative of f(γ) in order to compute its maximum. The
derivative is given by

df (γ)

dγ
= log

(
γ

γ − ω

)

− l

r
log(2),

and becomes zero for
γ∗ =

ω

1 − 2−l/r
.

The second derivative is given by

d2f(γ)

dγ2
=

−ω
γ(γ − ω) loge(2)

.

So, γ∗ is indeed a maximum provided γ∗ < 1. This means that for ω ≤ 1−2−l/r,
γ∗ is maximum. Otherwise, the maximum is achieved at γ = 1. Substituting
these values, we obtain

lim
m→∞

lim
n→∞

1

nm
log (E (Nb(G,nmω))) =

{

− ω
log(2) log(2l/r − 1), 0 ≤ ω < 1 − 2−l/r,

h(ω) − l

r
log(2), 1 − 2−l/r ≤ ω ≤ 1.

This proves the lemma.

The result of Lemma 28 holds also for the ensemble EGF (l, r,m) with
almost the same proof. We state this in the following lemma.

Lemma 29 (Convergence of EGF (l, r,m) ). Consider the ensemble
EGF (n, l, r,m). Let Nb (G,nmω) denote the binary weight distribution of a
randomly chosen code G. Then

lim
m→∞

lim
n→∞

1

nm
log (E (Nb(G,nmω))) =

{

− ω
log(2) log(2l/r − 1), 0 ≤ ω < 1 − 2−l/r,

h(ω) − l

r
log(2), 1 − 2−l/r ≤ ω ≤ 1.
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4.4 Second Moment of Weight Distribution

In this section we restrict ourselves to binary regular LDPC ensembles and com-
pute the second moment of their weight distribution function. To compute the
second moment, we note that E[N2(G,nω)] = E[

∑

w,w′ 11w,w′(G,nω)], where
w,w′ are both words of length n and weight nω and

11w,w′(G,nω) =

{
1, if w,w′ are codewords of G,
0, otherwise.

By definition of the ensemble, the expectation E[11w,w′(G,nω)] does not depend
on the specific choice of the pair w,w′ but only on the cardinality of the overlap
between the support sets of w and w′. In particular we can fix w to be a
codeword of weight nω with support set W = {1, 2, . . . , nω}, so that

E[N2(G,nω)] =

(
n

nω

)
∑

w′

E[11w′(G,nω)],

where we have dropped the subscript w as w is fixed. We can also fix w′

to w′(i) for a given cardinality of overlap i with w. w′(i) has support set
W ′ = {1, 2, . . . , i, nω + 1, . . . , 2nω − i}. Then,

E[N2(G,nω)] =

(
n

nω

) nω∑

i=0

(
nω

i

)(
n− nω

nω − i

)

E[11w′(i)(G,nω)].

The binomials inside the summation correspond to the number of words having
cardinality of overlap with w equals to i. To calculate E[11w′(i)(G,nω)], we note
that there are 3 different types of edges taking value 1. These types are: edges
connected to W ∩ W ′, edges connected to W\(W ∩ W ′) and finally, edges
connected to W ′\(W∩W ′). A placement of edges is valid if each check node is
connected to an even number of edges from W as well as from W ′, i.e., if the
number of edges from each of the 3 different classes are all even or all odd. A
moment’s thought shows that the generating function for the number of valid
placement is given by f(x1, x2, x3)

nl

r = f(x)
nl

r , where x1 corresponds to the
number of edges connected to W\(W ∩ W ′), x2 corresponds to the number
of edges connected to W ∩ W ′ and x3 corresponds to the number of edges
connected to W ′\(W ∩W ′), and where f(x) is the summation of the terms in
the expansion of (1 + x1 + x2 + x3)

r which have powers of x1, x2 and x3 either
all even or all odd. Explicitly,

f(x) =
1

4

(

(1 + x1 + x2 + x3)
r + (1 + x1 − x2 − x3)

r

+(1 − x1 + x2 − x3)
r + (1 − x1 − x2 + x3)

r

)

. (4.21)
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Since there are l(nω− i) edges connected to W\(W∩W ′), li edges connected
to W ∩W ′ and l(nω − i) edges connected to W ′\(W ∩W ′), we have

E[11w′(i)(G,nω)] = coef
(

f(x)
nl

r , x
l(nω−i)
1 xli

2 x
l(nω−i)
3

)

.
1

(nl)!
((l(nω − i))!)2(li)!(nl− 2nlω + li)!.

As all the edges are labeled, the factor (nl)! corresponds to the total number
of graphs in the ensemble G(n, l, r). The term (l(nω − i))!2 corresponds to
interchanging the positions of edges connected to W\(W ∩ W ′), as well as
to W ′\(W ∩ W ′), (li)! corresponds to interchanging the positions of edges
connected to W ∩W ′, and (l(n − 2nω + i))! corresponds to interchanging of
the positions of edges taking value 0. Hence,

E[N2(G,nω)] =

nω∑

i=0

coef
(

f(x)n l

r , x
l(nω−i)
1 xli2 x

l(nω−i)
3

)

︸ ︷︷ ︸

Ci

.

(
n

nω

)

(nl)!

(
nω

i

)(
n− nω

nω − i

)

((l(nω − i))!)2(li)!(l(n− 2nω + i))!

︸ ︷︷ ︸

Fi

.

Let Si be the ith summation term in (4.22), so Si = FiCi. Note that Si = 0
for i < (2nω−n)+ as there can not exist two words of length n and weight nω
such that the cardinality of their overlap is less than (2nω − n)+. A property
of the term Snω that we will need later is

Snω = E[N(G,nω)]. (4.22)

This simply follows from the fact that for i = nω, the words w and w′(i)
are identical. Now to get a closed form expression for E[N2(G,nω)], we use
Stirling’s formula to approximate the factorial terms and to approximate the
coef function we use the following multidimensional extension of Lemma 25 as
given in Theorem 2 of [26].

Lemma 30. [Multidimensional Saddle Point Method] Let us denote i := (l(nω−
i), li, l(nω − i)), j := (l(nω − j), lj, l(nω − j)) and 0 < limn→∞ i

n < ω, f(x)

be as defined in (4.21) and t = (t1, t2, t3) be a positive solution of af (x) = ri
nl ,

where af (x) = (xi∂f
f∂xi

)3i=1. Then coef
(

f(x)
nl

r , xi
)

can be approximated using

the saddle point method for multivariate polynomials,

coef
(

f(x)
nl

r , xi
)

=
4f(t)

nl

r

(t)i

√
(
2π nl

r

)3 |Bf (t)|
(1 + o(1)),

where Bf (x) is a 3 × 3 matrix whose elements are given by Bf(i,j) = xj
∂ai

∂xj
=

Bf(j,i). Also, coef
(

f(x)
nl

r , xj
)

can be approximated in terms of coef
(

f(x)
nl

r , xi
)

.
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This approximation is called the local limit theorem of j around i. Explicitly,

if u :=
√

r

nl (j − i) and ‖u‖ = O((lnn)
1
3 ), then

coef
(

f(x)
nl

r , xj
)

= ti−jcoef
(

f(x)
nl

r , xi
)

.exp

(

−1

2
u.Bf (t)−1.uT

)

(1 + o(1)).

Proof. The proof of the lemma follows from a modification of the proof of
Theorem 2 of [26]. This is rather tedious and is therefore relegated to the
Appendix 4.A.

Note that in Lemma 30 we require that the matrixBf (t) be positive definite.
In the following lemma we prove that the matrix B is positive definite for any
multivariate polynomial with positive coefficients under appropriate technical
conditions.

Lemma 31. Consider a multivariate polynomial g(x) =
∑

iGix
i in k variables

with non negative coefficients, where x = (x1, . . . , xk). Let Ag be the matrix
whose columns are equal to all the difference vectors i − j, where Gi and Gj

are strictly positive. If the rows of matrix Ag are independent then the matrix
Bg is positive definite, where Bg is defined in Lemma 30.

Proof. In the proof for the sake of notational simplification we will drop the
subscript g of B and a, where a is again defined in Lemma 30. The entries
Bst(x) turn out to be

Bst =







xsxt
g(x) ∂2g(x)

∂xs∂xt
−∂g(x)

∂xs

∂g(x)
∂xt

g(x)2 if s 6= t,

xs

(
∂g(x)
∂xs

+xs
∂2g(x)

∂2xs

g(x) − xs

(
∂g(x)
∂xs

g(x)

)2
)

if s = t.
(4.23)

Assume that the polynomial g(x) is given by

g(x) =
∑

i

cix
i,

where the coefficients ci are non-negative. After algebraic simplifications the
entry Bs,t is given by

Bst =

∑

i,j(js − is)(jt − it)cicjx
i+j

2
∑

ij cicjx
i+j . (4.24)

In order to show that matrix B is positive definite, we need to show that yT .B.y

is positive for every non-zero y ∈ Rk. Using Eqn(4.24) yT .B.y simplifies to,

yT .B.y =
∑

ij

(
k∑

s=1

(js − is) ys

)2

cicjx
i+j .
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This implies that the matrix is positive definite by the linear independence of
the rows of matrix Ag.

Now we again concentrate on the polynomial f defined in Eqn(4.21). Note
that Lemma 31 holds for f as its difference matrix has full row rank. The
system of equations corresponding to af(x) = ri

nl is symmetric in x1 and x3.
Hence a positive solution x of this system of equations satisfies x1 = x3 and
the system reduces to the following equations,

x1
(1 + 2x1 + x2)

r−1 − (1 − 2x1 + x2)
r−1

(1 + 2x1 + x2)r + 2(1 − x2)r + (1 − 2x1 + x2)r
= ω − α, (4.25)

x2
(1 + 2x1 + x2)

r−1 − 2(1 − x2)
r−1 + (1 − 2x1 + x2)

r−1

(1 + 2x1 + x2)r + 2(1 − x2)r + (1 − 2x1 + x2)r
= α, (4.26)

where α = i
n .

In order to evaluate the second moment, we need to find the dominant
terms of the summation in (4.22). To find all the dominant terms, let the term
corresponding to i = im i.e. Sim

= Fim
Cim

be a local maximum of {Si}nω
i=0.

We first check if the end terms S(2nω−n)+ and Snω can be dominant. The
assumption 2 of the Lemma 32 eliminates the possibility that S(2nω−n)+ is a
dominant term. In the proof of Lemma 32 we will see that ln (Snω2) /n =
2Wcom(ω). This with Eqn(4.22) implies that Snω is not a dominant term. So
we consider im such that 0 < limn→∞

im

n < ω. Let ∆ = i− im and αm = im

n .

We expand Fi and Ci for ∆ ∈ (−√
n(lnn)

1
3 ,
√
n(lnn)

1
3 ) in terms of Fim

and
Cim

using Stirling’s approximation and the local limit theorem of Lemma 30
respectively. Then,

Fi = Fim
exp

(

∆(l− 1) ln

(
im(n− 2nω + im)

(nω − im)2

))

. exp

(

∆2

(
l− 1

nω − im
+

l− 1

2im
+

l− 1

2(n− 2nω + im)

))

.

(

1 +O

(
∆3

n2

))

,

Ci = Cim
exp

(

∆l ln

(
t21
t2

)

− ∆2

2nσ2
c (αm)

)

(1 + o(1)),

where

Fim
=

(
(nω − im)2(nω−im)iim

m (n− 2nω + im)n−2nω+im

nn

)l−1

.l
√
l(1 + o(1)),

σ2
c (αm) =

1

lr ((−1, 1,−1).Bf(t)−1.(−1, 1,−1)T )
. (4.27)
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Hence,

Si

Sim

= exp

(

∆

(

(l− 1) ln

(
im(n− 2nω + im)

(nω − im)2

)

+ l ln

(
t21
t2

)))

. exp

(

∆2

(
l− 1

nω − im
+

l − 1

2im
+

l− 1

2(n− 2nω + im)
− 1

2nσ2
c (αm)

))

×(1 + o(1)). (4.28)

We know that there is a local maximum at ∆ = 0, hence the coefficient of ∆
in (4.28) will vanish. This gives an additional equation governing αm:

(
αm(1 − 2ω + αm)

(ω − αm)2

)l−1

=

(
t2
t21

)l

. (4.29)

We solve (4.25), (4.26) and (4.29) and find all the solutions such that 0 < αm <
ω, t1 > 0, t2 > 0 and the coefficient of ∆2 in (4.28) is negative (this ensures
that Sim

is a local maximum). One of the possible solution to this system
of polynomial equations is αm = ω2. This is because {Ci}nω

i=0 and {Fi}nω
i=0

are concave and convex sequences respectively, both achieving their extreme
values at i = nω2. Hence {Si}nω

i=0 also achieves an extreme value at i = nω2.
If αm = ω2 is a unique global maximum in the solution set of (4.25), (4.26)
and (4.29), then we can get a closed form expression for second moment. We
summarize this in the following lemma.

Lemma 32. [Second Moment Method] Consider the binary regular LDPC en-
semble G(n, l, r). Then for ω ∈ (0, 1), if Wcom(ω) > 0 and if the following
conditions are satisfied,

1. αm = ω2 is the only solution of (4.25), (4.26) and (4.29) for which
coefficient of ∆2 in (4.28) is negative.

2. limn→∞
ln(Snω2)

n >
ln(S(2nω−n)+ )

n ,

then by the second moment method we have,

lim
n→∞

P

(

1 − ǫ ≤ N(G,nω)

E[N(G,nω)]
≤ 1 + ǫ

)

≥ 1 − δ(ω, l, r)

ǫ2
,

where

δ(ω, l, r) =
bp(xω)

√
rω(1 − ω)σc(ω

2)
√
|Bf (xω , x2

ω, xω)| (ω2(1 − ω)2 − (l− 1)σ2
c (ω2))

−1,

σ2
c (ω2) =

1

lr ((−1, 1,−1).Bf(xω , x2
ω, xω)−1.(−1, 1,−1)T )

,

and xω is the only positive solution of (4.15).
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Remark: Note that the conditions of Lemma 32 are hard to verify in general
but they are typically easy to verify for any given regular LDPC ensemble.

Proof. We observe that the solution t of (4.25), (4.26) for α = ω2 satisfies t2 =
t21 and this system of equations reduces to a single equation which is identical
to (4.15), the equation we need to solve to find E[N(G,nω)]. Thus t1 = xω.

By (4.28) and noting that the terms Snω2+∆ for ∆ /∈ (−√
n(lnn)

1
3 ,
√
n(lnn)

1
3 )

are much smaller than Snω2 , we get

E[N2(G,nω)] = Snω2

√
n(lnn)

1
3

∑

∆=−√
n(ln n)

1
3

exp

(−∆2

2σ2
s

)

(1 + o(1)),

= Snω2

∫ ∞

−∞
exp

(−x2

2σ2
s

)

dx(1 + o(1)),

= Snω2

√

2πσ2
s(1 + o(1)),

where
1

σ2
s

=
1

nσ2
c (ω2)

− l− 1

nω2(1 − ω)2
.

Also f(xω, x
2
ω , xω) = p(xω)2. To evaluate Snω2 , we use Lemma 30 and Stirling’s

approximation for factorial terms. This gives,

E[N2(G,nω)] =
4σc(ω

2)r
√
rω(1 − ω)

2πn
√

(ω2(1 − ω)2 − (l− 1)σ2
c (ω2))

.
e2n( l

r
ln(p(xω))−(l−1)h(ω)−lω ln(xω))

√
|Bf (xω , x2

ω, xω)|
(1 + o(1)).

We need the condition Wcom(ω) > 0, as

lim
n→∞

ln(Snω2)

n
= 2Wcom(ω)

and

lim
n→∞

ln(Snω)

n
= Wcom(ω).

Clearly when Wcom(ω) is negative, Snω2 can not be a global maximum. Now
using Lemma 27, the second moment method gives us:

lim
n→∞

P

(

1 − ǫ ≤ N(G,nω)

E[N(G,nω)]
≤ 1 + ǫ

)

≥ 1 − δ(ω, l, r)

ǫ2
.

This proves the lemma.

The bound obtained in Lemma 32 can in general only be evaluated numer-
ically except for the cases when (4.15) can be solved analytically. For example
for the (3, 4)-regular code we get,

δ(ω, 3, 4) =
8ω(1 − ω)(3 − Ω)

√

(81 − 27Ω + 16ω(1 − ω)(8ω − 8ω2 − 18 + 3Ω))
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× 1
√

−21 + 80ω(1 − ω) + 9Ω
,

where Ω =
√

9 − 32ω + 32ω2.

4.5 Moment Calculations for Stopping Set Distribution

As shown in [44], the first moment of stopping set distribution is given by

E[S(G,ns)] =

(
n
ns

)

(
nl
nls

)coef
(

(β(x))
ln
r , xnls

)

,

where β(x) = (1 + x)r − rx. Applying the Lemma 3.1 and using Stirling’s
approximation we get

E[S(G,ns)] =

√
ren( l

r
ln(β(xs))−(l−1)h(s)−ls ln(xs))

√

2πnbβ(xs)
(1 + o(1)),

where xs is the only positive solution of

x
(1 + x)r−1 − 1

(1 + x)r − rx
= s. (4.30)

The second moment is E[S2(G,ns)] = E[
∑

s,s′ 11s,s′(G,ns)], where s, s′ are
both stopping sets of cardinality ns. By definition of the ensemble, the expec-
tation E[11s,s′(G,ns)] depends only on the cardinality of the overlap between
s and s

′. Hence like in the previous section for weight distribution we can fix
s to be equal to s = {1, 2, . . . , ns} and for a given cardinality of overlap i we
can fix s

′ to be equal to s
′(i) = {1, 2, . . . , i, ns+ 1, . . . , 2ns− i}. As s is fixed,

we drop the subscript s in 11s,s′(G,ns). This gives

E[S2(G,ns)] =

(
n

ns

) ns∑

i=0

(
ns

i

)(
n− ns

ns− i

)

E[11s′(i)(G,ns)].

For 11s′(i)(G,ns) = 1, we need that every check node inG is either not connected
to s or connected to s by more than one edge. Similarly every check node is
either not connected to s

′(i) or connected to s
′(i) by more than one edge. This

implies

E[11s′(i)(G,ns)] = coef
(

g(x)
nl

r , x
l(ns−i)
1 xli

2 x
l(ns−i)
3

)

.
1

(nl)!
((l(ns− i))!)2(li)!(nl− 2nls+ li)!,

where

g(x) = (1 + x1 + x2 + x3)
r − r(1 + x1)

r−1(x2 + x3)

−rx1

(
(1 + x3)

r−1 − (r− 1)x3

)
− rx2

(
(1 + x3)

r−1 − 1
)
.

(4.31)
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Thus

E[S2(G,ns)] =
ns∑

i=0

coef
(

g(x)n l

r , x
l(ns−i)
1 xli2 x

l(ns−i)
3

)

︸ ︷︷ ︸

Ci

.

(
n
ns

)

(nl)!

(
ns

i

)(
n− ns

ns− i

)

((l(ns− i))!)2(li)!(l(n− 2ns+ i))!

︸ ︷︷ ︸

Fi

.

(4.32)

To evaluate coef in (4.32) we use Theorem 2 of [26]. The polynomial g has full
rank difference matrix. Thus Bg is positive definite by Lemma 31. By again
applying the same line of arguments as for the weight distribution and if the
conditions of Lemma 32 are true in the setting of stopping set distribution,
then we get

E[S2(G,ns)] =
σc(s

2)r
√
rs(1 − s)

2πn
√

(s2(1 − s)2 − (l − 1)σ2
c (s2))

.
e2n( l

r
ln(β(xs))−(l−1)h(s)−ls ln(xs))

|Bg(xs, x2
s, xs)|

(1 + o(1)).

where Bg(x) is same as defined in Lemma 30 with respect to g(x) and xs is
the positive solution of (4.30). Hence by the second moment method we have,

lim
n→∞

P

(

1 − ǫ ≤ S(G,ns)

E[N(G,ns)]
≤ 1 + ǫ

)

≥ 1 − δ(s, l, r)

ǫ2
,

where

δ(s, l, r) =
bβ(xs)

√
rs(1 − s)σc(s

2)
√

|Bg(xs, x2
s, xs)| (s2(1 − s)2 − (l− 1)σ2

c (s2))
− 1,

σ2
c (s2) =

1

lr ((−1, 1,−1).Bg(xs, x2
s, xs)−1.(−1, 1,−1)T )

.

4.6 Discussion

Fix the relative weight ω. If ǫ ∈ (0, 1) then we conclude that asymptotically

for at least a fraction 1− δ(ω,l,r)
ǫ2 of codes, the number of codewords N(G,nω)

(for a fixed ω) is at most a constant factor away from the ensemble average.

Also from Fig. 4.1 we see that 1 − δ(ω,l,r)
ǫ2 is an increasing function of ω

for ω ∈ (ωmin, 0.5) and is a decreasing function for ω > 0.5. It is equal to 1
for ω = 0.5. This implies that asymptotically in almost all the codes there
are E[N

(
G, n

2

)
](1 ± ǫ) codewords of weight n

2 . For ω close to the typical min-
imum distance ωmin, the bound stays nontrivial. In Table 4.1 and Table 4.2,
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(l, r)-code ωmin 1 − δ(ωmin,l,r)
0.952

(3, 6) 0.0227334 0.740611
(6, 12) 0.0956337 0.963306
(12, 24) 0.109404 0.999617
(24, 48) 0.110026 ∼ 1.0

Table 4.1: limω→ωmin+ 1 − δ(ω,l,r)
ǫ2 for rate = 1

2 and ǫ = 0.95.

(l, r)-code ωmin 1 − δ(ωmin,l,r)
0.952

(3, 4) 0.112159 0.667889
(6, 8) 0.207437 0.989098

(12, 16) 0.214428 0.999994
(24, 32) 0.214502 ∼ 1.0

Table 4.2: limω→ωmin+ 1 − δ(ω,l,r)
ǫ2 for rate = 1

4 and ǫ = 0.95.

limω→ωmin+ 1 − δ(ωmin,l,r)
0.952 is given for regular codes of rate 0.5 and 0.25 re-

spectively. We observe that if we fix the rate and let l and r increase then
the bound approaches 1 for all ω for which Wcom(ω) is positive. This implies
that for regular ensembles with large left and right degree almost all the codes
have a weight distribution which is very close to the ensemble average. We
observe the same phenomenon for stopping set distribution. We see that the
second moment method can capture the concentration property of the weight
distribution and stopping set distribution for regular ensembles with large left
and right degrees. However for the regular ensembles in general it fails to do
so. Potentially by applying more sophisticated methods one could obtain bet-
ter bounds, e.g., the second moment method with conditioning [45] or other
methods given in [46].

4.A Proof of Lemma 30

We modify the proof of Theorem 2 of [26] to prove Lemma 30. Let ϕn(z) =
f(z)

nl

r , R = [−π, π]3 and I =
√
−1. We also expand ϕn(z) as ϕn(z) =

∑

k an(k)zk. Let t be the positive solution of af (x) = ri
nl . From the inverse

Fourier transform, we get

1

(2π)3

∫

R

ϕn(teIv)

ϕn(t)
e−Ij.vT

dv =
an(j)tj

ϕn(t)
. (4.33)

We recall that the Fourier transform of a Gaussian is again a Gaussian,

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−Iu.sT − s.Bf (t).sT

2 ds =

√

(2π)3

|Bf (t)|e
− 1

2 u.Bf (t)−1.uT

. (4.34)
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Also, from the proof of Theorem 2 of [26], for any function K(n) growing with
n, we have

∣
∣
∣
∣
∣

∫

[−K(n),K(n)]3
e−Iu.sT − s.Bf (t).sT

2 ds−
∫

(−∞,∞)3
e−Iu.sT − s.Bf (t).sT

2 ds

∣
∣
∣
∣
∣

= O

(
1

K(n)

)

. (4.35)

We would like to show that for n→ ∞
∣
∣
∣
∣
∣

(
nl

r

) 3
2
∫

R

ϕn(teIv)

ϕn(t)
e−Ij.vT

dv − 4

√

(2π)3

|Bf (t)|e
− 1

2u.Bf (t)−1.uT

∣
∣
∣
∣
∣

= o(1). (4.36)

To prove this, we write ϕn(teIv) in exponential-log form and take the Taylor
series expansion of the exponent around v = 0,

ϕn(teIv) = e(
nl

r
(ln(f(t))+Iaf (t).vT − v.Bf (t).vT

2 +O(‖v‖3))). (4.37)

Note that as ln (ϕn(t)) is analytic, so all the third order partial derivative
of ϕn

(
teIv

)
are bounded. Now we partition R as R = ∪5

i=1Ri, where R1 =
[−δ, δ]3, R2 = [−δ, δ]×[π−δ, π+δ]2, R3 = [π−δ, π+δ]×[−δ, δ]×[π−δ, π+δ], R4 =
[π−δ, π+δ]2× [−δ, δ], R5 = R\(R1∪R2∪R3∪R4). Here δ can be any decaying
function of n which satisfies that as n → ∞ then nδ2 → ∞ and nδ3 → 0. We
choose δ = n− 2

5 . This ensures that the term O(‖v‖3
) is negligible. By the

symmetry of f(x), ϕn(x1, x2, x3) = ϕn(x1,−x2,−x3) = ϕn(−x1, x2,−x3) =
ϕn(−x1,−x2, x3). This implies,

∫

R1

ϕn(teIv)

ϕn(t)
e−Ij.vT

dv =

∫

Rk

ϕn(teIv)

ϕn(t)
e−Ij.vT

dv,

where k ∈ {2, 3, 4}. Now,

∫

R1

ϕn(teIv)

ϕn(t)
e−Ij.vT

dv

af (x)=
ri
nl

(4.37)
=

∫

R1

eI(i−j).vT −nl

2r v.Bf (t).vT +O(nδ3)dv. (4.38)

The change of variable y :=
√

nl
r
v in Eqn(4.38) gives,

∫

R1

ϕn(teIv)

ϕn(t)
e−Ij.vT

dv =

(
r

nl

) 3
2

∫

R′

1

e−Iu.yT − y.Bf (t).yT

2 (1 +O(n− 1
5 ))dy, (4.39)
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where R′
1 = [−

√
l

r
n

1
10 ,
√

l

r
n

1
10 ]3. Using Eqn(4.34), Eqn(4.35) in Eqn(4.39)

gives,

∫

R1

ϕn(teIv)

ϕn(t)
e−Ij.vT

dv =
(
r

nl

) 3
2

O(n− 1
10 )

+
(
r

nl

) 3
2

√

(2π)3

|Bf (t)|e
−u.Bf (t)−1.uT

2 (1 +O(n− 1
5 )). (4.40)

Recall that,

∫

R5

∣
∣
∣
∣

ϕn(teIv)

ϕn(t)
e−Ij.vT

∣
∣
∣
∣
dv =

∫

R5

∣
∣
∣
∣

f(teIv)

f(t)

∣
∣
∣
∣

nl

r

dv.

Further f(t) is a 3-variable polynomial of finite degree. Let f(t) =
∑

k b(k)t
k.

Then by some algebraic manipulation we get,

∣
∣
∣
∣

f(teIv)

f(t)

∣
∣
∣
∣

2

= 1 −
∑

k 6=l b(k)b(l)t
k+l(1 − cos

(
(k − l).vT

)

f(t)2
. (4.41)

Also f(t) has 1, t21, t
2
2, t

2
3 as its summation terms and in R5 at least one of

the variable vk satisfies vk /∈ [−δ, δ] where k ∈ {1, 2, 3}. This with Eqn(4.41)
implies that for some positive constants c, c1,

∫

R4

∣
∣
∣
∣

f(teIv)

f(t)

∣
∣
∣
∣

nl

r

dv ≤ π3(1 − c1δ
2)

nl

2r = π3(1 − c1n
− 4

5 )
nl

2r ,

= O(e−cn
1
5 ).

By combining the above steps we get,

∣
∣
∣
∣
∣

(
nl

r

) 3
2
∫

R

ϕn(teIv)

ϕn(t)
e−Ij.vT

dv − 4

√

(2π)3

|Bf (t)|e
− 1

2u.Bf (t)−1.uT

∣
∣
∣
∣
∣

= O(n− 1
10 ). (4.42)

By using Eqn(4.33) in Eqn(4.42), we get

∣
∣
∣
∣
∣

(
nl

r

) 3
2 (2π)3an(j)tj

ϕn(t)
− 4

√

(2π)3

|Bf (t)|e
− 1

2u.Bf (t)−1.uT

∣
∣
∣
∣
∣

= O(n− 1
10 ). (4.43)

The approximation of coef(f(x)
nl

r , xi) is obtained by substituting j = i (which
implies u = (0, 0, 0)) in (4.43). Also for the local limit theorem to hold we

need in (4.43) that e
1
2u.Bf (t)−1.uT

n− 1
10 = o(1). For our application choosing

‖u‖ = O((lnn)
1
3 ) suffices.



Existence Proofs of Some EXIT

Like Functions 5
The chapter is organized in the following way. An introduction is given in
Section 5.1. Relevant definitions and the statement of Krasnoselskii-Rabinowitz
(KR) theorem is given in Section 5.2. Some examples are given in Section 5.3
for which existence of EXIT like function is proved by the KR theorem. We
conclude with a discussion in Section 5.4.

5.1 Introduction

Consider transmission over a BMS channel family using a binary LDPC en-
semble. Let the decoder be any symmetric message-passing decoder as defined
in [10]. The performance of such a combination can be analyzed in the limit of
infinite blocklength by the density evolution recursion which has the following
form:

al = G(c, al−1), (5.1)

where al−1(x) is the density of messages in the (l − 1)th iteration, al(x) is the
density of messages in the lth iteration and c(x) is the channel log-likelihood
density. We say that a (channel, message) density pair (c, a) is a fixed point of
the map G if

a = G(c, a).

The fixed points are of interest to us as for some cases (like the BP decoder)
the performance is determined by means of the fixed points of the map G.

An EXIT like curve for a given combination of a code ensemble, BMS
channel family and a symmetric decoder is a function of the fixed point pairs
(c, a) of the corresponding density evolution map. In general the density a
is infinite dimensional. So, to have a convenient parametrization of the fixed
point pairs (c, a) we project the density a to one dimension by a functional of

77
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a. Consider the BP decoder. The functional can be the entropy H(a) of the
density a, which is given by,

H(a) =

∫ ∞

−∞
a(x) log2

(
1 + e−x

)
dx.

The entropy functional is one among the many choices e.g., the error probabil-
ity, the Battacharya parameter etc. Thus in order to compute the EXIT like
function for the BP decoder and a BMS channel family, we need to compute
all the fixed point density pairs (c, a). This corresponds to H(a) taking value
in the range [0, 1].

For the BP decoder, let us give the example of transmission over the BEC
using LDPC ensemble with degree distribution (λ, ρ). The density evolution
recursion is

al = ǫλ (1 − ρ(1 − al−1)) .

Note that the message density al in this case is a scalar which keeps track of
the probability of erasure messages. The fixed point pairs for this recursion
can be easily computed and are given by (ǫ(x), x), where

ǫ(x) =
x

λ(1 − ρ(1 − x))
, (5.2)

with λ(x) =
∑
λix

i−1. The Extended BP (EBP) GEXIT function introduced
in [1] for BEC is an example of an EXIT like function. The EBP GEXIT
function for BEC is given by

(ǫ(x),Λ (1 − ρ(1 − x))) , x ∈ [0, 1],

where Λ(x) =
∑

Λix
i, {Λi} is the degree distribution of variable nodes from

node perspective and ǫ(x) is defined in Eqn(5.2). Thus the EBP GEXIT func-
tion for BEC is a parametric function defined over a complete set of fixed points
of the density evolution map. By a complete set we mean that the entropy of
fixed points takes all the values from zero to one. The EBP GEXIT function for
BEC encodes both the behavior of the BP as well as the MAP decoder as was
shown in [1]. A generalization of the EBP GEXIT function for general BMS
channels was introduced in [2]. It is conjectured that again the EBP GEXIT
function completely characterizes the behavior of the BP and the MAP decoder
for general BMS channels. The density evolution map for BP decoding over
general BMS channel is given by

al = c⊗ λ (ρ(al−1)) ,

where λ(a) =
∑

i λia
⊗(i−1) and ρ(a) =

∑

i ρia
⊞(i−1). The operator ⊗ is the

convolution operator and ⊞ is the check node side convolution defined in [12].
Note that unlike the case of BEC, where the fixed point pairs can be computed
explicitly, no such characterization exist in the general case. However, the fixed
points pairs can be computed numerically. Figure 5.1 shows the EBP GEXIT
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Figure 5.1: EBP GEXIT function for λ(x) = 0.25x+0.75x7, ρ(x) = x7 and BSC.

function for the degree distribution pair (λ(x) = 0.25x + 0.75x7, ρ(x) = x7),
assuming that transmission takes place over the Binary Symmetric Channel
(BSC). Note that this curve smoothly connects the point (1, 1), corresponding
to the channel BSC with crossover probability 0.5, with the point (hstab, 0),
where hstab corresponds to that channel parameter at which the coding system
changes its stability behavior. More precisely, hstab is the entropy of the channel
log-likelihood density c(x) whose Battacharya parameter B (c) is equal to

B (c) =
1

λ′(0)ρ′(1)
,

where

B (c) =

∫ ∞

−∞
c(x)e−

x
2 .

The curve in Figure 5.1 was computed using a procedure suggested in [2]. This
procedure guarantees in general the existence of a fixed point density for every
point on the vertical axis. Unfortunately, it does not guarantee that the set of
fixed points so computed forms a smooth one-dimensional manifold.

It can be easily shown that the fixed point pairs which are reached by
running the density evolution recursion are ordered by physically degradation.
However, there are also the fixed points which are not reachable by the den-
sity evolution recursion. For example, in Figure 5.2 we plot the EBP GEXIT
function of regular (3, 6) code for transmission over the BSC. The branch from
point a to b represents fixed points which are not reachable by the density
evolution recursion. It is a challenging task to prove that the fixed points not
reachable by density evolution recursion are also ordered by physical degrada-
tion. Numerically calculation of fixed points suggests this to be true. Such a
property, however, is required in order to complete the theory of EBP GEXIT
functions. E.g., it is known that if the curve is smooth then the area it encloses
is equal to the rate of the code. Combined with the General Area Theorem
(first proved for the BEC in [47] and then extended to the general case in [2])
this statement on the area gives rise to bounds on the MAP performance for
sparse graph codes. For the BEC it has been shown that in many cases the
bound is tight and it is conjectured to be tight not only for the BEC but also
in the general case.
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Figure 5.2: EBP GEXIT function for λ(x) = x2, ρ(x) = x5 and BSC.

The existence of the EBP GEXIT function is therefore a fundamental ques-
tion at the heart of the asymptotic theory of sparse graph codes. We introduce
tools from non-linear analysis, in particular the Krasnoselskii-Rabinowitz (KR)
bifurcation theorem which can be useful to prove the existence of EXIT like
curves in some cases.

5.2 Definitions and Theorem Related to the Existence of
Fixed Points

As discussed in the last section, it is a difficult task to prove the existence
of the EBP GEXIT curve for general channels. I.e., it is difficult to prove
that the set of fixed point densities of density evolution forms a differentiable
one-dimensional manifold.

Although we currently do not know how to prove the existence for the gen-
eral case, a fundamental theorem of non-linear analysis, called the Krasnoselskii-
Rabinowitz (KR) theorem ([48], [49]), can be helpful in some instances to es-
tablish the existence of an unbounded connected component of fixed points.
To be more precise: density evolution represents a non-linear map in the space
of densities. If we are given a degree distribution pair with a non-zero fraction
of degree-two variable nodes and a family of BMS channels, then this map has
a bifurcation point for that channel parameter which corresponds to the sta-
bility condition. In other words, consider the channel parameter for which the
linearization of the density evolution map around the density corresponding
to perfect decoding has its largest eigenvalue equal to one. Then this channel
parameter is a bifurcation point. Under some technical conditions the KR the-
orem then guarantees that there is a connected set of fixed points which starts
at this bifurcation point and which either extends to infinity or which connects
back to another bifurcation point. This is not quite as strong a statement as
we would wish: we are not guaranteed that this connected set forms a smooth
manifold, nor do we know that the curve connects to the fixed point corre-
sponding to the worst density and worst channel. Nevertheless, if the theorem
applies, we at least know the existence of the EBP GEXIT curve locally around
the stability point. Before we can show some cases where the KR theorem can
be applied let us quickly review the main notation and the main statement.
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We denote a generic Banach space by X (e.g., X = RN ). We denote
elements of X in boldface letters, i.e., x ∈ X . Before defining a bounded
linear operator on X , we define a bounded set. A set S ⊂ X is bounded if

||x|| ≤ δ, ∀x ∈ X,

where δ > 0. A linear operator T : X → X is bounded if, for any bounded
subset B of X , the image T (B) is also bounded. Let Nn(λ) denotes the null
space of

(
I − T

λ

)n
, where λ ∈ R, I is the identity map and n is a positive

integer. Then for an eigenvalue λ of T , the multiplicity of λ is defined as:

max
n≥1

{Dimension (Nn(λ))} .

By [48, Thm 16.1], the multiplicity of an eigenvalue is finite. We denote the
space of bounded linear operators from X to X by L(X).

We are interested in maps of the form G : R×X → X . The first argument
γ of G(γ,x) is called the parameter. In our setting the parameter will be the
channel parameter (e.g., the erasure probability of the BEC or the cross-over
probability for the BSC). We recall the following definitions:

• Completely Continuous (CC) Map: A map G : R ×X → X is CC if it
maps every bounded set A of R ×X to a relatively compact set in X .

• Frechet differentiable: Let G : R×X → X be a map such that G(γ,0) =
0. G is Frechet differentiable at x = 0 if there exists T ∈ L(X) such
that, given ǫ > 0 and an interval [γ0, γ1] of R, there exists δ > 0 with the
property that ||y|| < δ implies

||G(γ,y) − γTy||
||y|| < ǫ

for all γ ∈ [γ0, γ1]. Note that δ depends on both the choice of interval
and the value of ǫ. We say that γT is the Frechet derivative of G at 0.

We denote the set of non trivial fixed points of G by S = {(γ,x) : G(γ,x) =
x,x 6= 0} and the closure of S by S. If a point (µ,0) ∈ S, then µ is called a
bifurcation point for the solutions to G(γ,x) = x.

Theorem 1 (KR Theorem). [48, Theorem 17.8] Let X be a Banach space and
let G : R ×X → X be a map. Let S = {(γ,x) : G(γ,x) = x,x 6= 0} be the set
of non trivial fixed points of G and let S denote the closure of S. Assume that
the following hypothesis holds.

1. G(γ,x) is a completely continuous map.

2. G(γ,x) is Frechet differentiable at 0, with Frechet derivative γT .

3. Let 1
µ be an eigenvalue of T which is of odd algebraic multiplicity.
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Then there exists a maximal closed connected subset Cµ of S which contains
(µ,0) and one of the following is true.

1. Cµ is unbounded in R ×X.

2. Cµ contains (µ∗,0) for some other bifurcation point µ∗ 6= µ.

R

X

µ µ∗

Cµ

Cµ

Figure 5.3: The solid curve shows how the component Cµ would look like if the
first conclusion of theorem holds and the dotted one shows the how the component
Cµ would look like if the second conclusion holds.

A graphical representation of the KR theorem is shown in Figure 5.3.
Our basic plan of attack is the following. In our setting x will denote a

density, and G will be the density evolution map. We want to parametrize
the space in such a way that 0 denotes the desired fixed point corresponding
to perfect decoding. The parameter µ will parametrize the channel. If we
can show that the linearization of the density evolution map around 0 has
eigenvalue 1/µ, where µ denotes the channel parameter which corresponds to
the stability condition, and if the linearization fulfills the desired technical
conditions, then there is a connected component of fixed-points which either
extends to infinity or is connected to another bifurcation point. At least locally,
we will therefore have proved the existence of a connected component of fixed
points.

In the sequel it is also good to know the following fact.

Theorem 2. [48, Theorem 17.4] Let G : R × X → X be a completely con-
tinuous and Frechet differentiable at 0, with derivative γT . If 1

µ is not an
eigenvalue of the compact linear operator T , then there exist ǫ, η > 0 such that
G(γ, x) 6= x for all (γ, x) for which |γ−µ| < ǫ and 0 < ||x|| < η. In particular,
µ is not a bifurcation point for the solutions to G(γ, x) = x.

We also use the following terminology in the rest of this chapter. Let
G : R×RN → RN be a map of the form G = {Gi}N

i=1, where Gi : R×RN → R
is a multivariate polynomial in the components of x. The map Gi can be
written as Gi(µ,x) = G1

i (x) + µG2
i (x), where Gj

i : RN → R, j ∈ {1, 2}. Then
we say that G is a vector polynomial map.
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5.3 Examples

In principle, we would like to apply the KR theorem directly to the BP or min-
sum decoder. But there are some technical conditions that make the direct
application difficult. To give an example of these technical difficulties, the
bifurcation point for the BP decoder appears when the Battacharyya parameter
is equal to 1

λ′(0)ρ′(1) . This suggest that the Battacharyya parameter should

play the role of the parameter in the setting of the KR theorem. The theorem
requires that the parameter γ takes on values in R and not only on [0, 1].
Therefore, we can not just work in the space of symmetric densities (for which
the Battacharyya parameter is in the range [0, 1]) but we are required to extend
the space. How this is best done is currently an open question. Because of
these technical difficulties, we consider quantized decoders. First we show the
application of the KR theorem to the simplest possible case.

Example 1 (BP Decoder for Binary Erasure Channel). It is instructive (and
easy) to analyze the fixed points of the density evolution map for the BEC(ǫ).
Consider a degree distribution pair (λ, ρ) with λ′(0)ρ′(1) > 0. The density
evolution recursion reads

xl = ǫλ (1 − ρ (1 − xl−1)) .

We take the space X to be X = R and set G(ǫ, x) = ǫλ (1 − ρ (1 − x)). Here the
erasure probability ǫ plays the role of the parameter. As G(ǫ, x) is a polynomial
map, it is completely continuous by Lemma 33 and Frechet differentiable by
Lemma 34. From Lemma 34, the Frechet derivative of G(ǫ, x) is given by
ǫTx = ǫλ′(0)ρ′(1)x. Thus the parameter ǫ appears multiplicatively, as required
by the KR theorem.

Trivially, λ′(0)ρ′(1) is the eigenvalue of the operator T and this eigen-
value has multiplicity one (the space is only one-dimensional), which is odd.
Since by assumption λ′(0)ρ′(1) > 0, this eigenvalue is strictly positive. Thus
1/ (λ′(0)ρ′(1)) is a bifurcation point. As there can be only one eigenvalue of
T , there can be at most one bifurcation point (Theorem 2). Thus the first
conclusion of Theorem 1 holds true: the connected component of fixed points

containing the bifurcation point
(

1
λ′(0)ρ′(1) ,0

)

is unbounded.

Of course, for this simple example we even have an explicit characteriza-
tion of this connected set of fixed points and an application of the powerful
KR theorem is not needed. But for only slightly more elaborate examples an
explicit characterization is typically no longer available.

Consider now transmission over the BSC with transition probability p and

min-sum (MS) decoding. For iteration l, let M
(l)
m−>n be the message sent

from check node m to variable node n and M
(l)
n−>m be the message sent from

variable node n to check node m. We denote the set of neighbors of a node
m by N (m). If we assume that we represent messages as log-likelihood ratios
then the processing rules in each iterations are as follows:
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1. Processing rule at check nodes—for each m and each n ∈ N (m),

M
(l)
m−>n =

∏

n′∈N (m)n

sgn
(

M
(l)
n′−>m

)

minn′∈N (m)n

∣
∣
∣M

(l)
n′−>m

∣
∣
∣ (5.3)

2. Processing rule at variable nodes—for each n and each m ∈ N (n),

M
(l)
n−>m = Ln +

∑

m′∈N (n)m

M
(l−1)
m′−>n, (5.4)

where Ln denotes the initial log-likelihood ratio received by node n.

We claim that there exists a one-to-one mapping between the messages of
the min-sum decoder and the set of integers Z. More precisely, the messages
of the min-sum decoder are of the form i ln 1−p

p , i ∈ Z. This can be easily
seen by induction. The initial messages from the variable nodes to the check
nodes are ± ln 1−p

p . At the check nodes if all the incoming messages are of

the form i ln 1−p
p , then by inspecting the check node processing rule given in

Eqn(5.3) we see that the outgoing message is again of this form. At the variable
nodes, all the messages are added up which clearly preserve this property. We
can therefore equivalently formulate message-passing under min-sum on the
lattice Z by assuming that the initial messages are from the set {±1} and have
probabilities (1 − p) and p, respectively.

In order to be able to apply the KR theorem, below we consider bounded
versions of min-sum, i.e., we bound the absolute value of the messages to M ,
where M is a fixed integer. More precisely, we assume that message alphabet
is M = {−M,−(M − 1), · · · ,−1, 0, 1, · · · ,M − 1,M}. As mentioned before,
Mc = {−1, 1}. The message passing rule for the check node side is the same as
given by Eqn(5.3). On the other hand, to enforce the boundedness constraint,
we need to slightly modify the message-passing rule for variable nodes. For a
node of degree dv the rule is defined by:

Ψv (m0,m1, · · · ,mdv−1) =







∃i s.t. mi = M
M ∄j s.t. mj 6= −M

∃i s.t. mi = −M
−M ∄j s.t. mj 6= M

∃i, j s.t.
0 mi = −M,mj = M

Q
(
∑dv−1

i=0 mi

)

otherwise,

(5.5)

where the quantization function Q(x) = M if x ≥M , Q(x) = −M if x ≤ −M
and equal to x otherwise. Note that the exact rule for the case when both M
and −M are incoming to the variable node is not really important since this
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should hardly ever happen if M is large enough. This is because if M is large,
the quantized decoder will mimic more and more the min-sum decoder.

For future reference, we consider the ensemble with degree distribution
(
Λ(x) = 0.4x2 + 0.6x5,Γ(x) = x4

)
. It has design rate r = 0.05. The Shannon

threshold for this rate is pSh = 0.369. Table 5.1 shows the threshold values of
this ensemble for increasing values of M as well as the threshold under true
min-sum decoding. We see that the thresholds for finite M quickly converge
to the unbounded case. Note that this quantizer and the message passing

M 1 2 3 4 5 ∞
≈ p∗ 0.0319 0.0962 0.0974 0.1219 0.1318 0.148

Table 5.1: Thresholds of Λ(x) = 0.4x2 + 0.6x5, Γ(x) = x4 under quantized
min-sum decoding.

rules satisfy the symmetry conditions of [10]. Thus we can do the density
evolution under the all-one codeword assumption. Recall that the alphabet
has 2M + 1 elements. since the probability of the individual elements sums
up to one, we write the density evolution recursion G as a function of 2M
variables. We write the probability of the message with largest value in terms
of the probabilities of other messages. Thus, the underlying space is X = R2M

with x = {P(−M), . . . , 0, . . . ,P(M − 1)}. As can be easily seen, the density
evolution map is again a vector polynomial map. Thus such a map is completely
continuous by Lemma 33 and Hypothesis 1 of Theorem 1 is satisfied. The first
condition for the second hypothesis to hold true is that G (p,0) = 0. Note
that x = 0 implies that with probability one, the message is equal to M . Now
at the check node side if all the incoming messages are equal to M , then the
outgoing is also equal to M . The same holds true for the variable node side by
the definition of Ψv given in Eqn(5.5). Thus G (p,0) = 0 holds true. Also the
channel transition probability p appears only as p and 1− p. Thus the Frechet
derivative of the map is of the form pT +T ′, where both T and T ′ are elements
of R2M×2M . In order to satisfy Hypothesis 2 of Theorem 1, we need to modify
the density evolution map as the parameter p does not appear multiplicatively
in the map pT+T ′. To circumvent this problem, we use Lemma 35 and consider
the derived map whose Frechet derivative is p(I2M −T ′)−1T . This satisfies the
Hypothesis 2 of Theorem 1.

Example 2 (Min-Sum Decoder with M = 2). For our running example con-
sider M = 2. The Frechet derivative is of the form pT + T ′, where T ′ is
not identically zero. Fortunately (I4 − T ′)−1 exists. As mentioned before, by
Lemma 35 we need to study the eigenvalues of the matrix (I4 − T ′)−1T . The
matrix (I4 − T ′)−1T has eigenvalues 1

µ1
= 3.50027, 1

µ2
= −2.70249 and the

other two eigenvalues are zero. Both 1
µ1

and 1
µ2

have multiplicity one (i.e., the

multiplicities are odd). This implies that the KR theorem is applicable to both
the eigenvalues and at least one of the conclusion of the KR theorem must hold
true for both of them. In particular (µ1,0) and (µ2,0) are bifurcation points.
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Let Cµ1 and Cµ2 be the fixed point component containing µ1 and µ2 respec-
tively. Now by the KR theorem either the fixed point connected component Cµ1

and Cµ2 are unbounded or Cµ1 = Cµ2 .
We can compute the fixed points explicitly in this case. The result is shown

in Figure 5.4. Since the fixed points are elements of R4 we need to project them
into R in order to be able to plot them. We choose to apply the error probability
operator. As the density evolution is done assuming that the all-one codeword
has been transmitted, so the error probability operator sums up the component
corresponding to negative indices and adds to this sum half the weight of index
zero as it is like an erasure.

Pe (x) =

−1∑

i=−M

xi +
x0

2
. (5.6)

As we can see, the second conclusion of Theorem 1 holds, i.e., Cµ1 = Cµ2 = Cµ.
The fixed point connected component Cµ containing the point a= (µ1,0) =
(0.28569,0) also contains the point d= (µ2,0) = (−0.37003,0). In the com-
ponent Cµ, the branch from a to b is stable, b to c is unstable and c to d is
stable. The component C′ is stable. The threshold is p∗ = 0.0962. The fixed
point of iterative decoder at the threshold is represented by point e of the fixed
point component C′. Above the threshold, the fixed points of iterative decoder
moves upward along C′ as the channel transition probability p increases.

-0.4 -0.1 0.2 0.5
p0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pe (x)

a bc d

e

C′

Cµ

Figure 5.4: Fixed point components for 5 point quantizer.

Example 3 (Min-sum decoder with M = 3). For our running example we
consider M = 3. The Frechet derivative is again of the form pT + T ′. In this
case also the inverse (I6 − T ′)−1 exists. By Lemma 35, we need to study the
eigenvalues of (I6−T ′)−1T . The matrix (I6−T ′)−1T has the only non-zero real
eigenvalue as 1

µ = 2.09804 and its multiplicity is one. So the KR theorem is
applicable in this case. Note that as there is only one non-zero eigenvalue, there
can be at most one bifurcation point by Theorem 2. Thus the second conclusion
of KR theorem can not be true. This implies that the first conclusion holds:
there is an unbounded component Cµ of fixed point containing the bifurcation
point µ. In this case also we can compute this component explicitly. As the
fixed points are element of R6, in order to plot them we project them to one
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dimension by the error probability operator given in Eqn(5.6). The plot is shown
in Figure 5.5. The bifurcation point is a=(µ, 0.0) = (0.476636, 0.0). As far as
the stability of the fixed point in Cµ is concerned, the branch a to b is stable.
The fixed points in branch b to c is unstable and from point c onwards the fixed
points are stable. The point e represents the fixed point at which the iterative
decoder get stuck at threshold p∗ ≈ 0.0974. Above the threshold, the fixed points
of iterative decoder moves upward along Cµ as the channel transition probability
p increases.

-2.2 -1.4 -0.6 0.2 1.0 1.8
p0.0 a b

c

d

e
Cµ

0.2

0.4

0.6

0.8
Pe (x)

Figure 5.5: Fixed point components for 7 point quantizer.

Example 4 (Decoder with Erasure). The decoder with erasure was introduced
in [10]. The underlying channel is the BSC(p). On the variable node side the
message-passing rule for a node of degree l reads

Ψv (m0,m1, · · · ,ml−1) = sgn

(

m0 +

l−1∑

i=1

mi

)

.

The rule for a check node of degree r is

Ψc(m1, · · · ,mr−1) =

r−1∏

i=1

mi.

Note that for this decoder if there are degree two variable nodes then the thresh-
old is 0, i.e., 0 can not be a fixed point. To see this, suppose that all the in-
coming messages to variables nodes are equal to one. Then with probability p,
the outgoing message from a variable node is equal to 0. Thus the probability
of 0 is equal to λ2p. Hence we assume that λ2 = 0. For this example M = 1,
hence the underlying space is X = R2. The Frechet derivative of the density
evolution map can again be computed and it turns out that its only eigenvalue
is 2λ3ρ

′(1). But now this eigenvalue has even multiplicity. So we can not apply
the KR theorem to this case. Using results of [50], it is possible to show that
the conclusions of the KR theorem is still applicable to an eigenvalue of even
multiplicity. Numerical computation of fixed point suggest that indeed 1

2λ3ρ′(1)

is a bifurcation point. For example, in Figure 5.6 we plot the fixed point compo-
nent of (3, 6) regular ensemble. For this ensemble 2λ3ρ

′(1) = 10, so p = 0.1 is
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a bifurcation point. We can see from Figure 5.6 that point a which corresponds
to p = 0.1 is indeed a bifurcation point. The threshold for this ensemble is
p∗ = 0.0708.1 The point b represents the fixed point at which the decoder get
stuck at the threshold. The branch a to b is unstable. From b onwards the fixed
points are stable.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
Pe (x)

p0.0 ab

Figure 5.6: Fixed point component for the decoder with erasure for (3, 6) LDPC
ensemble.

5.4 Conclusion

We have shown how the tools of non-linear analysis can be used in proving the
existence of fixed points. Our ultimate goal is to understand the fixed point
structure of the BP and the min-sum decoder.

5.A Some Useful Lemmas

Lemma 33. Every vector polynomial map G : R × RN → RN is a completely
continuous map.

Proof. Consider any bounded set S in RN . As S is bounded, so will be all
the components Gi(S). Hence the set G(S) is also bounded. Clearly this
would imply that the closure G(S) is also bounded. In a finite dimensional
vector space a closed and bounded set is a compact. Hence G(S) is relatively
compact. Thus the map G is Completely continuous.

Lemma 34. Let G : RN → RN be a vector polynomial map such that G(0) =
0. Then G is Frechet differentiable. The Frechet derivative T of G is a matrix
whose entries are given by {tij} where 1 ≤ i, j ≤ N and

tij =
∂Gi

∂xj

∣
∣
∣
∣
x=0

.

1This assumes that in the first iteration we set the weight of the channel to 2 and in all

subsequent iterations to 1.



5.A. Some Useful Lemmas 89

Proof. Consider ||G(x) − Tx||. As |xi| ≤ ||x||, there is no linear term in
G(x) − Tx and G(0) = 0 implies that ||G(x) − Tx|| = o

(
||x||2

)
. Hence

||G(x) − Tx||
||x|| = o (||x||) .

This proves the lemma.

Note that Hypothesis 2 of Theorem 1 implies that the parameter γ must
appear multiplicatively in the Frechet derivative. But in many cases we see that
the Frechet derivative is of the form γT + T ′. The following lemma says that
in this case also the KR theorem can be applied provided the linear operator
I − T ′ is invertible.

Lemma 35. Let G : R × Rn → Rn be a vector polynomial map and Frechet
differentiable with Frechet derivative γT + T ′. Let us assume that (In − T ′)−1

exists. Let F (γ,x) , (In − T ′)−1
(G(γ,x) − T ′

x). Then F is a vector poly-

nomial map and Frechet differentiable with Frechet derivative γ (In − T ′)−1
T .

Also the set of fixed points of F is same as set of fixed points of G.

Proof. The fact that F is a vector polynomial map is obvious. For the Frechet
differentiability of F we need that F (γ,0) = 0. Now,

F (γ,0) = (In − T ′)
−1

(G(γ,0) − T ′0) = 0,

as G(γ,0) = 0. Now the Frechet derivative of (G(γ, x) − T ′x) is given by γTx.

This implies that the Frechet derivative of F (γ,x) is equal to γ (In − T ′)−1
T .

To see that F andG have the same set of fixed points, let x be a fixed point ofG.
Then G (γ,x)− T ′x = x− T ′x which implies (In − T ′)−1

(G (γ,x) − T ′x) = x

i.e. F (γ,x) = x.





Conclusion 6
In this thesis we have addressed three main problems. First we analyzed the
performance of NBLDPC codes over BEC decoded via the BP and the MAP
decoder. Then we considered the question of concentration of the weight dis-
tribution for regular binary LDPC ensembles. Finally, we address the problem
of the existence of the EBP GEXIT function.

Let us now discuss some problems which we consider to be important in
these set ups. For the BP decoding of NBLDPC codes over the BEC, an im-
portant question is whether is it possible to construct capacity achieving codes
for a given degree distribution by suitably choosing the edge labels. An affir-
mative answer to this question will give an alternate way of achieving capacity.
Another interesting problem is to find capacity achieving degree distributions
for a fixed alphabet size. The difficulty is that the density evolution recursion is
multi-dimensional. So, it is not amenable to analysis. However, finding capac-
ity achieving degree distributions for NBLDPC codes for a given alphabet size
yield degree distributions which have faster convergence to capacity compared
to the binary capacity achieving degree distributions.

It will be of interest to generalize the analysis of the peeling decoder given
in [7] to the setting of non-binary LDPC codes. Such an analysis will be
very useful for the generalization of the scaling laws of [51] in the setting of
non-binary LDPC codes. A generalization of the finite length optimization
method of [52] to NBLDPC codes can give codes which have better error floor
and waterfall performance. We observed that the Maxwell construction of [1]
seems to hold in the setting of NBLDPC codes. It will be of interest to give a
formal proof of the same.

For the problem of the concentration of the weight distribution, we have
obtained partial results. It will be of importance to prove the concentration
for every regular LDPC ensembles.

91



92 Conclusion

One of the most important open problem in iterative coding theory is to
construct capacity achieving codes for general channels. It is believed that
a better understanding of EBP GEXIT functions is a first step towards con-
structing capacity achieving codes for general BMS channels. Consequently,
the existence of the EBP GEXIT function is of fundamental interest.
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