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Abstract

The main goal in network information theory is to identify fundamental limits
of communication over networks, and design solutions which perform close to
such limits. After several decades of effort, many important problems still
do not have a characterization of achievable performance in terms of a finite
dimensional description. Given this discouraging state of affairs, a natural
question to ask is whether there are systematic approaches to make progress
on these open questions. Recently, there has been significant progress on several
open questions by seeking a (provably) approximate characterization for these
open questions. The main goal of approximation in network information theory
is to obtain a universal approximation gap between the achievable and the
optimal performance.

This approach consists of four ingredients: simplify the model, obtain opti-
mal solution for the simplified model, translate this optimal scheme and outer
bounds back to the original model, and finally bound the gap between what
can be achieved using the obtained technique and the outer bound. Using such
an approach, recent progress has been made in several problems such as the
Gaussian interference channel, Gaussian relay networks, etc. In this thesis, we
demonstrate that this approach is not only successful in problems of trans-
mission over noisy networks, but gives the first approximation for a network
data compression problem. We use this methodology to (approximately) re-
solve problems that have been open for several decades. Not only do we give
theoretical characterization, but we also develop new coding schemes that are
required to satisfy this approximate optimality property. These ideas could
give insights into efficient design of future network communication systems.

This thesis is split into two main parts. The first part deals with the ap-
proximation in lossy network data compression. Here, a lossy data compression
problem is approximated by a lossless counterpart problem, where all the bits
in the binary expansion of the source above the required distortion have to
be losslessly delivered to the destination. In particular, we study the multiple
description (MD) problem, based on the multi-level diversity (MLD) coding
problem. The symmetric version of the MLD problem is well-studied, and we
can directly use it to approximate the symmetric MD problem. We formulate
the asymmetric multi-level diversity problem, and solve it for three-description
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iv Abstract

case. The optimal solution for this problem, which will be later used to ap-
proximate the asymmetric multiple description problem, is based on jointly
compressing of independent sources. In both symmetric and asymmetric cases,
we derive inner and outer bounds for the achievable rate region, which together
with the gap analysis, provide an approximate solution for the problem. In par-
ticular, we resolve the symmetric Gaussian MD problem, which has been open
for three decades, to within 1 bit.

In the second part, we initiate a study of a Gaussian relay-interference net-
work, in which relay (helper) nodes are to facilitate competing information
flows over a wireless network. We focus on a two-stage relay-interference net-
work where there are weak cross-links, causing the networks to behave like
a chain of Z Gaussian channels. For these Gaussian ZZ and ZS networks,
we establish an approximate characterization of the rate region. The outer
bounds to the capacity region are established using genie-aided techniques that
yield bounds sharper than the traditional cut-set outer bounds. For the inner
bound of the ZZ network, we propose a new interference management scheme,
termed interference neutralization, which is implemented using structured lat-
tice codes. This technique allows for over-the-air interference removal, without
the transmitters having complete access to the interfering signals. We use
insights gained from an exact characterization of the corresponding linear de-
terministic version of the problem, in order to study the Gaussian network.
We resolve the Gaussian relay-interference network to within 2 bits. The new
interference management technique (interference neutralization) shows the use
of structured lattice codes in the problem.

We also consider communication from a source to a destination over a wire-
less network with the help of a set of authenticated relays, and presence of an
adversarial jammer who wishes to disturb communication. We focus on a spe-
cial diamond network, and show that use of interference suppression (nulling)
is crucial to approach the capacity of the network. The exact capacity charac-
terization for the deterministic network, along with an approximate character-
ization (to within 4 bits) for the Gaussian network is provided.

The common theme that binds the diverse network communication prob-
lems in this thesis is that of approximate characterization, when exact resolu-
tions are difficult. The approach of focusing on the deterministic/lossless prob-
lems underlying the noisy/lossy network communication problems has allowed
us to develop new techniques to study these questions. These new techniques
might be of independent interest in other network information theory problems.

Keywords: network information theory, approximation, degraded message
broadcast, multi-level diversity coding, multiple description coding, multiple
unicast over deterministic/Gaussian network, relay-interference network, inter-
ference neutralization, structured codes, adversarial jamming over network.



Résumé

L’objectif principal de la théorie de l’information des réseaux est d’identifier les
limites fondamentales de la communication dans les réseaux et d’explorer des
solutions qui atteignent de telles limites au plus près. Après plusieurs décennies
d’efforts, de nombreux réseaux n’ont toujours pas trouvé de caractérisation
simple en termes de performance. Etant donné cet état de fait, une question
naturelle consiste à se damnder s’il existe des approches systématiques pour
progresser sur ces questions ouvertes. Récemment, des progrès significatifs ont
été accomplis dans cette direction, qui permettent d’obtenir une caractérisation
approximative des systèmes étudiés. L’objectif principal de l’approximation
dans la théorie de l’information des réseaux est d’obtenir des écarts de nature
universelle entre les performances atteignables et le rendement optimal.

Cette approche se compose de quatre ingrédients: simplifier le modèle,
obtenir la solution optimale pour le modèle simplifié, ramener ce schéma op-
timal au modèle original, et fianlement majorer l’écart entre ce qui peut être
atteint et la borne supérieure sur le rendement. En utilisant une telle approche,
des progrès ont été accomplis récemment concernant plusieurs problèmes, tel
que le canal gaussien avec interférence, les réseaux gaussiens avec relais, etc.
Dans cette thèse, nous démontrons que cette approche permet non seulement de
traiter des problèmes de transmission sur des réseaux bruités, mais permet aussi
d’obtenir des approximations pour un problème de compresssion de données
dans un réseau. Nous utilisons cette méthodologie pour reśoudre (de manière
approximative) des problèmes restés ouverts depuis plusieurs décades. En plus
de cette caractérisation théorique, nous développons de nouveaux systèmes de
codage qui sont nécesaires pour approcher la performance optimale.

Cette thèse est divisée en deux parties principales. La première partie
traite de la compression de données en réseau. Dans ce cas, un problème
de compression de donnés avec distorsion est approché par un problème sans
distorsion, où tous les bits dans l’expansion binaire de la source au-dessus
du niveau de distorsion doivent être livrés sans perte à la destination. En
particulier, nous étudions le problème de codage avec description multiple (MD)
en nous basant sur le codage avec plusieurs niveaux de diversité (MLD).

La version symétrique du problème MLD est étudiée en détail et nous pou-
vons directement l’utiliser pour approcher le problème symétrique MD. Nous
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formulons la version asymétrique du problème de codage avec plusieurs niveaux
de diversité (AMLD), et la résolvons pour le cas de trois descriptions. La so-
lution optimale de ce problème, qui sera utilisée plus tard pour approximer le
problème de codage avec description multiple asymétrique (AMD), est basée
sur la compression conjointe de sources indépendantes. Dans les deux cas,
symétrique et asymétrique, nous dérivons des limites inférieures et supérieures
pour la région de capacité qui, avec l’analyse de l’écart entre ces limites, four-
nissent une solution approximative au problème. En particulier, nous résolvons
à plus ou moins 1 bit près le problème de description multiple dans le cas
gaussien symétrique, resté ouvert depuis 30 ans.

Dans la deuxième partie, nous initions une étude d’un réseau gaussien avec
relais et interférences, dans lequel les relais ont pour but de faciliter le flux
d’information dans un réseau sans fil. Nous nous concentrons sur un réseau
à deux niveaux, avec de faibles liaisons transversales, ce qui correspond à un
réseau se comportant comme une châıne de canaux Z gaussiens. Pour les
réseaux gaussiens ZZ et ZS, nous établissons une caractérisation approxima-
tive de la région de capacité. Les bornes supérieures de la région de capacité
sont établies en utilisant des techniques approfondies qui permettent d’obtenir
de meilleures bornes qu’avec les techniques traditionnellement utilisées pour
borner la capacité des réseaux. Pour la borne inférieure du réseau ZZ, nous
proposons un nouveau système de gestion de l’interférence, appelé la neutrali-
sation des interférences, qui est mis en application en utilisant des codes struc-
turés dits “en treillis”. Cette technique permet d’éliminer l’interférence de
manière naturelle, sans que les émetteurs aient nécessairement accès aux sig-
naux d’interférence. Nous utilisons les connaissances acquises à partir de la
caractérisation exacte de la version linéaire et déterministe du problème, afin
d’étudier les réseaux gaussiens. Nous résolvons le cas du réseau gaussien avec
interférence et relais à plus ou moins 2 bits près. La nouvelle technique suggérée
pour traiter l’interférence (neutralisation des interférences) montre comment les
codes structurés “en treillis” sont utilisés dans le problème.

Nous considérons également la communication d’une source à une destina-
tion sur un réseau sans fil, à l’aide d’un ensemble de relais authentifiés, et la
présence d’un brouilleur qui veut perturber la communication. Nous nous con-
centrons sur un réseau spécial dit “en diamant”, et montrons que l’utilisation
de la suppression (ou annulation) des interférences est crucial pour approcher
la capacité du réseau. Une caractérisation exacte de la capacité est obtenue
pur le réseau déterministe, ainsi qu’une caractérisation approximative (à plus
ou moins 4 bits près) pour le réseau gaussien.

Dans cette thèse, le thème commun qui relie les différents problèmes de
communication dans les réseaux est celui de la caractérisation approximative
des performances, quand la résolution exacte du problème s’avère trop difficile.
L’approche qui consiste à se focaliser sur les problèmes déterministes/sans dis-
torsion sous-jacents aux problèmes bruités/avec distorsion nous a permis de
développer de nouvelles techniques pour étudier ces questions. Ces nouvelles
techniques présentent un intérêt potentiel pour d’autres problèmes en théorie
de l’information des réseaux.
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Introduction 1
Communication networks have revolutionized the way we live and work. How-
ever, most of the broadband access and flow of data currently is through wired
networks, such as optic fibers, telephone lines, cable, etc. Access through wire-
less networks is mostly limited to one-hop networks, where nodes communicate
to a base-station or hot-spot. The holy grail in network information theory is to
understand how multiple users can share a heterogeneous network (consisting
of wired and wireless components) efficiently, to characterize fundamental lim-
its of capacity for such situations, and to explore schemes which can approach
such limits. A complete theory of network information would have significant
impact on design of computer networks, and deployment of next generation of
communication networks.

Figure 1.1 depicts the block diagram of a two-terminal communication sys-
tem. In this system the source (which generates information) wishes to com-
municate to the destination. Information is some knowledge (e.g., data, result
of a measurement, etc.) wanted at some destination [1]. The source and desti-
nation are separated in space (e.g., in data transmission) or time (e.g., in data
compression). The channel is in fact the bridge, through which the information
can be sent from the source to the destination. Cellular base stations, Internet
ISP’s, and satellite are examples of communication systems who provide peo-
ple (consumers) with different type of information such as voice, image, video,
computer data, etc., demanded by the users.

A complete understanding of communication theory is only available for a
one-hop (two-terminal) communication system. This goes back to the math-
ematical framework established for understanding the problem of communi-
cation in the pioneering work of Claude E. Shannon [2] . Even though this
allows coding over potentially large blocks of symbols, the characterization of
capacity (maximum reliable transmission rate) for a two-terminal system was

1
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Destination DecoderChannelTransmitter  Encoder

reconstruction
Source

Source

Figure 1.1: A two-terminal communication system.

reduced to a finite dimensional optimization problem. This was a surprising
and insightful solution that has set a high standard for the field of information
theory for networks.

A communication network (see Figure 1.2), in general, consists of sources,
communication nodes (transmitter and/or receivers) who are equipped with
transmission devices, and destinations (consumers of information). The desti-
nation is interested in reconstructing the source information via what received
through the channel. There is a fundamental trade-off between the quality of
this reconstructed data and the cost of the communication. This cost is due to
different resources have to be utilized to perform communication. For instance,
we use channel coding which adds redundant information to the original one.
in order to deal with corruption by noise. A direct consequence of adding
redundancy is increasing the transmission time, transmission power, or com-
munication bandwidth. Reliable communication is typically desired in spite of
the fact that the channel is not perfect, and its output can be random and very
different from its input. Hence, it is a system design challenge to overcome the
unreliable behavior of the channel. Encoding is an effective tool of reducing
the cost of transmission and of combating the channel randomness to facilitate
communication by transforming the message before entering the channel. This
transformation has to be reversed at the output of the channel by the decoder.
An encoding/decoding system accomplishes reliable communication if the end-
to-end transform from the source to the receiver results in reconstructing the
transmitted message within certain demanded quality.

Transmission of information is the main purpose of a communication net-
work. It is a quite challenging problem due to the following issues: (i) Disparate
demand of users in terms of quality of sources, (ii) Disparate locations of sources
and sinks, (iii) Limited resources to be shared between different users, and (iv)
Complex signal interaction in a wireless medium.

The general problem is easy to state [3]: Given a set of sources and their
data generation speed (rate), user demands and required quality, and transmis-
sion limits imposed by the channel, whether or not the sources can be trans-
mitted to the sinks over the network. This problem involves centralized and
distributed source coding (data compression), and distributed communication
(finding the capacity region of the network) .

Many new problems may arise when we deal with complex networks: There
may exist more than one path which can be used to transmit data; How can
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Figure 1.2: A typical communication network, with sources, transmitter nodes,
and receivers. The dashed lines denote the direct access of the nodes to the sources
data, and solid lines denote connectivity between the nodes in the network.

we get benefit from this diversity in the physical network? A receiver may be
interested in different types of data generated and sent by different sources.
What is the optimal way to perform different transmissions simultaneously?
Various destinations might be interested in receiving a common data send by a
unique transmitter through disparate channels to the receivers. What can be
a good strategy for the transmitter to provide all of them with the demanded
data? Sources can be located separately, and a distributed encoding scheme
is needed to perform communication. Different types of information may flow
over a wireless network. Interaction between interfering signals is an important
problem need to be addressed in network information theory.

Problems in information theory can be expressed as optimization prob-
lems, that is, to minimize an objective function, subject to the constraints
imposed by the network, and user demands. A direct solution for an informa-
tion theoretic problem allows coding over large blocks of symbols. However,
such characterization typically does not give significant insight, since first, such
infinite-dimensional mathematical expression cannot be evaluated, and second,
they do not give an engineering insight about practical strategies can be used
in such situations. However, a single letter characterization1 is only available
for simple networks, which gives limited impact to engineering practice.

1versus a multi-letter characterization, which involves an optimization over some vector
form of random variables whose length can be arbitrarily large. More formally, it is suggested
by Csiszár and Körner [1] to define it through the notion of computability, i.e., a problem
has a single-letter solution if there exists an algorithm which can decide if a point belongs to
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Several new problems have been also arisen by generalization of Shannon’s
point-to-point systems to complex communication networks. A network com-
munication is characterized by several objects: (a) what are the sources? (b)
what is the demand and structure? (c) what are the probabilistic channels?
(d) what quality of source reconstruction is demanded? and (e) what is the
cost of communication? On the other hand, a wide range of applications and
connections from network information theory to other research fields, such as
computer science, control theory, machine learning, biology and genome se-
quence analysis are discovered. However, in spite of huge effort of various
researchers, the general problem is still unsolved.

1.1 Approximation

Unique among many engineering fields, information theory aims for and al-
most demands exactly optimal solutions to infinite-dimensional design prob-
lems. Such a high standard is achieved by Shannon [2] in his analysis for
point-to-point systems. After more than 40 years of effort, meeting such a
standard has proved to be far more difficult when extending Shannon’s theory
to networks. Approximation is an approach to deal with problems in network
information theory, whose main goal is to universally bound the gap between
what can be achieved using known techniques and the optimal solutions

We argue that progress can be made by seeking approximate solutions that
have a guarantee on the gap from the optimal solution. This can lead to a
novel approach for studying a large class of information theory problems that
have been intractable up to now.

Focusing on the practically important models of linear Gaussian channels
and Gaussian sources, this approach consists of three steps: (i) Simplify the
model; (ii) Obtain optimal solution for the simplified model; (iii) Translate the
optimal scheme and outer bounds back to the original model. For network
channel coding problems, such simplification is performed by replacing the
noisy channels by noiseless channels. For network source coding problems,
replacing the lossy distortion criterion by lossless one is useful to simplify the
problem. This approach also shows a surprising connection between Gaussian
problems and network coding problems in wired networks.

Approximation is not only an approach to attack difficult theoretical prob-
lems in communication theory, but it is also useful from an engineering per-
spective. In particular, we gain insights about practical coding schemes and
architecture from analysis of the simplified problem. It can be also used to
identify the underlying difficulty of the practical problems. Moreover, an ap-
proximate solution is good enough in many engineering designs, since in the-
ory we deal with models which can only approximate what happens in reality.
From a practical point of view, the goal of the approximation is to design sim-
ple architecture for systems who perform close the the performance of the best

an ε-neighborhood of the achievable rate region with polynomial complexity in 1/ε.
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schemes. However, further refinement for such proposed scheme is required in
a real engineering problem, based on the specific application.

Seeking approximate solutions in network information theory is a coun-
terpart for the approximation algorithms [4] in theoretical computer science.
While most of the optimization problems, including those arising in important
application areas are NP-hard, and therefore finding their exact solutions are
prohibitively time consuming2, developing polynomial time algorithms which
can approximate the optimal solution (within a constant gap) becomes a com-
pelling subject of scientific inquiry in computer science and mathematics. As
a similar fact, an approximate perspective to problems in information theory
can make them more obtainable.

The most important and fundamental problems in network information
theory can be listed [5] as: multiple access channel [6,7] , broadcast channel [8],
relay channel [9], interference channel [10], multiple description source coding
[11], and distributed lossy compression [12]. These can be taught as basic and
fundamental blocks of complex network communication problems. Except the
multiple access channel, which is fully solved [6,7], and the broadcast problem
whose capacity is known for degraded channels (including Gaussian broadcast
channel with arbitrary number of users) [13, 14], the other problems are still
open, despite of many years of effort.

1.2 Gaussian Channel Approximation

Due to the nature of the wireless networks, a signal sent by a node (transmitter)
is not only heard by the node of purpose, but also at any other node in proximity
of the transmitter. In such situation, flow of information about a message
plays a limiting role in communication, for the receiver which is not interested
in decoding that message. These limiting and undesired signals (flows) are
known as interference in the wireless communication literature. Information
transmission in a shared medium is one of the fundamental problems in wireless
communication. In such situation a wireless channel is shared between several
sources/transmitters and receivers, and several information flow are competing
for resources. Here, a fundamental question is how to manage interference in
a wireless network.

A first question in this context is the study of the Gaussian interference
channel, where the network consists of two pairs of source and receiver, each
source wishes to communicate its message to its own destination over a shared
environment (channel). Etkin et al. in [15] provided an approximate capacity
characterization for this problem. This characterization includes upper bound
for the capacity of the network, as well as encoding/decoding strategies based
on Han-Kobayashi scheme [10] , which perform close to be optimal. More-
over, it is shown that the gap between the fundamental information-theoretic
bound and what can be achieved using the proposed schemes is provably small.
Therefore, the answer to the problem can be approximated by anything within

2Unless P=NP.
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such narrow gap, although the exact answer is still unknown. This result is
further generalized to a wider class of interference channels in [16].

More recently, Avestimehr, Diggavi, and Tse considered the wireless relay
networks in [17], wherein a message has to be transmitted from one transmitter
to a receiver over a network with an arbitrary number of nodes and network
topology. Characterization of the capacity of such network has been an open
problem, even for very simple cases since 1979 [9] . They devised a new re-
laying strategy called quantizing-and-forward, which they demonstrated to be
within a constant number of bits from any optimal scheme. In particular, they
gave an approximate max-flow min-cut characterization for wireless network
information flow.

The relay network covers the unicast problem, where the information gener-
ated by the source is of interest for a single decoder. It can be generalized, in a
straight-forward manner, to the multi-cast scenario, wherein multiple receivers
exist in the network, but they are all interested in decoding the same message.
In a more general setup, not all the source messages are of interest for all the
receivers. In this situation, called multiple unicast scenario, the problem is
more challenging, since signals carry information about independent messages
may get mixed over the wireless network, and become completely useless.

The simplest example in this class of networks is the interference channel
problem, which has no relay (helper) node in its setup, as discussed above.
However, generalization of this result to a network with possible relay nodes
who can facilitate communication lies in a wider research area.

We formulate the relay-interference network in which different information
flows are sent through intermediate nodes in the network, i.e., transmission
is performed over multiple hops. In particular, we studied the network shown
in Figure 5.1 with two sources/transmitters, two relays (intermediate nodes),
and two receivers, where each of them is only interested in one of the source
messages. While the optimal and exact solution to the simpler problem with no
relay node is still unknown, our best hope is to provide approximate solution
to this problem. Our work establishes the first additive3 approximate result in
this context.

We apply the deterministic model proposed in [17] to this two-stage inter-
ference channel, where the goal is to accommodate multiple unicast flows over
the network. The simple layered structure of the networks helps us to focus
more on the transmission techniques, rather than synchronization issues, raised
in a non-layered network.

Investigation of these networks, suggests a new insight about the trans-
mission techniques, which can be applied in any network. We show that the
known techniques to deal with interference, such as interference separation and
interference suppression are useful to avoid or remove interference in different
regimes. Use of interference alignment is also shown to be essential for some
cases, even with two messages transmitted through the network. Moreover,

3Interesting results are known for the scaling law of capacity in ad hoc wireless networks
[18,19] which provide multiplicative approximation for the capacity region of large networks.
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we discovered a new interference management technique, we term interference
neutralization [20], in which interference is canceled over air, without the relays
necessarily decoding the transmitted signals. This strategy can be used when-
ever there exist more than one path for the interference. In such situations,
the signals carry information about a unique interfering message, can be tuned
to act against each other in order to reduce their total limiting effect.

Next, we apply the ideas developed in the analysis of the deterministic
relay-interference network to the Gaussian wireless problem to obtain an outer
bound for the achievable rates on this network [21]. We propose an encoding
scheme to imitate the transmission strategies used in the deterministic model,
which gives us an inner bound for the rate region of our interest. We show
that the gap between the inner and outer bounds obtained based on analy-
sis of the deterministic problem is bounded above by some universal constant,
independent of the problem parameters, and they lead to an approximate so-
lution for the problem. This is the first step for a better understanding the
relay-interference network, which is a general framework that can well model
the wireless communication networks. Extension of this study to more general
cases, would have significant impact on the design of future network genera-
tions.

1.3 Gaussian Source Approximation

The approximation for the Gaussian channel is performed by a deterministic
model, assuming the bits of the received signal above the noise level are com-
pletely clean and bits below are completely useless. In a dual way, a lossy
source coding problem with quadratic distortion measure can be approximated
by a lossless counterpart problem, where all the bits in the binary expansion of
the source above the required distortion have to be losslessly delivered to the
destination.

The Multiple Description Source Coding
In this problem a single source is encoded into several descriptions, and sent

to the receivers through perfect channels. However, each end user has access
to only a subset of the channels, and has to reconstruct the original source
with a certain level of quality. The goal is to design the descriptions such that
the more description are available at a user, the better reconstruction can be
performed. Understanding the relation between the statistical properties of the
source, minimum amount of information has to be stored in each description,
and the reconstruction quality of each user is the main scope of the multiple
description (MD) problem.

The problem is first studied in [11,22], where a complete solution is derived
for the case that there are only two descriptions, source is generated according
to a Gaussian distribution, and a quadratic distortion measure is used to quan-
tify the reconstruction quality. This problem has received significant attention
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since 1980 [23–29]. However, the 2-description quadratic Gaussian problem is
still the only case for which the problem is fully solved.

We discovered connection between this problem and a lossless underlying
problem, which is called multi-level diversity coding (MLD) problem [30]. In
this new problem, a family of independent sources have to be encoded into the
descriptions. Each user is assigned with a level which is an integer number,
and the user at level k have access to an arbitrary subset of the descriptions
of size k, and wishes to losslessly decode an incremental subset of the sources,
i.e., the sources 1, 2, . . . , k. It is worth mentioning that the MLD problem is
lossless, and all reconstructions are perfect, while MD problem is lossy and the
main goal is to improve reconstruction quality (see Figure 3.1).

The symmetric multiple description (SMD) problem refers to the situa-
tion where the reconstruction quality only depends on the number of available
descriptions. In contrast and in a general scenario, the quality of reconstruc-
tion can be different for each available subset of the descriptions, which is
called asymmetric multiple description (AMD) problem. We make progress on
the SMD problem with arbitrary number of descriptions, by providing a novel
bound on the descriptions’ rates required for a set of quality demands, and
proposing a simple coding scheme which can be used by the encoder. This is
shown that this scheme can approach the obtained fundamental limit [31]. We
show that the desired rate-distortion region is sandwiched between two poly-
topes, between which the gap can be upper-bounded by constants depending
on the number of descriptions, but independent of the descriptions’ rates, and
the distortion constraints. This approximation is based on the characterization
of the symmetric MLD problem, which turns out to be the underlying lossless
counterpart of the MD problem.

We also formulated the asymmetric multi-level diversity coding problem
(AMLD), and solved it for three descriptions [32]. New techniques, such as
source partitioning and jointly encoding of independent sources, have been
shown to be necessary and optimal for this problem. Based on this analysis,
we managed to approximate the MD rate region for a general set of distortion
constraints in [33]. This analysis leads to an outer and lower bound for the
rate region of our interest, which sandwich the optimal solution between two
polytopes with constant gap. Without the insight we obtain from the solving
the deterministic problem, developing such encoding scheme is difficult if not
impossible.

The Distributed Lossy Source Coding
In the distributed lossy source coding problem, several correlated sources

are observed at different nodes, and encoded separately. The obtained de-
scriptions sent to a joint decoder through perfect channels, whose task is to
reconstruct all the sources, each with a pre-determined quality. The main ques-
tion here is to characterize the rate of the descriptions based on the the set of
posed distortion constraints. This problem is only solved for two descriptions,
jointly Gaussian sources, and quadratic distortion measure [34]. However, an
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approximation approach can be used to derive inner and outer bound for the
rate region of the problem for various types of correlation [35, 36]. Again, this
result is based on the study of the underlying lossless problem, and utilizes
the obtained insights for bounding techniques as well as coding schemes. This
Analysis of this problem is beyond the scope of this thesis, and only pointed it
out here as another approximation result in network information theory.

1.4 Random versus Structured Coding

The work of Avestimehr et. al in [17] shows that a random operations at
the relay nodes which map the received signals to the transmitting signals are
optimal to achieve the capacity of the linear deterministic relay network. This
can be translated to (approximate) optimality of use of random codes in the
Gaussian relay network.

Also, the Han-Kobayashi scheme which is used as the encoding scheme in
the 2-user interference channel [15] allows arbitrary input distributions for mes-
sages. Therefore, it can be shown that the random Gaussian input distribution
is nearly optimal for this channel.

Both these results are consistent with the folklore in information theory that
“Gaussian inputs are good for Gaussian problems” [5]. However, this is not true
in general. One important observation through all these works is that random
Gaussian coding can be significantly away from being optimal. Structured
codes have to be used mostly when different messages/signals have to combined.
In a Gaussian interference channel with more than two users, using Gaussian
random code at the interfering transmitters, the aggregate interference may
cause a significant lost in the performance of the system. But, if instead we
use the same lattice [37, 38] code for the interfering users, then interference
alignment [39,40] can be utilized. This is because the addition of codewords will
remain on the lattice. Now the space in between the codewords is preserved for
user 1 to transmit information [5]. Thus, unlike in the two-user case, Gaussian
codes are no longer good when there are more users. It is shown in [41] that
lattice codes can achieve the capacity of the many-to-one Gaussian to within
constant gap independent of the channel gains.

A similar phenomenon happens in the relay-interference network. As men-
tioned before, in such networks, whenever there are more than one available
path for an interfering signal to get to a receiver, these paths can be utilized
to (partially) cancel the effect (power) of the interference over air, without
post-processing at the receiver. In order to do this, the signals have to be
strategically encoded at the transmitters and relay nodes such that the end-to-
end interference get neutralized at the receiver. This requires a code for which
the summation of two codewords be still a decodable codeword. Clearly, a ran-
dom code does not satisfy this property, and therefore fails in neutralization,
while this can be simply implemented using a structured lattice code [21].

The neutralization technique can be also used in distributed lossy source
coding. The encoding scheme proposed in [36] is such that the interfering bits
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in the binary expansion of the sources get neutralized during the decoding
process.

The optimal encoding scheme proposed for the asymmetric multi-level di-
versity coding problem consists of jointly encoding independent messages (in-
formation bits) using linear operations [32]. Roughly speaking, this is required
since a single resource (description rate) should be used to carry different inde-
pendent information for different users with their own side-information received
from other available descriptions. Such joint encoding of bit streams will be
translated to using a very structured code in the near optimal encoding scheme
proposed for the asymmetric multiple description problem [33]. More precisely,
the underlying code should have an additive group structure, that is, the addi-
tion of any two codewords remains in the codebook. It is clear that a random
code does not satisfying this property, and hence, may cause a large gap from
the outer bound.

As illustrated above, structured codes play an important role in many of
the near optimal coding schemes. This can be understood in a very unified
framework. A common phenomenon happens in all of the situations in which
a structured codes has to be applied: A single resource (bandwidth in wireless
link, description rate, etc.) has be shared between different sources of informa-
tion which need to be transmitted/stored; If such resource is only used alone
to reconstruct the encoded data, clearly it has to be physically partitioned
between different demands using traditional approaches such as time-sharing,
frequency division, etc. However if the role of this resource imposed by prob-
lem definition is to help other resources to reconstruct different sources, its
physical partitioning can be very far from being optimal. In such scenarios,
different sources can be encoded jointly using structured codes. Then although
this resource might be not useful alone to reconstruct any of the source data, it
can help other resources in various manners to decode different encoded data.

1.5 Organization

This thesis is organized in two parts. In Part I we study approximation in lossy
data compression, and multiple description problem in particular. Our results
for this problem are built on the lossless underlying problem, the multi-level
diversity coding. The symmetric version of the multi-level diversity coding
problem is a known result from the late 90’s [30, 42]. We formulate the asym-
metric multi-level diversity coding problem in Chapter 2. A complete solution
is provided for this lossless problem for the case of three descriptions. We
then build our result for the symmetric multiple description problem based on
the symmetric multi-level diversity coding in Chapter 3. We derive inner and
outer bounds for the rate region of the SMD problem. Showing a bounded
universal gap between the inner and outer bounds, we derive an approximate
solution for the problem. In particular, we show that a simple proposed scheme
based on successive refinement performs within 1.48 bits/sample of any opti-
mal scheme for any number of descriptions, when the symmetric rate point is
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considered. This will be generalized to the asymmetric multiple description
problem in Chapter 4, where we provide an approximate characterization for
the achievable rate region based on the result of Chapter 2.

The main goal in Part II is to understand the relay-interference problem.
We formulate the problem and analyze it in the linear deterministic model in
Chapter 5. Here, we provide a complete capacity region characterization for
the deterministic network. A new technique called interference neutralization is
introduced to manage interference. This technique is based on jointly encoding
of two independent messages into a single signal broadcasting from a node in
the network. It is shown that use of this technique is necessary to to achieve
the capacity of the network for some regimes of channel parameters. This
understanding will be later used in Chapter 6, where we analyze the wireless
Gaussian relay-interference network. We derive inner and outer bounds for the
capacity region of this network. Bounding the gap between these two regions,
we provide an approximate capacity region for the Gaussian network.

The interference neutralization technique is used in Chapters 5 and 6 in
order to provide enough degrees of freedom for two legitimate messages to be
received at their own destinations. This idea can be also used to neutralize a
jamming signal sent through the network by an adversarial node, whose role is
to distract data transmission from the source to the receiver in a wireless net-
work. We study a diamond network with an adversarial jammer in Chapter 7.
Here the source wishes to send its information to the receiver via two relay
nodes. The signal received at the relays is corrupted by the jamming signal.
However, we get benefit from existence of two paths for both legitimate and
jamming signal to neutralize the jamming part. A complete capacity charac-
terization is provided for the linear deterministic model of the network. The
analysis is later generalized to the Gaussian network, wherein we derive lower
and upper bounds with constant gap for the capacity of the wireless network.

Finally, we summarize the thesis in Chapter 8. The conclusion is followed
by discussion on various possible direction for future works. Most of the tech-
nical parts as well as the proof desalt are presented at the end of the thesis
in Appendices A-F. We rephrase the short claims before their proofs in the
appendix to seek of completeness. However, we avoid repeating longer claims,
and they are referred to the main chapter.





Part I

The Gaussian Lossy Source
Coding
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Overview

In this part we focus on network data compression problems, and explore ap-
proximation results for some long standing open questions. In particular, we
focus on the multiple description (MD) source coding problem.

Consider a live movie provider over Internet, which streams its program(s)
to a set of customers. Due to the packet loss in the network or overload on the
server, a connection to a single server can fail, and therefore, parts of the movie
never arrive to the customers. A strategy to improve the quality of service,
is to use several servers to encode and stream the movie over the network,
so that connection to any of them can provide enough packets to watch the
movie for the customers. However, most of the time, the packets sent from
multiple servers get reliably received to the users. A smart way to utilize such
redundant packets is to use them to improve the quality of the movie. In order
to that, a common data has to be encoded differently at several servers, so
that connection to any of them allow the customer to watch the movie, and
simultaneously, any connection to further servers can improve the quality of
data reconstruction for the users.

A natural question arises here is to characterize the amount of data (rate)
which has to be restored on each of the servers when a set of specific video
qualities (distortion) is demanded by users who have reliable access to differ-
ent subsets of the servers. This problem is terms as multiple description (MD)
source coding. Of course, any answer to this question is based on various
parameters, such as the statistical properties of stored data (source distribu-
tion) and how to quantify the quality of video (distortion measure). The only
unique setting of the problem for which a complete rate-distortion character-
ization is known is when (i) only two servers (descriptions) involved, (ii) the
source has a Gaussian distribution, (iii) and reconstruction quality is measured
using quadratic distance [11, 22]. In fact, this is difficult and long standing
problem in network information theory, which has been open since 1980.

In this part of the thesis, we focus on this problem with more than two de-
scriptions, for Gaussian distributed source4 and quadratic distortion. Though
completely characterizing the rate-distortion region of the Gaussian multiple
description problem is difficult, we provide an approximate characterization.

4Some of the results hold for general source distribution which are presented in Section 3.8
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Underlying this approximation is a lossless problem, called multi-level diversity
(MLD) coding.

The MD problem is called symmetric if the reconstruction quality demanded
by each user only depends on the number of received descriptions, and called
asymmetric otherwise. Our approximation result for the symmetric MD prob-
lem relies on the known results on the symmetric MLD problem [30,42], which
are reviewed in Section 2.1. We later use these results to establish inner and
outer bounds for the optimal solution of the symmetric MD problem in Chap-
ter 3. Moreover, we derive lower and upper bounds for the symmetric individ-
ual rate, that is when all the rates have to be the same. This resolves an open
question to within 1 bit.

We formulated and analyzed the asymmetric version of the MLD problem
for three descriptions in Chapter 2. This study reveals fundamental differences
between the optimal coding schemes of the symmetric and asymmetric setting.
Then, we use these results to attack the asymmetric MD problem in Chapter 4,
where we again derive inner and outer bound for the achievable rate region.
We further, show that the gap between these two bounds is small, which yields
an approximate solution for the problem.

In both symmetric and asymmetric cases, we use simple encoding strate-
gies to derive the lower bound. Our approximate characterization, shows that
such simple schemes perform close to unknown optimal scheme. This provides
a simple underlying architecture for designing such systems which can be of
interest from an engineering point of view. However, a practical system design
requires further refinements based on the specific application.



Multilevel Diversity Coding 2
With the explosive growth of packet transmission networks, such as the In-
ternet, the transmission of information over unreliable (erasure) channels has
recently received considerable attention. Such networks can be efficiently mod-
eled as packet erasure channels [43]. The information source is encoded into a
large number of packets, and transmitted over the network, where some of the
packets get randomly erased, and the remaining are delivered to the receiver
noiselessly. The decoder is expected to obtain a reconstruction of the source
based on the packets received.

A diversity coding system involves an encoders who observes an information
source and encodes it into different descriptions. There are multiple decoders,
each with access to a certain subset of the generated descriptions. Each decoder
has to reconstruct the source either perfectly or subject to a distortion criterion
[44].

This can be understood as coding for erasure channel. The first work on
diversity coding was done by Singleton [45] , who required that the decoders
reconstruct the source perfectly.

The Read-Solomon codes [46] are a very first class of diversity coding sys-
tems, who convert an information sequence of length K from a large enough
finite field into N symbols (N ≥ K), such the original sequence can be per-
fectly reconstructed at any decoder with access to at least K of the generated
symbols. This work is later generalized to the maximum distance separable
(MDS) codes by Singleton [45].

The symmetric multilevel diversity coding (symmetric MLD or SMLD) is in-
troduced by Roche [47] and Yeung [44]. In a multilevel diversity coding system,
the set of decoders are partitioned into multiple levels. The reconstructions of
the source by decoders within the same level are identical and are subject to
the same distortion criterion.

17
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In the symmetric (lossless) multi-level diversity coding problem [42], K
source sequences are encoded into K descriptions, which are sent to the de-
coders through noiseless channels. The source sequences have certain levels of
importance, indexed by 1, . . . , K, where the 1st source sequence is the most
important one. Each decoder has access to a non-empty subset of the de-
scriptions. The encoders have to generate the descriptions with certain rates
(lengths) such that each decoder with any k available descriptions be able to
losslessly reconstruct the k most important source sequences. A trivial ap-
proach is to encode all the sources in each of the descriptions. However, the
main goal here is to minimize the (weighted) sum of the rates (lengths) of the
descriptions.

The symmetric MLD problem was motivated by fault-tolerant storage for
disk arrays and for incremental priority encoding on packet erasure channels;
see [42] for details.

The problem of symmetric multi-level diversity coding for three levels has
been considered by Roche et. al. and the achievable rate region is completely
characterized in [42]. This work has been later extended by Yeung and Zhang
in [30], where they generalized the result for an arbitrary number of levels
and descriptions. These two papers show that the source separation coding1

is optimal for the symmetric problem. This means that each source sequence
can be compressed separately, and then the descriptions are just produced by
concatenating the compressed source sequences appropriately.

We formulate the asymmetric lossless multilevel diversity (AMLD) coding
problem. The problem can be understood as a generalization of the symmetric
MLD coding problem2, and it is naturally applicable in distributed disk storage
applications with asymmetric (unequal) reliabilities, in contrast to symmetric
(equal) reliabilities which motivate the SMLD problem. In this example, users
with access to different disks may have different demands. Similarly, for packet
erasure applications, the erasure probabilities for the sub-packets may not be
equal because the routes over which they are sent may have different reliabili-
ties. As such, in both applications, we may wish to utilize not just the number
of the encoders which are accessible, but also their identities, since the descrip-
tions are no longer symmetric. Therefore, the difference between the SMLD
and AMLD problem is that the levels of reconstruction are only determined by
the number of received descriptions in the former case, while the specific com-
binations of descriptions available at the decoders determine the reconstruction
levels in the latter case.

More precisely, 2K − 1 source sequences are encoded into K descriptions at
the encoder. The 2K − 1 decoders are ordered in a specific way, and the goal
of the encoder is to produce the descriptions such that the k-th decoder is able

1This coding scheme was originally called superposition coding, but here we adopt the
name source separation coding as suggested by Raymond Yeung, in order to avoid confusion
with the superposition coding in broadcast channels.

2A new notion of “ordering level” plays an important role in the characterization of the
AMLD problem, which is defined in Definition 2.5. It can be shown that the symmetric MLD
problem is subsumed by the AMLD problem for some of its possible ordering levels.
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to reconstruct the k most important source sequences, for k = 1, . . . , 2K − 1,
as shown in Figure 2.2.

Here, we only consider the 3-description AMLD case and provide a com-
plete characterization of the achievable rate region. In particular we show that
source-separation coding is not optimal for this problem, and the source se-
quences in different levels have to be jointly encoded (like in network coding)
in an optimal coding strategy. We also show that the scheme using linear
combination of these compressed sequences is optimal.

We note that various special cases of 3-description problem were studied
in3 [48], where, however, only no more than three information sources were
considered. The characterization we provide in this work strictly subsumes
those considered in [48].

The organization of the chapter is as follows. The first section is dedicated
to the SMLD problem wherein we review the problem statement and the main
known results from [30, 42]. Then, we formally define the AMLD problem in
Section 2.2. A general achievable region characterization for the 3-description
AMLD is presented in this section. We further specialize this result for a par-
ticular ordering. Next, we prove the converse part of the result for the AMLD
problem in Section 2.3, and complete the proof by providing the achievability
scheme and its analysis in Section 2.4.

2.1 The Symmetric Multilevel Diversity Coding

The symmetric MLD coding problem considered in [30, 42] can be described
as follows. Independent and identically distributed samples of a total of K
independent sources V1, V2, . . . , VK drawn from a (finite) alphabet V1 × V2 ×
· · ·× VK are observed at the encoder, and encoded into K descriptions.

2.1.1 Notation, Definitions, and Problem Formulation

We use V n
i to denote a length n sequence of Vi, namely, V n

i = (Vi,1, . . . , Vi,n).
Similarly, Ṽ n

i denotes the set of all n-tuples whose elements come from the
alphabet Ṽi. The Shannon entropy of the i-th source is denoted by H(Vi).

The decoders are indexed by binary vectors v ∈ {0, 1}K. A decoder v has
access to the i-th description if and only if vi = 1. Let

Ωα
K ! {v ∈ {0, 1}K : |v| = α},

be the set of decoders at level α, where |v| is the Hamming weight of the vector
v, and

ΩK !
K⋃

α=1

Ωα
K .

3We would like to thank R. Yeung for bringing this work to our attention.
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Figure 2.1: The 3-description symmetric multilevel diversity coding problem.

Moreover, for a given v ∈ ΩK , and a set of K objects G = {Γ1,Γ2, . . . ,ΓK},
we define Γv as the projection of G onto the the coordinates in v, that is
Γv = {Γi : vi = 1}. We also use short-hand notation IK to denote the set
{1, 2, . . . , K}.

The descriptions generated at the encoder should be such that any de-
coder α ∈ Ωα

K be able to perfectly reconstruct the first α source sequences,
V1, V2, . . . , Vα, in the usual Shannon sense. Figure 2.1 depicts the setup of this
problem for K = 3 descriptions.

A formal description of the problem is as follows. An (n, {Mi; i ∈ IK}, {∆v; v ∈
ΩK}) code, where IK = {1, 2, ..., K}, is defined by its encoding functions Fi

and decoding functions Gv

Fi : Vn
1 × Vn

2 × · · ·× Vn
K −→ {1, 2, . . . , Mi}, i ∈ IK , (2.1)

and decoding functions

Gv :
∏

j:vj=1

{1, . . . , Mj} −→ Vn
1 × Vn

2 × · · ·× Vn
|v|, v ∈ ΩK , (2.2)

where
∏

denotes a set product. We define

V̂ n
1 (v), . . . , V̂ n

v (v) = Gv(Fi(V n
1 , . . . , V n

K); i : vi = 1),

and

∆v =




|v|∑

i=1

dH(V n
i , V̂ n(v))



 ,
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where is the expectation operator, and dH(·, ·) is the Hamming distance,
which gives the number of positions at which V n

i and V̂ n(v) are different.
A K-tuple (R1, R2, . . . , RK) is called SMLD-achievable if for every ε > 0,

there exists for sufficiently large n an (n, (Mi, i ∈ IK), (∆v , v ∈ ΩK)) code such
that

1
n

log Mi ≤ Ri + ε, i ∈ IK ,

and

∆v ≤ ε, v ∈ ΩK .

The goal is to characterize RSMLD, the set of all achievable rates.

2.1.2 Main Result

The following theorem, extracted from [30] gives a full characterization for this
rate region.

Theorem 2.1 ([30], Theorem 1). RSMLD is the set of all non-negative rate
tuples R = (R1, . . . , RK) ≥ 0 such that

Ri =
K∑

α=1

rαi , i = 1, 2, . . . , K, (2.3)

for some rαi ≥ 0, α = 1, 2, ..., K such that
∑

i:vi=1

r|v|i ≥ H(V|v|), v ∈ ΩK . (2.4)

The main message of this theorem is that source separation coding is in
fact optimal for this problem. In this scheme, each source vector V n

α is encoded
independently of the other sources, and the i-th description is allocated rate
rαi for the α-th source source V n

α . Each description is then the collection of
encoded information (codes) produced for all the sources. Clearly the equality
in (2.3) can be replaced by ≥ without loss of generality.

2.2 The Asymmetric Multilevel Diversity Coding

In this section we formulate the asymmetric multilevel diversity (AMLD) coding
problem. The problem can be understood as a refined version of the symmetric
MLD coding problem.

The main difference between this problem and the symmetric MLD (SMLD)
problem is that the descriptions are no longer symmetric. Therefore, the de-
coders’ ability of reconstruction not only depend on the number of available
descriptions, but also on the specific subset of received descriptions.
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A K-description AMLD problem consists of 2K − 1 independent sources
whose independent and identically samples are observed at a encoder. The
encoder generates K descriptions based on the observed sources. The sources
are ordered according to some predetermined importance.

The 2K − 1 decoders are ordered in a specific way, and the goal of the
encoder is to produce the descriptions such that the k-th decoder is able to
reconstruct the k most important source sequences, for k = 1, . . . , 2K − 1.

A new notion of ordering for the decoders plays an important role in the
formulation of the AMLD problem, which is defined in Definition 2.5. It can
be shown that the SMLD problem is subsumed by the AMLD problem for some
specific ordering levels.

2.2.1 Notation, Definitions, and Problem Formulation

Let {(V1,t, V2,t, . . . , V2K−1,t)}t=1,2,... be an independent and identically distribu-
ted process sampled from a finite size alphabet V1×V2× · · ·×V2K−1 with time
index t. This can be considered as 2K − 1 pieces of independent data streams,
namely, {V1,t}, . . . , {V2K−1,t}, where each data stream is an independently and
identically distributed sequence. The data streams are ordered with decreasing
importance, e.g., consecutive refinements of a single source. We use V n

i to
denote a length n sequence of Vi, namely, V n

i = (Vi,1, . . . , Vi,n).
We also define the vector random variables Uj as Uj ! (V1, . . . , Vj) for

j = 1, . . . , 2K − 1, and U0 ! 0. Similarly, Un
j is used to denote length n

sequences of Uj. We may simply use Un to denote Un
2K−1 = (V n

1 , . . . , V n
2K−1)

for brevity. Note that Un
j is a two-dimensional array, whose elements are

independent of each other along both directions, i = 1, . . . , j, and t = 1, . . . , n.
The Shannon entropy of the source Vk is denoted by hk ! H(Vk). We also

denote the entropy of Uj by Hj , where the independence of sources Vk’s implies

Hj = H(Uj) = H(V1, . . . , Vj) =
j∑

i=1

H(Vi) =
j∑

i=1

hi. (2.5)

The AMLD problem can be described as follows. Consider 2K − 1 source
sequences which are fed to a single encoder. The encoder produces K descrip-
tions, denoted as Γ1,Γ2 . . . ,ΓK to encode the source sequences. The descrip-
tions are sent over K perfect channels. There are 2K − 1 decoders, indicated
by non-zero binary K-vector v ∈ ΩK , each has access to a non-empty subset
of the descriptions, Γv, and wishes to losslessly decode the source data streams
below a certain level, which is a function of the description set Γv. Figure 2.2
illustrates the problem setting for K = 3, and a specific decoding requirement
for the decoders.

Note that in the symmetric MLD problem, the decoders are naturally or-
dered according to the number available descriptions, whereas here in the asym-
metric MLD problem, the decodability requirement for decoders with the same
number of descriptions can be different. Therefore, we formally define the no-
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Figure 2.2: The 3-description asymmetric multilevel diversity coding problem for
ordering level L1.

tion of ordering to connect the decoding requirement of the decoders to their
available description subsets as follows.

Definition 2.2. Let u and v be two vectors in K . Define u ≤ v if and only
if ui ≤ vi for i = 1, . . . , K. Similarly, we use u ≥ v to denote ui ≥ vi for
i = 1, . . . , K. For binary vectors u ∈ {0, 1}K and u ∈ {0, 1}K, we write u ≤ v
if and only if vi = 0 implies ui = 0 for i = 1, . . . , K.

Remark 2.3. Note that using v, u ∈ {0, 1}K as subset indicators over a set
of size K, say G = {Γ1,Γ2, . . . ,ΓK}, u ≥ v is equivalent to Γu ⊆ Γv.

Definition 2.4. For any K ∈ and 1 ≤ j ≤ K, we denote by 1j(K) the
binary vector of length K with all zero elements except at the j-th position,
e.g., 12(5) = 01000.

Definition 2.5. A valid ordering level (or simply ordering) on the decoders of
an AMLD system, induced by an ordering function on their binary indicators,
is a one-to-one mapping L : ΩK −→ {1, . . . , 2K − 1} satisfying

(i) L (11(K)) < L (12(K)) < · · · < L (1K(K)),

(ii) u ≤ v implies L (u) < L (v).

The ordering level will be used to determine the decoding requirements of
the decoders, e.g., a decoder with a set of descriptions indicated by v needs to
decode the first L (v) source streams. Condition (i) is given to avoid permuted
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Table 2.1: The ordering level L1 for K = 3 descriptions.

v 100 010 001 110 101 011 111
L1(v) 1 2 3 4 5 6 7

Γ1︷ ︸︸ ︷

︸ ︷︷ ︸
Γ2

Γ1,Γ2︷ ︸︸ ︷

︸ ︷︷ ︸
Γ1,Γ2,Γ3

· · ·

· · ·
V n

1 V n
2 V n

3 V n
4 V n

5 V n
6 V n

7

Figure 2.3: Levels assigned to the description subsets determines the recoverable
source subsequences. The requirements corresponding to the ordering level L1 are
shown in this figure.

repetition of the levels, where without loss of generality, we assume an initial
ordering on the single description decoders. Condition (ii) is a natural fact
that if Γu is a subset of Γv, then the corresponding decoder can not do better
than what decoder v can. The inverse mapping L −1(k) is well defined, which
is the binary sequence v whose ordering level is k.

The following example illustrates an ordering level. We will also use this
particular ordering later when specializing the results for a particular ordering
is needed for clarification.

Example 2.6. For 3-description AMLD, the ordering level L1 is given in
Table 2.1. The setting of the AMLD problem for the ordering level L1 is shown
in Figure 2.2. Figure 2.3 shows the subset of source streams which should be
recovered by each subset of descriptions in L1 setting.

The following is a formal description of the AMLD problem. An (n, L , {Mi;
i ∈ IK}, {∆v; v ∈ ΩK}) AMLD-code is defined by a set of encoding functions

Fi : Vn
1 × Vn

2 × · · ·× Vn
2K−1 −→ {1, 2, . . . , Mi}, i ∈ {1, 2, . . . , K}, (2.6)

and decoding functions

Gv :
∏

j:vj=1

{1, . . . , Mj} −→ Vn
1 × Vn

2 × · · ·× Vn
L (v), v ∈ ΩK . (2.7)

We define

Ûn
L (v)(v) ! Gv(Fj(Un); j : vj = 1), (2.8)
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and V̂ n
i (v) is the corresponding part of Ûn

L (v)(v), for i ≤ L (v). The difference
between the reconstructed source sequence at decoder v and the original one
is defined as

∆v =
L (v)∑

i=1

dH(V n
i , V̂ n(v)).

A rate tuple RL = (R1, R2, . . . , RK) is called achievable for a prescribed or-
dering L , if for any ε > 0 and sufficiently large n, there exists an (n, L , {Mi, i ∈
IK}, {∆v; v ∈ ΩK}) AMLD-code such that

1
n

log Mi ≤ Ri + ε, i ∈ IK , (2.9)

and

∆v ≤ ε, v ∈ ΩK . (2.10)

The main goal in the asymmetric multilevel diversity coding problem is to
characterize RAMLD, the set of all achievable rate tuples (Ri; i ∈ IK) in terms
of the entropy rate of the source sequences and the given ordering level. We
denote such a rate region by RL

AMLD for a specific ordering.
In the rest of this chapter, we study the 3-description AMLD problem. We

provide a complete characterization of the achievable rate region. As a con-
sequence we show that unlike the symmetric MLD problem, source-separation
coding is not optimal here, and the source sequences in different levels have
to be jointly encoded (like in network coding) in an optimal coding strategy.
We also show that the scheme using linear combination of these compressed
sequences is optimal.

2.2.2 Rate Region Characterization for 3-Description AMLD

In this section we present the main results of the 3-description AMLD problem.
We state the theorems in a unified way which hold for all orderings. We then
specialize this rate region to the ordering L1 to facilitate understanding and
further discussion.

Note that since the number of descriptions K = 3 is fixed here, with slightly
abuse of notation, we may drop the variable K and use 1i instead of 1i(K).

Theorem 2.7. Let V = (V1, . . . , V7) be a given sequence of independent
sources with entropy sequence H = (H1, . . . , H7) = (H(V1), H(V1, V2), . . . ,
H(V1, . . . , V7)). For a given ordering level L , the rate region RL

AMLD(H) is the
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set of all non-negative triples (R1, R2, R3) which satisfy

Ri ≥ HL (1I), i = 1, 2, 3 (AMLD-1)
Ri + Rj ≥ Hmin{L (1i),L (1j)} + HL (1i+1j), i (= j (AMLD-2)

2Ri + Rj + Rk ≥ Hmin{L (1i),L (1j)} + Hmin{L (1i),L (1k)}

+ Hmin{L (1i+1j),L (1i+1j)} + HL (111), i (= j (= k
(AMLD-3)

R1 + R2 + R3 ≥ HL (100) + Hmin{L (110),L (001)} + HL (111), (AMLD-4)

R1 + R2 + R3 ≥ HL (100) +
1
2
HL (010) +

1
2
Hmin{L (110),L (101),L (011)}

+ HL (111). (AMLD-5)

In the following corollary, we specialize the bounds for the specific ordering
L1.

Corollary 2.8. For the ordering level L1, the achievable rate region of the
3-description AMLD problem is given by the set of all rate triples (R1, R2, R3)
which satisfy (Q1)-(Q11), on the top of the next page.

In the following we first prove the converse part of Theorem 2.7 for all order-
ings, and then the achievability part for ordering L1. Similar techniques can
be used straightforwardly to prove the achievability for all the other orderings,
and therefore complete the proof of Theorem 2.7.

2.3 AMLD: The Converse Proof

In this section we show that any achievable rate triple satisfies (AMLD-1)-
(AMLD-5). The following important lemma, which simplifies the proof of the
theorem, relates the entropy of the original source to the reconstructed one.

Lemma 2.9. Let v ∈ Ω3 be the indicator of one of the decoders, Γv ⊆
{Γ1,Γ2,Γ3} be the corresponding subset of descriptions available at the decoder,
and i ≤ j ≤ L (v). Then

H(Γv|Un
i ) ≥ H(v|Un

j ) + n(Hj −Hi − δn) (2.11)

where δn → 0 as n increases.

We will present the proof in Appendix A.1. Now, we are ready to prove the
converse part of Theorem 2.7.

The converse proof of Theorem 2.7. Let (R1, R2, R3) be any achievable rate
triple. and 1i be a single description with ordering level L (1i). Recall that
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R1 ≥ H(V1), (Q1)
R2 ≥ H(V1) + H(V2), (Q2)
R3 ≥ H(V1) + H(V2) + H(V3), (Q3)

R1 + R2 ≥ 2H(V1) + H(V2) + H(V3) + H(V4), (Q4)
R1 + R3 ≥ 2H(V1) + H(V2) + H(V3) + H(V4) + H(V5), (Q5)
R2 + R3 ≥ 2H(V1) + 2H(V2) + H(V3) + H(V4) + H(V5)

+ H(V6), (Q6)
2R1 + R2 + R3 ≥ 4H(V1) + 2H(V2) + 2H(V3) + 2H(V4) + H(V5)

+ H(V6) + H(V7), (Q7)
R1 + 2R2 + R3 ≥ 4H(V1) + 3H(V2) + 2H(V3) + 2H(V4) + H(V5)

+ H(V6) + H(V7), (Q8)
R1 + R2 + 2R3 ≥ 4H(V1) + 3H(V2) + 2H(V3) + 2H(V4) + 2H(V5)

+ H(V6) + H(V7), (Q9)
R1 + R2 + R3 ≥ 3H(V1) + 2H(V2) + 2H(V3) + H(V4) + H(V5)

+ H(V6) + H(V7), (Q10)

R1 + R2 + R3 ≥ 3H(V1) + 2H(V2) +
3
2
H(V3) +

3
2
H(V4) + H(V5)

+ H(V6) + H(V7). (Q11)

Un
0 = 0, and note that Ûn

L (1i)
(Γi) is a function of Γi. Thus

nRi ≥ H(Γi) = H(Γi|Un
0 )

(")
≥ H(Γi|Un

L (1i)
) + n(HL (1i) − δn)

≥ n(HL (1i) − δn). (2.12)

This proves (AMLD-1). Note that here and in the rest of this proof all the
inequalities labeled by (&) are due to Lemma 2.9.

Toward proving (AMLD-2), we can write

n(Ri + Rj) ≥ H(Γi) + H(Γj)
≥ H(Γi|Un

0 ) + H(Γj |Un
0 )

(")
≥ H(Γi|Un

L (1i)
) + H(Γj |Un

L (1j)
) + n

[
HL (1i) + HL (1j) − 2δn

]

≥ n
[
HL (1i) + HL (1j) − 2δn

]
+ H(Γi|Un

max{L (1i),L (1j)})

+ H(Γj |Un
max{L (1i),L (1j)})

≥ n
[
HL (1i) + HL (1j) − 2δn

]
+ H(Γi,Γj |Un

max{L (1i),L (1j)})
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(")
≥ n

[
HL (1i) + HL (1j) − 2δn

]

+ n
[
HL (1i+1j) −Hmax{L (1i),L (1j)} − δn

]
+ H(Γi,Γj |Un

L (1i+1j))

≥ n
[
Hmin{L (1i),L (1j)} + HL (1i+1j) − 3δn

]
. (2.13)

For proving (AMLD-3) we can start with

n(2Ri + Rj + Rk) ≥ 2H(Γi) + H(Γj) + H(Γk)
(")
≥ [H(Γi|Un

L (1i)
) + H(Γj |Un

L (1j)
) + n(HL (1i) + HL (1j) − 2δn)]

+ [H(Γi|Un
L (1i)

) + H(Γk|Un
L (1k)) + n(HL (1i) + HL (1k) − 2δn)]

≥ n
[
2HL (1i) + HL (1j) + HL (1k) − 4δn

]

+ H(Γi,Γj |Un
max{L (1i),L (1j)}) + H(Γi,Γk|Un

max{L (1i),L (1k)})
(")
≥ n

[
2HL (1i) + HL (1j) + HL (1k) − 4δn

]

+ n
[
HL (1i+1j) −Hmax{L (1i),L (1j)} − δn

]
+ H(Γi,Γj |Un

L (1i+1j))

+ n
[
HL (1i+1k) −Hmax{L (1i),L (1k)} − δn

]
+ H(Γi,Γk|Un

L (1i+1k))

≥ n
[
Hmin{L (1i),L (1j)} + Hmin{L (1i),L (1k)} + HL (1i+1j) + HL (1i+1k)

−6δn] + H(Γi,Γj,Γk|Un
max{L (1i+1j),L (1i+1k)})

(")
≥ n

[
Hmin{L (1i),L (1j)} + Hmin{L (1i),L (1k)} + HL (1i+1j) + HL (1i+1k)

−6δn] + n
[
HL (1i+1j+1k) −Hmax{L (1i+1j),L (1i+1k)} − δn

]

= n
[
Hmin{L (1i),L (1j)} + Hmin{L (1i),L (1k)}

+Hmin{L (1i+1j),L (1i+1k)} + HL (111) − 7δn
]
. (2.14)

Toward proving (AMLD-4) we can write

n(R1+R2 + R3) ≥ H(Γ1) + H(Γ2) + H(Γ3)
(")
≥ n

[
HL (100) + HL (010) + Hmin{L (110),L (001)} − 3δn

]

+ H(Γ1|Un
L (100)) + H(Γ2|Un

L (010)) + H(Γ3|Un
min{L (110),L (001)}

≥ n
[
HL (100) + HL (010) + Hmin{L (110),L (001)} − 3δn

]

+ H(Γ1,Γ2|Un
L (010)) + H(Γ3|Un

min{L (110),L (001)})
(")
≥ n

[
HL (100) + HL (010) + Hmin{L (110),L (001)} − 3δn

]

+ H(Γ1,Γ2|Un
min{L (110),L (001)})

+ n
[
Hmin{L (110),L (001)} −HL (010) − δn

]

+ H(Γ3|Un
min{L (110),L (001)})
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≥ n
[
HL (100) + 2Hmin{L (110),L (001)} − 4δn

]

+ H(Γ1,Γ2,Γ3|Un
min{L (110),L (001)})

(")
≥ n

[
HL (100) + 2Hmin{L (110),L (001)} − 4δn

]

+ n
[
HL (111) −Hmin{L (110),L (001)} − δn

]

≥ n
[
HL (100) + Hmin{L (110),L (001)} + HL (111) − 5δn

]
. (2.15)

We need to consider two different cases in order to obtain the other sum-
rate bound in (AMLD-5). First consider the case L (001) > L (110). Note that
this implies min{L (110), L (101), L (011)} = L (110). We have

n(R1+R2 + R3) ≥ H(Γ1) + H(Γ2) + H(Γ3)
(")
≥ n

[
HL (100) + HL (010) + HL (001) − 3δn

]

+ H(Γ1|Un
L (100)) + H(Γ2|Un

L (010)) + H(Γ3|Un
L (001))

= n
[
HL (100) + HL (010) + HL (001) − 3δn

]

+
1
2

[
H(Γ1|Un

L (100)) + H(Γ2|Un
L (010))

]

+
1
2

[
H(Γ1|Un

L (100)) + H(Γ3|Un
L (001))

]

+
1
2

[
H(Γ2|Un

L (010)) + H(Γ3|Un
L (001))

]

≥ n
[
HL (100) + HL (010) + HL (001) − 3δn

]
(2.16)

+
1
2

[
H(Γ1,Γ2|Un

L (010)) + H(Γ1,Γ3|Un
L (001)) + H(Γ2,Γ3|Un

L (001))
]

(")
≥ n

[
HL (100) + HL (010) + HL (001) − 3δn

]

+
1
2

[
H(Γ1,Γ2|Un

L (110)) + n
[
HL (110) −HL (010) − δn

]]

+
1
2

[
H(Γ1,Γ3|Un

L (001)) + H(Γ2,Γ3|Un
L (001))

]

(a)
≥ n

[
HL (100) +

1
2
HL (010) +

1
2
HL (110) + HL (001) −

7
2
δn

]

+
1
2

[
H(Γ1,Γ2|Un

L (001)) + H(Γ1,Γ3|Un
L (001)) + H(Γ2,Γ3|Un

L (001))
]

(b)
≥ n

[
HL (100) +

1
2
HL (010) +

1
2
HL (110) + HL (001) −

7
2
δn

]

+ H(Γ1,Γ2,Γ3|Un
L (001))

(")
≥ n

[
HL (100) +

1
2
HL (010) +

1
2
HL (110) + HL (001) −

7
2
δn

]

+ n
[
HL (111) −HL (001) − δn

]
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= n

[
HL (100) +

1
2
HL (010) +

1
2
HL (110) + HL (111) −

9
2
δn

]
, (2.17)

where in (a) we have used H(Γ1,Γ2|Un
L (110)) ≥ H(Γ1,Γ2|Un

L (001)), implied by
the assumption L (110) > L (110), and (b) is due to the conditional version of
Han’s inequality [3, page 491]. For the second case, i.e., L (001) < L (110),
we have from (2.16),

n(R1 + R2 + R3) ≥ n
[
HL (100) + HL (010) + HL (001) − 3δn

]

+
1
2

[
H(Γ1,Γ2|Un

L (010)) + H(Γ1,Γ3|Un
L (Γ3)) + H(Γ2,Γ3|Un

L (001))
]

(")
≥ n

[
HL (100) + HL (010) + HL (001) − 3δn

]

+
1
2

[
H(Γ1,Γ2|Un

min{L (110),L (101),L (011)})

+ H(Γ1,Γ3|Un
min{L (110),L (101),L (011)})

+ H(Γ2,Γ3|Un
min{L (110),L (101),L (011)})

+ n(3Hmin{L (110),L (101),L (011)} −HL (Γ2) − 2HL (001) − 3δn)
]

(c)
≥ n

[
HL (100) +

1
2
HL (010) +

3
2
Hmin{L (110),L (101),L (011)})−

9
2
δn
]

+ H(Γ1,Γ2,Γ3|Un
min{L (110),L (101),L (011)})

≥ n

[
HL (100) +

1
2
HL (010) +

3
2
Hmin{L (110),L (101),L (011)} −

9
2
δn

]

+ n
[
HL (111) −Hmin{L (110),L (101),L (011)} − δn

]

= n
[
HL (100) +

1
2
HL (010) +

1
2
Hmin{L (110),L (101),L (011)}

+ HL (111) −
11
2
δn
]
. (2.18)

Again we have used the conditional Han’s inequality in (c). Putting (2.17) and
(2.18) together, we obtain the bound (AMLD-5).

2.4 AMLD: The Achievability Scheme

In the following we will show that the inequalities (AMLD-1)–(AMLD-5) pro-
vide a complete characterization of the achievable rate region of the AMLD
problem. However, each individual case given in Table 2.2 needs to be con-
sidered separately, due to the specific strategy used in the coding scheme. We
may further divide each ordering into sub-regimes corresponding to the relative
order of the entropy of different sources in order to simplify the problem for
each case. For conciseness, we only present the analysis for the ordering level
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Table 2.2: The eight possible level orderings and corresponding sub-regimes.

Ordering Regime

L (100) < L (010) < L (001) < L (110) < L (101) < L (011) < L (111)

h3 ≤ h4

h4 ≤ h3 ≤ h4 + h5

h3 ≥ h4 + h5

L (100) < L (010) < L (001) < L (110) < L (011) < L (101) < L (111)

h3 ≤ h4

h4 ≤ h3 ≤ h4 + h5

h3 ≥ h4 + h5

L (100) < L (010) < L (001) < L (101) < L (110) < L (011) < L (111)
h3 ≤ h4

h3 ≥ h4

L (100) < L (010) < L (001) < L (101) < L (011) < L (110) < L (111)
h3 ≤ h4

h3 ≥ h4

L (100) < L (010) < L (001) < L (011) < L (110) < L (101) < L (111)
h3 ≤ h4

h3 ≥ h4

L (100) < L (010) < L (001) < L (011) < L (101) < L (110) < L (111)
h3 ≤ h4

h3 ≥ h4

L (100) < L (010) < L (110) < L (001) < L (101) < L (011) < L (111)
h3 ≤ h5

h3 ≥ h5

L (100) < L (010) < L (110) < L (001) < L (011) < L (101) < L (111)
h3 ≤ h5

h3 ≥ h5

L1, and provide the details of the achievability scheme for all regimes of this
specific ordering. More precisely, we show that any rate triple (R1, R2, R3)
satisfying (Q1)–(Q11) is achievable, i.e., there exist encoding and decoding
functions with the desired rates which are able to reconstruct the required sub-
set of the sources from the corresponding descriptions. This implies RL1

AMLD(H)
is achievable, and completes the proof of the theorem for the ordering L1. Sim-
ilar proof for other orderings can be straightforwardly completed by applying
almost identical techniques. Different cases that needed to be considered are
listed in Table 2.2.

Note that the RL1
AMLD is a polytopes specified by several hyper-planes in a

three-dimensional space. Therefore, the region RL1
AMLD is a convex polytopes,

and it suffices to show the achievability only for the corner points [49]; that is
because a simple time-sharing argument can be used to extend the achievability
to any arbitrary point in the region RL1

AMLD. A complete list of corner points
for the other orderings can be found in Appendix A.2.

Depending on the relationship of h3, h4, and h5, some of the inequalities in
(Q1)–(Q11) may be dominated by the others. Note that (Q10) and (Q11) are
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of the form

R1 + R2 + R3 ≥3H(V1) + 2H(V2) + 2H(V3) + H(V4) + H(V5)
+ H(V6) + H(V7),

R1 + R2 + R3 ≥3H(V1) + 2H(V2) +
3
2
H(V3) +

3
2
H(V4) + H(V5)

+ H(V6) + H(V7).

It is clear either one of them would be redundant and implied by the other,
depending on whether h3 ≶ h4. Also if h3 ≥ h4 + h5, inequalities (Q3) and
(Q10)

R3 ≥ H(V1) + H(V2) + H(V3),
R1 + R2 + R3 ≥ 3H(V1) + 2H(V2) + 2H(V3) + H(V4) + H(V5)

+ H(V6) + H(V7)

imply

R1 + R2 + 2R3 ≥ H1 + H3 + H7 + H3

≥ H1 + H3 + H7 + H2 + h4 + h5

= H1 + H2 + H5 + H7,

which is exactly the inequality given in (Q9), i.e., this inequality is redun-
dant in this regime. Thus, we split the achievability proof into three regimes
corresponding to the aforementioned conditions, since the proposed encoding
schemes are slightly different for these regimes. We show the achievability of
the corner points in each case.

To simplify matters, we perform a lossless pre-coding, acting on all the seven
source sequences V n

i ’s as

Ei : Vn
i −→ {0, 1}#i

for i = 1, . . . , 7. This function maps the source sequence V n
i to Ṽi ! Ei(V n

i ),
which can be used as a new binary source sequence of length 'i. This can be
done by using any lossless scheme, and achieves 'i arbitrary close to nhi for
large enough n. With the new source sequences Ṽi, we next perform further
coding.

Regime I: h3 ≥ h4 + h5

As mentioned above, the inequalities (Q9) and (Q11) are dominated by the
others in this regime. Therefore we only need to consider the remaining nine
hyper-planes. In the following we list the corner points of RAMLD

L1
in this

regime. Each corner point with coordinates (R1, R2, R3) is the intersection
of (at least) three hyper-planes, say (Qi), (Qj), and (Qk). Such point is de-
noted by 〈Qi, Qj, Qk〉 : (R1, R2, R3). In order to list all the corner points, we
first find the intersection of any three hyper-planes, and then check whether
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the intersection point satisfies all the other inequalities. We next provide an
encoding strategy to achieve the rates prescribed by the corner points of the
polytopes.

• X1 = 〈Q1,Q4,Q7〉 : (H1, H4, H7)
This corner point is the intersection of the planes Q1, Q4, and Q7, and
determines the individual rates of the descriptions as

(R1, R2, R3) = (H1, H4, H7).

The scheme for achieving this rate tuple is as follows. Γ1 is exactly the
pre-coded sequence of V n

1 , i.e., Ṽ1. In order to construct Γ2 it suffices
to concatenate the codewords Ṽ1, Ṽ2, Ṽ3, and Ṽ4. Similarly, Γ3 is the
concatenation of all the seven codewords. That is,

Γ1 : Ṽ1, Γ2 : Ṽ1, Ṽ2, Ṽ3, Ṽ4, Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, Ṽ7.

It is easy to check that the description rates are the same as the rate
triple of the corner point, and all the decoding requirements at the seven
decoders are satisfied.
We will only determine the rate triples and illustrate the descriptions
construction for the remaining corner points.

• X2 = 〈Q1,Q5,Q7〉 : (H1, H7 − h5, H5)

Γ1 : Ṽ1, Γ2 : Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ6, Ṽ7, Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5.

• X3 = 〈Q2,Q4,Q8〉 : (H1 + h3 + h4, H2, H7)

Γ1 : Ṽ1, Ṽ3, Ṽ4, Γ2 : Ṽ1, Ṽ2, Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, Ṽ7.

• X4 = 〈Q2,Q6,Q8〉 : (H1 + h3 + h4 + h7, H2, H6)

Γ1 : Ṽ1, Ṽ3, Ṽ4, Ṽ7, Γ2 : Ṽ1, Ṽ2, Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6.

• X5 = 〈Q3,Q5,Q10〉 : (H1 + h4 + h5, H3 + h6 + h7, H3)
The encoding schemes for the previous corner points only involve concate-
nation of different codewords. However, concatenation is not optimal to
achieve the rate triple induced by the point X5, and we need to jointly
encode the sources to construct the descriptions. This can be done using
a modulo-2 summation of (parts of) the codewords of the same size.
The description Γ1 is simply constructed by concatenating Ṽ1, Ṽ4, and
Ṽ5. Similarly, Γ3 is obtained by putting Ṽ1, Ṽ2, and Ṽ3 together. The
second description, Γ2, should be able to help Γ1 to reconstruct Ṽ3 at
the decoder with access to {Γ1,Γ2}, and help Γ3 to reconstruct (Ṽ4, Ṽ5)
at decoder {Γ2,Γ3}, where Ṽ3 is already provided as a part of Γ3. We



34 Multilevel Diversity Coding

Ṽ1 Ṽ2 Ṽ3,1 Ṽ3,2 Ṽ4 Ṽ5 Ṽ6 Ṽ7

'1 '2 '3
−('4 + '5)
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Γ1 :

Γ2 :

Γ3 :

Figure 2.4: Linear encoding for the corner-point X5

can use this fact to construct Γ2 as follows. Partition4 the bit stream
Ṽ3 into Ṽ3,1 and Ṽ3,2 of lengths '3 − ('4 + '5) and '4 + '5, respectively.
Compute the modulo-2 summation (binary xor) of the bit-streams Ṽ3,2

and (Ṽ4, Ṽ5). The description Γ2 is constructed by concatenating this
new bit stream with Ṽ1, Ṽ2, Ṽ3,1, Ṽ6, and Ṽ7.

The partitioning and encoding5 are illustrated in Figure 2.4.

Γ1 : Ṽ1, Ṽ4, Ṽ5,

Γ2 : Ṽ1, Ṽ2, Ṽ3,1, Ṽ3,2 ⊕ (Ṽ4, Ṽ5), Ṽ6, Ṽ7,

Γ3 : Ṽ1, Ṽ2, Ṽ3.

• X6 = 〈Q3,Q6,Q10〉 : (H1 + h3 + h7, H2 + h4 + h5 + h6, H3)

Partition Ṽ3 into Ṽ3,1 and Ṽ3,2 of lengths '3 − ('4 + '5) and '4 + '5,
respectively.

Γ1 : Ṽ1, Ṽ3,1, Ṽ3,2 ⊕ (Ṽ4, Ṽ5), Ṽ7,

Γ2 : Ṽ1, Ṽ2, Ṽ4, Ṽ5, Ṽ6,

Γ3 : Ṽ1, Ṽ2, Ṽ3.

• X7 = 〈Q4,Q7,Q10〉 : (H1 + h4, H3, H3 + h5 + h6 + h7)

4Since we are in regime I, we have h3 ≥ h4 + h5 and hence , "3 ≥ "4 + "5.
5Note that for this corner point, a part of the description Γ2 is given by Ṽ3,2 ⊕ (Ṽ4, Ṽ5),

which linearly combines independent (compressed) source sequences, just as the network
coding idea in the familiar butterfly network [50].
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Partition Ṽ3 into Ṽ3,1 and Ṽ3,2 of lengths '3 − '4 and '4, respectively.

Γ1 : Ṽ1, Ṽ4,

Γ2 : Ṽ1, Ṽ2, Ṽ3,1, Ṽ3,2 ⊕ Ṽ4,

Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ5, Ṽ6, Ṽ7.

• X8 = 〈Q4, Q8, Q10〉 : (H1 + h3, H2 + h4, H3 + h5 + h6 + h7)

Partition Ṽ3 into Ṽ3,1 and Ṽ3,2 of lengths '3 − '4 and '4, respectively.

Γ1 : Ṽ1, Ṽ3,1, Ṽ3,2 ⊕ Ṽ4,

Γ2 : Ṽ1, Ṽ2, Ṽ4,

Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ5, Ṽ6, Ṽ7.

• X9 = 〈Q5, Q7, Q10〉 : (H1 + h4, H3 + h6 + h7, H3 + h5)

Partition Ṽ3 into Ṽ3,1 and Ṽ3,2 of lengths '3 − '4 and '4, respectively.

Γ1 : Ṽ1, Ṽ4,

Γ2 : Ṽ1, Ṽ2, Ṽ3,1, Ṽ3,2 ⊕ Ṽ4, Ṽ6, Ṽ7,

Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ5.

• X10 = 〈Q6, Q8, Q10〉 : (H1 + h3 + h7, H2 + h4, H3 + h5 + h6)

Partition Ṽ3 into Ṽ3,1 and Ṽ3,2 of lengths '3 − '4 and '4, respectively.

Γ1 : Ṽ1, Ṽ3,1, Ṽ3,2 ⊕ Ṽ4, Ṽ7,

Γ2 : Ṽ1, Ṽ2, Ṽ4,

Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ5, Ṽ6.

The associated rate region is shown in Figure 2.5.

Regime II: h4 ≤ h3 ≤ h4 + h5

In this regime, (Q11) is dominated by (Q10). Therefore, we only have
to consider ten hyperplanes. The rates and encoding scheme for the cor-
ner points Y1 = 〈Q1,Q4,Q7〉, Y2 = 〈Q1,Q5,Q7〉, Y3 = 〈Q2,Q4,Q8〉, Y4 =
〈Q2,Q6,Q8〉, Y7 = 〈Q4,Q7,Q10〉, Y8 = 〈Q4,Q8,Q10〉, Y9 = 〈Q5,Q7,Q10〉 and
Y10 = 〈Q6,Q8,Q10〉 are exactly the same as that of X1, X2, X3, X4, X7, X8,
X9, and X10, respectively. For the remaining corner points, we next provide
the encoding schemes.

• Y5 = 〈Q3, Q5, Q9〉 : (H1 + h4 + h5, H2 + h4 + h5 + h6 + h7, H3)
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Figure 2.5: Rate region for Regime I: h3 ≥ h4 + h5

Partition Ṽ5 into Ṽ5,1 and Ṽ5,2 of lengths '3 − '4 and '4 + '5 − '3, re-
spectively. Also partition Ṽ3 into Ṽ3,1 and Ṽ3,2, of sizes '3 − '4 and '4,
respectively.

Γ1 : Ṽ1, Ṽ4, Ṽ5,

Γ2 : Ṽ1, Ṽ2, Ṽ3,2 ⊕ Ṽ4, Ṽ3,1 ⊕ Ṽ5,1, Ṽ5,2, Ṽ6, Ṽ7,

Γ3 : Ṽ1, Ṽ2, Ṽ3.

• Y6 = 〈Q3, Q6, Q9〉 : (H1 + h4 + h5 + h7, H2 + h4 + h5 + h6, H3)
Partition Ṽ5 into Ṽ5,1 and Ṽ5,2 of lengths '3 − '4 and '4 + '5 − '3, re-
spectively. Also partition Ṽ3 into Ṽ3,1 and Ṽ3,2, of sizes '3 − '4 and '4,
respectively.

Γ1 : Ṽ1, Ṽ4, Ṽ5, Ṽ7,

Γ2 : Ṽ1, Ṽ2, Ṽ3,2 ⊕ Ṽ4, Ṽ3,1 ⊕ Ṽ5,1, Ṽ5,2, Ṽ6,

Γ3 : Ṽ1, Ṽ2, Ṽ3.

• Y11 = 〈Q5, Q9, Q10〉 : (H1 + h3, H3 + h6 + h7, H2 + h4 + h5)
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Partition Ṽ5 into Ṽ5,1 and Ṽ5,2 of lengths '3 − '4 and '4 + '5 − '3, re-
spectively. Also partition Ṽ3 into Ṽ3,1 and Ṽ3,2, of sizes '3 − '4 and '4,
respectively.

Γ1 : Ṽ1, Ṽ4, Ṽ5,1,

Γ2 : Ṽ1, Ṽ2, Ṽ3,2 ⊕ Ṽ4, Ṽ3,1 ⊕ Ṽ5,1, Ṽ6, Ṽ7,

Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ5,2.

• Y12 = 〈Q6, Q9, Q10〉 : (H1 + h3 + h7, H3 + h6, H2 + h4 + h5)

Partition Ṽ5 into Ṽ5,1 and Ṽ5,2 of lengths '3 − '4 and '4 + '5 − '3, re-
spectively. Also partition Ṽ3 into Ṽ3,1 and Ṽ3,2, of sizes '3 − '4 and '4,
respectively.

Γ1 : Ṽ1, Ṽ4, Ṽ5,1, Ṽ7,

Γ2 : Ṽ1, Ṽ2, Ṽ3,2 ⊕ Ṽ4, Ṽ3,1 ⊕ Ṽ5,1, Ṽ6,

Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ5,2.

Figure 2.6 shows the rate region for this regime.

Regime III: h3 ≤ h4

It is clear that in this regime (Q10) is dominated by (Q11), and thus (Q10)
does not affect the rate region. The remaining ten inequalities characterize
the region. The rates and coding schemes for the points Z1 = 〈Q1,Q4,Q7〉,
Z2 = 〈Q1,Q5,Q7〉, Z3 = 〈Q2,Q4,Q8〉, and Z4 = 〈Q2,Q6,Q8〉 are exactly the
same as that of X1, X2, X3, and X4, respectively. The rate tuples and the
corresponding descriptions for the other corner points are as follows.

• Z5 = 〈Q3, Q5, Q9〉 : (H1 + h4 + h5, H2 + h4 + h5 + h6 + h7, H3)

Partition Ṽ4 into Ṽ4,1 and Ṽ4,2 of lengths '3 and '4 − '3, respectively.

Γ1 : Ṽ1, Ṽ4, Ṽ5,

Γ2 : Ṽ1, Ṽ2, Ṽ3 ⊕ Ṽ4,1, Ṽ4,2, Ṽ5, Ṽ6, Ṽ7,

Γ3 : Ṽ1, Ṽ2, Ṽ3.

• Z6 = 〈Q3, Q6, Q9〉 : (H1 + h4 + h5 + h7, H2 + h4 + h5 + h6, H3)

Partition Ṽ4 into Ṽ4,1 and Ṽ4,2 of lengths '3 and '4 − '3, respectively.

Γ1 : Ṽ1, Ṽ4, Ṽ5, Ṽ7,

Γ2 : Ṽ1, Ṽ2, Ṽ3 ⊕ Ṽ4,1, Ṽ4,2, Ṽ5, Ṽ6,

Γ3 : Ṽ1, Ṽ2, Ṽ3.
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Figure 2.6: Rate region for Regime II of ordering level L1: h4 ≤ h3 ≤ h4 + h5

• Z7 = 〈Q4, Q7, Q8, Q11〉 :(
H1 + h3+h4

2 , H2 + h3+h4
2 , H2 + h3+h4

2 + h5 + h6 + h7

)

Partition Ṽ4 into Ṽ4,1, Ṽ4,2, and Ṽ4,3 of lengths '3, 1
2 ('4−'3) and 1

2 ('4−'3),
respectively.

Γ1 : Ṽ1, Ṽ4,1, Ṽ4,2

Γ2 : Ṽ1, Ṽ2, Ṽ3 ⊕ Ṽ4,1, Ṽ4,2 ⊕ Ṽ4,3,

Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ4,3, Ṽ5, Ṽ6, Ṽ7.

• Z8 = 〈Q5, Q7, Q9, Q11〉 :(
H1 + h3+h4

2 , H2 + h3+h4
2 + h6 + h7, H2 + h3+h4

2 + h5

)

Partition Ṽ4 into Ṽ4,1, Ṽ4,2, and Ṽ4,3 of lengths '3, 1
2 ('4−'3) and 1

2 ('4−'3),
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respectively.

Γ1 : Ṽ1, Ṽ4,1, Ṽ4,2

Γ2 : Ṽ1, Ṽ2, Ṽ3 ⊕ Ṽ4,1, Ṽ4,2 ⊕ Ṽ4,3, Ṽ6, Ṽ7,

Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ4,3, Ṽ5.

• Z9 = 〈Q6, Q8, Q11〉 :(
H1 + h3+h4

2 + h7, H2 + h3+h4
2 , H2 + h3+h4

2 + h5 + h6

)

Partition Ṽ4 into Ṽ4,1, Ṽ4,2, and Ṽ4,3 of lengths '3, 1
2 ('4−'3) and 1

2 ('4−'3),
respectively.

Γ1 : Ṽ1, Ṽ4,1, Ṽ4,2, Ṽ7

Γ2 : Ṽ1, Ṽ2, Ṽ3 ⊕ Ṽ4,1, Ṽ4,2 ⊕ Ṽ4,3,

Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ4,3, Ṽ5, Ṽ6.

• Z10 = 〈Q6, Q8, Q11〉 :(
H1 + h3+h4

2 + h7, H2 + h3+h4
2 + h6, H2 + h3+h4

2 + h5

)

Partition Ṽ4 into Ṽ4,1, Ṽ4,2, and Ṽ4,3 of lengths '3, 1
2 ('4−'3) and 1

2 ('4−'3),
respectively.

Γ1 : Ṽ1, Ṽ4,1, Ṽ4,2, Ṽ7

Γ2 : Ṽ1, Ṽ2, Ṽ3 ⊕ Ṽ4,1, Ṽ4,2 ⊕ Ṽ4,3, Ṽ6,

Γ3 : Ṽ1, Ṽ2, Ṽ3, Ṽ4,3, Ṽ5.

This region and its corner points are shown in Figure 2.7.

The coding schemes proposed for these three cases give us the achievability
proof of the theorem for the specific ordering L1. As stated before, the coding
scheme for other possible orderings listed in Table 2.2 are similar to that of the
ordering L1. There are three main ingredients used in all of them; (i) converting
the source sequences into bit-streams, (ii) partitioning the bit streams into
sequences of proper length, and (iii) (if required) applying linear coding (binary
xor) on them. This completes the proof of Theorem 2.7.
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Figure 2.7: Rate region for Regime III of the ordering level L1: h3 ≤ h4



Symmetric Multiple Description
Coding 3
In this chapter we study the symmetric multiple description source coding
problem. This problem can be understood as a lossy version of the symmetric
multi-level diversity (SMLD) problem discussed in Section 2.1.

In the multiple description (MD) problem, a source is encoded into several
descriptions such that any one of them can be used to reconstruct the source
with certain quality, and more descriptions can improve the reconstruction.
The problem is well motivated by source transmission over unreliable network
and distributed storage systems, since there exists uncertainty as to which
transmissions are received successfully (or which servers are accessible) by the
end user.

In the early works on this problem, for example [11, 22], only two descrip-
tions are considered. Even in this setting, the quadratic Gaussian problem is
the only completely solved case [22], for which the achievable rate-distortion
region in [11] is tight. Through a counter-example, Zhang and Berger showed
that this achievable region is however not tight in general [23], and a com-
plete characterization of the rate-distortion region has not been found to this
date. See [24] (and the references therein) for a review of works related to this
problem in the information theory literature.

Recent research attention has shifted to the general K-description problem,
partly motivated by the availability of multiple transmission paths in modern
communication networks. In [25, 26], an achievable scheme was provided for
symmetric multiple descriptions, where each description has the same rate, and
the distortion constraint depends only on the number of descriptions available.
This scheme is based on joint binning of the codebooks, which has a similar
flavor as the method often used in distributed source coding problems. Another
achievable region was given in [27] using more conventional conditional code-
books. Wang and Viswanath [28,29] generalized the Gaussian MD problem to

41
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Figure 3.1: SMLD and SMD coding system diagrams for K = 3.

vector Gaussian source with many descriptions, and tight sum rate lower bound
was established for certain cases with only two levels of distortion constraints
(see also the outer bound result in [27]).

Here, we consider general multiple description coding with K descriptions
under symmetric distortion constraints. The distortion constraints are sym-
metric in the sense that the distortion constraint at each decoder only depends
on the number of available descriptions. More precisely, with any k ≤ K de-
scriptions, the reconstruction has to satisfy the distortion Dk, regardless of
which specific combination of k descriptions is used. Though the distortion
constraints are symmetric, the rates of the descriptions are not necessarily the
same in this setting, thus generalizing the case treated in [25,26]. Nevertheless
the completely symmetric case is indeed an important special case, which we
will treat with particular care. Our main focus is on the Gaussian source under
the mean squared error (MSE) distortion measure, however the results are also
extended to more general sources under the same distortion measure.

Though completely characterizing the rate-distortion region of the Gaussian
multiple description problem is difficult, we provide an approximate character-
ization. Underlying this approximation is the lossless symmetric multi-level
diversity (SMLD) coding problem previously studied in [30, 42] and discussed
in in Section 2.1; see Figure 3.1. The SMLD coding problem can be inter-
preted as a lossless version of the SMLD problem, and thus one of our main
insights is to use the SMLD rate region as a polytopic template for the inner and
outer bounds of the SMD rate-distortion region. We show that the SMD rate-
distortion region can be sandwiched between two polytopes, between which the
gap can be upper bounded by constants dependent on the number of descrip-
tions, but independent of the exact distortion constraints.

One of our main contributions [51] is a novel lower bound to the sum rate
for the Gaussian source, under K levels of symmetric distortion constraints.
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This generalizes previous results in [22, 28, 29], where only two levels of dis-
tortion constraints are enforced in the system. Though the lower bound given
here may not be tight as far as we know, it is the first general outer bound
when more than two levels of distortion constraints are enforced. We derive
this lower bound by generalizing Ozarow’s technique in treating the Gaussian
two-description problem. More specifically, we expand the probability space of
the original problem by more than one auxiliary random variable, and impose
certain Markov structure on these random variables. Ozarow’s technique has
been applied to various problems besides the MD problem [22, 27–29], for ex-
ample, the multi-terminal source coding problem by Wagner and Anantharam
[52], and the joint source channel coding problem by Reznic et al. [53]. How-
ever, in all these previous works the probability space was expanded by only
one additional auxiliary random variable (or one additional auxiliary random
vector in [28,29] since vector source was considered), in contrast with the more
general expansion we use here.

Though the SMD sum rate lower bound we derive can be optimized over
K−1 variables to provide the tightest bound, such an explicit solution for this
optimization problem appears difficult, thus we instead choose a specific set
of values to provide a sub-optimal lower bound, which nevertheless still offers
insight on the problem and allows us to give an approximate characterization
of the SMD rate-distortion region.

For the inner bounds, we analyze two achievability schemes: the first is
a simple scheme based on successive refinement coding [54–57] coupled with
multi-level diversity coding [30,42,44,58], which we call SR−MLD scheme; the
second is a generalization of the multilayer coding scheme proposed by Puri,
Pradhan and Ramchandran [25,26], which we will refer to as the PPR multilayer
scheme. In the special case of symmetric rate, the first scheme reduces to the
unequal loss protection method [43, 59], and we thus also refer to it as the
SR− ULP scheme. However, our scheme is more general, in the sense that it
works for arbitrary rates, while the distortion constraints are still symmetric.
The SR−MLD (or SR− ULP) scheme is a separation-based scheme where the
quantization step and lossless source coding step are performed separately, as
illustrated in Figure 3.2.

With the inner and outer bounds, we quantify the difference between them.
For the symmetric rate problem, the individual-description rate-distortion func-
tion can be bounded within a constant. Moreover, regardless of the number
of descriptions, the gap between the lower bound and the upper bound using
the SR− ULP coding scheme is less than 1.48 bits, and for the PPR multilayer
scheme, the gap is less than 0.92 bit.

It is surprising that the simple separation-based scheme is able to achieve
performance which is within an additional constant from the optimal scheme.
This constant gap is universal, and independent from the expecting rates and
distortion constraints. The result implies that this simple scheme may be suffi-
cient in certain practical high rate applications, where additional gain requires
more complicated system design. Moreover, when distortion constraints are
placed only on the last k levels for the decoders with K−k+1, K−k+2, ..., K
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Figure 3.2: The separation approach based on successive refinement and lossless
multi-level diversity coding for K = 3.

descriptions, we show that even the gap between the lower bound and the upper
bound on the sum rate is asymptotically diminishing when the total number of
descriptions K becomes large with k fixed. Thus virtually no gain is possible
even in terms of sum rate for this case.

The results are then generalized to the K-description problem using the
α-resolution approach [30], and the supporting hyper-planes of the rate region
are bounded both from above and below between which the gap is bounded,
yielding an approximate characterization of the rate-distortion region.

In the following, we first provide a formal definition of the SMD problem in
Section 3.1. Since, our results are based on some previously known works, we
briefly review them in Section 3.2. Section 3.3 summarizes the main results of
the SMD problem for Gaussian sources. Sections 3.4-3.7 are dedicated to prove
these results, and an extension of some of the results to arbitrarily distributed
sources is presented in Section 3.8. Detailed and technical proofs of this chapter
are given in the Appendix B.

3.1 SMD Problem: Notation and Formal Definition

Let {X(i)}i=1,2,... be a memoryless stationary source. At each time index i, the
random variable X(i) in an alphabet X is governed by the same distribution
law µX , and X(i) and X(j) are independent for i (= j. We assume that X = ,
i.e., the real alphabet; moreover the reconstruction alphabet is also usually
assumed to be X̂ = . The vector X(1), X(2), ..., X(n) will be denoted as Xn.
Capital letters are used for random variables, and lower-case letters are used
for their realizations. Let d : X × X → [0,∞] be a single-letter distortion
measure, and the multi-letter extension is defined as

d(xn, yn) =
1
n

n∑

i=1

d(x(i), y(i)).

We are particularly interested in the squared error distortion measure d(x, y) =
(x− y)2. As such, it will be assumed without loss of generality that the source
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has a normalized unit variance. In this context, the most important case is
the zero-mean unit-variance Gaussian source X ∼ N (0, 1). In fact for the
majority of this chapter we shall only consider this Gaussian source, except
stated otherwise explicitly.

For the general K-description problem being considered, a length-n block of
the source samples is encoded into K descriptions. Let (v be a vector in {0, 1}K,
and denote the i-th component of (v by vi. The sets Ωα

K for α = 1, . . . , K and
ΩK are defined as in Section 2.1. Essentially, the set ΩK provides a compact
way to enumerate the possible combinations of the descriptions, or equivalently
a compact way to enumerate the possible decoders. Decoder (v, (v ∈ ΩK has
access to the |(v| descriptions in the set Γ$v = {Γi : vi = 1}.

The symmetric distortion constraints are given such that any decoder (v can
reconstruct the source to satisfy a certain distortion D|$v|, i.e., the distortion
constraint depends only on the number of descriptions the decoder has access
to, but not the particular combination of descriptions.

Formally, an (n, (Mi; i ∈ IK), (∆$v;(v ∈ ΩK)) code, where IK = {1, 2, ..., K},
is defined by its encoding functions Fi and decoding functions G$v

Fi : Xn → {1, 2, . . . , Mi}, i ∈ IK

Gv :
∏

i:vi=1

{1, 2, . . . , Mi}→ Xn, (v ∈ ΩK ,

and

∆v = d(Xn, X̂n
v ), (v ∈ ΩK ,

where

X̂n
v = Gv(Fi(Xn); i : vi = 1),

and is the expectation operator.
A K-tuple (R1, R2, ..., RK) is (D1, D2, ..., DK)-admissible if for every ε > 0,

there exists for sufficiently large n an (n, {Mi; i ∈ IK}, {∆v; v ∈ ΩK}) code
such that

1
n

log Mi ≤ Ri + ε, i ∈ IK ,

and

∆v ≤ D|v| + ε, v ∈ ΩK ,

where the logarithms are of base 2, such that the rate is measured by bits. We
denote by Γi the i-th description, which is in fact Fi(Xn).

Let RSMD(D) be the collection of all D-admissible rate vectors, that is

RSMD(D) = {(R1, R2, . . . , RK) :
(R1, R2, . . . , RK) is (D1, D2, ..., DK)− admissible}, (3.1)



46 Symmetric Multiple Description Coding

where we shall assume 1 ≥ D1 ≥ D2 ≥ ... ≥ DK > 0 without loss of generality.
One important case of this problem is when the rates of all descriptions

are the same, i.e., Mi = M for all i ∈ IK , for which the optimal symmetric
individual-description rate-distortion (SID− RD) function is defined as

RSMD(D) = inf
R:R≥Ri

(R1,R2,...,RK)∈RSMD(D)

R. (3.2)

Since RSMD(D) is a closed set, the infimum can in fact be replaced by a mini-
mum.

Approximation characterization of RSMD(D) and RSMD(D) are our main
goals of this chapter.

As a convention, when a rate RSMD is of interest, we use R
SR
SMD or R

PPR
SMD to

denote its inner (upper) bounds, and use R to denote its outer (lower) bound;
when rate region RSMD is of interest, the same convention is taken.

3.2 Preliminaries and Review of Known Results

In this section we briefly review the bounding techniques and coding schemes
which we will use throughout this chapter.

3.2.1 Review of the PPR Multilayer Scheme

In the two-part paper [25] and [26], an achievable symmetric individual rate
is given to satisfy symmetric distortion constraints. In the following the main
theorem is quoted below together with a necessary definition.

Definition 3.1. A joint distribution p({yα,j,α ∈ IK−1, j ∈ IK}, yK |x) is
called symmetric if for all 1 ≤ ni ≤ K, the following holds: conditioned on X,
the joint distribution of YK and all (n1 + n2 + ... + nK−1) random variables
where any nα are chosen from the set {Yα,1, Yα,2, ..., Yα,K}, is the same.

Theorem 3.2 ([26] Theorem 2). For any probability distribution

p(x, {yα,j,α ∈ IK−1, j ∈ IK}, yK) = p(x)p({yα,j ,α ∈ IK−1, j ∈ IK}, yK |x),

where p({yα,j,α ∈ IK−1, j ∈ IK}, yK |x) is symmetric over X × YK(K−1)+1

and the decoding functions

Gv : Y |v||v| → X , ∀v ∈ ΩK with |v| < K,

Gv : YK(K−1)+1 → X , |v| = K,

such that

[d(X, Gv(Yα,j ;α ∈ I|v|, j : vj = 1))] ≤ D|v|, ∀v ∈ ΩK with |v| < K,

[d(X, Gv({Yα,j ,α ∈ I|v|, j ∈ IK}, YK))] ≤ DK , |v| = K,
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the following symmetric individual description rate is achievable

R =
K−1∑

α=1

1
α

H({Yα,j ; j ∈ Iα}|{Yi,j; i ∈ Iα−1, j ∈ Iα})

+
1
K

[H(YK |{Yi,j ; i ∈ IK−1, j ∈ IK})−H({Yi,j ; i ∈ IK−1, j ∈ IK}, YK |X)] .

We notice that this definition of symmetry is however unnecessarily restric-
tive and can be straightforwardly relaxed. The following generalized version is
thus introduced, which will be useful since our choice of distribution to simplify
the inner bound is in this relaxed set, but not in the original more restrictive
set.

Definition 3.3. A joint distribution p({yα,j;α ∈ IK−1, j ∈ IK}, yK |x) is
called generalized symmetric if for any permutation π(·) : IK → IK , the joint
distribution p({yα,π(j);α ∈ IK−1, j ∈ IK}, yK |x) is the same as p({yα,j;α ∈
IK−1, j ∈ IK}, yK |x).

It is not difficult to check that Theorem 3.2 holds with the generalized
version of symmetry. The original version essentially requires the distribu-
tion to be invariant under K − 1 different permutations πα(·), one for each
layer α = 1, 2, ..., K − 1; i.e., if we permute {Y1,1, Y1,2, ..., Y1,K}, and then per-
mute {Y2,1, Y2,2, ..., Y3,K} differently, and so on for each α = 1, 2, ..., K − 1, the
resulting distribution should remain the same as the one before such permu-
tations. This requirement was however not completely utilized in the coding
scheme. Instead it in fact only requires invariance under a single permutation
π(·) which is applied to all the levels simultaneously, i.e., πα(·) = π(·), for
α = 1, 2, ..., K − 1. More formally, we state our observation of the generalized
result as a theorem.

Theorem 3.4. The statement of Theorem 3.2 holds when the symmetric dis-
tribution requirement is replaced with the generalized symmetric distributions.

Y11

Y12

Y13

Y21

Y22

Y23

Y3

Figure 3.3: Layers of codes in the PPR scheme for K = 3.

For the purpose of this work, it is not necessary to change the random
coding scheme in [25,26], however, the following properties regarding the overall
structure of the codes are important:
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• There are a total of K layers of codes, and the α-th layer information (α (=
K) in the j-th description is represented by the random variables Yα,j ; see
Figure 3.3. Thus for a set of descriptions indicated by v, the (single letter)
decoding function Gv in Theorem 3.2 can utilize the random variables in
the set {Yα,j ,α ≤ |v|, j : vj = 1}. The lossless underlying problem for
this part of the scheme is illustrated in Figure 3.4.

• For the j-th description, the overall rate is the rate summation of K
layers of codes, the rate of the α-th layer Rα,j = 1

αH̃α(Y ), where H̃α(Y )
is defined as

H̃α(Y ) !h(Yα,i, i ∈ Iα|{Yk,j ; k ∈ Iα−1, j ∈ Iα})

− α

K
h(Yα,k; k ∈ IK |X, {Yj,k, j ∈ Iα−1, k ∈ IK}) (3.3)

for α = 1, 2, . . . , K − 1, and for α = K, we define

H̃K(Y ) !I(X ; YK |{Yα,k;α ∈ IK−1, k ∈ IK}). (3.4)

Most importantly, the decoding is done sequentially, and decoding the
first α layers of codes does not rely on the (α+ 1)-th to the K-th layers
of codes.

v = 100

v = 010

v = 001

v = 110

v = 101

v = 011

v = 111

Ŷ11

Ŷ12

Ŷ13

Ŷ11, Ŷ12, Ŷ21, Ŷ22

Ŷ11, Ŷ13, Ŷ21, Ŷ23

Ŷ12, Ŷ13, Ŷ22, Ŷ23

Ŷ11, Ŷ12, Ŷ13, Ŷ21, Ŷ22, Ŷ23, Ŷ3

ENC

Y11

Y12

Y13

Y21

Y22

Y23

Y3

Figure 3.4: The lossless underlying problem for the PPR scheme for K = 3.

Note that the set of auxiliary random variables {Yα,j} has more than K
components, however we still write it as Y for conciseness.

3.2.2 Review of the α-Resolution Approach

As mentioned before, the result of this section is based on the SMLD coding
problem, and its rate characterization in [30, 42] (see Section 2.1). The rate
region characterization in (2.3) and (2.4) for the MLD coding problem is given
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in a parametrized form, i.e., involving variables more than the rate tuple of
interest (R1, R2, .., .RK). Though for smaller K, it is possible to explicitly
investigate its faces and vertex points, for larger value of K this becomes in-
tractable. The α-resolution method was invented in [30] to reveal the inherent
structure of this region. We now quote a few definitions and results from [30]
and then give several necessary results presented in [31]; some further results
will be given after related notation is introduced.

We keep using the partial order for real and binary vectors defined in Defi-
nition 2.2. For any A = (A1, A2, ..., AK) ≥ 0, a mapping cα : Ωα

K → +, where
+ is the set of non-negative real numbers, satisfying the following properties

cα(v) ≥ 0, for all v ∈ Ωα
K ,

and
∑

v∈Ωα
K

cα(v)v ≤ A

is called an α-resolution for A; it will be denoted as {cα(v)} or simply as cα.
Define a function fα : K

+ → + for α ∈ IK by

fα(A) = max
∑

v∈Ωα
K

cα(v), (3.5)

where the maximum is taken over all the α-resolution of A. If {cα(v)} achieves
fα(A), then it is called an optimal α-resolution for A, or simply α-optimal.
Without loss of generality up to a permutation of the rate vector components,
we may assume

A1 ≥ A2 ≥ ... ≥ AK .

Definition 3.5. Let {cα(v)} be an α-resolution of A, then
∑

v∈Ωα
K

cα(v)v is
called the profile of {cα(v)}.

The following lemmas and theorem are extracted form [30] and present
some properties of the α-resolution. The corresponding proofs can be found in
the original work.

Lemma 3.6 ([30], Lemma 1). Let {cα(v)} be α-optimal for A, and assume
(Ă1, Ă2, ..., ĂK) is its profile. If there exist 1 ≤ i ≤ K such that Ai − Ăi > 0,
then cα(v) > 0 implies vi = 1.

Lemma 3.7 ([30], Lemma 2). Let {cα(v)} be α-optimal for A, and assume
(Ă1, Ă2, ..., ĂK) is its profile, then there exists 0 ≤ lα ≤ α − 1 such that Ai −
Ăi > 0 if and only if 1 ≤ i ≤ lα.

Definition 3.8. For 2 ≤ α ≤ K, let cα and cα−1 be α-optimal and (α − 1)-
optimal for A, respectively. Then cα−1 covers cα, denoted by cα−1 / cα, if

∑

u∈Ωα−1
K

cα−1(u)H(Γv) ≥
∑

v∈Ωα
K

cα(v)H(Γu), (3.6)

for any K jointly distributed random variable Γ1,Γ2, ...,ΓK.
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The following theorem is instrumental for the result presented in [30], and
it is also important for us to establish the result on the MD rate-distortion
region for K > 3.

Theorem 3.9 ([30], Theorem 3). For any A ≥ 0, there exist cα, 1 ≤ α ≤ K,
where cα is α-optimal for A, such that

c1 / c2 / · · · / cK . (3.7)

The following two lemmas were not in [30], but presented in [31] and play
an important role in our analysis.

Lemma 3.10. Let cα−1 and cα be (α−1)-optimal and α-optimal, respectively.
If cα−1 / cα, then (α − 1)fα−1(A) ≥ αfα(A).

Proof of Lemma 3.10. Let S1, S2, ..., SK be independently and identically dis-
tributed random variables with entropy H(Si) = H(S) > 0 for any i ∈ IK ,
then it follows

(α− 1)fα−1(A)H(S) =
∑

u∈Ωα−1
K

cα−1(u)(α− 1)H(S)

=
∑

u∈Ωα−1
K

cα−1(u)H(Su)

≥
∑

v∈Ωα
K

cα(v)H(Sv)

=
∑

v∈Ωα
K

cα(v)αH(S)

= αfα(A)H(S).

Dividing both ends by H(S) completes the proof.

The next lemma is straightforward by applying Lemma 3.10 and the defi-
nition of fα(A), and we thus omit the proof.

Lemma 3.11. The following are true.

• The optimal 1-resolution is unique, c1(v) = Ai for v = 1i(K). Moreover
f1(A) ! Asum =

∑K
k=1 Ai.

• The optimal K-resolution is unique cK(v) = fK(A) ! Amin = mini∈IK Ai,
where v is the all-one vector of length K.

• For any α such that 1 ≤ α ≤ K, fα(A) ≤ Asum
α .
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3.2.3 Enhanced Distortion Vector

Define the following functions

Φα(D) =
αD

1−D
, α = 1, 2, ..., K. (3.8)

For a given distortion vector D = (D1, D2, ..., DK), we shall associate it with
an enhanced distortion vector D∗ = (D∗

1 , D
∗
2 , ..., D

∗
K) in a recursive manner.

For α = 1, we set

D∗
1 = D1,

and define

D∗
α =

{
(α−1)D∗

α−1
α−D∗

α−1
if Φα(Dα) > Φα−1(D∗

α−1)
Dα otherwise

(3.9)

for α = 2, 3, . . . , K. The enhanced distortion vector imposes more stringent
distortion constraints than the original one, and it is introduced in order to
remove certain cases where the given distortion vectors can not be satisfied
with equality using the coding schemes we consider. The following lemma
shows such property for the enhanced distortion vector. We will present the
proof of the lemma in Appendix B.1.

Lemma 3.12. For any given non-increasing distortion vector D, its enhanced
distortion vector D∗ defined in (3.9) satisfies the following properties.

• It imposes more stringent distortion constraints, i.e., D∗
α ≤ Dα, for α =

1, 2, . . . , K.

• It is a non-increasing vector, i.e., D∗
1 ≥ D∗

2 ≥ · · · ≥ D∗
K .

• It induces a non-increasing Φ sequence, i.e., Φ1(D∗
1) ≥ Φ2(D∗

2) ≥ · · · ≥
ΦK(D∗

K).

Moreover, the enhanced distortion vector has the property that it does not
significantly effect the lower bound. We shall also assume D1 < 1 for simplicity
at this point, but will discuss the cases when D1 = 1 shortly.

3.3 Main Result

We are now ready to present the main theorem of this chapter, which provides
an appropriate rate region characterization for the SMD problem. In this sec-
tion, we present several theorems which summarize the main results for the
Gaussian MD problem. The result on approximating the SID− RD function
is first given, followed by the rate-distortion region approximation. More de-
tails are given in the following sections and the appendixes. Since the results
for general sources are notationally more involved, they are thus delayed to
Section 3.8 those sections.
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3.3.1 Approximating the Symmetric Individual Rate RSMD(D)

In this part, we derive an approximate characterization for the symmetric in-
dividual description rate-distortion function, RSMD(D). First, we define a set
of rate functions which will be used in the theorem.

Definition 3.13. For a given distortion vector D = (Dv ; v ∈ ΩK), define the
following functions.

R
SR
SMD(D) ! 1

2

K∑

α=1

1
α

log
Dα−1

Dα
(3.10)

R
PPR
SMD(D) ! 1

2

K∑

α=1

1
α

log
Dα−1

Dα
− 1

2

K∑

α=2

1
α

[
log

α−Dα−1

α− 1

]
(3.11)

RSMD(D, d) ! 1
2

K∑

α=1

1
α

log
(1 + dα)(Dα + dα−1)
(1 + dα−1)(Dα + dα)

, (3.12)

where d1 ≥ d2 ≥ ... ≥ dK−1 > 0, d0 ! ∞, dK ! 0 and D0 ! 1. For
convenience we define

RSMD(D) ! sup
d1≥d2≥...≥dK−1>0

RSMD(D, d). (3.13)

Note that d1, d2, . . . , dK are free variables, and therefore RSMD(D, d) is a
parametrized function. Later, di’s will be set to the variances of some auxiliary
random variables used throughout the proofs.

Theorem 3.14 (Bounds on the SID− RD Function). Let D∗ be the enhanced
version of a given distortion vector D, then the Gaussian SID− RD function
under symmetric distortion constraints satisfies

R
SR
SMD(D∗) ≥ R

PPR
SMD(D∗) ≥ RSMD(D∗) ≥ RSMD(D) ≥ RSMD(D) ≥ RSMD(D, d).

(3.14)

for any d1 ≥ d2 ≥ ... ≥ dK−1 > dK = 0 and d0 ! ∞. Moreover,

R
SR
SMD(D∗)−RSMD(D) ≤ 1

2

K∑

α=2

1
α− 1

logα− 1
2

K∑

α=2

1
α

log(α− 1)

! LSR(K) ≤ 1.48, (3.15)

R
PPR
SMD(D∗)−RSMD(D) ≤ 1

2

K∑

α=2

[
1

α− 1
− 1
α

]
logα ! LPPR(K) ≤ 0.92.

(3.16)

Remark 3.15. In Theorem 3.14, we bound the gaps between the upper and
lower bounds by universal constants. This is not necessary, and we will show in
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Table 3.1: Values LSR(K) and LPPR(K) for K = 1, 2, 3, ..., 8.

K 2 3 4 5 6 7 8
LSR(K) 0.5000 0.7296 0.8648 0.9550 1.0200 1.0693 1.1082
LPPR(K) 0.2500 0.3821 0.4654 0.5235 0.5665 0.6000 0.6268

Section 3.4 that the bounds can in fact be distortion dependent. The numerical
values are derived using integral approximation for series which does not yield
the tightest bounds possible. Table 3.1 includes a few precise values of these
bounds.

An important special case is when only the last several levels have distortion
constraints, since usually the packet loss probability is not exceedingly high,
and for the majority of the time only a small number of packets can be lost.
Though the universal bound in Theorem 3.14 also holds for degenerate cases
where only certain levels of distortion constraints exist, applying the general
bound RSMD(D, d) can improve the universal constants significantly. In order
to do so, (d1, d2, ..., dK−1) need to be chosen carefully.

Corollary 3.16. For the Gaussian source, when only distortion constraints for
decoders with access to at least k descriptions, i.e, DK−k+1, DK−k+2, ..., DK (or
equivalently D1 = D2 = ... = DK−k = 1), we have

R
SR
SMD(D∗)−R(D) ≤ 1

2

K∑

α=K−k+2

1
α− 1

logα− 1
2

K∑

α=K−k+2

1
α

log(α− 1),

R
PPR
SMD(D∗)−R(D) ≤ 1

2

K∑

α=K−k+2

[
1

α− 1
− 1
α

]
logα.

The proof of this corollary can be found in Subsection 3.4.5.

Remark 3.17. These bounds are usually significantly tighter than the con-
stants given in Theorem 3.14. It is easily seen that when k is kept fixed and
K →∞, the gap approaches zero; in fact, in this case even the sum rate bounds
become asymptotically tight. Corollary 3.16 implies that when we are guaran-
teed to receive all but a constant number of descriptions, the SR− ULP scheme
is even more closer to optimum, and the benefit of using more complicated
schemes is diminishing as the number of description increases.

3.3.2 Approximating the Rate-Distortion Region RSMD(D)

We first define two regions, which are in fact two inner bounds to the Gaussian
MD rate region.
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Definition 3.18. Let RSR
SMD(D) be the set of all non-negative rate vectors

(R1, R2, ..., RK), such that

Ri ≥
K∑

α=1

rαi , 1 ≤ i ≤ K, (3.17)

for some rαi ≥ 0, 1 ≤ α ≤ K, satisfying
∑

i:vi=1

r|v|i ≥ Ĥ|v|(D), ∀v ∈ ΩK , (3.18)

where

Ĥα(D) =
1
2

log
Dα−1

Dα
, α = 1, 2, . . . , K, (3.19)

and D0 ! 1.

Since the Gaussian source is successively refinable, the right hand side of
(3.19) is the rate for each layer in the successive refinement code; (3.17) and
(3.18) are the counterpart of (2.3) and (2.4).

The second region is based on a generalization of the PPR multilayer scheme,
discussed in details in Section 3.5.

Definition 3.19. First let D∗ be the enhanced distortion vector of D and
define the following quantities

H̃1(D∗) =
1
2

log
1

D∗
1

,

H̃α(D∗) =
1
2

log
(α− 1)D∗

α−1

(α−D∗
α−1)D∗

α
, α = 2, 3, . . . , K.

Let RPPR
SMD(D) be the set of non-negative rate vectors (R1, R2, ..., RK), such that

Ri ≥
K∑

α=1

rαi , 1 ≤ i ≤ K,

for some rαi ≥ 0, 1 ≤ α ≤ K, satisfying
∑

i:vi=1

r|v|i ≥ H̃|v|(D∗), v ∈ ΩK .

The following theorem establishes that both RSR
SMD(D) and RPPR

SMD(D) are
inner bounds to the Gaussian MD rate-distortion region.

Theorem 3.20 (Inner Bounds on RSMD). Let D∗ be the enhanced distortion
vector of a given distortion constraint vector D. Then

RSR
SMD(D∗) ⊆ RPPR

SMD(D∗) ⊆ RSMD(D∗) ⊆ RSMD(D). (3.20)
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Next, we define a new rate region which together with the following theorem
establishes an outer bound for the achievable rate region of the SMD problem.

Definition 3.21. For a given distortion vector D, vector A ∈ K
+ with A (= 0,

and a set of arbitrary variables d1 ≥ d2 ≥ ... ≥ dK−1 > dK = 0, and d0 ! ∞
define

RA(D, d) ! 1
2

K∑

α=1

fα(A) log
(1 + dα)(Dα + dα−1)
(1 + dα−1)(Dα + dα)

, (3.21)

where the function fα(A) is defined in (3.5). Define further the following
function

RA(D) ! sup
d1≥d2≥...≥dK−1>0

RA(D, d). (3.22)

Definition 3.22. For a given distortion vector D and an arbitrary set of
variables satisfying d1 ≥ d2 ≥ ... ≥ dK−1 > 0, d0 ! ∞ and dK ! 0, let
RSMD(D, d) be the collection of all rate tuples (R1, R2, . . . , RK) which satisfy

A · R ≥ RA(D), (3.23)

for any A ∈ K
+ and A (= 0, where “·” denotes the usual inner product.

The following theorem introduces an outer bound for the SMD achievable
rate region. We will present the proof of the theorem in Section 3.6.

Theorem 3.23 (Outer Bound on RSMD). For any given distortion vector D
and arbitrary variables satisfying d1 ≥ d2 ≥ ... ≥ dK−1 > dK = 0 and d0 = ∞,
we have

RSMD(D) ⊆ RSMD(D, d). (3.24)

For large number of descriptions, it is difficult to enumerate the faces of the
inner and outer bounds of the achievable rate region. So, we seek to approxi-
mately characterize the supporting hyper-planes of the rate-distortion region.
An alternate way of characterizing the region is to determine its boundaries. In
particular, take an arbitrary radius starting from the origin in the non-negative
part of the K-dimensional space, and consider a hyper-plane orthogonal to this
radius. This hyper-plane starts from the origin and moves towards the infinity
along with the radius until it hits the rate region. In the following we derive
an approximate characterization for this hitting point. More precisely, for an
A ∈ K

+ and A (= 0,

RSMD,A(D) ! min
R∈RSMD(D)

A · R. (3.25)

The minimizer rate tuple R is the minimization above is in fact the first point
of the region which meets the hyper-plane orthogonal to A. In the following
we present bound on RSMD,A(D).
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The next theorem establishes the upper and lower bounds for the supporting
hyper-planes of the rate-distortion region. Since the rate-distortion region is
convex, if the upper and lower bounds for the supporting hyper-planes coincide,
a complete characterization is then available. The upper and lower bounds
given in the following theorem do not coincide in general, however the gap
between them is bounded, yielding an approximate characterization of the rate
region.

Theorem 3.24. For the Gaussian source and any A ≥ 0,

K∑

α=1

fα(A)Ĥα(D∗) ≥
K∑

α=1

fα(A)H̃α(D∗) ≥ RSMD,A(D) ≥ RA(D) ≥ RA(D, d)

(3.26)

for any d1 ≥ d2 ≥ ... ≥ dK−1 > 0, d0 = ∞ and dK = 0. Moreover, for
any A ∈ K

+ and A (= 0, the gap between the lower and upper bounds can be
bounded by

K∑

α=1

fα(A)Ĥα(D∗)−RA(D) ≤ 1
2

K∑

α=2

fα−1(A) logα− 1
2

K∑

α=2

fα(A) log(α− 1)

≤ Asum

2

[
K∑

α=2

1
α− 1

logα−
K−1∑

α=2

1
α

log(α− 1)

]
− Amin

2
log(K − 1),

(3.27)

and

K∑

α=1

fα(A)H̃α(D∗)−RA(D) ≤ 1
2

K∑

α=2

[fα−1(A)− fα(A)] logα

≤ Asum

2

K−1∑

α=2

[
1

α− 1
− 1
α

] logα+
1
2
(

Asum

K − 1
−Amin) log(K).

(3.28)

This theorem is proved in Section 3.7.

Remark 3.25. It is not immediately clear that the outer bound, which is spec-
ified in terms of an uncountable number of supporting hyper-planes indexed by
A, is still a polytopes as for the case K = 3. Nevertheless it can indeed be
shown that when we specialize these bounds for appropriate choice of d, it is
an equivalent characterization of a polytopes. Moreover, the bounds given in
(3.27) and (3.28) are established using the bound induced by this specific choice
of d. We shall return to this point with more details in Section 3.6.

Remark 3.26. Theorem 3.24, which provides approximate characterizations of
the rate-distortion region, is given in a similar manner as Theorem 3.14, which
provides approximation characterizations of the SID-RD function. The second
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Table 3.2: The values of fα(A) and bounds for K = 3.

A (1, 0, 0) (1, 1, 0) (2, 1, 1) (1, 1, 1)
f1(A) 1 2 4 3
f2(A) 0 1 2 1.5
f3(A) 0 0 1 1

‖ · ‖ by (3.27) 0 1√
2

3+2 log 3
2
√

6
4+3 log 3

4
√

3

‖ · ‖ by (3.28) 0 1
2
√

2
2+log 3

2
√

6
3+log 3

4
√

3

bound in (3.27) and the second bound in (3.28) are more explicit, whereas the
first bounds involve the function fα(A) which requires solving an optimization
problem. These bounds imply that the gaps between the supporting hyper-planes
of inner and outer bounds is upper-bounded by constants independent of the
distortion constraints.

Remark 3.27. Whether the polytopic inner bound is a good approximate char-
acterization of the rate region does not depend on whether the outer bound is a
polytopes, but only on how large the gap is between the inner and outer bounds.
Though for the Gaussian source, the outer bound can be specialized to be a poly-
topes, for general sources this specialization may be difficult. Nevertheless, even
for general sources, the inner bound, which is an approximate characterization
of the rate region, is still a polytopes.

Example 3.28 (K = 3). Now we apply the result in Theorem 3.24 to the case
of K = 3. It can be shown that for this case it suffices to consider the choices
of vector A in the following set

{(1, 0, 0), (1, 1, 0), (2, 1, 1), (1, 1, 1)}.

In Table 3.2, we list the values of fα(A), which can be easily verified since the
α-resolution formulation is a linear optimization problem. Using (3.27) and
(3.28), it is straightforward to compute the bounds between the inner and upper
bounds, as shown in the last two rows of Table 3.2, where the gap is normalized
in terms of Euclidean distance.

3.4 Sum Rate and the Symmetric Individual Rate
Approximation

In this section, we provide proof details for results on the SID− RD func-
tion, and therefore prove Theorem 3.14. We first introduce more formally two
achievable individual description rates, which are given in a general form that
can also be applied to other sources, then the derivation of the lower bounds is
discussed. With both the upper and lower bounds, we analyze and bound the
gap between them. Finally, we extend the results to general sources under the
MSE distortion measure.
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Figure 3.5: Bounding the rate-distortion region for the three-description AMD
problem, where the distances between corresponding planes of the inner and outer
bounds are measured by Euclidean distance. The inner bound is drawn in with
dashed lines, and the outer bound with solid lines.

3.4.1 Achievable Rate Using the SR−MLD Scheme

In this subsection, we derive the first lower bound for RSMD(D) based on the
combination of the successive refinement and the multilevel diversity coding.
The SR−MLD coding scheme reduces to the SR− ULP scheme when the rate
is also symmetric, i.e., R1 = R2 = ... = RK . For a general source, we have
the following theorem. This theorem is given formally in order to facilitate the
analysis for general sources.

Theorem 3.29. For any given set of random variables (Y1, Y2, ..., YK) jointly
distributed with the source X, such that there exist deterministic functions Gα :
Yα → X to satisfy

d(X, Gα(Y1, Y2, ..., Yα)) ≤ Dα, α = 1, 2, ..., K, (3.29)

we have

RSMD(D1, D2, ..., DK) ≤
K∑

α=1

1
α

I(X ; Yα|Y1, Y2, . . . , Yα−1), (3.30)

where Y0 ! 0.

Proof of Theorem 3.29. This theorem is a natural consequence of combining
the result on successive refinement [54–57] and the property of the maximum
distance separable (MDS) codes.
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The random variable Yα is able to refine the reconstruction based on

Y1, Y2, . . . , Yα−1,

such that the expected distortion does not exceed Dα. The excess rate to
convey such information required for refinement is I(X ; Yα|Y1, Y2, . . . , Yα−1).
A (K,α) MDS code is then applied to the sequence of Yα, and encodes it into
the K available descriptions, such that any α of them be able to reconstruct
Yα. Therefore each description has to dedicate rate 1

αI(X ; Yα|Y1, Y2, . . . , Yα−1)
to Yα. Repeating this strategy and taking sum over all α’s, we get the desired
bound.

In the following, we consider the following natural distribution often seen
in the successive refinement problem

Yα = X +
K∑

i=α

Ni, α = 1, 2, . . . , K (3.31)

where Ni ∼ N (0,σ2
i ) are mutually independent and also independent of X .

For convenience, we denote
∑K

i=α Ni as Zα. The values of variances σ2
i ,

i = 1, 2, . . . , K are chosen such that the distortion constraint at each level
is satisfied with equality when the reconstruction is the linear minimum mean
squared error estimator (LMMSE), i.e., they are determined by the set of equa-
tions

Dα =
∑K

i=α σ
2
i

1 +
∑K

i=α σ
2
i

, α = 1, 2, ..., K. (3.32)

It is clear that there always exists a unique and valid solution for these variances
when the distortion constraints are given in the natural monotonic order, D1 ≥
D2 ≥ · · · ≥ DK . It is easy to show that this choice of Yα’s gives us

I(X ; Yα|Y1, Y2, . . . , Yα−1) =
1
2

Dα−1

Dα
.

Summing up the terms for α = 1, . . . , K, we arrive at the function R
SR
SMD(D)

defined in (3.10).

3.4.2 Achievable Rate Using the PPR Multilayer Scheme

From Theorem 3.4, an achievable individual description rate can be derived
by choosing a specific set of encoding auxiliary random variables, and more
specifically, we shall choose the following set of random variables. Let

Yα,k = X +
K−1∑

i=α

Ni,k, α = 1, 2, ..., K − 1, k = 1, 2, . . . , K (3.33)
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where Ni,k are mutually independent zero-mean Gaussian random variables,
which are also independent of X . Their variances are denoted as σ2

i,k, and they
satisfy σ2

i,k = σ2
i,k′ for any k, k′ ∈ IK ; we thus denote σ2

i,k as σ̃2
i . The construc-

tion of these auxiliary variables is illustrated in Figure 3.6. For convenience,
we shall denote

∑K−1
i=α Ni,k as Zα,k. For the last layer, i.e., α = K, we use

YK = X − (X |Yα,k,α ∈ IK−1, k ∈ IK) + NK , (3.34)

where NK is a zero-mean Gaussian random variable independent of everything
else, with variance σ̃2

K . For all the layers except that K-th layer, the lower
layers are useless when higher layer random variables are available, thus using
only {Yα−1,i; i : vi = 1} in the function Gv does not lose optimality.

X

YK−1,K YK−2,K Y1,K

YK−1,2 YK−2,2 Y1,2

YK−1,1 YK−2,1 Y1,1

NK−1,K NK−2,K NK−3,K N1,K

NK−1,1 NK−2,1 NK−3,1 N1,1

Figure 3.6: structure of the auxiliary random variables used in the PPR multilayer
scheme.

It remains to specify the variances of {{Nα,k,α ∈ IK−1, k ∈ Iα}, NK}, for
which the following observation is important. Consider the decoding function
Gv and the decoding Gu, where u = v + 1j(K), i.e., the set of available
descriptions at decoder u strictly includes that of decoder v, and moreover, it
has access to the j-th description. With the auxiliary random variables defined
in (3.33) and (3.34), it is clear that we should choose them to have the following
forms

Gv(Y|v|,j; j : vj = 1) = (X |Y|v|,j; j : vj = 1),
Gu(Y|u|,j; j : uj = 1) = (X |Y|u|,j; j : uj = 1).

However, even when Y|v|,j = Y|u|,j , i.e., there is no improvement from the
|v|-th layer information to the |u|-th layer information, the function Gu still
induces less distortion because it can use {Y|v|,j : j : uj = 1}, which strictly
includes {Y|v|,j; j : vj = 1}. This implies that for certain distortion vector D,
it is not possible to satisfy all its components with equalities in this scheme
because some of them are too loose. The enhanced distortion vector defined
given in Subsection 3.2.3 is thus introduced to eliminate this effect.

The enhancement technique has been previously used in [60] and [28] to
derive tight outer bound for the MIMO Gaussian broadcast channel capacity



3.4. Sum Rate and the Symmetric Individual Rate Approximation 61

and two-level vector Gaussian sum rate, respectively. The enhancement we use
here is simpler than theirs without the Lagrangian multiplier, but the essence
is the same: the channel or the distortion constraint is enhanced such that
the coding problem is less or more stringent, and at the same time the chosen
enhancement not only does not change the outer bound (or one specific choice
within a set of outer bounds), but also leads to a setting where the coding
scheme can satisfy the constraints with equality.

We shall now choose the variances of {{Nα,k;α ∈ IK−1, k ∈ Iα}, NK} by
the following equations

K−1∑

i=α

σ̃2
i = Φα(D∗

α), α = 1, 2, ..., K − 1, (3.35)

σ̃2
K =

D∗
KΦK−1(D∗

K−1)
(1−D∗

K)[ΦK−1(D∗
K−1)− ΦK(D∗

K)]
. (3.36)

The following lemma follows.

Lemma 3.30. Let D∗ be the enhanced distortion vector associated with any
valid distortion vector D, then the random variables defined by (3.33), (3.34),
(3.35) and (3.36) exist, and they satisfy

[
X − (X |Y|v|,j; j : vj = 1)

]2 = D∗
|v|, |v| = 1, 2, . . . , K − 1, (3.37)

[X − (X |{YK−1,j; j ∈ IK}, YK)]2 = D∗
K . (3.38)

The proof of this lemma can be found in Appendix B.2. Having this theo-
rem, we are now ready to prove the second inner bound.

Proof of RSMD(D∗) ≤ R
PPR
SMD(D∗). We first rewrite the rate expressions given

in Theorem 3.2. For a fixed set of (generalized symmetric) auxiliary random
variables Y ! {{Yα,k;α ∈ IK−1, k ∈ IK}, YK}, define

Ȟα(Y ) =h({Yα,i; i ∈ Iα}|{Yj,k; j ∈ Iα−1, k ∈ Iα})

− α

K
h({Yα,i; i ∈ IK}|X, {Yj,k; j ∈ Iα−1, k ∈ IK}),

and

ȞK(Y ) = I(X ; YK |{Yα,k;α ∈ IK−1, k ∈ IK}).

It follows that
K∑

α=1

1
α

H̃α(Y ) =
K−1∑

α=1

1
α

h({Yα,i; i ∈ Iα}|{Yj,k; j ∈ Iα−1, k ∈ Iα})

+
1
K

h(YK |{Yj,k; j ∈ IK−1, k ∈ IK})

− 1
K

h({Yj,k; j ∈ IK−1, k ∈ IK}, YK |X),
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where the right hand side is the rate expression given in Theorem 3.2.

Now for the specific set of random variables defined by (3.33) and (3.35),
we have for α = 2, 3, ..., K − 1

Ȟα(Y ) =h({Yα,i; i ∈ Iα}|{Yj,k; j ∈ Iα−1, k ∈ Iα})

− α

K
h({X + Zα,i; i ∈ IK}|X, {X + Zj,k; j ∈ Iα−1, k ∈ IK})

(a)
=h({Yα,i; i ∈ Iα}|{Yj,k; j ∈ Iα−1, k ∈ Iα})

− α

K
h({Zα,i; i ∈ IK}|{Zj,k; j ∈ Iα−1, k ∈ IK})

(b)
=h({Yα,i; i ∈ Iα}|{Yj,k; j ∈ Iα−1, k ∈ Iα})
− h({Zα,i; i ∈ Iα}|{Zj,k; j ∈ Iα−1, k ∈ Iα})

(c)
=h({Yα,i; i ∈ Iα}|{Yj,k; j ∈ Iα−1, k ∈ Iα})
− h({Yα,i; i ∈ Iα}|X, {Yj,k; j ∈ Iα−1, k ∈ Iα})

=I({Yα,i; i ∈ Iα}; X |{Yj,k; j ∈ Iα−1, k ∈ Iα}),

where (a) and (c) are because X is independent of Zα,i; (b) is because of the
chain rule and the fact that Zα,i is independent of {Zα,k;α ∈ IK , k (= i}. The
Markov chain {Y1,k; k ∈ IK} ↔ {Y2,k; k ∈ IK} ↔ ... ↔ {YK−1,k; k ∈ IK} ↔
X , implies that

I({Yα,i; i ∈ Iα};X |{Yj,k; j ∈ Iα−1, k ∈ Iα})
= h(X |{Yj,k; j ∈ Iα−1, k ∈ Iα})− h(X |{Yj,k; j ∈ Iα, k ∈ Iα})
= h(X |{Yα−1,k; k ∈ Iα})− h(X |{Yα,k; k ∈ Iα})
(d)
=

1
2

log
(α− 1)D∗

α−1

(α −D∗
α−1)

− 1
2

log D∗
α

=
1
2

log
(α− 1)D∗

α−1

(α−D∗
α−1)D∗

α
, (3.39)

where (d) follows from the choices of the variances of the Gaussian random
variables Nα,k. For α = 1 and α = K, it is straightforward to verify that

Ȟ1(Y ) =
1
2

log
1

D∗
1

,

ȞK(Y ) =
1
2

log
(K − 1)D∗

K−1

(K −D∗
K−1)D∗

K

, (3.40)

which means Ȟα(Y ) = H̃α(D∗
α) for α = 1, 2, . . . , K. Combining (3.39)-(3.40)
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we have,

K∑

α=1

1
α

H̃α(D∗) =
1
2

log
1

D∗
1

+
1
2

K∑

α=2

1
α

log
(α− 1)D∗

α−1

(α−D∗
α−1)D∗

α

=
1
2

K∑

α=1

log
D∗

α−1

D∗
α

− 1
2

K∑

α=2

1
α

log
α−D∗

α−1

α− 1
,

where we define D∗
0 ! 1. Note that the RHS of the above expression is the same

as R
PPR
SMD defined in (3.11), and it is clearly achievable due to Theorem 3.2.

3.4.3 Lower Bounding the Sum Rate and RSMD(D) Function

In this subsection, lower bounds toward those used in proving Theorem 3.14
are derived. The following theorem is the key tool to derive these lower bounds.

Theorem 3.31. For the Gaussian source, the sum-rate under the K-description
symmetric distortion satisfies

K∑

i=1

Ri ≥
K

2

K∑

α=1

1
α

log
(1 + dα)(Dα + dα−1)
(1 + dα−1)(Dα + dα)

, (3.41)

where d1 ≥ d2 ≥ ... ≥ dK−1 > dK = 0 are arbitrary non-negative values and
d0 ! ∞.

Before proving this theorem, we state the following lemma, which plays
an important role in the proof. The proof of this lemma can be found in
Appendix B.3.

Lemma 3.32. Let {Γi; i ∈ IK} be a set of descriptions such that there exist
decoding functions to satisfy the distortion constraints D = (D1, D2, ..., DK).
Let Yb = X + Nb and Ya = X + Na + Nb, where Na and Nb are mutually
independent Gaussian random variables, independent of the Gaussian source
X, with variance σ2

a and σ2
b , respectively. Then by defining σ2

b = db and σ2
a +

σ2
b = da and Γv = {Γi; i : vi = 1}, we have

1. Mutual information bound between encoding functions and a
noisy source

I(Γv; Y n
a ) ≥ n

2
log

1 + da

D|v| + da
, (3.42)

2. Bound on mutual information difference between encoding func-
tions and different noisy sources

I(Γv ; Y n
b )− I(Γv; Y n

a ) ≥ n

2
log

(1 + db)(D|v| + da)
(1 + da)(D|v| + db)

. (3.43)
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Now, we are ready to present the proof of Theorem 3.31.

Proof of Theorem 3.31. The bounding technique extends the method used in
[22,28,29], with the additional ingredient that we expand the probability space
with more than one additional random variable, and then utilize the special
structure in the expanded probability space to bound the sum rate. Consider
the variables {Yα;α ∈ IK} defined in (3.31). We have the following chain of
inequalities

n
K∑

i=1

(Ri + ε) ≥
K∑

i=1

H(Γi)−H(Γi; i ∈ IK |Xn)

(a)
=

K−1∑

α=1

[
K

α
(

K
α

)
∑

v:|v|=α

H(Γv)− K

(α+ 1)
(

K
α+1

)
∑

v:|v|=α+1

H(Γv)

]

+ H({Γi; i ∈ IK})−H({Γi; i ∈ IK}|Xn)

(b)
≥

K−1∑

α=1

[
K

α
(K
α

)
∑

v:|v|=α

H(Γv)− K

(α + 1)
( K
α+1

)
∑

v:|v|=α+1

H(Γv)

]

−
K−1∑

α=1

[
K

α
(K
α

)
∑

v:|v|=α

H(Γv|Y n
α )− K

(α+ 1)
( K
α+1

)
∑

v:|v|=α+1

H(Γv|Y n
α )

]

+ I({Γi; i ∈ IK}; Xn)

=
K−1∑

α=1

[
K

α
(K
α

)
∑

v:|v|=α

I(Γv ; Y n
α )− K

(α+ 1)
( K
α+1

)
∑

v:|v|=α+1

I(Γv ; Y n
α )

]

+ I({Γi; i ∈ IK}; Xn)

=
K∑

i=1

I(Γi; Y n
1 ) +

K−1∑

α=2

K

α
(

K
α

)
∑

v:|v|=α

[
I(Γv; Y n

α )− I(Γv; Y n
α−1)

]

+
[
I({Γi, i ∈ IK}; Xn)− I({Γi; i ∈ IK}; Y n

K−1)
]

(3.44)

where (a) is by adding and subtracting the same terms where the positive
term in the bracket chases the negative one; (b) is true because the subtracted
bracket is non-negative due to conditional version of Han’s inequality [3] (p.
668).

For convenience we denote the variance of additive noise in Yα = X +∑K
j=α Nj by dα =

∑K
j=α [N2

j ] =
∑K

j=α σ
2
j . Now we can apply Lemma 3.32 on
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(3.44) to get

K∑

i=1

(Ri + ε) ≥
K∑

i=1

1
2

log
1 + d1

D1 + d1
+

K−1∑

α=2

K

α
(K
α

)
∑

v:|v|=α

1
2

log
(1 + dα)(Dα + dα−1)
(1 + dα−1)(Dα + dα)

+
1
2

log
(1 + dK)(DK + dK−1)
(1 + dK−1)(DK + dK)

=
K

2
log

1 + d1

D1 + d1
+

K

2

K−1∑

α=2

1
α

K

2
1
K

log
(1 + dα)(Dα + dα−1)
(1 + dα−1)(Dα + dα)

,

(3.45)

which together with

log
D1 + d0

1 + d0
= log

D1 +∞
1 +∞ = 0.

give us the desired result.

The lower bounds in Theorem 3.14 are direct consequences of the above
theorem. First by dividing both sides of (3.41) by K, we obtain

RSMD(D) ≥ RSMD(D, d)

for any valid choice of d. It is clear that by optimizing over d we get tightest
bound among this class, that is RSMD(D).

Note that the lower bound in Theorem 3.31 is in fact a set of lower bounds,
parametrized by d1 ≥ d2 ≥ ... ≥ dK−1 > 0. We may optimize it to find the
tightest lower bound, however, an explicit optimization is not only difficult,
but also fails to offer much insight due to the lack of matching achievability
result. Therefore, we do not evaluate RSMD(D). Instead we choose a specific
set of values to get a (sub-optimal) bound, resulting in the following corollary.
We will present the proof of this corollary in Appendix B.4.

Corollary 3.33. For a given distortion constraint vector D and its enhanced
version D∗, define

ŘSMD(D∗) =
1
2

K∑

α=1

1
α

log
D∗

α−1

D∗
α

− 1
2

K∑

α=2

1
α− 1

log(α−D∗
α−1)

+
1
2

K∑

α=2

1
α

log(α− 1). (3.46)

Then, for the Gaussian source, ŘSMD(D∗) is a lower bound for RSMD(D) from
the class of bounds of the form ŘSMD(D, d) for a particular choice of d, i.e.,

RSMD(D) ≥ RSMD(D) ≥ ŘSMD(D∗). (3.47)
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Remark 3.34. It is worth noting that the right hand side of (3.46) is only
related to the enhanced distortion vector, while it is bounding the SID− RD, a
function of distortion vector D. Indeed the enhanced distortion vector is given
in such a way that it does not change the lower bound under the chosen value
of (d1, d2, ..., dK−1). It is discussed in more detail in the proof of this corollary.

3.4.4 Bounding the Gap Between Lower and Upper Bounds

In this part we prove the last of Theorem 3.14, which is bounding the gap
between the lower and upper bounds on SID− RD function.

For bounding R
SR
SMD(D∗)−RSMD(D), we can simply write

R
SR
SMD(D∗)−RSMD(D) ≤ R

SR
SMD(D∗)− ŘSMD(D∗)

=
1
2

K∑

α=2

1
α− 1

log(α−D∗
α−1)−

1
2

K∑

α=2

1
α

log(α− 1)

≤ 1
2

K∑

α=2

1
α− 1

logα− 1
2

K∑

α=2

1
α

log(α− 1).

Similarly in order to bound the gap between R
PPR
SMD(D∗) and RSMD(D), we have

R
PPR
SMD(D∗)−RSMD(D) ≤ R

PPR
SMD(D∗)− ŘSMD(D∗)

=
1
2

K∑

α=2

1
α− 1

log(α−D∗
α−1)−

1
2

K∑

α=2

1
α

log(α− 1)

− 1
2

K∑

α=2

1
α

[
log

α−D∗
α−1

α− 1

]

=
1
2

K∑

α=2

[
1

α− 1
− 1
α

]
log(α−D∗

α−1)

≤ 1
2

K∑

α=2

[
1

α− 1
− 1
α

]
logα

This completes the proof of Theorem 3.14.
Theorem 3.14 provides one possible approximation for the SID− RD func-

tion with universal constants. Various improvements can be made, for example,
with better choice of (d1, d2, ..., dK−1), particularly for low-resolution regimes.
For the case with only two level distortion constraints, the outer bound in
Theorem 3.31 reduces correctly to the one given in [28] and [29]. It was shown
in [22], [28] and [29] that for certain cases this bound is indeed tight, which
however requires optimization to find the optimal lower bound. Better choice
of random variables in the PPR multilayer coding scheme can also lead to im-
proved bounds. The current upper bound is loose even in the high-resolution
regime, and through more sophisticated coding schemes, it may be possible to
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find such asymptotically tight inner bounds. We will not pursue such refine-
ments here, but it can be an interesting question to be addressed in future.

3.4.5 Bounding the Gap when D1 = D2 = · · · = DK−k = 1

In order to prove Corollary 3.16, notice that this case implies we can set ď1 =
ď2 = ... = ďK−k = ∞, which makes the term in the summation in (3.12) zero
for α = 1, 2, . . . , K − 1. Thus the lower bound RSMD(D, ď) implies that

RSMD(D, ď) =
1
2

K∑

α=K−k+1

1
α

log
(1 + dα)(Dα + dα−1)
(1 + dα−1)(Dα + dα)

.

Next, apply the procedure of computing the enhanced distortion vector on

(DK−k+1, DK−k+2, .., DK)

only, and denote the output as (D∗
K−k+1, D

∗
K−k+2, ..., D

∗
K). The rest of the

proof is exactly the same as the proof of Corollary 3.33, and we skip it.

3.5 Rate-Distortion Region: Achievable Schemes

In this section, we derive two inner bounds for the SMD rate-distortion region.
This essentially proves Theorem 3.20. The development is largely parallel to
those in the previous section, with the new ingredient of α-resolution to help
establish an achievable region by “inflating” the PPR multilayer rate.

3.5.1 An Achievable Region by the SR−MLD Scheme

We first need to define a new rate region as follows.

Definition 3.35. Let R̂SR
SMD(Y ) be the set of all non-negative rate vectors

(R1, R2, ..., RK), such that

Ri ≥
K∑

α=1

rαi , 1 ≤ i ≤ K,

for some rαi ≥ 0, 1 ≤ α ≤ K, satisfying
∑

i:vi=1

r|v|i ≥ I(X ; Y|v||Y1, Y2, . . . , Y|v|−1), ∀v ∈ ΩK .

The following theorem is rather immediate by the result of SMLD problem
in Section 2.1 and and Theorem 3.29.

Theorem 3.36. We have

conv
(⋃

R̂SR
SMD(Y )

)
⊆ R(D),
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where conv(·) is the convex hull operator, and the union is taken over the set
of auxiliary random variables Y = (Y1, Y2, . . . , YK) in some alphabets Y1×Y2×
· · ·×YK, which are jointly distributed with X, such that there exist deterministic
functions Gα : Y1 × Y2 × ...× Yα → X to satisfy

d(X, Gα(Y1, Y2, . . . , Yα)) ≤ Dα, α = 1, 2, . . . , K.

The following corollary is a direct consequence of the above theorem.

Corollary 3.37.
RSR

SMD(D) ⊆ RSMD(D).

Proof of Corollary 3.37. One particular choice of Y is the one specified by
(3.31) and (3.32), for which we have R̂SR

SMD(Y ) = RSR
SMD(D). Therefore, it is

clear that RSR
SMD(D) is a (proper) subset of conv(

⋃
R̂SR

SMD(Y ), and thus an
achievable region.

Remark 3.38. Note that the region conv(
⋃
R̂SR

SMD(Y ) may be a general convex
region with curvy boundary, thus not a polytopes. However RSR

SMD(D) is a subset
of this set by specializing it to a particular distribution, resulting in a polytopes,
since it is the projection of the polytopes (R1, R2, . . . , RK ; {rαi ;α ∈ IK , i ∈ IK})
on the first K components.

Remark 3.39. It is clear that Corollary 3.37 in particular implies RSR
SMD(D∗) ⊆

RSMD(D∗), by replacing D by D∗, which is claimed in Theorem 3.20.

3.5.2 An Achievable Region by the PPR Multilayer Scheme

Though the original PPR multilayer scheme is designed for a single symmetric
rate point, it can indeed be used to generate an achievable region. However,
this directly generalized region is not suitable for the purpose of approximate
characterization, and thus we do not discuss it in details. Instead, we shall
consider the following region.

Definition 3.40. Let R̂PPR
SMD(Y ) be the set of all non-negative rate vectors

(R1, R2, ..., RK), such that

Ri ≥
K∑

α=1

rαi , 1 ≤ i ≤ K,

for some rαi ≥ 0, 1 ≤ α ≤ K, satisfying
∑

i:vi=1

r|v|i ≥ H̃|v|(Y ), v ∈ ΩK ,

where H̃|v|(Y ) is defined in (3.3) and (3.4).



3.6. Rate-Distortion Region: Outer Bound 69

The following theorem is the counterpart of Theorem 3.36. However, its
proof is more involved.

Theorem 3.41. We have

conv
(⋃

R̂PPR
SMD(Y )

)
⊆ R(D),

where the union is taken over the set of generalized symmetric auxiliary ran-
dom variables {{Yα,k;α ∈ IK−1, k ∈ IK}, YK} in the alphabets YK

1 × YK
2 ×

· · · × YK
K−1 × YK , which are jointly distributed with X, such that there exist

deterministic functions Gα : Yα
1 × Yα

2 × · · ·× Yα
α → X , α ∈ IK−1 such that

[d(X, Gα({Yi,k; i ∈ Iα, k ∈ Iα}))] ≤ Dα, α = 1, 2, . . . , K − 1,

and GK : YK
1 × YK

2 × · · ·× YK
K−1 × YK → X , such that

[d(X, GK({Yi,k; i ∈ IK−1, k ∈ IK}, YK))] ≤ DK .

The proof of Theorem 3.41 relies on a result in [30]. We quote this result
and the proof of the theorem in Appendix B.5. The following corollary shows
the second part of Theorem 3.20.

Corollary 3.42. Let D∗ be the enhanced distortion vector of D, then for the
Gaussian source

RPPR
SMD(D∗) ⊆ RSMD(D∗).

Proof of Corollary 3.42. Notice that the region R
PPR
SMD(D) is just R̂PPR

SMD(Y ) with
the choice of {{Yα,k;α ∈ IK−1, k ∈ IK}, YK} defined by (3.33) and (3.34), the
variances of which are given by (3.35) and (3.36). Therefore, we have

R
PPR
SMD(D) ⊆ conv

(⋃
R̂PPR

SMD(Y )
)
⊆ RSMD(D),

and similarly, R
PPR
SMD(D∗) ⊆ RSMD(D∗).

3.6 Rate-Distortion Region: Outer Bound

In this section, we provide a lower bound to the supporting hyper-plane of
the Gaussian MD rate-distortion region, which yields in establishing the outer
bound in Theorem 3.23.

Proof of Theorem 3.23. Consider a arbitrary vector A ≥ 0 and let c1, c2, ..., cK

be a set of α-resolution for A satisfying

c1 / c2 / ... / cK .
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as stated in Theorem 3.9. Then we can start with

n
K∑

i=1

Ai(Ri + ε) ≥
K∑

i=1

AiH(Γi)

(a)
=
∑

v:|v|=1

c1(v)H(Γv)

(b)
=

K−1∑

α=1

[
∑

v:|v|=α

cα(v)H(Γv)−
∑

v:|v|=α+1

cα+1(v)H(Γv)

]

+ AminH(Γi; i ∈ IK)−AminH(Γi; i ∈ IK |Xn)

(c)
≥

K−1∑

α=1

[
∑

v:|v|=α

cα(v)H(Γv)−
∑

v:|v|=α+1

cα+1(v)H(Γv)

]

−
K−1∑

α=1

[
∑

v:|v|=α

cα(v)H(Γv |Y n
α )−

∑

v:|v|=α+1

cα+1(v)H(Γv|Y n
α )

]

+ AminI({Γi; i ∈ IK}; Xn)

=
K−1∑

α=1

[
∑

v:|v|=α

cα(v)I(Γv; Y n
α )−

∑

v:|v|=α+1

cα+1(v)I(Γv; Y n
α )

]

+ AminI({Γi; i ∈ IK}; Xn)

(d)
=

K∑

i=1

AiI(Γi; Y n
1 ) +

K−1∑

α=2

∑

v:|v|=α

cα(v)
[
I(Γv ; Y n

α )− I(Γv ; Y n
α−1)

]

+ Amin

[
I({Γi; i ∈ IK}; Xn)− I({Γi; i ∈ IK}; Y n

K−1)
]
, (3.48)

where in (a) and (d) we used the result of Lemma 3.11 that c1(v) = Ai

for v = 1i(K); (b) is by adding and subtracting the same terms, and due to
the fact that {Γi; i ∈ IK} are deterministic functions of Xn; finally, (c) is by a
conditional version of the covering property of the given sequence of the optimal
α-resolutions as defined in (3.6). At this point, we can apply Lemma 3.32 to
bound each term in (3.48). This results in

K∑

i=1

Ai(Ri + ε) ≥1
2

K∑

i=1

Ai log
1 + d1

D1 + d1

+
K−1∑

α=2

∑

v:|v|=α

cα(v)
[
1
2

log
(1 + dα)(Dα + dα−1)
(1 + dα−1)(Dα + dα)

]

+ Amin

[
1
2

log
(1 + dα)(Dα + dα−1)
(1 + dα−1)(Dα + dα)

]
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(e)
=

1
2

K∑

α=1

fα(A) log
(1 + dα)(Dα + dα−1)
(1 + dα−1)(Dα + dα)

(3.49)

where in (e) we used the definition of fα(A) in (3.5) as well as the fact that

log
D1 + d0

1 + d0
= log

D1 +∞
1 +∞ = 0.

This completes the proof of the theorem.

As mentioned before, one can optimize RSMD(D, d) for d and obtain the
tightest bound in this class, RSMD(D), which is a difficult task to do. Instead,
we choose a set of values for d1, d2, . . . , dK−1 and derive a non-parametric
bound as in the following corollary. This would be useful later for bounding
the gap between the inner and outer bounds. We first define the following rate
region.

Definition 3.43. For a given distortion constraint vector D and its enhanced
version D∗, let ŘSMD(D∗) be the set all rate tuples (R1, R2, . . . , RK) that for
any A ∈ K

+ and A (= 0

A · R ≥1
2

K∑

α=1

fα(A) log
D∗

α−1

D∗
α

− 1
2

K∑

α=2

fα−1(A) log(α −D∗
α−1)

+
1
2

K∑

α=2

fα(A) log(α− 1). (3.50)

Corollary 3.44. For the Gaussian source, ŘSMD(D∗) establishes an outer
bound for the SMD rate-distortion region, i.e.,

RSMD(D) ⊆ RSMD(D) ⊆ ŘSMD(D∗). (3.51)

The proof of this corollary is along a similar line as the proof of Corollary
3.33, with the additional application of Lemma 3.10 in one step. We present
this proof in Appendix B.6 for completeness.

Next we proceed to establish that the outer bound ŘSMD(D∗) is indeed a
polytopes.

Corollary 3.45. The rate region ŘSMD(D∗) is a polytope.

The proof of this corollary is given in Appendix B.7.

3.7 Rate-Distortion Region: Gap Analysis

We derived inner and outer bounds for the achievable rate region of the SMD
problem in Section 3.5 and Section 3.6, respectively. These bounds are defined
based on characterization of their supporting hyper-planes. Our goal in this



72 Symmetric Multiple Description Coding

section is to show that these bounds together, provide an approximate charac-
terization for the SMD rate region. In order to do this, we show that the gap
between each two parallel hyper-planes is bounded by a constant, independent
of the distortion constraints. Therefore, the boundary of the actual rate region
would be sandwiched between two boundaries with a gap bounded above by a
constant. This is exactly the result of Theorem 3.24, which will prove here.

First of all, note that the first and second inequalities in (3.26) are direct
consequences of Theorem 3.36 and Theorem 3.41. Also, Theorem 3.23 together
with Definition 3.21 imply the third and the last inequalities in (3.26). So, it
remains to prove the difference bounds in (3.27) and (3.28).

The first inequality in (3.27) can be proved as follows.

K∑

α=1

fα(A)Ĥα(D∗)−RA(D)
(a)
≤

K∑

α=1

fα(A)Ĥα(D∗)−RA(D∗, ď)

(b)
≤ 1

2

[
K∑

α=1

fα(A) log
D∗

α−1

D∗
α

]
− 1

2

[
K∑

α=1

fα(A) log
D∗

α−1

D∗
α

−
K∑

α=2

fα−1(A) log(α−D∗
α−1) +

K∑

α=2

fα(A) log(α − 1)

]

≤ 1
2

K∑

α=2

fα−1(A) logα− 1
2

K∑

α=2

fα(A) log(α− 1)

=
f1(A)

2
log 2 +

1
2

K−1∑

α=2

fα(A)[log(α+ 1)−log(α− 1)]− fK(A)
2

log(K − 1)

(c)
≤ Asum

2
log 2 +

1
2

K−1∑

α=2

Asum

α
[log(α+ 1)− log(α− 1)]− Amin

2
log(K − 1)

≤ Asum

2

K∑

α=2

1
α− 1

logα− Asum

2

K−1∑

α=2

1
α

log(α− 1)− Amin

2
log(K − 1),

(3.52)

where both (a) and (b) are due to Corollary 3.44, and in (c) we have used
Lemma 3.11.

To prove the bound in (3.28) of Theorem 3.24, we again combine The-
orem 3.20, Theorem B.2, Theorem 3.23, Corollary 3.44, and notice the fact
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that
K∑

α=1

fα(A)H̃α(D∗) =
1
2
f1(A) log

1
D∗

1

+
1
2

K−1∑

α=2

fα(A) log
(α− 1)D∗

α−1

D∗
α(α −D∗

α−1)

+
1
2
fK(A) log

(K − 1)D∗
K−1

D∗
K(K −D∗

K−1)

=
1
2

K∑

α=1

fα(A) log
D∗

α−1

D∗
α

− 1
2

K∑

α=2

fα(A) log(α−D∗
α−1)

+
1
2

K∑

α=2

fα(A) log(α− 1).

Therefore, similar to (3.52) we can write

K∑

α=1

fα(A)H̃α(D∗)−RA(D) ≤
K∑

α=1

fα(A)H̃α(D∗)−RA(D∗, ď)

≤ 1
2

[
K∑

α=1

fα(A) log
D∗

α−1

D∗
α

−
K∑

α=2

fα(A) log(α−D∗
α−1)

+
K∑

α=2

fα(A) log(α− 1)
]

− 1
2

[
K∑

α=1

fα(A) log
D∗

α−1

D∗
α

−
K∑

α=2

fα−1(A) log(α−D∗
α−1)

+
K∑

α=2

fα(A) log(α− 1)

]

≤ 1
2

K∑

α=2

[fα−1(A)− fα(A)] logα

which shows that the first inequality in (3.28) holds. The proof of the second
inequality is similar to that of (3.27), and by using Lemma 3.11.

3.8 Extension to General Sources

In this section we generalize the result for the Gaussian source to other sources
under the MSE distortion measure , and show similar but looser bounds hold
for the symmetric individual description rate-distortion (SID− RD) function
as well as the rate-distortion region under the quadratic distortion measure.
We derive the result using the SR−MLD scheme, but not the PPR multilayer
scheme, which appears difficult to analyze for general sources. For K = 2
and the symmetric distortion constraints, the sum rate gap between the upper
bound derived using the SR−MLD scheme and the rate-distortion function
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is upper-bounded by 1.5 bits, which is the same value as that derived in [61]
for the two description case; nevertheless our result is stronger, since in [61]
the achievable scheme is more involved than the SR−MLD scheme yet the
bounding constant is the same.

Some additional definitions are necessary. For a general source X with finite
differential entropy, zero mean and unit variance, define the following quantity,

R
′
SMD(D) =

K∑

α=1

1
α

I(X ; Yα|Y1, Y2, . . . , Yα−1)

where random variable Yα, α = 1, 2, ..., K are defined as in (3.31) and (3.32).
The following theorem is the main result of this section.

Theorem 3.46. For any general source with unit variance under the MSE
distortion measure, we have

R
′
SMD(D) ≥ RSMD(D),

moreover,

R
′
SMD(D)−RSMD(D) ≤

K∑

α=1

1
2α

.

This theorem essentially states the the SR−MLD (SR− ULP) scheme with
the additive Gaussian codebook operates within

∑K
α=1(2α)−1 of the optimal

coding scheme, in terms of individual description rate, for any source with unit
variance. The first statement in the theorem is trivial by applying Theorem
3.29, and the second statement is proved in Appendix B.8.

Unlike Theorem 3.14, there is no explicit lower bound on the SID− RD
function. Indeed, in the proof of Theorem 3.46, the outer bound is never
explicitly written to have a single letter form or an analytical form that can
be computed directly. The key proof idea is to construct the lower and upper
bounds in appropriate forms such that certain terms are the same, and then
cancel out these terms to bound the remaining terms.

Similar to the SID− RD approximation, we can extend the rate-distortion
region approximation technique to general sources under the MSE distortion
measure. It is clear that the definition of R̂SR

SMD(Y ) is not limited to the Gaus-
sian source. Hence, we can define the following rate region for arbitrary dis-
tributed source.

Definition 3.47. Let Y be defined as in (3.31) and (3.32) for a general source
X with zero mean and unit variance, and denote the corresponding rate region
R̂SR

SMD(Y ) by R̂′
SMD(D) as define in Theorem 3.36. Moreover, for a given

A ∈ K
+ and A (= 0, defined

R̂′
A(D) ! min

R∈R̂′
SMD(D)

A · R.
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Now, we have the following theorem.

Theorem 3.48. For any general source X with unit variance under the MSE
distortion measure, we have

R̂′
SMD(D) ⊆ RSMD(D).

Moreover, for any A ∈ K
+ and A (= 0

R̂′
A(D)−RA(D) ≤

K∑

α=1

fα(A)
2

.

The proof of this theorem follows closely the proof for the general source
sum-rate in this section, and it is thus omitted.





Asymmetric Multiple
Description Coding 4
The multiple description problem analysis in Chapter 3, we derived an ap-
proximate characterization for the achievable rate region of the MD problem
proved that the distortion constraints only depend on the number of available
descriptions at the decoder, which is known as symmetric distortion constraint
in the literature. However, asymmetric (unequal) link reliabilities as well as
different available bandwidth for the descriptions, cause an asymmetric situ-
ation, wherein the quality of source reconstruction depends not only on the
number of received descriptions, but also the specific subset of them. This
problem is called asymmetric multiple description (AMD) coding, which is a
generalization of the symmetric version of the problem.

In this problem a source is mapped into K descriptions and sent to 2K − 1
decoders. The decoders are required to reconstruct the source sequence within
certain distortions using the available descriptions.

Since the AMD problem is an extension of the SMD problem, not surpris-
ingly, the exact rate region characterization for this problem is still open for
the quadratic Gaussian unless for the two description case [11, 22].

Compared to the symmetric MD problem, the asymmetric MD problem has
received much less attention. Though some vanguard effort can be found in
[23, 27, 28, 62], usually with only a subset of all possible distortion constraints,
the asymmetric problem has not been systematically investigated for more than
two descriptions, to the best of our knowledge.

We developed an intimate connection between the symmetric multilevel di-
versity (SMLD) coding problem and the symmetric multiple description (SMD)
problem in Chapter 3. There we showed that for the SMD problem, achievable
rate region based on successive refinement (SR) coding coupled with SMLD
coding provides good approximation to the MD rate region under symmetric
distortion constraints; perhaps more interestingly, the achievable rate region

77
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has the same geometric structure as that of the SMLD coding rate region. In
fact, the SMLD coding result is essential for establishing the SMD result in [63].

A similar approach is used here in order to develop an approximate charac-
terization for the achievable rate region of the asymmetric 3-description prob-
lem based on its lossless counterpart (see Figure 2.2 and Figure 4.1), the AMLD
problem discussed in Chapter 2.

Using the intuitions gained in treating the AMLD problem as well as the
sum-rate lower bound for symmetric Gaussian MD problem in Chapter 3, we
develop inner and outer bounds for the AMD rate region, both of which bear
similar geometric structure to the AMLD coding rate region. Moreover, the gap
between the bounds is constant (less than 1.3 bits in terms of the Euclidean
distance between the bounding planes), yielding an approximate characteriza-
tion.

One surprising consequence of the result is that the proposed simple archi-
tecture based on successive refinement (SR) [54,56,57] and AMLD coding is in
fact close to optimality. From an engineering viewpoint, this suggests that one
can design simple and flexible MD codes that are approximately optimal.

This result suggests a general approach in treating lossy source coding prob-
lems: first solve a corresponding a lossless version of the problem, then extend
the results and intuitions to its lossy counterpart to yield an approximate char-
acterization. The result given in this chapter further illustrates the effectiveness
of this approach.

4.1 Gaussian AMD: Problem Formulation

Let {X(t)}t=1,2,... be a sequence of independent and identically distributed zero
mean and unit variance real-valued Gaussian source, i.e., X = , with time
index t. Moreover, assume X = be the reconstruction alphabet. The vector

(X(1), X(2), . . . , X(n))

is denoted by Xn. We use capital letters for random variables, and the corre-
sponding lower-case letters for their realization. The quality of the reconstruc-
tion is measured by the quadratic distance between the original sequence xn

and the reconstructed one x̂n. Formally, we define the distortion as

d(xn, x̂n) =
1
n

n∑

k=1

|x(k) − x̂(k)|2, (4.1)

In a general multiple description setting, the encoders produces K descrip-
tions, namely Γ1,Γ2, . . . ,ΓK based on the source sequence and sends them to
the decoders through noiseless channels. Each decoder receives a non-empty
subset of the descriptions, and has to reconstruct the source sequence x̂n which
satisfies a certain level of fidelity.

In a manner similar to the last chapters, we denote each decoder by a binary
vector v, the indicator of the corresponding set of available descriptions. Each
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decoder v has a distortion constraint Dv, and needs to reconstruct the source
such that the corresponding expected distortion does not exceed this constraint.
The main goal in this problem is to characterize the set of achievable rates of
the descriptions in a way that such reconstructions are possible. We present a
formal definition of the problem next.

An (n, {Mi, i ∈ IK}, {∆v, v ∈ ΩK}) MD-code is defined as a set of encoding
functions

Fi : Xn −→ {1, 2, . . . , Mi}, i ∈ IK , (4.2)

and 2K − 1 decoding functions

Gv :
∏

j:vj=1

{1, . . . , Mj} −→ Xn, v ∈ ΩK , (4.3)

with

∆v =
[
d(Xn, X̂n

v )
]
, v ∈ ΩK , (4.4)

where

X̂n
v = Gv(Fj(Xn), j : vj = 1). (4.5)

where
∏

denotes set product, and is the expectation operator.
A rate tuple R = (R1, R2, . . . , RK) is called D = (Dv; v ∈ ΩK)-achievable

if for every ε > 0 and sufficiently large n, there exists an (n, {Mi; i ∈ IK}, {∆v;
v ∈ ΩK}) MD-code such that

1
n

log Mi ≤ Ri + ε, i = 1, . . . , K, (4.6)

and

∆v ≤ Dv + ε, v ∈ ΩK . (4.7)

We denote by RAMD(D) the set of all D-achievable rate tuples, which we
seek to characterize.

We use the notation u ≤ v introduced in Definition 2.2. It is clear that if
u ≤ v, then the decoder v can reconstruct the source sequence as well as the
decoder u does, even if Du ≤ Dv. The following lemma shows that a slight
modification of the distortion vector in order to satisfy such property does not
change the achievable rate region. The proof of the lemma is presented in
Appendix C.1.

Lemma 4.1. For a given distortion vector D, define D̃ as D̃ = (D̃v; v ∈ ΩK),
where

D̃v = min
u:u≤v

Du.

Then RAMD(D̃) = RAMD(D).
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Figure 4.1: The three description source coding problem with ordering L1.

Given this lemma, we can assume, without loss of generality, that Dv ≤ Du

for all u ≤ v. These distortion constraints then induce an ordering on the
decoders, or equivalently on their associated subset of descriptions, which is
consistent with the ordering notion defined in Definition 2.5.

In the rest of this chapter, we focus on the three description (K = 3)
problem, and present the results in general form, i.e., regardless of the exact
underlying ordering. Occasionally we shall provide the proof details only for
the specific sorted distortion constraints

D100 ≥ D010 ≥ D001 ≥ D110 ≥ D101 ≥ D011 ≥ D111,

which induces the ordering

L (100) < L (010) < L (001) < L (110) < L (101) < L (011) < L (111)

on the subsets of descriptions, which is exactly the aforementioned ordering
L1 in Table 2.1. Figure 4.1 shows the setting of this problem for the ordering
L1. It is worth mentioning that the distortion constraints may also induce
different ordering of subsets of the descriptions. All possible ordering functions
are listed in Table 2.2.

4.2 Main Result

In this section we first establish an outer bound for the achievable rate region
of the Gaussian asymmetric 3-description problem. We also present an inner
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bound for the achievable rate region. An approximate characterization for the
AMD problem will be obtained by bounding that the gap between the inner
and outer bounds.

We present the theorems in a unified way which hold for all orderings, and
also specialize it to the ordering L1 to facilitate understanding and further
discussion in next section.

Definition 4.2. For a given distortion vector D = (Dv; v ∈ Ω3), denote by
RAMD(D) the set of all rate triples (R1, R2, R3) satisfying

Ri ≥
1
2

log
1

D1i

, i = 1, 2, 3 (AMD− O1)

Ri + Rj ≥ min
(

1
2

log
1

D1i

,
1
2

log
1

D1j

)
+

1
2

log
1

D1i+1j

− 1, i (= j

(AMD− O2)

2Ri + Rj + Rk ≥ min
(

1
2

log
1

D1i

,
1
2

log
1

D1j

)
+ min

(
1
2

log
1

D1i
,
1
2

log
1

D1k

)

+ min
(

1
2

log
1

D1i+1j

,
1
2

log
1

D1i+1k

)
+

1
2

log
1

D111
− 3,

i (= j (= k (AMD− O3)

R1 + R2 + R3 ≥
1
2

log
1

D100
+ min

(
1
2

log
1

D110
,
1
2

log
1

D001

)

+
1
2

log
1

D111
− 2, (AMD− O4)

R1 + R2 + R3 ≥
1
4

log
1

D2
100DΓ2

+ min
(

1
4

log
1

D110
,
1
4

log
1

D101
,
1
4

log
1

D011

)

+
1
2

log
1

D111
− 9

4
. (AMD− O5)

Theorem 4.3 (An Outer Bound for the AMD Rate Region). Any achievable
rate triple (R1, R2, R3) belongs to RAMD(D), i.e., RAMD(D) ⊆ RAMD(D).

The bound stated in this theorem is a consequence of a more general
parametric outer bound RAMD(D, d), defined in Theorem 4.11. However, the
current form is more convenient for comparison between the inner and outer
bounds. We will prove this theorem in Section 4.4.

In order to establish an inner bound for the AMD we need to define the
following rate region. This together with Theorem 4.5 give an inner bound for
the achievable rate region of the 3-description AMD problem.

Definition 4.4. For a given distortion vector D = (Dv ; v ∈ Ω3), let RAMD(D)
be the set of all rate triples (R1, R2, R3) satisfying
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Ri ≥
1
2

log
1

D1i

, i = 1, 2, 3 (AMD− I1)

Ri + Rj ≥ min
(

1
2

log
1

D1i

,
1
2

log
1

D1j

)
+

1
2

log
1

D1i+1j

, i (= j

(AMD− I2)

2Ri + Rj + Rk ≥ min
(

1
2

log
1

D1i

,
1
2

log
1

D1j

)
+ min

(
1
2

log
1

D1i

,
1
2

log
1

D1k

)

+ min
(

1
2

log
1

D1i+1j

,
1
2

log
1

D1i+1k

)
+

1
2

log
1

D111
,

i (= j (= k (AMD− I3)

R1 + R2 + R3 ≥
1
2

log
1

D100
+ min

(
1
2

log
1

D110
,
1
2

log
1

D001

)
+

1
2

log
1

D111
,

(AMD− I4)

R1 + R2 + R3 ≥
1
4

log
1

D2
100D010

+ min
(

1
2

log
1

D110
,
1
2

log
1

D101
,
1
2

log
1

D011

)

+
1
2

log
1

D111
. (AMD− I5)

Theorem 4.5 (An Inner Bound for the AMD Rate Region). Any rate triple
R ∈ RAMD(D) is achievable, i.e, RAMD(D) ⊆ RAMD(D).

This region can be achieved using AMLD coding along with SR, and it can
be considered as the asymmetric counterpart of RSR

SMD defined in Section 3.3.
The proof of this theorem can be found in Section 4.5.

Summarizing the results of Theorem 4.3 and Theorem 4.5 gives the following
corollary.

Corollary 4.6.
RAMD(D) ⊆ RAMD(D) ⊆ RAMD(D). (4.8)

The result of this corollary is that the multiple description achievable rate
region is bounded between two sets of hyper-planes, which are pair-wise par-
allel. For each pair of parallel planes, we can compute the distance between
them. Denote by δ(x,y,z) the Euclidean distance between two parallel planes
which are orthogonal to the vector (x, y, z). Then for the distortion constraints
corresponding to ordering L1, we have

δ(1,0,0) = 0, (4.9)

δ(1,1,0) ≤
1√
2

= 0.7071, (4.10)

δ(2,1,1) ≤
3√
6

= 1.2247, (4.11)

δ(1,1,1) ≤
9

4
√

3
= 1.2990, (4.12)
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where the denominators are the normalizing factors, corresponding to the
length of the vector (x, y, z). This shows that the inner and outer bounds pro-
vide an approximate characterization for the achievable rate region, for which
the Euclidean distance between the bounds in less than 1.3 in the worst case.
Figure 4.2 shows a typical pair of inner and outer bounds for L1 ordering and
the case D010D101 ≤ D2

001 ≤ D010D110, which is the lossy counterpart of the
lossless AMLD problem with h4 ≤ h3 ≤ h4 +h5, discussed in Section 2.4, under
regime II (see also Figure 2.6).

R1

R2

R3

≤ 0.7071

≤ 1.2247

≤ 1.299

Figure 4.2: The inner and outer bound for the achievable rate region of the
Gaussian multiple descriptions problem for distortion constraints corresponding to
the ordering L1, and the case D010D101 ≤ D2

001 ≤ D010D110.

4.3 Illustration of the Result for Ordering L1

In this section we present the inner and outer bounds for the achievable rate
region of the Gaussian AMD problem for the specific order L1. This would be
helpful to illustrate the geometric structure of the region.

The following corollary is a consequence of Theorem 4.3 for the specific
ordering L1.
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Corollary 4.7. Any achievable rate triple for a three-description AMD with
L1 ordering satisfies

R1 ≥
1
2

log
1

D100
, (AMD−L1 − O1)

R2 ≥
1
2

log
1

D010
, (AMD−L1 − O2)

R3 ≥
1
2

log
1

D001
, (AMD−L1 − O3)

R1 + R2 ≥
1
2

log
1

D100D110
− 1, (AMD−L1 − O4)

R1 + R3 ≥
1
2

log
1

D100D101
− 1, (AMD−L1 − O5)

R2 + R3 ≥
1
2

log
1

D010D011
− 1, (AMD−L1 − O6)

2R1 + R2 + R3 ≥
1
2

log
1

D2
100D110D111

− 3, (AMD−L1 − O7)

R1 + 2R2 + R3 ≥
1
2

log
1

D100D010D110D111
− 3, (AMD−L1 − O8)

R1 + R2 + 2R3 ≥
1
2

log
1

D100D010D101D111
− 3, (AMD−L1 − O9)

R1 + R2 + R3 ≥
1
2

log
1

D100D001D111
− 2, (AMD−L1 − O10)

R1 + R2 + R3 ≥
1
4

log
1

D2
100D010D110D2

111

− 9
4
. (AMD−L1 − O11)

Similarly, in the following corollary we specify the result of Theorem 4.5 for
the ordering L1.

Corollary 4.8. If the distortion constraints satisfy the ordering L1, i.e.,

D100 ≥ D101 ≥ D001 ≥ D110 ≥ D101 ≥ D011 ≥ D111,

then any rate triple (R1, R2, R3) satisfying

R1 ≥
1
2

log
1

D100
, (AMD−L1 − I1)

R2 ≥
1
2

log
1

D010
, (AMD−L1 − I2)

R3 ≥
1
2

log
1

D001
, (AMD−L1 − I3)

R1 + R2 ≥
1
2

log
1

D100D110
, (AMD−L1 − I4)

R1 + R3 ≥
1
2

log
1

D100D101
, (AMD−L1 − I5)
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R2 + R3 ≥
1
2

log
1

D010D011
, (AMD−L1 − I6)

2R1 + R2 + R3 ≥
1
2

log
1

D2
100D110D111

, (AMD−L1 − I7)

R1 + 2R2 + R3 ≥
1
2

log
1

D100D010D110D111
, (AMD−L1 − I8)

R1 + R2 + 2R3 ≥
1
2

log
1

D100D2
001D111

, (AMD−L1 − I9)

R1 + R2 + R3 ≥
1
2

log
1

D100D001D111
, (AMD−L1 − I10)

R1 + R2 + R3 ≥
1
4

log
1

D2
100D010D110D2

111

, (AMD−L1 − I11)

is achievable.

Note that both bounds are characterized by a set of hyper-planes, which
are pair-wise parallel. Moreover, the distance between the parallel planes are
constants, independent of the distortion constraints.

4.4 AMD: The Outer Bound

In this section we prove Theorem 4.3. In order to prove this theorem, we first
show a parametric outer-bound for the AMD rate region. Then we specialize
the parameters to obtain the bound claimed in the theorem.

We first need to define a set of auxiliary random variables in order to state
and prove the parametric bound, which are some noisy versions of the source.
The strategy of expanding the probability space by a single auxiliary variable
was used to characterize the two descriptions Gaussian MD region [22], and
later in [31] extended to include multiple auxiliary random variables with cer-
tain built-in Markov structure. These variables are similar to the noisy versions
of the source defined in (3.31). We shall continue to use this extended strategy
as used in [31].

Definition 4.9. Let Ni ∼ N (0,σ2
i ), i = 1, . . . , 6, be mutually independent

zero-mean Gaussian random variables with variance σ2
i . They are also assumed

to be independent of X. A noisy version of the source, Yi, is defined as

Yi = X +
6∑

j=i

Nj , i = 1, . . . , 6. (4.13)

For convenience, we denote the effective noise in Yi by Zi =
∑6

j=i Nj for
i = 1, . . . , 6. Thus di ! ∑6

j=i σ
2
j would be the variance of the noise Zi, for

i = 1, . . . , 6. We also define Y7 = X and d7 = 0. Note that incremental noises
are added to X to build Yi’s, and therefore they form a Markov chain as

(Γ1,Γ2,Γ3) ↔ Xn ↔ Y n
6 ↔ Y n

5 ↔ · · ·↔ Y n
1 . (4.14)
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The following theorem provides a parametric outer-bound for the rate region
of the AMLD problem, depending on di variables, which are the noise variances
defined above. Such bound holds for any choice of d1 ≥ d2 ≥ · · · ≥ d6 > 0, and
can be further optimized to obtain a good non-parametric outer-bound for the
rate region. However, we simply derive the bound in Theorem 4.3 by setting
the values of di’s.

Definition 4.10. For a given distortion vector D = (Dv; v ∈ Ω3) and a set
of variables d1 ≥ d2 ≥ · · · ≥ d6 > d7 = 0, denote by RAMD(D, d) the set of all
rate triples (R1, R2, R3) satisfying

Ri ≥
1
2

log
1

D1i

j = 1, 2, 3 (AMD− OP1)

Ri + Rj ≥
1
2

log
1 + dL (1i)

D1j + dL (1i)

1 + dL (1j)

D1j + dL (1j)

+
1
2

log
(D1i+1j + dmax{L (1i),L (1j)})
(1 + dmax{L (1i),L (1j)})D1i+1j

i (= j

(AMD− OP2)

2Ri + Rj + Rk ≥
1
2

log
(

1 + dL (1i)

D1i + dL (1i)

)2 1 + dL (1j)

D1j + dL (1j)

1 + dL (1k)

D1k + dL (1k)

+
1
2

log
(1 + dL (1i+1j))(D1i+1j + dmax{L (1i),L (1j)})
(1 + dmax{L (1i),L (1j)})(D1i+1j + dL (1i+1j))

+
1
2

log
(1 + dL (1i+1k))(D1i+1k + dmax{L (1i),L (1k)})
(1 + dmax{L (1i),L (1k)})(D1i+1k + dL (1i+1k))

+
1
2

log
(D111 + dmax{L (1i+1j),L (1i+1k)})
(1 + dmax{L (1i+1j),L (1i+1k)})D111

i (= j (= k

(AMD− OP3)

R1 + R2 + R3 ≥
1
2

log
1 + dL (100)

D100 + dL (100)

+
1
2

1 + dL (010)

D010 + dL (010)

1 + dmin{L (110),L (001)}

D001 + dmin{L (110),L (001)}

+
1
2

log
(1 + dmin{L (110),L (001)})(D110 + dL (010))
(1 + dL (010))(D110 + dmin{L (110),L (001)})

+
1
2

log
D111 + dmin{L (110),L (001)}

(1 + dmin{L (110),L (001)})D111
(AMD− OP4)
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R1 + R2 + R3 ≥
1
2

log
1 + dL (100)

D100 + dL (100)

1 + dL (010)

D010 + dL (010)

1 + dL (001)

D001 + dL (001)

+
1
4

log
(1 + dα)(D110 + dL (010))
(1 + dL (010))(D110 + dα)

+
1
4

log
(1 + dα)(D101 + dL (001))
(1 + dL (001))(D101 + dα)

+
1
4

log
(1 + dα)(D011 + dL (001))
(1 + dL (001))(D011 + dα)

+
1
2

log
D111 + dα

(1 + dα)D111
,

(AMD− OP5)

where

α =
{

L (001) if L (001) > L (110),
min{L (110), L (101), L (011)} if L (001) < L (110).

Theorem 4.11 (A Parametric Outer Bound for the AMD Rate Region). Any
achievable rate triple R ∈ RAMD(D) belongs to RAMD(D, d) for any choice of
d1 ≥ d2 ≥ · · · ≥ d6 ≥ d7 = 0, i.e., RAMD(D) ⊆ RAMD(D, d).

We need some tools in order to prove the theorem presented above. The
following lemma extracted from [51] is very similar to Lemma 3.32. However,
we rephrase the lemma to adapt it with the notation used here. We skip the
proof of the lemma, since it closely follows the proof of Lemma 3.32 given in
Appendix B.3

Lemma 4.12. For any set of descriptions Γv indicated by v ∈ Ω3, and noisy
version of the source Yi, i = 1, 2, . . . , 7, we have

I(Γv; Y n
i ) ≥ n

2
log

1 + di

Dv + di
. (4.15)

Moreover, for any subset of the descriptions Γv, and two noisy versions of
the source Yi and Yj with i < j, we have

I(Γv; Y n
j )− I(Γv ; Y n

i ) ≥ n

2
log

(1 + dj)(Dv + di)
(1 + di)(Dv + dj)

. (4.16)

This lemma is useful to bound the mutual information between the noisy
versions of the source and the descriptions. We will use these results in several
points in the proof of Theorem 4.11, which are indicated by (†). Now, we are
ready to prove the parametric outer-bound.

Proof of Theorem 4.11. The single description inequalities are just straight for-
ward result of Lemma 4.12. For v = 1i we have

nRi ≥ H(Γi) = H(Γi)−H(Γi|Xn) = I(Γi; Xn)
(†)
≥ n

2
log

1
D1i

(4.17)
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where we used Lemma 4.12 for Y7 = X and the fact d7 = 0 in the last inequality.
This proves (AMD− OP1).

The bound for the two description rates in (AMD− OP2) follows from

n(Ri + Rj) ≥ H(Γi) + H(Γj)
(a)
≥ H(Γi) + H(Γj)−H(Γi,Γj |Xn)

−
[
H(Γi|Y n

max{L (1i),L (1j)}) + H(Γj |Y n
max{L (1i),L (1j)})

−H(Γi,Γj|Y n
max{L (1i),L (1j)})

]

= I(Γi; Y n
max{L (1i),L (1j)}) + I(Γj ; Y n

max{L (1i),L (1j)})

+ [I(ΓiΓj ; Xn)− I(ΓiΓj ; Y n
max{L (1i),L (1j)})]

(b)
≥ I(Γi; Y n

L (1i)
) + I(Γj ; Y n

L (1j)
)

+ [I(ΓiΓj ; Xn)− I(ΓiΓj ; Y n
max{L (1i),L (1j)})]

(†)
≥ n

2
log

1 + dL (1i)

D1i + dL (1i)

1 + dL (1j)

D1j + dL (1j)

(1 + 0)(D1i+1j + dmax{L (1i),L (1j)})
(1 + dmax{L (1i),L (1j)})(D1i+1j + 0)

(4.18)

where the subtracted terms in (a) are positive due to the fact that Γi and Γj

are functions of Xn and non-negativity of mutual information, (b) is by the
data processing inequality and the Markov chain in (4.14). Finally, we have
used Lemma 4.12 in (†).

The inequality (AMD−OP3) can be proved through the following chain of
inequalities.

n(2Ri + Rj + Rk) ≥ 2H(Γi) + H(Γj) + H(Γk)
(a)
≥ 2H(Γi) + H(Γj) + H(Γk)−H(ΓiΓjΓk|Xn)

−
[
H(Γi|Y n

max{L (1i),L (1j)}) + H(Γj |Y n
max{L (1i),L (1i)})

−H(ΓiΓj |Y n
max{L (1i),L (1j)})

]

−
[
H(Γi|Y n

max{L (1i),L (1k)}) + H(Γk|Y n
max{L (1i),L (1k)})

−H(ΓiΓk|Y n
max{L (1i),L (1k)})

]

−
[
H(ΓiΓj |Y n

max{L (1i+1j),L (1i+1k)})

+ H(ΓiΓk|Y n
max{L (1i+1j),L (1i+1k)})

−H(ΓiΓjΓk|Y n
max{L (1i+1j),L (1i+1k)})

]

= I(Γi; Y n
max{L (1i),L (1j)}) + I(Γj ; Y n

max{L (1i),L (1j)})

+ I(Γi; Y n
max{L (1i),L (1k)}) + I(Γk; Y n

max{L (1i),L (1k)})



4.4. AMD: The Outer Bound 89

+ [I(ΓiΓj ; Y n
max{L (1i+1j),L (1i+1k)})− I(ΓiΓj ; Y n

max{L (1i),L (1j)})]

+ [I(ΓiΓk; Y n
max{L (1i+1j),L (1i+1k)})− I(ΓiΓk; Y n

max{L (1i),L (1k)})]

+ [I(ΓiΓjΓk; Xn)− I(ΓiΓjΓk; Y n
max{L (1i+1j),L (1i+1k)})] (4.19)

where in (a) we have used the fact that all the brackets are non-negative. Now,
we will bound each term in (4.19) individually. The single description terms
can be bounded as

I(Γi; Y n
max{L (1i),L (1k)}) ≥ I(Γi; Y n

L (1i)
)

(†)
≥ n

2
log

1 + dL (1i)

D1i + dL (1i)
, (4.20)

and similarly for j and k. Also we can bound the differential terms as

I(ΓiΓj ;Y n
max{L (1i+1j),L (1i+1k)})− I(ΓiΓj ; Y n

max{L (1i),L (1j)})
(b)
≥ I(ΓiΓj ; Y n

L (1i+1j)
)− I(ΓiΓj; Y n

max{L (1i),L (1j)})
(†)
≥ n

2
log

(1 + dL (1i+1i))(DΓiΓj + dmax{L (1i),L (1j)})
(1 + dmax{L (1i),L (1j)})(D1i+1j + dL (1i+1j))

(4.21)

where (b) is due to the data processing inequality implied by the Markov chain

(ΓiΓj) ↔ Y n
max{L (1i+1j),L (1i+1k)} ↔ Y n

L (1i+1j)

implied by (4.14). We also have

I(ΓiΓjΓk; Xn)− I(ΓiΓjΓk; Y n
max{L (1i+1j),L (1i+1k)})

(†)
≥ n

2
log

(1 + 0)(D111 + dmax{L (1i+1j),L (1i+1k)})
(1 + dmax{L (1i+1j),L (1i+1k)})(D111 + 0)

. (4.22)

By replacing (4.20)–(4.22) in (4.19) we get the desired inequality.
In order to derive the sum-rate bound in (AMD− OP4), we can write

n(R1 + R2+R3) ≥ H(Γ1) + H(Γ2) + H(Γ3)
≥ H(Γ1) + H(Γ2) + H(Γ3)−H(Γ1Γ2Γ3|Xn)

−
[
H(Γ1|Y n

L (010)) + H(Γ2|Y n
L (010))−H(Γ1Γ2|Y n

L (010))
]

−
[
H(Γ1Γ2|Y n

min{L (110),L (001)}) + H(001|Y n
min{L (110),L (001)})

−H(Γ1Γ2Γ3|Y n
min{L (110),L (001)})

]

≥ I(Γ1; Y n
L (100)) + I(Γ2; Y n

L (010)) + I(Γ3; Y n
min{L (110),L (001)})

+
[
I(Γ1Γ2; Y n

min{L (110),L (001)})− I(Γ1Γ2; Y n
L (010))

]

+
[
I(Γ1Γ2Γ3; Xn)− I(Γ1Γ2Γ3; Y n

min{L (110),L (001)})
]
. (4.23)
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Again, applying Lemma 4.12 we can bound each term in (4.23), and obtain
(AMD− OP4).

It remains to show the inequality in (AMD− OP5). Recall the proof of
(AMLD-5), and consider two cases. If L (001) > L (110), then Using a similar
argument as in the proof of (AMD− OP3), we obtain

n(R1 + R2 + R3) ≥ H(Γ1) + H(Γ2) + H(Γ3)−H(Γ1Γ2Γ3|Xn)

− 1
2

[
H(Γ1|Y n

L (010)) + H(Γ2|Y n
L (010))−H(Γ1Γ2|Y n

L (010))
]

− 1
2

[
H(Γ1|Y n

L (001)) + H(Γ3|Y n
L (001))−H(Γ1Γ3|Y n

L (001))
]

− 1
2

[
H(Γ2|Y n

L (001)) + H(Γ3|Y n
L (001))−H(Γ2Γ3|Y n

L (001))
]

− 1
2

[
H(Γ1Γ2|Y n

L (001)) + H(Γ1Γ3|Y n
L (001))

+H(Γ2Γ3|Y n
L (001))− 2H(Γ1Γ2Γ3|Y n

L (001))
]

≥ I(Γ1; Y n
L (100)) + I(Γ2; Y n

L (010)) + I(Γ3; Y n
L (001))

+
1
2
[I(Γ1Γ2; Y n

L (001))− I(Γ1Γ2; Y n
L (010))]

+ [I(Γ1Γ2Γ3; Xn)− I(Γ1Γ2Γ3; Y n
L (001))], (4.24)

which gives us the desired inequality by using Lemma 4.12 to bound each
individual term. Similarly, for the case where L (001) < L (110) we can write

n(R1 + R2 + R3) ≥ H(Γ1) + H(Γ2) + H(Γ3)−H(Γ1Γ2Γ3|Xn)

− 1
2

[
H(Γ1|Y n

L (010)) + H(Γ2|Y n
L (010))−H(Γ1Γ2|Y n

L (010))
]

− 1
2

[
H(Γ1|Y n

L (001)) + H(Γ3|Y n
L (001))−H(Γ1Γ3|Y n

L (001))
]

− 1
2

[
H(Γ2|Y n

L (Γ3)) + H(Γ3|Y n
L (001))−H(Γ2Γ3|Y n

L (001))
]

− 1
2

[
H(Γ1Γ2|Y n

β ) + H(Γ1Γ3|Y n
β ) + H(Γ2Γ3|Y n

β )

− 2H(Γ1Γ2Γ3|Y n
β )
]

≥ I(Γ1; Y n
L (100)) + I(Γ2; Y n

L (010)) + I(Γ3; Y n
L (001))

+
1
2
[I(Γ1Γ2; Y n

β )− I(Γ1Γ2; Y n
L (010))]

+
1
2
[I(Γ1Γ3; Y n

β )− I(Γ1Γ3; Y n
L (001))]

+
1
2
[I(Γ2Γ3; Y n

β )− I(Γ2Γ3; Y n
L (001))]

+ [I(Γ1Γ2Γ3; Xn)− I(Γ1Γ2Γ3; Y n
β )]. (4.25)
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where β = min{L (110), L (101), L (011)}. Now, we can use the above-
mentioned lemmas again to bound each individual term. It is clear that (4.24)
and (4.25) give (AMD− OP5).

Remark 4.13. Note that there is an one-to-one correspondence between the
converse proof of Theorem 2.7 and that of Theorem 4.11. In fact, here we use
the description subsets and their capability of lossy recovering the noisy source
layers, where they have been used to losslessly reconstruct the source levels in
the AMLD.

Now we are ready to prove Theorem 4.3, which is a direct consequence of
Theorem 4.11.

Proof of Theorem 4.3. We can choose arbitrary values of di’s, the variance of
the additive noise in Theorem 4.11, such that d1 ≥ d2 ≥ · · · ≥ d6 > 0. One
can optimize the bound in Theorem 4.11 with respect to the values of di’s,
and obtain a bound isolated from di’s, by replacing them with the optimal
choices. Such bound would be the best that can be found using this method.
However instead of solving such a difficult optimization problem, we choose
di = DL−1(i), for i = 1, . . . , 6. It is clear the di’s satisfy the desired non-
increasing order due to the definition of the ordering. We will later show that
this choice gives a bound which is within constant bit gap from the inner bound
in Theorem 4.5.

The single description rate inequalities are exactly the same. The proof of
the other inequalities is by straightforward evaluation of their counterparts in
Theorem 4.11, for di = DL −1(i), and applying simple bounds. We do not repeat
the same arguments here, and only illustrate such derivation for one simple
case. For the sum of two description rates, we can start with (AMD− OP2)
and use di = DL−1(i) to get

Ri + Rj

(a)
≥ 1

2
log

1 + D1i

D1i + D1i

1 + D1j

D1j + D1j

D1i+1j + min(D1i , D1j )
(1 + min(D1i , D1j))D1i+1j

(b)
=

1
2

log
1 + max(D1i , D1j)

4D1iD1j

D1i+1j + min(D1i , D1j )
D1i+1j

(c)
≥ 1

2
log

min(D1i , D1j )
4D1iD1jD1i+1j

= −1 +
1
2

log
1

max(D1i , D1j)
+

1
2

log
1

D1i+1j

, (4.26)

where we have also used the fact dmax(a,b) = min(da, db) in (a) which is implied
by decreasing ordering of di’s, (b) is due to the fact that (1 + x)(1 + y) =
(1+min(x, y))(1+max(x, y)), and (c) holds since Dv’s are non-negative. Similar
simple manipulations give the other bounds in Theorem 4.3.
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4.5 AMD: The Achievability Scheme and Inner Bound

Our approach to prove Theorem 4.5 is to present a simple scheme with descrip-
tion rates satisfying (AMD− I1)–(AMD− I5) which guarantees the distortion
constraints. This scheme is based on the successive refinability of Gaussian
sources [54–57], as well as the asymmetric multilevel diversity coding result
presented in the previous section. In the encoding scheme, we first produce
seven successive refinement layers of the source, and then encode them loss-
lessly.

4.5.1 Successive Refinement Coding

Consider the non-increasing sequence of distortion constraints

D′ = (DL −1(1), DL −1(2), . . . , DL −1(7)).

Produce seven layers of successive refinement (SR), Ψk for k = 1, 2, . . . , 7,
such that one can reconstruct the source sequence within distortion constraint
DL −1(k) using Ψ1, . . . ,Ψk. Since the Gaussian source is successively refinable
[56], it is clear that Ψk can be encoded to a binary block of length arbitrary
close to

nh′
k ! nR(DL −1(k))− nR(DL−1(k−1)) (4.27)

where R(D) = − 1
2 log D is the unit variance Gaussian R-D function, and

DL −1(0) ! 1. Note that by using fixed length code in SR coding, these blocks
are block-wise independently and identically distributed.

4.5.2 Multilevel Diversity Coding

Now, it only remains to produce the descriptions such that the decoder at level
L (v) can losslessly recover the pre-coded bit-stream SR layers Ψ1, . . . ,ΨL (v),
and then reconstruct the Gaussian source sequence within distortion Dv. En-
coding and decoding of the pre-coded SR layers are exactly the AMLD problem.
We can simply use the rate region characterization of the AMLD problem in
Theorem 2.7 to find the achievable rate region of the proposed scheme for
AMD, where only substitution of Vk = Ψk and Uk = (Ψ1, . . . ,Ψk) is needed.
Therefore we have

hk =
1
2

log
DL −1(k−1)

DL −1(k)
(4.28)

and

Hk =
k∑

j=1

hj =
1
2

log
1

DL −1(k)
. (4.29)

Replacing the values of Hk’s in Theorem 2.7, we obtain Theorem 4.5.



4.5. AMD: The Achievability Scheme and Inner Bound 93

Ṽ1 Ṽ2 Ṽ3,1 Ṽ3,2 Ṽ4 Ṽ5,1 Ṽ5,2 Ṽ6 Ṽ7

'1 '2 '3 − '4 '4 '4

'3 − '4 '5 + '4 − '3

'6 '7

Γ1 :

Γ2 :

Γ3 :

Figure 4.3: Lossless description encoding (AMLD) for a system with ordering L1

and D010D101 ≤ D2
001 ≤ D010D110

It is worth mentioning that although the successive refinement part of the
scheme is well-known, producing the descriptions and their rate characteriza-
tion is not an easy task without the AMLD result. As an example, consider
a system with ordering L1 and assume D010D101 ≤ D2

001 ≤ D010D110. An
achievable rate triple is

(R1, R2, R3) = (
1
2

log
D010D011

D100D001D111
,
1
2

log
D101

D001D011
,
1
2

log
D001

D010D101
),

(4.30)

which corresponds to the corner point Y12 in regime II of the AMLD coding
problem. The description encoding for this corner point is illustrated in Fig-
ure 4.3. Clearly, the coding scheme for this point matches that for Y12 closely,
and the SR encoded information in the 3-rd, 4-th and 5-th layers needs to be
strategically re-processed using linear codes. Without the underlining AMLD
coding scheme, it appears difficult to devise this coding operation directly.
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Overview

A wireless network consists of several users in general, each of which has a
demand to receive data at a certain rate from a source in the network, and the
network has to provide service to all of them simultaneously.

Data transmission over a wireless network is quite challenging problem.
This is due to two natural features of wireless communication: (i) broadcast:
wireless users communicate over the air and signals from any of the transmitters
are heard by multiple nodes in the proximity of the transmitter with possibly
different signal strengths; (ii) superposition: a wireless node receives signals
from multiple simultaneously transmitting nodes in its proximity, with the
received signals all superimposed on top of each other.

Because of these effects, unlike the wired networks, links in a wireless net-
work are never isolated, and complex signal interactions exist between the
competing flows. More precisely, undesired signals caused by broadcasting
from different nodes create signal interference for a node in their proximity.

Characterization of the capacity region of the network, the set of rates
(speed of data transmission) at which data can be transmitted to the users,
is an important question in order to design (approximately) optimal systems.
This question has been unsolved even for one source and one receiver, when
there exist more nodes (helper) in the network to facilitate communication. A
recent study by Avestimehr et. al [17] provides an approximate solution for this
problem when there is only flow of information in the network. That is when
one source wishes to communicate to a single1 receiver over a wireless network.
One of the main contributions of this work is introducing the deterministic
model for wireless network. This model gets rid of the stochastic behavior of
the noise and focuses on the signal intercalation.

However, less progress has been made when different users in the network
have different data demands. In this situation, called multiple unicast sce-
nario, the problem is more challenging, since signals carry information about
independent messages may get mixed over the wireless network, and become
completely useless. The main question here is how to manage such interference
in order to provide the data for the users.

1This can be extended to the case where the same information has to be sent to multiple
receives [17].
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The simplest case in this class of networks is the interference channel prob-
lem, which consists of two sources each wishes to communicate to its own
receiver, and there is no relay (helper) node in the network. Even for this
simple one-hop network, the information-theoretic characterization has been
open for several decades. Etkin et al. in [15] provided an approximate capacity
characterization for this problem. However, generalization of this result to a
network with possible relay nodes who can facilitate communication lies in a
wider research area.

We formulate the relay-interference network in which different information
flows are sent through intermediate nodes in the network, i.e., transmission is
performed over multiple hops. In particular, we study two specific networks,
called ZS and ZZ networks, with two sources/transmitters, two relays (inter-
mediate nodes), and two receivers, where each of them is only interested in
one of the source messages. While the optimal and exact solution to the sim-
pler problem with no relay node is still unknown, our best hope is to provide
approximate solution to this problem.

We start with analysis of the problem under the deterministic model in
Chapter 5, where we derive an exact characterization for the set of achievable
rates of both networks. Moreover, we introduce a new interference management
technique, called interference neutralization, which is shown to be required in
order to achieve the capacity of the network. These characterizations will be
later translated for the noisy Gaussian wireless network in Chapter 6, where we
present a 2 bit gap approximate characterization for the original problem. Our
work establishes the first additive approximate result in this context. More
importantly, the transmission strategies used for the deterministic networks
have to be translated and adapted to the Gaussian networks. This provides
guideline for system design and coding architecture, which is very important
from an engineering point of view.

Finally, we explore the role of an adversarial jammer in a wireless network
in Chapter 7. In this situation, a jammer wishes to avoid communication
from transmitter to receiver. The jammer broadcasts interfering signal to the
network in order to corrupt the signals carry information from the source.
The question here is to identify the effect of such an adversarial node on the
performance of the system, as well as exploring coding schemes which can be
utilized by the nodes in the network to minimize such effect.



The Deterministic
Relay-Interference Network 5
The multi-commodity flow problem, where multiple independent unicast ses-
sions need to share network resources, can be solved efficiently over graphs
using linear programming 1 techniques [64]. This is not the case for wire-
less networks, where the broadcast and superposition nature of the wireless
medium introduces complex signal interactions between the competing flows.
The simplest example is the one-hop interference channel [10], where two trans-
mitters with independent messages are attempting to communicate with their
respective receivers over the wireless transmission medium. Even for this sim-
ple one-hop network, the information-theoretic characterization has been open
for several decades. To study more general networks, there is a clear need to
understand and develop sophisticated interference management techniques.

The capacity of the wireless Gaussian interference channel has been (ap-
proximately) characterized, within one bit (see [15] and the references therein).
Building on this progress, a natural next step is to study the approximate
capacity region of small-scale interference-relay networks, where there are po-
tentially multiple hops from the sources to destinations through cooperating
relays. Studying even simple two-hop topologies could help develop techniques
and build insight that would enable a (perhaps approximate) characterization
of capacity for more general networks. We are interested in our work in a
universal type of approximation, in that it should characterize the capacity to
within a constant number of bits, independently of the signal-to-noise ratio and
the channel parameter values.

The focus of this chapter and the next one is to study the two-stage relay-
interference network illustrated in Figure 5.1. In particular, we give an approx-
imate characterization of the capacity region for special cases of these networks

1However, if we require that the flows take integer values, it becomes NP-complete.
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Figure 5.1: Two-stage relay-interference network.

when some of the cross-links are weak. These are illustrated in Figure 6.2 and
Figure 6.3, which we refer to as the ZS and ZZ Gaussian models.

The deterministic approach, studied by Avestimehr, Diggavi, and Tse [17],
simplifies the wireless network interaction model by eliminating the noise. This
approach was successfully applied to the relay network in [65], and resulted
in insight in terms of transmission techniques. These insights also led to an
approximate characterization of the noisy wireless relay network problem [17].

Our approach to analyze these networks is to first apply the deterministic
model to these Gaussian networks, and study these problems by using the linear
deterministic model. We provide an exact capacity region characterization
for this deterministic network in this chapter. This will be translated into a
universally approximate characterization for the (noisy) Gaussian network.

In studying these special networks, we discover that many sophisticated
techniques are required to (approximately) characterize the network capac-
ity region. The main new ingredients that enable this characterization are
as follows: (i) a new interference management technique we term interference
neutralization, in which interference is canceled over the air, without the relays
necessarily decoding the transmitted messages2; (ii) a structured lattice code
that enables interference neutralization over Gaussian networks; (iii) A net-
work decomposition technique which enables appropriate rate-splitting of the
message and power allocation for the different message components; (iv) genie-
aided outer bounding techniques that enable bounds that are tighter than the
information-theoretic cut-set outer bounds.

2A noise nulling technique is proposed in [66] to mitigate correlated noise in an amplify-
forward relaying strategy for a single unicast “diamond” parallel relay network. However, the
difference in our technique is that we use the structure of the codebooks (without necessarily
decoding information) to neutralize interference, and not noise statistics. Moreover the
multiple-unicast nature of the problem necessitates strategic partitioning and rate-splitting
of different components of the messages.
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A way to interpret the achievability results for the ZS networks is that
the relays perform a partial-decoding of strategically split messages from the
sources, and then cooperate to deliver the required messages to the destina-
tion, again through strategically splitting the messages. The power allocated
to each of the sub-messages is determined using the insight derived from the
deterministic model, that messages that are not intended be decoded arrive
at the noise-level. The achievability for the ZZ network is slightly more so-
phisticated in that one of the relays is required to only decode a function of
the sub-messages. The function is chosen such that its signal in combination
with the transmission of the other relay causes the unwanted interference to
be canceled (neutralized) at the destination. This interference neutralization
is enabled in the Gaussian channel using the group property of a structured
lattice code.

Work in the literature over the past decade has examined scaling laws for
multiple independent flows over wireless networks, see for example [18, 19, 67].
The goal there is to characterize the order of the wireless network capacity as
the network size grows. In contrast, in our work, instead of seeking order ar-
guments and scaling laws, we try to characterize the capacity (perhaps within
a universal constant of a few bits) for specific topologies. The interference
channel is a special case of such networks, where there is only one-hop commu-
nication between the sources and destinations. There has been a surge of recent
work on this topic including cooperating destinations [68] and use of feedback
in inducing cooperation at the transmitters [69]. The deterministic approach
developed in [17] has been successfully applied to the interference channel in
[70]. The fundamental role of interference alignment in K-user interference
channel (still a one-hop network) has been demonstrated in [39, 40].

The chapter is organized as follows. Section 5.1 gives a broad overview
of the deterministic modeling for wireless networks. Our notation and the
basic network models we study in this chapter are introduced in Section 5.2.
Section 5.3 illustrates the transmission techniques used for interference man-
agement over a wireless network through simple deterministic examples. The
main results are given in Section 5.4 for the so called ZS and ZZ networks. The
achievability and converse for the deterministic ZS network is given in Sec-
tion 5.5. Similarly, Section 5.6 follows a similar program for the ZZ network,
first identifying the capacity region for the deterministic version. This allows
illustration of ideas such as interference neutralization, as well as genie-aided
outer bounding techniques.

5.1 Review: A Deterministic Approach to Wireless Networks

In this section we first present the deterministic model introduced by Aves-
timehr, Diggavi, and Tse, and then briefly review the results obtained using
this approach in [17].
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5.1.1 The Deterministic Model

In a standard and well accepted model for the wireless signal interaction, trans-
mitted signals get attenuated by (complex) gains to which independent (Gaus-
sian) receiver noise is added [71]. More formally, the received signal yi at node
i ∈ V at time t is given by,

yi(t) =
∑

j∈Ni

hijxj(t) + zi(t), (5.1)

where hij is the complex channel gain between node j and i, xj is the signal
transmitted by node j, and Ni are the set of nodes that have non-zero channel
gains to i. We assume that the average transmit power constraints for all nodes
is 1 and the additive receiver Gaussian noise is of unit variance. We use the
terminology Gaussian wireless network when the signal interaction model is
governed by (5.1).

In [65], a simpler deterministic model which captures the essence of wireless
interaction was developed. The advantage of this model is its simplicity, which
gives insight to strategies for the noisy wireless network model in (5.1). We
will utilize this model to develop techniques for the relay-interference network.
Our main results are developed for this deterministic model. The deterministic
model of [65] simplifies the wireless interaction model in (5.1) by eliminating
the noise and discretizing the channel gains through a binary expansion of p
bits. Therefore, the received signal Yi which is a binary vector of size p is
modeled as

Yi(t) =
∑

j∈Ni

NijXj(t), (5.2)

where Nij is a p×p binary matrix representing the (discretized) channel trans-
formation between nodes j and i and Xj is the (discretized) transmitted sig-
nal. All operations in (5.2) are done over the binary field, F2. We use the
terminology deterministic wireless network when the signal interaction model
is governed by (5.2). Shift matrix is a special matrix representation for a Gaus-
sian fading channel. This matrix captures the attenuation effect of the signal
caused by the channel gain by performing a shift on the binary representation
of the input, xj , and ignoring the bits below the average noise level. More
precisely, this model assigns a matrix Jp−nij to the Gaussian gain hij , where

J =





0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . . . . . . . . . .
0 · · · 0 1 0





p×p

, (5.3)

is the shift matrix, and nij = 3 1
2 log |hij |24, for real channel gains. Note that

multiplying a vector Xj by the matrix Jp−nij is equivalent to shift down its
elements p− nij times, which results in a vector with p− nij zeros on the top
followed the top nij elements of Xj .
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An illustration of this deterministic model is given in Figure 5.2 for the
broadcast and multiple access networks. The transmitter and receiver of each
node in the network is equipped with p so called sub-nodes, each represents a
bit from the binary expansion of the corresponding signal. Figure 5.2(a) shows
a deterministic model of the broadcast channel, where the channel from the
transmitter to Receiver 1 is stronger than that to Receiver 2. This is repre-
sented by the deterministic model developed in [65] with 4 most significant
bits (MSB) of the transmitted signal captured by D1 and only 2 MSBs of the
transmitted signal captured by D2. The deterministic model of the multiple
access channel shown in Figure 5.2(b) adds one more ingredient, which is how
the bits from two transmitting nodes interact at a receiver. In Figure 5.2(b)
the channel from S1 to D is stronger than that of S2. Therefore, the interaction
is between the 2 MSBs of the message sent by S2 with the lower 2 significant
bits of the message sent by S1, and the interaction is modeled with an addition
over the binary field (i.e., xor). This interaction captures the dynamic range
of the signal interactions. It was shown in [17], that this model approximately3

captures the wireless interaction model of (5.1) for the broadcast and multiple
access channels. For general networks the deterministic model yields insights
which, when translated to the noisy wireless network, lead one to develop coop-
erative strategies for the model in (5.1), which are (provably) approximately4

optimal [17].

S

D1

D2

(a) Broadcast channel

S1

S2

D

(b) Multiple access channel

Figure 5.2: The linear deterministic model for a Gaussian broadcast channel (BC)
is shown in (a) and for a Gaussian multiple access channel (MAC) is shown in (b).

5.1.2 Single Unicast over the Relay Network

Capacity characterization of the relay network [9] is one of the longest out-
standing open problems in network information theory. The capacity of such

3The approximation is in the sense that the capacity region of the deterministic model
is within 1 bit of the capacity region of the Gaussian counterparts.

4It has been shown for single unicast there is an approximate max-flow, min-cut result
where the difference is within a constant number of bits, which depends on the topology of
the network, but not the values of the channel gains [17].
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network is unknown even for the simplest network with Gaussian noise and
only one relay node.

A natural information-theoretic cut-set bound [3] is known for any relay
network which upper bounds the reliable transmission rate R. We need the
following definition before presenting this bound.

Definition 5.1. Consider a network over set of nodes V. For S ⊆ V and
D ⊆ V with S ∩D = ∅, define5 Λ(S;D) to be the set of all cuts (Ω,Ωc) which
separate S from D, that is,

Λ(S;D) ! {Ω ⊆ V : S ⊆ Ω,D ⊆ Ωc}. (5.4)

The main idea in the cut-set bound is to consider the amount of information
can be conveyed through a cut in the network. This can be obtained by maxi-
mizing the mutual information between the received signal at the receiver side
of the network, and the transmitting signals at the sender side. More precisely,
it is shown [3] that the achievable rate of any relay network is upper bounded
as

C ≤ max
p({Xj}j∈V )

min
Ω∈Λ(S,D)

I(YΩc ; XΩ|XΩc), (5.5)

where XU and YU respectively denote the collection of transmitted and received
signals at nodes in the subset U ⊆ V .

This bound, however, is not tight in general. More importantly, it is difficult
to evaluate the bound for arbitrary network due to the maximization over the
joint probability of the transmuting signals. It has been shown in [17] that for
the linear finite-field deterministic relay network, all the mutual information
expressions appear in (5.5) are simultaneously optimized by independent and
uniform distribution of {xi}i∈V . Moreover, it is shown that this bound is
achievable, which gives a complete characterization for the capacity of the
linear finite-field deterministic relay network as in the following theorem.

Theorem 5.2 ([17] Theorem 4.3). The capacity of a linear finite-field deter-
ministic relay network is given by

Cdet = maxQ
j∈V p(Xj)

min
Ω∈Λ(S,D)

I(YΩc ; XΩ|XΩc)

= maxQ
j∈V p(Xj)

min
Ω∈Λ(S,D)

H(YΩc |XΩc)

= min
Ω∈ΛD

rank (GΩ,Ωc) , (5.6)

where GΩ,Ωc denotes the transfer matrix associated with cut Ω.

A polynomial-time algorithm is proposed in [72] to perform the encoding
strategy at the relays to achieve the min-cut value in binary linear determin-
istic networks, for the case of a unicast connection. However, one important

5We may use Λ(S, D) instead of Λ({S}, {D}) when S and/or D has only one element.
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message of this result is due to the its achievability argument, that is, a ran-
dom mapping at each relay node can achieve the capacity of the network. The
intuitions gained from the deterministic model were then applied to Gaussian
signal interaction in a wireless network, which provides an approximate char-
acterization of the capacity for Gaussian relay network.

Theorem 5.3 ([17] Theorem 4.5). Consider a Gaussian relay network, with
cut-set upper bound

C = max
p({Xj}j∈V )

min
Ω∈Λ(S,D)

I(YΩc ; XΩ|XΩc).

Any rate R not exceeding C−κ is achievable over this network. More precisely,
the capacity of this network is bounded by

C − κ ≤ Cg ≤ C, (5.7)

where κ = O(|V|) is a constant independent of the channel gains, and |V| is
the number of nodes in the network.

5.1.3 Multiple Unicast over the Relay Network

The result mentioned above gives an approximate characterization of a wireless
network where a single source transmits the message to a single receiver. It can
be also generalized to multi-cast network, where there are multiple receivers in
the network, and all of them are interested in decoding the same message sent
by the transmitter. A random relaying strategy is shown to be (approximately)
optimal for this scenario.

However, the problem is much more difficult when multiple flows of infor-
mation exist in the network. That is, multiple messages are encoded at the
transmitter(s) and sent over the network. various receivers in the network are
interested in decoding different messages. In this situation, the relays receive
a combination of the signals describing messages, and a random mapping from
the received signal to transmit signal is not optimal anymore.

The simplest setting for a multiple unicast scenario is the Gaussian interfer-
ence channel [10], where two transmitters wish to communicate their messages
to their own receivers, over a shared channel. This problem has been studied
using a deterministic approach by Bresler and Tse [73], where they show that
the capacity of the real-valued 2-user Gaussian interference channel with arbi-
trary signal and interference to noise ratios is within 18.6 bits per user of the
capacity of a deterministic interference channel with proper gains.

Although this work gives a similar result as in [15] (albeit with a larger gap),
it provides a lot of insight to the structure of the various near-optimal schemes
for the Gaussian interference channel in the different parameter ranges. The
simplicity of the deterministic channel model gives us a better understanding
of the near-optimality of the simple private/common message splitting (Han-
Kobayashi scheme [10]) for the Gaussian interference channel.
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The general form of the cut-set bound for a multi-terminal network with
arbitrary number of transmitters and receivers is the following6.

Theorem 5.4 ([3] Theorem 15.10.1). Let N be an arbitrary network over a
set of nodes V with K pairs of source/destination where transmitter Si wishes
to communicate to receiver Di at rate Ri, for i = 1, . . . , K. Then, any rate
tuple (R1, R2, . . . , RK) satisfies

∑

i∈A
Ri ≤ max

p({Xj}j∈V )
min

Ω∈Λ(SA;DA)
I(YΩc ; XΩ|XΩc), (5.8)

for all A ⊆ IK , where SA = {Si : i ∈ A} and DA = {Di : i ∈ A}.

It can be shown that this upper bound for the achievable rate tuples is not
tight in general when there are more than one source/destination pair, even
for linear finite-field deterministic network. We will use this bound in the rest
of this chapter to upper bound the achievable rates. However, we will see that
tighter bounds are needed in order to provide an exact characterization of the
capacity of the DZS and DZZ networks.

5.2 Problem Formulation

Our goal in this chapter is to study the capacity region for a class of deter-
ministic 2-user relay-interference networks shown in Figure 5.1, which we call
the XX network. This understanding will be used in Chapter 6 to derive an
approximate capacity region for the Gaussian relay-interference networks. We
start by describing our notation we use for the nodes and the signals within
the network.

Two transmitters, S1 and S2, encode their messages W1 and W2 of rates R1

and R2, respectively, and broadcast the obtained signals to the relay nodes, A
and B. Denote the transmitted signals by X1 and X2, and the received signals
at the relays by Y ′

1 and Y ′
2 . Then

Y ′
1 [t] = M11X1[t] + M12X2[t]

Y ′
2 [t] = M21X1[t] + M22X2[t].

(5.9)

where matrices {Mij} are linear shift deterministic matrices, and defined as
Mij = Jp−mij . The matrix J is defined as in (5.3), while variables mij are
non-negative integer number, describe the channel gains.

The relay nodes perform any (causal) processing on their received signal
sequences {Y ′

1 [t]} and {Y ′
2 [t]} respectively, to obtain their transmitting signal

sequences, {X ′
1[t]} and {X ′

2[t]}. The received signals at the destination nodes
can be written as

Y1[t] = N11X ′
1[t] + N12X ′

2[t]
Y2[t] = N21X ′

1[t] + N22X ′
2[t],

(5.10)

6We have slightly modified the original expression of the theorem to adapt it with the
notations used in this chapter.
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where matrices {Nij} are defined similarly.
Each destination node Di, i = 1, 2, is interested in decoding its message Wi,

using its received signals {Yi[t]}. We define a rate pair (R1, R2) to be admissible
if there exist a transmission scheme under which D1 and D2 can decode W1

and W2, respectively, with arbitrary small (average) error probability in the
standard manner [3]. This would allow two end-to-end reliable unicast sessions
at rates (R1, R2) for the source/destination pairs (S1, D1) and (S2, D2).

It is worth mentioning that though this network looks like cascaded inter-
ference channels, there is an important difference between this network, and
the standard interference channel. Unlike the interference channel, the mes-
sages sent by the relays at the second layer of transmission need not to be
independent, i.e., we can try to induce cooperation at the relays to transmit
information to the final destinations. This distinction makes this network more
interesting than a simple cascade of interference channels.

In this work, we focus on two specific realizations of the network, where at
least two of the cross links have negligible gains which simplify the connectivity
models of (5.9)-(5.10), and therefore can be eliminated from the network. If
such weak cross links appear in the same layer, the resulting network would be
an standard deterministic interference channel, cascaded by a parallel channel,
and its capacity characterization is addressed in [73]. On the other hand, if
there is one weak cross link in each layer, the resulting network would be either
a ZS or a ZZ networks. We describe these two networks in the following, and
give the capacity characterization of their admissible rate region in Section 5.4.

5.2.1 The ZS Network

The deterministic ZS (DZS) network is a special case of the interference-relay
network defined in (5.9)-(5.10). In the DZS network one cross link in each layer
has a negligible gain, and therefore does not cause interference. In particular,
we assume m21 = n12 = 0. The resulting deterministic model for this network
is given in Figure 5.3.

S1

S2

A

B

D1

D2

m11 n11

m22 n22

m12
n21

X1

X2

Y ′
1

Y ′
2

X ′
1

X ′
2

Y1

Y2

Figure 5.3: The deterministic ZS network.
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5.2.2 The ZZ Network

The ZZ network is another special configuration interference-relay network,
wherein one cross link in each layer has zero gain. However, the difference is
that, here the missing links are in parallel. In particular, we assume m21 =
n21 = 0. The deterministic ZZ networks is shown in Figure 5.2.2.

S1

S2

A

B

D1

D2

m11 n11

m22 n22

m12 n21

X1

X2

Y ′
1

Y ′
2

X ′
1

X ′
2

Y1

Y2

Figure 5.4: The deterministic ZZ network.

5.3 Examples Illustrating Transmission Techniques

In this section, we illustrate through examples some of the main interference
management techniques we will use to achieve the capacity of our deterministic
relay-interference networks. Although we demonstrate the ideas for determin-
istic networks, similar techniques will be used later for Gaussian channels as
well.

Example 5.5 (Interference Separation). Consider the network shown in Fig-
ure 5.5. It is easy to see that the sum-rate of this network is upper bounded
by

R1 + R2 ≤ 3, (5.11)

since the cut which separates the destination nodes from the rest of the network
has value equal to 3.

Assume we wish to transmit at rate pair (R1, R2) = (1, 2) from the source
nodes to the destination nodes. Namely, source S1 would like to send a message
W1 that consists of a single bit X1(1) (per unit time) to D1, while source S2

would like to send message W2 which consists of two bits X2(1) and X2(2) to
D2.

It is easy to see that this rate pair can only be achieved by using a transmis-
sion strategy which avoids interference. Since D1 receives only one bit from A,
this bit should be the clear data about W1. Hence, A should have received the
message from S1, without interference. Therefore, the message W2 should be
encoded such that it does not cause interference at A. More precisely, in order
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S1

S2

A

B

D1

D2

Figure 5.5: Interference separation: (R1, R2) = (1, 2) is achievable.

to to communicate at this rate, the transmitters should encode their messages
as

X1 =




X1(1)

0
0



 , X2 =




X2(1)

0
X2(2)



 . (5.12)

The relay nodes also have to appropriate map their received bits to the signals
they broadcast, to avoid interference, as

X ′
1 =




X1(1)
X2(1)

0



 , X ′
2 =




X2(2)

0
0



 . (5.13)

It is clear this scheme makes the interference separable from the signal at the
nodes A and D2. The decoding strategy at destination node D2 is to first decode
the interference X1(1), cancel it, and then retrieve its own message X2(1) and
X2(2).

Example 5.6 (Interference Suppression). Depending on the parameters of
the network, there are cases in which interference separation is not enough
to achieve a transmission rate pair. That is, there does not exist a strategy that
avoids or separates interference at the receivers. However, it might be possible
to receive a clean copy of the interference, additionally to the copy that inter-
feres with the desired signal. Therefore, one could use the clean copy to remove
the interference. This is exactly the situation that occurs in the ZZ network
shown in Figure 5.6, for the transmission rate pair (R1, R2) = (3, 2).

In this network, the signal observed at node A is interfered by the transmis-
sions of source S2. It is thus not possible for node A to completely decode W1

using the 3 bits it receives. However, the decoder D1 can recover W1, by first
(partially) decoding W2, and using this information to remove the interference
from W1. Note that here there are two interfering paths from S2 to D1, one
through node A, and one through node B. The second path (through B), in fact
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D2

Figure 5.6: Interference suppression: (R1, R2) = (3, 2) is achievable.
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S2

A

B

D1

D2

Figure 5.7: Interference alignment; (R1, R2) = (1, 2) is achievable.

helps the decoder to remove the interference caused by the first path (through A).
This is the only strategy that allows to achieve the rate pair (R1, R2) = (3, 2).

Example 5.7 (Interference Alignment). Interference alignment is a trans-
mission technique that essentially concentrates all the interference into a small
dimension. The intuition behind this technique is the fact that whatever scheme
one uses to deal with interference, it may occupy a certain number of degrees of
freedom of the network. Therefore, one would expect that aligning the footprints
of all interference, such that the occupied degrees of freedom coincide, will lead
to minimizing the loss.

Consider the network shown in Figure 5.7, and assume we wish to commu-
nicate at the rate pair (R1, R2) = (1, 2). Since there is only one link from B to
D2, it is clear that the relay node A should help the S2-D2 communication by
sending information bits about W2. Therefore, the destination node D1 receives
two interfering signals (from A and B) which describe X2. Hence, it would be
able to resolve X1 if and only if the occupied sub-node by these two interference
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coincide. More precisely, by encoding the messages at the transmitters as

X1 =




X1(1)

0
0



 , X2 =




X2(1)
X2(2)

0



 , (5.14)

and using the transmission strategy shown in Figure 5.7, the received signal at
the destination nodes would be

Y1 =




0

X1(1)
X2(1) + X2(2)



 , Y2 =




X1(1)
X2(1)
X2(2)



 . (5.15)

Thus, the interfering bits X2(1) and X2(2) are aligned at the destination node
D1, and occupy only one degree of freedom.

Interference alignment has been introduced in a X channel [39] by Maddah-
Ali et. al., wherein two transmitters attempt to communicate to two receivers,
over an interference channel. Each transmitter has two messages, and each
message has to be decoded at one receiver. It has been shown that in order to
achieve the capacity of this network, it is necessary to align the two signals car-
rying information about the irrelevant interfering messages at the receivers. In
[39], this technique has been used for the case wherein there are more than two
messages have to be transmitted in the network. However, this strategy is also
applied to the K-user interference channel where each receiver is only interested
in decoding its own message, and all the other messages play as interference
for it. Cadambe and Jafar [40] showed that a total degrees of freedom of K/2
can be achieved on this network using interference alignment. In the previous
example, we showed through an example that interference alignment might be
an essential strategy in a network even with two messages.

Example 5.8 (Interference Neutralization). This technique can be used in
networks which contain more than one disjoint path from Si to Dj for i (= j,
where Dj is not interested in decoding the message sent by the source node
Si, and therefore it receives the interference through more than one link. The
proposed technique is to tune these interfering signals such that they neutralize
each other at the destination node. In words, the interfering signal should be
received at the same power level and with different sign such that the effective
interference, obtained by adding them, occupies a smaller number of degrees of
freedom. To best of our knowledge, this technique is new and was not appeared
in the literature before [20].

Figure 5.8 shows a network in which interference neutralization is essential
to achieve the desired rate pair (R1, R2) = (2, 3). Here D1 has only two de-
grees of freedom, and receives information bits from both A and B over these
sub-nodes. However, notice that there are two disjoint paths (S2, A, D1) and
(S2, B, D1), which connect S2 to D1. As it is shown in Figure 5.8, using a
proper mapping (permutation) at the relay nodes, one can make the interfer-
ence neutralized at the destination node D1, and provide two non-interfered
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D1

D2
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−

Figure 5.8: Interference neutralization; (R1, R2) = (2, 2) is achievable.
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D1

-

+

A

B

Figure 5.9: Interference neutralization.

links from S1 to D2. Note that this permutation does not effect the admissible
rate of the other unicast from S2 to D2, the cost we pay, is to permute the
received bits at D2. A more general illustration of this phenomenon is given in
Figure 5.9.

Example 5.9 (Network Decomposition for the ZS Network). A deterministic
ZS network can be always decomposed into two sub node-disjoint networks,
where the first partition consists of a set of sub-nodes of S1, A and D1, and
looks like a line network. The second partition is, however, a diamond network,
with a broadcast channel from S2 to A and B in the first layer, and a multiple
access channel from A and B to D2 in the second layer. This diamond network
can be used to send information from S2 to D2. Since these two networks are
sub-node disjoint, there would be no interfering signal, and each of them can
be analyzed separately. This is more illustrated in Figure 5.10.

In a Gaussian ZS network the network decomposition can be done using
message splitting, superposition coding and proper power allocation. We will



5.4. Main Results 113

S1

S2

A

B D2

D1

Figure 5.10: Network partitioning for a deterministic ZS network.

use this technique to achieve an approximate capacity for the Gaussian ZS
network.

5.4 Main Results

In this section we present the main results of this paper, which is the ex-
act capacity characterization of the deterministic ZS and ZZ interference-relay
networks. We prove these results in Sections 5.5 and 5.6, respectively. The op-
timality of these rate regions are shown in the later sections. Both rate regions
are polytopes, and therefore it suffices to show that the corner point rate pairs
are achievable.

5.4.1 The ZS Network

The ZS network illustrated in Figure 5.3. Theorems 5.10 gives the exact char-
acterizations of the capacity region of this network.

Theorem 5.10 (The capacity region of deterministic ZS network). The ca-
pacity region of the deterministic ZS network is specified by RDZS, where RDZS
is the set of all rate pairs (R1, R2) that satisfy
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R1 ≤ m11, (DZS-1)
R2 ≤ max(m12, m22), (DZS-2)

R1 + R2 ≤ max(m11, m12) + (m22 −m12)+, (DZS-3)
R2 ≤ m12 + n22, (DZS-4)

R1 + R2 ≤ m22 + max(n11, n21), (DZS-5)
R1 + R2 ≤ max(m11, m12) + n22, (DZS-6)

R1 ≤ n11, (DZS-7)
R2 ≤ max(n21, n22), (DZS-8)
R2 ≤ m22 + n21, (DZS-9)

R1 + R2 ≤ max(n21, n22) + (n11 − n21)+. (DZS-10)

Here and elsewhere (x)+ denotes the positive part of x, which is formally
defined by

(x)+ =
{

x if x ≥ 0
0 otherwise.

The outer bound for the result above is fairly standard arguments based
on reducing a multi-letter mutual information into single-letter forms by ap-
propriately using decodability requirements at the different destinations. The
details of these are given in Section 5.5.1 and Appendix D.1 respectively.

The coding strategy achieving this region is based on the idea of network
decomposition illustrated in Section 5.3, Example 5.9 for the deterministic net-
work. This will be discussed in more detail in Section 5.5.

5.4.2 The ZZ Network

The ZZ network illustrated in Figure 5.2.2. Although superficially the ZS and
ZZ networks may look similar, the subtle difference in the network connectiv-
ity, makes the two problems completely different, both in terms of capacity
characterization, as well as transmission schemes. It will be shown that a new
interference management scheme, which we term as interference neutralization,
is needed to achieve the capacity of this network. The most intuitive descrip-
tion for interference neutralization is to cancel interference over air without
processing at the destinations. This scheme can be used whenever there are
more than one path for interference to get received at a destination. We will
explain it in more detail in Section 5.6.

Theorem 5.11 gives the exact characterizations for the capacity region of
the deterministic ZZ network. Another new ingredient used here is needed a
genie-aided outer bound that gives signal sent over the cross link of the first
(or correspondingly second) layer to the destination (or correspondingly to the
relay). This genie-aided bound presented in Section 5.6.1 allows us to develop
outer bounds that are apparently tighter than the information-theoretic cut-set
bounds by utilizing the decoding structure needed.
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Theorem 5.11 (The capacity region of deterministic ZZ network). The ca-
pacity region of the deterministic ZZ network is given by RDZZ, where RDZZ is
the set of all rate pairs (R1, R2) which satisfy

R1 ≤ m11, (DZZ-1)
R2 ≤ m22, (DZZ-2)
R1 ≤ n11, (DZZ-3)
R2 ≤ n22, (DZZ-4)

R1 + r2 ≤ max(m11, m12) + (m22 −m12)+ + n12, (DZZ-5)

R1 + R2 ≤ max(n11, n12) + (n22 − n12)+ + m12. (DZZ-6)

5.5 The Deterministic ZS Network

In this section we prove Theorem 5.10. We study this problem in two parts.
First we present the converse proof, which shows any achievable rate pair be-
longs to RDZS. Then for any rate pair in this region, we propose an encoding
scheme which is able to transmit messages up to the desired rates.

5.5.1 The Outer Bound

In this section we show that any achievable rate pair (R1, R2) for the determin-
istic ZS network belongs to RDZS. Assume there exists a coding scheme with
block length ' which can be used to communicate at rates R1 and R2 over the
network. We use bold-face matrices to denote ' copy of them, as the transfer
matrix applied over a codeword of length ', e.g., M11 = I# ⊗M11.

All of the bounds in the theorem except (DZS-3) and (DZS-10) can be
obtained in a straight-forward manner using the generalized cut-set bound in
[74], which shows that in a linear finite-field network, the maximum reliable rate
can be transmitted through a cut is upper bounded by the rank of the transition
matrix of the cut. Here, we only present the proof of (DZS-3) and (DZS-10),
which are more involved, and tighter than the cut-set bound. However, we
present cut-set bound argument and the proof of the remaining bounds in
Appendix D.1 for completeness.

! (DZS-3) R1 + R2 ≤ max(m11, m12) + (m22 −m12)+
Recall the notation used in Figure 5.3 for transmitting and receiving signals.
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In order to prove this bound, we can start with

'(R1 + R2) ≤ I(X#
1, X

#
2; Y

#
1 , Y #

2 )

≤ I(X#
1, X

#
2; Y

′#
1 , Y

′#
2 ) (5.16)

= I(X#
1, X

#
2; Y

′#
1 ) + I(X#

1, X
#
2; Y

′#
2 |Y

′#
1 )

= I(X#
1, X

#
2; Y

′#
1 ) + H(Y

′#
2 |Y

′#
1 )−H(Y

′#
2 |X#

1, X
#
2, Y

′#
1 )

= I(X#
1, X

#
2; Y

′#
1 ) + H(Y

′#
2 |Y

′#
1 ), (5.17)

where in (5.16) we used the data-processing inequality for the Markov chain

(X#
1, X

#
2) ↔ (Y

′#
1 , Y

′#
2 ) ↔ (X

′#
1 , X

′#
2 ) ↔ (Y #

1 , Y #
2 ), (5.18)

and (5.17) holds since Y
′#
2 is a deterministic function of X#

2 in the Z part of the
network. Now, it is clear that

I(X#
1, X

#
2; Y

′#
1 ) ≤ rank

[
M11 M21

]
= 'max(m11, m12). (5.19)

In order to bound the second term, we can write

H(Y
′#
2 |Y

′#
1 ) = H(Y

′#
2 |Y

′#
1 , X

′#
1 , Y #

1 ) (5.20)

≤ H(Y
′#
2 , W1|Y

′#
1 , X

′#
1 , Y #

1 )

= H(Y
′#
2 |Y

′#
1 , X

′#
1 , Y #

1 , W1) + H(W1|Y
′#
1 , X

′#
1 , Y #

1 )

≤ H(Y
′#
2 |Y

′#
1 , X

′#
1 , Y #

1 , W1) + 'ε# (5.21)

= H(Y
′#
2 |Y

′#
1 , X

′#
1 , Y #

1 , W1, X
#
1) + 'ε# (5.22)

≤ H(Y
′#
2 |Y

′#
1 −M11X

#
1) + 'ε#

= H(M22X
#
2|M12X

#
2) + 'ε#

≤ 'rank
[

M12

M22

]
− 'rank (M12) + 'ε#

= '(m22 −m12)+ + 'ε#, (5.23)

where (5.20) holds since X
′#
1 is completely determined by Y

′#
1 , and Y #

1 is also
a deterministic function of X

′#
1 in the S part of the network. We used Fano’s

inequality in (5.21), where W1 should be decodable based on Y #
1 . Finally, (5.22)

holds, since X#
1 is determined by W1. Summing up (5.19) and (5.23), we get

the desired bound.

Remark 5.12. Note that the cut-set bound for the cut-set value for the cut
Ω = {S1, S2} and Ωc = {A, B, D1, D2} gives us

'(R1 + R2) ≤ rank (GΩ,Ωc) ,
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where GΩ,Ωc is the transfer matrix of the cut from the inputs XΩ = (X1, X2)
to outputs YΩc = (Y ′

1 , Y ′
2 , Y1, Y2), determined as

GΩ,Ωc =





M11 M12

0 M22

0 0
0 0



 .

This gives

R1 + R2 ≤ max(m11 + m22, m12). (5.24)

in which the RHS can be arbitrarily larger than the RHS of the presented bound
in (DZS-3). The reason for this difference is the following. It is inherently
assumed in deriving the cut-set bound that the receivers can cooperate to de-
code the messages of rates R1 and R2, and no decodability requirement is posed
for individual receivers. However, the setup of this problem impose an extra
constraint, that is B alone should be able to decode W2. Incorporating this de-
codability requirement shrinks the set of admissible rates, and gives us a tighter
bound that that predicted by the cut-set bound.

! (DZS-10) R1 + R2 ≤ max(n21, n11) + (n11 − n21)+
The last inequality captures the maximum flow of information from the

relays to the destinations, such that D1 and D2 be able to decode W1 and W2,
respectively. We again start with

'(R1 + R2) ≤ I(X#
1, X

#
2; Y

#
1 , Y #

2 ) = H(Y #
1 , Y #

2 ) = H(Y #
2 ) + H(Y #

1 |Y #
2 ). (5.25)

The first term can be easily bounded by

H(Y #
2 ) ≤ rank

[
N21 N22

]
= 'max(n21, n22). (5.26)

In order to bound the second term, we use the fact that W2 can be decoded
from Y #

2 . Therefore,

H(Y #
1 |Y #

2 ) ≤ H(Y #
1 , W2|Y #

2 )

= H(Y #
1 |Y #

2 , W2) + H(W2|Y #
2 )

≤ H(Y #
1 |Y #

2 , W2) + 'ε# (5.27)

= H(Y #
1 |Y #

2 , W2, X
#
2, Y

′#
2 , X

′#
2 ) + 'ε#

≤ H(Y #
1 |Y #

2 −N22X
′#
2 ) + 'ε#

= H(N11X
′#
1 |N21X

′#
1 ) + 'ε#

≤ 'rank
[

N11

N21

]
− 'rank (N21) + 'ε#

= '(n11 − n21)+ + 'ε#. (5.28)
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In (5.27) we used the Fano’s inequality, as well as the fact that X#
2, Y

′#
2 , and

X
′#
2 are known having W2. The bound is obtained by replacing (5.26) and

(5.28) in (5.25).

Remark 5.13. It is worth mentioning that this bound is tighter than the cut-
set bound for the cut Ω = {S1, S2, A, B} and Ωc = {D1, D2}, which is

R1 + R2 ≤ max(n11 + n22, n12). (5.29)

5.5.2 The Achievability Part

Network Decomposition: The achievability scheme presented here is based
on decomposition of the deterministic ZS network into two node-disjoint net-
works. In fact, such partitioning depends on the demanded rate pair (R1, R2) ∈
RDZS. The resulting family of separations immediately suggests a simple cod-
ing scheme. We will show that this separation is optimal, and does not cause
any loss in the admissible rate region of the network.

Before introducing the network decomposition, we define an equivalence
class for the sub-nodes (levels) in a network.

Definition 5.14. In a Z (or S) deterministic network, two sub-nodes a and
b are called related sub-nodes, and denoted by a ∼ b if any of the following
conditions hold:

• a = b;

• a is connected to b;

• b is connected to a;

• there exists a sub-node c such that c broadcasts to both a and b;

• there exists a sub-node d where both a and b are connected to.

Note that this relation is reflective, symmetric, and transitive. Therefore, it
forms equivalence classes for the sub-nodes.

We denote by N1 and N2 the partitions of the network. Assume we want
to transmit at rate R1 ! r ≤ min(m11, n11) from S1 to D1. The first part
of the network N1, includes the top (m11 −m12)+ levels as well as the lowest
(r−(m11−m12)+)+ levels of S1. It also includes all the related sub-nodes of S2,
and the receiver levels of A and B. Similarly, in the second layer of the network,
N1 includes the lowest (n11−n21)+ levels as well as the top (r−(n11−n21)+)+
nodes of the transmitter part of A. All related sub-nodes of the transmitter
part of B, as well as D1 and D2 also belong to N1. The second part of the
network N2, is formed by all the remaining nodes. An example of this network
decomposition is depicted in Figure 5.11.

We will use N1 for transmitting data from S1 to D1. Similarly N2 is only
used to communicate from S2 to D2. Therefore, we have two unicast networks,
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S1

S2

A

B

D1

D2

Figure 5.11: Network decomposition for a DZS network for (R1, R2) = (3, 4):
The blue part of the network is used by S1/D1 to communicate W1 and the pink
part is remained for transmitting W2.

and each pair of transmitter-receiver can communicate up to the capacity of
their own partition, which is the min-cut of the partition [65].

It is worth mentioning that any two “related” sub-nodes belong to the
same partition. Therefore, these two networks are node-disjoint, and do not
cause interference for each other. This allows us to derive the capacity of each
network separately, and argue that (R1, R2) can be achieved simultaneously
for the original network, if R1 and R2 are achievable for partitions N1 and N2.

Encoding Scheme: A transmission from S1 and S2 to D1 and D2 is per-
formed as follows. S1 transmits only on its sub-nodes which belong to N1,
and keeps its other sub-nodes silent. Similarly, S2 encodes its message on the
sub-nodes included in N2, and sends zero on the other levels. Therefore, the
effective communication over each partition is a simple uni-cast.

Figure 5.12 shows the effective parts of the network. It is easy to see that the
diamond network in Figure 5.12(b) is also a linear shift deterministic networks,
with channel gains

m′
12(r) = min(max(m11, m12)− r, m12), (5.30)

m′
22(r) = min(max(m11, m12) + (m22 −m12)+ − r, m22), (5.31)

n′
21(r) = min(max(n11, n21)− r, n21), (5.32)

n′
22(r) = min(max(n11, n21) + (n22 − n21)+ − r, n22), (5.33)

where r is the desired rate of communication for S1/D1.
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Figure 5.12: The effective separated ZS network.

Achievable Rate Region: The cut values of the network N1 can be easily
computed as

(m11 −m12)+ + (r − (m11 −m12)+)+ = max{(m11 −m12)+, r} ≥ r

for Ω = {S1}, and

(r − (n11 − n12)+)+ + (n11 − n12)+ = max{(n11 − n12)+, r} ≥ r.

for Ω = {S1, A}. Therefore any rate in RDZS,1(r) = {R1 : R1 ≤ r} can be
conveyed from S1 to D1 through N1.

The capacity of N2 can be found using the generalized max-flow min-cut
theorem [65]. Hence, the rate region of the second partition N2 would be

RDZS,2(r) = {R2 :R2 ≤ max(m′
12(r), m

′
22(r)),

R2 ≤ m′
22(r) + n′

21(r),
R2 ≤ m′

12(r) + n′
22(r),

R2 ≤ max(n′
21(r), n

′
22(r))}.

Therefore, by using this decomposition, any rate pair in the set RDZS(r) !
RDZS,1(r) × RDZS,2(r) = {(R1, R2) : R1 ∈ RDZS1(r), R2 ∈ RDZS,2(r)} can be
achieved. It remains to prove the following lemma.

Lemma 5.15. For any deterministic ZS network,

RDZS ⊆
⋃

r≤min(m11,n11)

RDZS(r). (5.34)

We will prove this lemma in Appendix D.2.
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5.6 The Deterministic ZZ Network

In this section we prove Theorem 5.11. This is done in two parts, that provide
the converse and achievability proofs.

5.6.1 The Outer Bound

In the following we will show that any achievable rate pair (R1, R2) satisfies
constraints (DZZ-1)-(DZZ-6). The individual rate bounds can be directly ob-
tained by the generalized cut-set bound introduced in [74], where the maximum
flow of information through a cut in a linear deterministic network is upper
bounded by the rank of the transition matrix from the sender part of the cut to
its receiver part. We only present the proof of these bounds in Appendix D.3
for completeness.

Unlike the individual rate constraints, the sum-rate bounds in (DZZ-5) and
(DZZ-6) are genie-aided bounds which are tighter that the cut-set bounds. In
the following, we focus on these two bounds, and present their proofs in detail.
Again we assume that there exists a coding scheme with block length ' which
can be used to communicate at rates R1 and R2 over the network.

! (DZZ-5) R1 + R2 ≤ max(m11, m12) + (m22 −m12)+ + n12

In order to prove this inequality we focus on the flow of information from the
sources to the relays. The key idea here is to provide A with the information
sent by B to D1 as side information. In such condition, the information A
has received about W1 is stronger than the information available at D1, and
therefore A can decode W1 since D1 can as well. Once W1 is decoded at A, it
can determine the transmitted codeword from S1. By removing the interference
from S1, A can also partially decode W2.

More precisely, we can write

'(R1 + R2) ≤ I(X#
1, X

#
2; Y

′#
1 , Y

′#
2 ) = H(Y

′#
1 , Y

′#
2 ) ≤ H(Y

′#
1 , Y

′#
2 ,Γ#

2)

= H(Y
′#
1 ,Γ#

2) + H(Y
′#
2 |Y

′#
1 ,Γ#

2)

≤ H(Y
′#
1 ) + H(Γ#

2) + H(Y
′#
2 |Y

′#
1 ,Γ#

2), (5.35)

where Γ#
2 = N12X

′#
2 is the part of the signal received at D2 from B as in

Figure 5.2.2. The first two terms are easily bounded by 'max(m11, m12) and
'n12, respectively. Deriving an upper bound for the last term is more involved.
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Similar to Γ#
2, we define Γ#

1 = M12X#
2, where we have

H(Γ#
1|Y

′#
1 ,Γ#

2) = H(Y
′#
1 −M11X

#
1|Y

′#
1 ,Γ#

2) (5.36)

≤ H(X#
1|Y

′#
1 ,Γ#

2)

≤ H(W1|Y
′#
1 ,Γ#

2)

= H(W1|Y
′#
1 , X

′#
1 ,Γ#

2)

≤ H(W1|N11X
′#
1 + Γ#

2)

= H(W1|Y #
1 ) ≤ 'ε#, (5.37)

where ε# → 0 as ' grows. We have used the invertibility property of the
deterministic multiple access channel in (5.36), and (5.37) follows from the
Fano’s inequality, and the fact that D1 can decode the message sent by S1.
Therefore, we have H(Γ#

1|Y
′#
1 ,Γ#

2) ≤ 'ε#. Hence,

H(Y
′#
2 |Y

′#
1 ,Γ#

2) ≤ H(Y
′#
2 ,Γ#

1|Y
′#
1 ,Γ#

2)

= H(Y
′#
2 |Γ#

1, Y
′#
1 ,Γ2) + H(Γ#

1|Y
′#
1 ,Γ#

2)

≤ H(Y
′#
2 |Γ#

1) + 'ε#

= H(M22X
#
2|M12X

#
2) + 'ε#

≤ '(m22 −m12)+ + 'ε#. (5.38)

Replacing the upper bounds for each term in (5.35), we get

R1 + R2 ≤ max(m11, m12) + n12 + (m22 −m12)+. (5.39)

Remark 5.16. It is worth mentioning that the cut-set bound for Ωs = {S1, S2}
and Ωd = {A, B, D1, D2} gives us

'(R1 + R2) ≤ rank (GΩ,Ωc) ,

where GΩ,Ωc is the transfer matrix of the cut from the inputs XΩ = (X1, X2)
to YΩc = (Y ′

1 , Y ′
2 , Y1, Y2), given by

GΩ,Ωc =





M11 M12

0 M22

0 0
0 0



 ,

which yields in

R1 + R2 ≤ max(m11 + m22, m12). (5.40)

Note that depending on the channel gains, (5.40) can be looser than the genie-
aided bound in (DZZ-5). This is due to the different decodability requirements
assumed in developing two bounds: the cut-set bound is derived based on the
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assumption that the nodes at Ωc can cooperate to decode messages (W1, W2),
while the genie-aided bound is more restricted, by posing an extra requirement
that the relay node B should be able to decode W2 based on its own received
signal. Moreover, the maximum interference can be tolerated at A is upper
bounded by n12, the capacity of the cross link in the second layer.

! (DZZ-6) R1 + R2 ≤ max(n11, n12) + (n22 − n12)+ + m12

The last inequality captures the maximum flow of information from the
relays to the destinations. Intuitively, this inequality says that the number of
interfering bits can get neutralized at D1 cannot exceed the minimum of m12

and n12. In order to make this intuition formal, we provide Γ#
1, the partial

information about W2 which is available at A, as side information for D1. We
then have

'(R1 + R2) ≤ I(Y #
1 , Y #

2 ; X#
1, X

#
2) = H(Y #

1 , Y #
2 )

≤ H(Y #
1 , Y #

2 ,Γ#
1)

≤ H(Y #
1 ) + H(Γ#

1) + H(Y #
2 |Y #

1 ,Γ#
1).

Again, we can simply upper bound the first two terms by the rank of the
corresponding matrices. In order to bound the last term, similar to the proof
of (DZZ-5), we use the following bounding technique.

H(Γ#
2|Y #

1 ,Γ#
1) = H(Y #

1 −N11X
′#
1 |Y #

1 ,Γ#
1)

≤ H(X
′#
1 |Y #

1 ,Γ#
1)

≤ H(Y
′#
1 |Y #

1 ,Γ#
1)

= H(M11X
#
1 + Γ#

1|Y #
1 ,Γ#

1)

≤ H(X#
1|Y #

1 ,Γ#
1)

≤ H(X#
1|Y #

1 )

≤ H(W1|Y #
1 ) ≤ 'ε#, (5.41)

where (5.41) follows from the Fano’s inequality. This inequality can be used as

H(Y #
2 |Y #

1 ,Γ#
1) ≤ H(Y #

2 ,Γ#
2|Y #

1 ,Γ#
1)

= H(Y #
2 |Γ#

2, Y
#
1 ,Γ#

1) + H(Γ#
2|Y #

1 ,Γ#
1)

≤ H(Y #
2 |Γ#

2) + 'ε#

= H(N22X
′#
2 |N12X

′#
2 ) + 'ε#

≤ '(n22 − n12)+ + 'ε#. (5.42)

Therefore, we have

R1 + R2 ≤ max(n11, n12) + m12 + (n22 − n12)+. (5.43)
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Remark 5.17. The cut-set bound for the cut Ωs = {S1, S2, A, B} and Ωd =
{D1, D2} is given by

R1 + R2 ≤ max(n11 + n22, n12). (5.44)

Again, it can be shown that the genie-aided bound can be arbitrarily tighter than
the cut-set bound for different channel gains.

These together with the proofs of the individual rate constraints presented
in Appendix D.3 complete the proof of the converse part of Theorem 5.11.

5.6.2 The Achievability Proof

In this part we will show that all rate pairs satisfying inequalities (DZZ-1)-
(DZZ-6) are achievable. In particular, we introduce a coding scheme which
achieves such rates. Our coding strategy provides the interference neutral-
ization at the destination. This is performed by splitting the messages into
two parts, namely private and functional parts. The private sub-messages can
be decoded at the relays, and forwarded to the destinations. The functional
sub-message of the second source can be also decoded at B. However, A only
receives a combination (xor) of the functional sub-messages, and cannot de-
code them. It only forwards such combination on proper (power) levels such
that the interference caused by the functional sub-message of S2 get neutral-
ized over the second layer of the network, and D1 can decode the sub-message
of its interest.

Our analysis is based on characterizing the number of pure and combined
bits can be sent through each layer of the network. In the following we focus
on one layer of the network, and obtain an achievable rate region for these
numbers. Next, we use this region to build the encoding scheme for the ZZ
network, and obtain an achievable rate region, which matches with the outer
bound.

Definition 5.18. Consider a deterministic Z network with gains (n11, n12, n22).
as shown in Figure 5.13. Each of the transmitters has a set of informa-
tion bits to transmit to the receivers. This set for Fi includes Υi private
bits and Υ0 functional bits, namely, Wi,P = {Wi,P (1), . . . , Wi,P (Υi)} and
Wi,N = {Wi,N (1), . . . , Xi,N (Υ0)}. The second receiver wishes to receive all
the private and functional bits of F2, while the first receiver is interested in
receiving the private bits of F1, and the xor of the functional bits of F1 and
F2. More precisely, denoting by Ŵi the set of bits Gi is interested in, we have

Ŵ1 = W1,P ∪ {W̃1,N (j) ! W1,N (j)⊕W2,N (j) : j = 1, . . . ,Υ0},
Ŵ2 = W2,P ∪W2,N .

We term this network with the described decoding demands as deterministic
Z-neutralization network.
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Figure 5.13: A deterministic Z-neutralization network with the message demands.

Our next goal is to characterize the set of achievable tuples (Υ0,Υ1,Υ2)
for the deterministic Z-neutralization network. The following lemma gives an
achievable rate region for this network The proof of this lemma can be found
in Appendix D.4.

Lemma 5.19. Consider the deterministic Z-neutralization network defined in
Definition 5.18 with channel gains (n11, n12, n22) (see Figure 5.13). Any rate
tuple (Υ0,Υ1,Υ2) satisfying

Υ0 ≤ λ ! min{n11, n12, n22}, (5.45)
Υ0 + Υ1 ≤ n11, (5.46)
Υ0 + Υ2 ≤ n22, (5.47)

Υ0 + Υ1 + Υ2 ≤ µ ! max{n11, n12, n22, n11 + n22 − n12}. (5.48)

is achievable for this network.

Now, having an achievable rate region for the deterministic Z-neutralization
network, we are ready to present the coding scheme and analyze its rate region
for the ZZ network.

Recall that the ZZ network consists of two cascaded Z networks. In the first
layer, the source nodes split their message into private and functional parts.
They can send these parts to the relays as long as their rates belong to the
achievable rate region of the first layer given in Lemma 5.19. Once the relays
receive these sub-messages, forward them to the destination nodes using the
same scheme for the private and functional sub-messages. This can be done
if the rate tuple for the sub-messages satisfy the corresponding inequalities for
the second layer as well. Note that functional bits received at the destination
are W̃1,N (j)⊕W2,N (j) = [W1,N (j)⊕W2,N (j)]⊕W2,N (j) = W1,N (j). Therefore,
the interference of these bits get neutralized, and pure information bits will be
received at the destination.
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The achievable rate region of this scheme is given by

RDZZ =
{

(R1, R2) :∃Υ0,Υ1,Υ2 ≥ 0,

R1 = Υ0 + Υ1,

R2 = Υ0 + Υ2,

Υ0 ≤ min{λm,λn},
Υ0 + Υ1 ≤ min{m11, n11},
Υ0 + Υ2 ≤ min{m22, n22},

Υ0 + Υ1 + Υ2 ≤ min{µm, µn}
}

(5.49)

Here we used subscripts m and n to denote λ and µ parameters of the first
and the second layer of the network, respectively. Applying Fourier-Motzkin
elimination on this set to project it on the (R1, R2) plane, gives us the rate
region claimed in the theorem.

5.7 The Deterministic Z-chain Network

In this section, we generalize the deterministic ZZ network, and consider a chain
with arbitrary number of Z channels called deterministic Z-chain network, and
characterize the region of the admissible rates under the deterministic model.

In order to obtain an outer bound, we first develop a genie-aided outer
bound for the rate-region. We then show that this rate region is achievable
using linear operations, where decoding a message of rate R is possible if and
only if R non-interfered linearly independent equations describing the message
are available at the receiver.

We implicitly show that the rate region obtained by the outer bound is
achievable. That is, instead of proposing an explicit encoding scheme for the
source and relay nodes, we show that there exists at least one scheme to achieve
the capacity of the Z-chain network. More precisely, in our achievability proof,
we use a new technique, called analysis of pure and mixed equations, where
we keep track of the number of the equations involving bits of each of the
interfering messages at the relay nodes in the different layers of the network. We
show that among all possible encoding schemes at the relay nodes, there exists
at least one which guarantee to provide the desired number of pure equations,
to be able to decode the source message at the appropriate destination.

In the following, we first give a formal definition for the Z-chain network,
the problem statement, and present the main result of this section. We then
discuss the outer bound and the achievability analysis.

Consider the network shown in Figure 5.14, which is formed by cascading
N consecutive Z channels. The transmitters S1 and S2 wish to communicate
at rates R1 and R2 to the destination nodes D1 and D2, respectively.

The network is formed by N layers, where the k-th one connects the relay
nodes Ak−1 and Bk−1 to Ak and Bk, for k = 0, 2, . . . , N , where the relays in
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Figure 5.14: Transmission model: the Z-chain network.

layers zero and N are the source (transmitter) and receiver nodes, respectively.
We use slightly different notation to denote the gains of the channel as follows.
The k-th layer (hop) of the network is parametrized by the triple {(αk,βk, γk)},
where αk and βk are the gains of the first and second direct links of the k-th
layer of the network and γk is the gain of the cross link of the same layer.

We denote the inputs of the layer k by Xk,1 and Xk,2 and received vectors
of this layer by Yk,1 and Yk,2. Transmission model in the k-th layer of the
Z-chain network can be written as

Yk,1 = N (k)
11 Xk,1 + N (k)

12 Xk,2,

Yk,2 = N (k)
22 Xk,2, (5.50)

where N (k)
11 = Jp−αk , N (k)

22 = Jp−βk , and N (k)
12 = Jp−γk .

The relay node Ak forms its encoded message for the next layer, Xk+1,1 as
a function of its received signal Yk,1, and similarly for Bk.

The rate pair (R1, R2) is called achievable if and only if, for some large
enough ', there exist codes of length ' to be used at the relays such that W1 ∈
{1, . . . , 2#R1} and W2 ∈ {1, . . . , 2#R2} can be transmitted to the destination
nodes, respectively, with vanishing error probability. The following theorem
gives a complete characterization for RZ−chain, the set of all achievable rate
pairs of the deterministic Z-chain network.

Theorem 5.20 (The capacity region of deterministic Z-chain network). Con-
sider a deterministic Z-chain network with channel gains {(αk,βk, γk)}N

k=1.
The capacity region of this network is the set of all rate pairs (R1, R2) which
satisfy

R1 ≤ αk ∀k, (5.51)
R2 ≤ βk ∀k, (5.52)

R1 + R2 ≤ Ψk + ΦN − 2γk ∀k, (5.53)

where

Ψk ! max(αk, γk) + max(βk, γk), k = 1, 2, . . . , N, (5.54)
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and

Φk !
k∑

i=1

γi, k = 1, 2, . . . , N. (5.55)

5.7.1 The Outer Bound

In this part we prove the optimality of the rate region introduced in Theo-
rem 5.20. Similar to the proof of Theorem 5.11, the proof of the individual
rate bounds follow the min-cut theorem. However, we need a more sophis-
ticated argument to show the sum-rate bounds, similar to the genie-aided in
Theorem 5.11.

We start with a rate pair (R1, R2) ∈ RZ−chain which can be achieved using a
code of length '. The transmitters encode the messages into sequences X#

1,1 =
(X1,1(1), . . . X1,1(')) and X#

1,2 = (X1,2(1), . . . X1,2(')). Similarly, we use X#
k,i

to denote the codeword vectors
(
Xk,i((k − 1)'+ 1), X#

k,i((k − 1)'+ 2), . . . , X#
k,i((k − 1)'+ ')

)
,

for i = 1, 2 and k = 0, 1, . . . , N − 1. The term (k− 1)' in the time index is due
to the layered structure of the network and the fact that it takes (k − 1) time
blocks for messages (W1, W2) to get received at the k-th layer of the network.
We also use bold-face symbols to denote ' copies of the respective matrices, as
the transfer matrix applied over a codeword of length ', i.e., N(k)

ij = I#⊗N (k)
ij .

First, consider the cut with partitions Ω = {S1, A1, A2, . . . , Ak} at the
transmitting part, and Ωc = {S2, Ak+1, . . . , AN−1, B1, . . . BN−1, D1, D2} at the
receiver part. Note that the two parts of this cut are connected through the
links with gains {γ1, . . . , γk−1,αk} (the red cut in Figure 5.15). However, the
cross links carry information from Ωc to Ω, and there is only one direct link
with gain αk which carries information from Ω to Ωc. Therefore, in order to
show to the first bound in (5.51), we can write

'R1 ≤ rank (GΩ,Ωc) = rank
(
N(k)

11

)
= 'rank

(
N (k)

11

)
= 'αk. (5.56)

Similarly, the bound on r2 corresponds to the maximum flow of information
through the cut with partitions

Ω = {S1, S2, A1, . . . , AN−1, B1, . . . , Bk−1, D1}

and
Ωc = {Bk, . . . , BN−1, D2}.

These two sets are connected though the links with gains {βk, γk+1, . . . , γN}
(the blue cut in Figure 5.15), where only the direct link carries information
from Ω to Ωc. Therefore, we have

'R2 ≤ rank (GΩ,Ωc) = rank
(
N(k)

22

)
= 'rank

(
N (k)

22

)
= 'βk. (5.57)
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R2 ≤ β3

R1 + R2 ≤ max(α2, γ2) + max(β2 + γ2) +
∑4

i=1 γi − 2γ2
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Figure 5.15: Three different kinds of cut-set bounds

The sum-rate bound is obtained by bounding the amount of information can
be passed through the k-th layer of the network, namely, the edges {αk,βk, γk}
(the green cut in Figure 5.15). In the following chain of inequalities we will
use a new random variable which is the interference observed7 by the relay
node Ak, and defined as Γk = N (k)

12 Xk,2 for k = 1, 2, . . . , N . We also use Γ#
k to

denote a block of length ' of Γk.
This bound is essentially a genie-aided bound, where a genie provides the

output of all the cross links except the k-th one (Γ#
1, . . . ,Γ#

k−1,Γ
#
k+1, . . . ,Γ

#
N )

at Ak. Intuitively, we capture the maximum interference neutralization, and
argue that having such aid from the genie, Ak can decode the message W1 if
the destination node D1 can decode it.

'(R1 + R2) ≤ I(Y #
k,1, Y

#
k,2; X

#
k,1, X

#
k,2)

= H(Y #
k,1, Y

#
k,2)

≤ H(Y #
k,1, Y

#
k,2,Γ

#
1, . . . ,Γ

#
k−1,Γ

#
k+1, . . . ,Γ

#
N)

≤ H(Y #
k,1) + H(Γ#

1) + · · · + H(Γ#
k−1) + H(Γ#

k+1) + · · · + H(Γ#
N )

+ H(Y #
k,2|Y #

k,1,Γ
#
1, . . . ,Γ

#
k−1,Γ

#
k+1, . . . ,Γ

#
N ). (5.58)

We define T<k = (Γ#
1, . . . ,Γ#

k−1) and T>k = (Γk+1, . . . ,Γ#
N ). Note that

H(Y #
N,1|Y #

k,1, T<k, T>k) ≤ H(Y #
N,1|Y #

k,1, T>k)

= H(Y #
N,1 − Γ#

N |Y #
k,1, T>k)

= H(X#
N−1,1|Y #

k,1, T>k)

≤ H(Y #
N−1,1|Y #

k,1, T>k)
...

≤ H(Y #
k,1|Y #

k,1, T>k) = 0. (5.59)

7One can think of these random variables as the output of some auxiliary channels with
the same behavior as the cross links.
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Combining (5.59) with Fano’s inequality, H(W1|Y #
N,1) ≤ 'ε#, we have

H(W1|Y #
k,1, T<k, T>k) ≤ H(W1, Y

#
N,1|Y #

k,1, T<k, T>k)

= H(Y #
N,1|Y #

k,1, T<k, T>k) + H(W1|Y #
N,1, Y

#
k,1, T<k, T>k)

≤ 'ε#, (5.60)

where ε# → 0 as ' grows. Therefore,

H(X#
k,1|Y #

k,1, T<k, T>k) ≤ H(Y #
k−1,1|Y #

k,1, T<k, T>k)

= H(Y #
k−1,1 − Γ#

k−1|Y #
k,1, T<k, T>k)

= H(X#
k−1,1|Y #

k,1, T<k, T>k)
...

≤ H(X#
1,1|Y #

k,1, T<k, T>k)

≤ H(W1|Y #
k,1, T<k, T>k) ≤ 'ε#. (5.61)

Hence,

H(Γ#
k|Y #

k,1, T<k, T>k) ≤ H(Γ#
k, X#

k,1|Y #
k,1, T<k, T>k)

= H(X#
k,1|Y #

k,1, T<k, T>k) + H(Γ#
k|Y #

k,1, X
#
k,1, T<k, T>k)

= H(X#
k,1|Y #

k,1, T<k, T>k)

+ H(Y #
k,1 −N(k)

11 X#
k,1|Y #

k,1, X
#
k,1, T<k, T>k)

(a)
≤ 'ε#, (5.62)

where we used (5.61) in (a). Finally, we get

H(Y #
k,2|Y #

k,1, T<k, T>k) ≤ H(Y #
k,2,Γ

#
k|Y #

k,1, T<k, T>k)

= H(Γ#
k|Y #

k,1, T<k, T>k) + H(Y #
k,2|Y #

k,1, T<k,Γ#
k, T>k)

≤ 'ε# + H(Y #
k,2|Γ#

k)

≤ '(βk − γk)+ + 'ε#. (5.63)

Replacing (5.63) in (5.58) we get

'(R1 + R2) ≤ 'max(αk, γk) +
∑

i)=k

'γi + '(βk − γk)+ + 'ε′#

which yields in (5.53) after some simplifications.

Remark 5.21. Note the bounds corresponding to the other cuts (e.g., bounds
shown in Figure 5.16) are implied by (5.51)-(5.53), and do not further tighten
the capacity region.
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R1 + R2 ≤ α3 + β1 R1 + R2 ≤ α2 + γ2 + γ3 + γ4 + β4

X2,1 α2
Y2,1 X3,1 α3

Y3,1

X1,2
β1 Y1,2 X4,2

β4 Y4,2

Figure 5.16: The dominated cuts in the Z-chain network.

5.7.2 The Achievability Proof

The goal of this section is to show that any rate pair (R1, R2) ∈ RZ−chain is
achievable. We will show that such rate pair is achievable using only linear
operations, hence, the signal at any relay or destination node would be a linear
combination of the input bits of W1 = [b1(1), b1(2), . . . , b1(R1)]T and W2 =
[b2(1), b2(2), . . . , b2(R2)]T , the binary representations of the input messages. It
is clear that destinations can decode if and only if the nodes D1 (D2) can
obtain exactly R1 (R2) linearly independent equations which only involve the
unknown bits of W1 (W2) from the set of received equations. In order to show
achievability, we use interference neutralization similar to the encoding scheme
used in Section 5.6. Here the interfering signal is eliminated when mixed over
the air, without necessarily decoding it.

We focus on a special class of encoding schemes, where the relay nodes
Bk’s, first decode the corresponding message W2, and then encode it again and
send exactly R2 linearly independent equations describing W2. The encoding
scheme at Bk can be chosen such that the message received at Ak+1 gets more
interference, or (a part of) its interference gets neutralized. We choose R2

nodes among the top βk available nodes for transmission, opportunistically,
such that the message can be decoded at Bk+1 and the desired interfering
situation happens at Ak+1.

Also the relay nodes Ak transmit exactly R1 equations, where some of them
may only involve bits from W1 and the others involve bits of both W1 and W2.
However, the equations are chosen such that the induced equations on each
of W1 and W2 are linearly independent. More precisely, all the non-trivial
(non-zero) bits sent by Ak are elements of the vector

Xk,1 =
[

U Q
V 0

] [
W1

W2

]
(5.64)

where the matrices Q and
[

UT V T
]T are full-rank8.

8It is easy to show that such matrices always exist. We can start with R1 linearly
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Transmission of W2 from S2 to D2 through Bk needs to only send linearly
R2 independent equations since no interference can affect the message. We
need the following definition for our proof.

Definition 5.22. A linear equation is called pure if it only involves the bits of
W1 as the unknown variables. For a given encoding scheme, let ρk denote the
number of linearly independent pure equations received at the relay node Ak for
k = 1, . . . , N − 1. Clearly, we have ρ0 = R1.

In fact Ak has ρk linearly independent pure equations and R1 − ρk mixed
equations involving the unknown bits of both W1 and W2. It may also have
some equations which only involve unknown bits of W2. Such equations can
be used for interference suppression as well as interference neutralization as
described in Section 5.3.

The value of ρk depends on both the number of pure equations in the
previous layer, ρk−1, as well the encoding strategy used at the relay consisting
nodes Ak−1 and Bk−1. Therefore, even for a fixed ρk−1, different values for
ρk can be obtained using different coding strategies. According to the above
definition, ρN denotes the number of pure equations received at D1. In the
following we will study the evolution of the number of pure equations and
show that if (R1, R2) ∈ RZ−chain then there exist coding strategies used at the
relays such that one can obtain ρN = R1 pure equations at D1. It is clear that
having R1 linearly independent equations, D1 can always solve the system of
equations, and reconstruct the bits of W1.

Definition 5.23. Define Pk as the set of all possible number of pure equations
at the k-th layer of the network for all possible encoding strategies. We define
Mk = maxPk and mk = minPk as the largest and smallest elements of Pk,
respectively.

It is clear that Mk ≤ R1 for all values of k, since the number of linearly
independent equations cannot exceed the number of variables. Also note that
we never send more than R2 equations from Bk−1, and therefore the number
of mixed equations cannot exceed R2. Therefore, we have R1 − ρk ≤ R2 and
therefore mk ≥ (R1 − R2)+.

The following example illustrates the concept of the number of pure equa-
tions and role of the encoding scheme.

Example 5.24. Consider Z-chain network which is used for transmission at
rate pair (R1, R2) = (5, 3). Assume that p = 5, and the k-th layer of the
network has parameters αk = 5, βk = 4, and γk = 2, as shown in Figure 5.17.
The relay node Bk−1 receives R2 linearly independent equations involving bits

independent (possibly interfered) equations describing W1, where those corrupted by inter-
ference form the Q part of the matrix. Then, if Q is not full-rank, one can remove one row

of
ˆ

U Q
˜T , and add a row to V instead. This process can be repeated until all the

remaining rows of Q are linearly independent.
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of W2, and therefore has access to Yk−1,2. Assume that the relay node Ak−1

has received Yk−1,2 as

Yk−1,1 =





b1(1) + b1(3) + b1(4)
b1(1) + b1(2)
b1(2) + b2(1)

b1(4) + b1(5) + b2(2) + b2(3)
b1(5) + b2(2)




, Yk−1,2 =





b2(1)
b2(2)
b2(3)

0
0




,

which means ρk−1 = 2 is achieved.

Ak−1

Bk−1

Ak

Bk

ρk−1 ρk

Figure 5.17: A single layer of the Z chain in Example 5.24.

The following different coding schemes used at Ak−1 and Bk−1 result in
different values for ρk.

• If the relay nodes encode their message and send the vectors

Xk,1 =





1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1




Yk−1,1, Xk,2 =





1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0




Yk−1,2,

then the received signals at the next layer would be Yk,1 = [b1(1)+ b1(3)+
b1(4), b1(1)+ b1(2), b1(2)+ b2(1), b1(4)+ b2(1)+ b2(3), b1(5)+ b2(2)]T and
Yk,2 = [0, b2(1), 0, b2(2), b2(3)]T . It is clear that ρk, the number of linearly
independent equations involving only the bits of W1, equals 2.

• If the first relay simply forward the vector Xk,1 = yk−1,1, and the second
sends an encoded message

Xk,2 =





0 1 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0




,
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the relay nodes at the next layer will receive vectors Yk,1 = [b1(1)+b1(3)+
b1(4), b1(1)+ b1(2), b1(2)+ b2(1), b1(4)+ b1(5), b1(5)+ b2(1)+ b2(2)]T and
Yk,2 = [0, b2(2) + b2(3), b2(1), b2(2), 0]T . Therefore we have ρk = 3.

• By re-encoding the received sequence at Ak−1 and Bk−1 and sending
Xk,1 = Yk−1,1 and

Xk,2 =





0 1 1 0 0
0 1 0 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0




Yk−1,2,

the relay nodes Ak and Bk will receive Yk,1 = [b1(1)+b1(3)+b1(4), b1(1)+
b1(2), b1(2) + b2(1), b1(4) + b1(5), b1(5) + b2(1)]T and Yk,2 = [0, b2(2) +
b2(3), b2(2), b2(1) + b2(2) + b2(3), 0]T , which corresponds to ρk = 4.

It is clear through the above specific encoding strategies that if 3 ∈ Pk−1 then
{2, 3, 4} ⊆ Pk for these special channel parameters. However it is impossible
to obtain ρk = 5 from ρk−1 = 2, since among three mixed equation available
at Ak−1, at most two of them can become pure by interference neutralization
from the cross link. #

In the following we will investigate how the ρk changes from one layer of
the network to the next one.

Evolution of the number of pure equations: Assume we are at the en-
coding part of the k-th layer of the network with parameters (αk,βk, γk), and
have ρk−1 pure and R1 − ρk−1 mixed equations. We need to find mk and Mk

that can be achieved for the next layer. The following two lemmas determine
the values of mk and Mk in terms of the channel parameters.

Lemma 5.25. Given ρk−1 linearly independent equations at the relay node
Ak−1, the minimum number of pure equations achievable at Ak is

min ρk|ρk−1 = max{0, R1 −R2, ρk−1 − γk}.

We will present the proof of this Lemma in Appendix D.5.

Lemma 5.26. If the relay node Ak−1 sends ρk−1 pure equations, then maxi-
mum achievable number of pure equations in the next layer’s relay, Ak is

max ρk|ρk−1 = min{R1,Ψk −R2 + R1 − γk − ρk−1, ρk−1 + γk}.

The proof of this lemma can be found in Appendix D.6. The following the-
orem summarizes the discussion of this subsection. We will prove this theorem
in Appendix D.7.
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1 2 3 4 N

R1

Pk

k (layer)

Figure 5.18: Evolution of the number of linearly independent pure equations
describing W1 in layers of the network. Each single point ρk−1 can be mapped to
a set of values for ρk, depending on the encoding scheme used at the relays.

Theorem 5.27. The set of all achievable numbers of linearly independent pure
equations at the k-th layer of the network is

Pk = {p ∈ + : mk ≤ p ≤ Mk} (5.65)

where

mk = max{0, R1 −R2, R1 − Φk}, k = 1, 2, . . . , N, (5.66)

and Mk is obtained using the recurrence relations

Mk = min{R1,Ψk + Φk − 2γk −R2, γk + Mk−1}, (5.67)

for k = 1, 2, . . . , N and with the initial condition M0 = R1.

An achievable path for ρN = R1: We obtained the set of achievable num-
bers of pure equations as a recurrence relation (see Figure 5.18). As mentioned
before, showing that R1 ∈ PN means that there exists an encoding scheme
which provides us R1 linearly independent equations involving the bits of W1,
and hence, the decoder D1 can solve the system of equations and decode the
transmitted message. Since we do not have an explicit expression for PN , we
cannot check if R1 ∈ PN .

Instead, we implicitly show that for (R1, R2) satisfying the outer bound,
R1 ∈ PN , using the recursive form of the evolution of pure equations. There-
fore, this shows that rate (R1, R2) is indeed achievable.

Let us define

ρ∗k = min
(

R1, min
1≤t≤k

{Ψt + Φk − 2γt −R2}
)

, (5.68)

as a special number of pure equations at node Ak. Then we have the following
lemma.
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Lemma 5.28. For any Z-chain network with arbitrary number of layers, we
have

ρ∗k ∈ Pk, k = 1, 2, . . . , N. (5.69)

We will present the proof of this lemma in Appendix D.8. This lemma
essentially gives a specific member of the set Pk. In particular, this specific
member for the last layer of the network, is exactly the number of linearly
independent equations we D1 needs to decode W1. This is the message of the
following lemma, which we prove just after it.

Lemma 5.29.
ρ∗N = R1. (5.70)

Proof of Lemma 5.29. Note that by definition

ρ∗N = min
(

R1, min
1≤t≤N

{Ψt − 2γt + ΦN −R2}
)

.

It is clear that ρ∗N ≤ R1 In order to show the equality, one has to show that
R1 ≥ Ψ# − 2γt + ΦN − R2 ≥ R1 for 1 ≤ t ≤ N . But such inequality always
holds, since (R1, R2) satisfy (5.53).

Lemmas 5.28 and 5.29 together show that R1 ∈ PN , i.e., there exist en-
coding schemes used at the relays which can provide R1 linearly independent
pure equations for AN = D1. Then it is clear that D1 can use such equations
to solve for the bits of W1.

It is worth mentioning that we used a new technique in this achievability
proof. Instead of providing a specific coding scheme which supports the desired
rate, we considered the set of all possible encoding schemes, and proved the
existence of such strategy which guarantees any rate pair satisfying the outer
bound. This can be thought of as an implicit achievability argument.



The Gaussian
Relay-Interference Network 6
We studied some classes of interference-relay networks under linear determin-
istic model in Chapter 5. The main goal of this study is, in fact, to simplify
the original Gaussian (noisy) network to a deterministic one, and get insights
for both transmission strategies as well as bounding techniques which can be
translated from the simplified network to the Gaussian one. In particular, we
see that the proof techniques used in the outer bound, as well as the trans-
mission schemes used in achievability for the Gaussian case are inspired by the
corresponding deterministic network.

This path is illustrated in Figure 6.1. This approach consists of three steps:
(i) simplify the model; (ii) obtain optimal solution for the simplified model;
(iii) translate the optimal scheme and outer bounds back to the original model.
Finally, we have to show that the gap between the performance of the translated
scheme an the outer bound is small, which results in an approximate solution
for the problem.

We have already studied the deterministic ZS and ZZ networks in Chap-
ter 5, where we derived the exact capacity region for each, and demonstrated
the optimal transmission schemes can be used to achieve these capacity regions.
These characterizations will be translated into a universally approximate char-
acterization for the (noisy) Gaussian network in this chapter. More impor-
tantly, the transmission strategies used for the deterministic networks have to
be translated and adapted to the Gaussian networks.

Here, we focus on the real Gaussian noise and channel gain for simplic-
ity, although all the presented results can be generalized to complex Gaussian
parameters.

In this chapter, after a formal statement of the problem and introducing the
notation, we present approximate capacity regions for the Gaussian ZS (GZS)
and Gaussian ZZ (GZZ) networks in Section 6.2. This is done by introducing

137
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Explicit
schemes

characterization

simplification DeterministicGaussian

Approximate

schemes
Optimal transmission 

Exact capacity 
characterization

network network

translation

solution

Figure 6.1: The deterministic approach to approximately solve the wireless prob-
lem.

inner and outer bound for the achievable rate regions, and proving a universal
constant gap between the bounds.

We prove the approximation result for the GZS network in Section 6.4. The
outer bound derived for the capacity of DZS network will be adapted to the
Gaussian network. Here, the main difficulty is that unlike the deterministic
case, it is not a-priori clear which input distribution optimizes the cut-set
bound. Moreover, the network decomposition used to achieve the capacity of
the DZS cannot directly applied to the Gaussian network. This can be done
using message splitting, superposition coding and proper power allocation. We
will use this technique to achieve an approximate capacity for the Gaussian ZS
network in Section 6.3.

The outer bound for the capacity region of the GZZ network is provided
based on genie-aided sum-rate bounds similar to that of the DZZ network. The
proof of this is presented in Section 6.5. As mentioned earlier, the interference
neutralization strategy used for the deterministic ZZ in Chapter 5, has a Gaus-
sian counterpart, which is used to obtain the approximate capacity region. This
technique is performed by using lattice codes in a Gaussian network. In order
to illustrate this idea, we first present the technique and fundamental operating
blocks in Section 6.3, and then utilize them in Section 6.5.

6.1 Problem Formulation

As mentioned before, our goal in this chapter is to derive approximate capac-
ity characterizations for a class of 2-user relay-interference networks shown in
Figure 5.1, which we call the XX network. In particular, we are interested in
capacity characterization of XX networks with two weak cross links, which are
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termed as GZS and GZZ networks. We start by describing our notation for
Gaussian channels.

Two transmitters, S1 and S2, encode their messages W1 and W2 of rates R1

and R2, respectively, and broadcast the obtained signals to the relay nodes, A
and B. Denote the transmitted signals by x1 and x2, and the received signals
at the relays by y′

1 and y′
2. Then, we have

y′
1[t] = √

g11x1[t] +√
g12x2[t] + z′1[t],

y′
2[t] = √

g21x1[t] +√
g22x2[t] + z′2[t],

(6.1)

where z′1, z
′
2 are unit-variance Gaussian noises, independent of each other and

of x1, x2.
The relay nodes perform any (causal) processing on their received signal

sequences {y′
1[t]} and {y′

2[t]} respectively, to obtain their transmitting signal
sequences, {x′

1(t)} and {x′
2(t)}. The received signals at the destination nodes

can be written as

y1[t] =
√

h11x′
1[t] +

√
h12x′

2[t] + z1[t]
y2[t] =

√
h21x′

1[t] +
√

h22x′
2[t] + z2[t],

(6.2)

where the z′1, z′2, z1, and z2 are independent zero-mean unit-variance noises,
which are also independent of x1 and x2. There is a power constraint for each
transmitted signal, that is, [x2

1] ≤ 1, [x2
2] ≤ 1, [x′2

1 ] ≤ 1 and [x′2
2 ] ≤ 1.

Each destination node Di, i = 1, 2, is interested in decoding its message Wi,
using its received signals {yi[t]}. We define a rate pair (R1, R2) to be admissible
if there exist a transmission scheme under which D1 and D2 can decode W1

and W2, respectively, with arbitrary small (average) error probability in the
standard manner [3]. This would allow two end-to-end reliable unicast sessions
at rates (R1, R2) for the source/destination pairs (S1, D1) and (S2, D2).

In particular, we are interested in sub-classes of the Gaussian XX network
with two weak links. As mentioned before, if such weak links are in the same
layer, then the network would be converted to an interference channel cascaded
with a parallel line network, whose approximate capacity is well-studied in the
literature [10,15,73]. On the other hand if the weak links lie in different layers
of the network, the either have a ZS or ZZ network.

6.1.1 The Gaussian ZS Network

The ZS network is a special case of the interference-relay network defined in
(6.1)-(6.2). In the ZS network one cross link in each layer has a negligible
gain, and therefore does not cause interference, as illustrated in Figure 6.2. In
particular, we assume g21 = h12 = 0. The resulting GZS network is shown in
Figure 6.2.

6.1.2 The Gaussian ZZ Network

The ZZ network is another special configuration interference-relay network,
wherein one cross link in each layer has zero gain. However, the difference is
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Figure 6.2: The Gaussian ZS network.

that, here the missing links are in parallel. In particular, we assume g21 =
h21 = 0. The Gaussian ZZ networks is shown in Figure 6.3.
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Figure 6.3: The Gaussian ZZ network.

6.2 Main Results

In this section we present the main results of this chapter, which is the approx-
imate capacity characterization of the Gaussian ZS and ZZ interference-relay
networks. The insights are obtained by analyzing the deterministic versions
of these problems in Chapter 5 lead to these approximate characterizations.
The achievability and outer bound results for the Gaussian cases are directly
inspired by these results.

The coding strategies and fundamental communication blocks for the Gaus-
sian problem are outlined in Section 6.3. The detailed analysis of these strate-
gies and the corresponding outer bounds which lead to Theorems 6.2 and 6.4
are given in Appendix E.
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6.2.1 The Gaussian ZS Network

Theorem 6.2 gives approximate (within 2 bits) characterizations for the capac-
ity of the Gaussian ZS network illustrated in Figure 6.2.

Definition 6.1. For a given GZS network with channel gains {g11, g12, g22} and
{h11, h21, h22}, let RGZS be the set of all rate pairs (R1, R2) which satisfying

R1 ≤
1
2

log(1 + g11) (GZS-1)

R2 ≤
1
2

log(1 + g12 + g22) (GZS-2)

R1 + R2 ≤
1
2

log(1 + g11 + g12) +
1
2

log
(

1 +
g22

g12

)
(GZS-3)

R2 ≤
1
2

log(1 + g12) +
1
2

log(1 + h22) (GZS-4)

R1 + R2 ≤
1
2

log(1 + g22) +
1
2

log(1 + h11 + h21) (GZS-5)

R1 + R2 ≤
1
2

log(1 + g11 + g12) +
1
2

log(1 + h22) (GZS-6)

R1 ≤
1
2

log(1 + h11) (GZS-7)

R2 ≤
1
2

log(1 + h21 + h22 + 2
√

h21h22) (GZS-8)

R2 ≤
1
2

log(1 + g22) +
1
2

log(1 + h21) (GZS-9)

R1 + R2 ≤
1
2

log(1 + h21 + h22 + 2
√

h21h22) +
1
2

log
(

1 +
h11

h21

)
. (GZS-10)

We also define RGZS as

RGZS = {(R1, R2) ∈ 2
+ : (R1 + 1, R2 + 1.5) ∈ RGZS}. (6.3)

Theorem 6.2 (An Approximate capacity region of Gaussian ZS network). The
set RGZS is an outer bound for the capacity region of the Gaussian ZS network.
Moreover, for any (R1, R2) ∈ RGZS, there exists a transmission scheme with
rates (R′

1, R
′
2) = (R1 − δ1, R2 − δ2), where δ1 = 1 and δ2 = 1.5 are universal

constants, independent of the channel gain, and required rates. More precisely,

RGZS ⊆ RGZS ⊆ RGZS. (6.4)

Similar to the deterministic case, the outer bound this theorem follows a
fairly standard arguments based on reducing a multi-letter mutual information
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into single-letter forms by appropriately using decodability requirements at the
different destinations. The details of these are given in Section 6.4.

The insight from the network decomposition observed in Section 5.5 leads
to the idea of strategic rate-splitting and power allocation in the Gaussian
channel. For the Gaussian coding scheme, we need to strategically partition
the messages and allocate powers in order for the relays to partially decode
appropriate messages and setup cooperation. The details of this strategy are
outlined in Section 6.4.

6.2.2 The Gaussian ZZ Network

The Gaussian ZZ network is illustrated in Figure 6.3. Although superficially
the ZS and ZZ networks may look similar, the subtle difference in the network
connectivity, makes the two problems completely different, both in terms of
capacity characterization, as well as transmission schemes. It will be shown
that a new interference management scheme, which we term as interference
neutralization, is needed to (approximately) achieve the capacity of this net-
work. The most intuitive description for interference neutralization is to cancel
interference over air without processing at the destinations. This scheme can
be used whenever there are more than one path for interference to get received
at a destination. We will explain it in more detail in Sections 6.5.1.

Theorem 6.4 gives an approximate (within 2 bits) characterizations for the
capacity region of the deterministic and the Gaussian ZZ networks, respectively.
Another new ingredient used here is needed a genie-aided outer bound that
gives the (noisy) cross link of the first (or correspondingly second) layer to the
destination (or correspondingly to the relay). This genie-aided bound allows
us to develop outer bounds that are apparently tighter than the information-
theoretic cut-set bounds by utilizing the decoding structure needed.

Definition 6.3. For a GZZ network, with channel gains {g11, g12, g22} in the
first, and {h11, h12, h22} in the second layer, define RGZZ to be the set of all
non-negative (R1, R2) which satisfy

R1 ≤
1
2

log(1 + g11) (GZZ-1)

R2 ≤
1
2

log(1 + g22) (GZZ-2)

R1 ≤
1
2

log(1 + h11) (GZZ-3)

R2 ≤
1
2

log(1 + h22) (GZZ-4)

R1 + R2 ≤
1
2

log(1 + g11 + g12) +
1
2

log
(

1 +
g22

g12

)
+

1
2

log(1 + h12), (GZZ-5)

R1 + R2 ≤
1
2

log(1 + h11 + h12) +
1
2

log
(

1 +
h22

h12

)
+

1
2

log(1 + g12).

(GZZ-6)
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Moreover, define RGZZ as

RGZZ = {(R1, R2) ∈ 2
+ : (R1 +

1
4

log 96, R2 +
1
4

log 96) ∈ RGZZ}. (6.5)

Theorem 6.4 (An approximate capacity region of Gaussian ZZ network). Any
achievable rate pair (R1, R2) for the Gaussian ZZ networks belongs to RGZZ.
Moreover, for any rate pair (R1, R2) ∈ RGZZ, there exists an encoding scheme
with rates (R′

1, R
′
2) = (R1 − 7

4 , R2 − 7
4 ). More precisely,

RGZZ ⊆ RGZZ ⊆ RGZZ. (6.6)

6.3 Examples Illustrating Transmission Techniques

This section is devoted to providing the basic ideas of the coding schemes
used in the Gaussian ZS and ZZ networks. We present how the transmission
schemes used in the deterministic ZS and ZZ networks can be adapted to the
Gaussian networks through some examples. Then we develop an outline of how
to analyze these coding strategies.

We start with an example which illustrates the essence of approximation in
a multiple unicast network.

Example 6.5 (Gaussian Z network). Consider the Gaussian Z network shown
in Figure 6.4, with channel gains g11 ≥ 1, g12 ≥ 1, and g22 ≥ 1.

F1

F2

G1

G2

√
g11

√
g12

√
g22

z1

z2

x1

x2

y1

y2

W1

W2

Ŵ1

Ŵ2

Figure 6.4: A Gaussian Z network.

The source nodes Fi wishes to encode and send message Wi to the des-
tination node Gi, for i = 1, 2. Denoting the rate of message Wi by Ri, an
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approximate capacity characterization for this network is given by

RZ =
{
(R1, R2) :R1 ≤

1
2

log (1 + g11)

R2 ≤
1
2

log (1 + g22) (6.7)

R1 + R2 ≤
1
2

log (1 + g11 + g12) +
1
2

log
(

1 +
g22

g12

)}
.

It is easy to show that any achievable rate pair belongs to RZ, and hence RZ
establishes an outer bound for the capacity region. Moreover, one can show
that the rate pair (R1 − 1

2 , R2 − 1
2 ) is achievable provided that (R1, R2) ∈ RZ.

The encoding strategy to achieve such rate pair involves message splitting and
proper power allocation. We will discuss this in more details in Appendix E.1.

Our next example shows how interference neutralization can be imple-
mented in a Gaussian network using lattice codes.

Example 6.6 (Use of Lattice Codes to Implement Interference Neutralization
over Gaussian ZZ Network). The idea of interference neutralization illustrated
in Example 5.8 can be also used in Gaussian networks. In this case a group
structured code, such as lattice code, is required to play the role of composition
and decomposition of the signal and interference in two layers of the network.
Consider the Gaussian ZZ network in Figure 6.3. We can use message split-
ting and interference neutralization to improve the achievable rate pairs of this
network.

Let the second source split its message into two parts as W2 = (W (N)
2 , W (P )

2 ),
namely, the functional (neutralization) and private parts, of rates R2,N = R1

and R2,P = R2 − R1. Both transmitters use a common lattice code to encode
W1 and W (N)

2 , and map them into x(N)
1 and x(N)

2 , respectively. The other mes-
sage W (P )

2 can be encoded to x(P )
2 using a random Gaussian code. We assume

that both the lattice code and the random Gaussian code have average power
equal to 1. Then, the transmitting signals would be a linear combination of the
codewords with a proper power allocation, i.e.,

x1 =
√
αNx(N)

1 , x2 =
√
βNx(N)

2 +
√
βPx(P )

2 , (6.8)

where the power allocation coefficients satisfy αN ≤ 1 and βN + βP ≤ 1. The
transmitters choose the power allocated to x(N)

1 to x(N)
2 in a way that they

get received at A with the same power. In this way, their summation would
be again a lattice code and can be decoded at A by treating x(P )

1 as noise. A
similar strategy will be used for signaling at the relay for transmission in the
second layer of the network. The only difference is that instead of sending x(N)

2 ,
the relay node B sends −x(N)

2 . Then, the lattice point observed at D1 would
be exactly x(N)

1 and it can find W1. The other decoder can simply first reverse
−x(N)

2 to x(N)
2 , and then decode it. This is illustrated in Figure 6.5. It is worth

mentioning that the relay decodes a function of the messages rather than the
messages themselves.
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S1

S2

A

B D1

D2

√
αNx(N)

1

√
βNx(N)

2

√
g11

√
g12

√
g22

√
h11

√
h12

√
h22

Figure 6.5: Using lattice codes for interference neutralization over a Gaussian ZZ
network. The origin is specified by a cross “×”. Power allocated to the messages
at the transmitters are chosen such that the two lattice points corresponding to
x(N)

1 and x(N)
2 get received at B at the same power level, and their summation

becomes a point on the scaled lattice. The same strategy is used by the relays.
The relay node B also reverses its transmitting lattice point in order to neutralize
the interference caused in the first layer of the network.

6.4 The Gaussian ZS Network

In this section we study the Gaussian ZS network in detail. We first prove
the optimality of the rate region RGZS. We then present an encoding scheme
whose achievable rate region is only constant bits away from the outer bound.
These together lead to an approximate capacity characterization for the GZS
network.

6.4.1 The Outer Bound

In the following we will prove each of the inequalities in (GZS-1)-(GZS-10),
separately. We will use the notation as shown in Figure 6.6, and assume that the
rate pair (R1, R2) can be achieved with small enough decoding error probability
using a code of length '.

Lemma 6.7. Any achievable rate pair (R1, R2) satisfies

'R1 ≤ I(x#
1; y

#
1) + 'ε#, (6.9)

'R2 ≤ I(x#
2; y

#
2) + 'ε#, (6.10)

'(R1 + R2) ≤ I(x#
1, x

#
2; y

#
1, y

#
2) + 'ε#. (6.11)

Note that ε# → 0 as ' grows.
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S1
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D1

D2

√
g11

√
h11

√
g22

√
h22

√
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√
h21

x1

x2

y′
1

y′
2

x′
1

x′
2

y1

y2

z′1

z′2

z1

z2

Figure 6.6: The Gaussian ZS network.

This result is a consequence of the Fano’s lemma combined with the de-
codability requirements imposed by the problem, and its proof is given in Ap-
pendix E.2.

Most of the inequalities in (GZS-1)-(GZS-10) are cut-set type bounds, al-
though the proof presented here is slightly different than the standard argu-
ment. However, the sum-rate bounds in (GZS-3) and (GZS-10) are different
from the well known cut-set bounds. These two bounds are in general tighter
than the cut values for the corresponding cuts. This is because the decoders are
inherently allowed to cooperate in deriving a cut-set bound, while individual
decoding abilities are imposed in this problem. In the following we first present
the proofs of (GZS-3) and (GZS-10), which are more involved, and then prove
the cut-set type bounds.

a) The proofs of non-cut-set type bounds
! (GZS-3): R1 + R2 < 1

2 log(1 + g11 + g12) + 1
2 log

(
1 + g22

g12

)

We start with Lemma 6.7 for the sum-rate which implies

'(R1 + R2) ≤ I(x#
1, x

#
2; y

#
1, y

#
2) + 'ε#

(a)
≤ I(x#

1, x
#
2; y

′#
1 , y

′#
2 ) + 'ε#

= I(x#
1, x

#
2; y

′#
1 ) + I(x#

1, x
#
2; y

′#
2 |y

′#
1 ) + 'ε#

≤ '

2
log(1 + g11 + g12) + h(y

′#
2 |y

′#
1 )− h(y

′#
2 |y

′#
1 , x#

1, x
#
2) + 'ε#,

(6.12)

where (a) follows from the data processing inequality. Now, note that

h(y
′#
2 , W1|y

′#
1 ) = h(y

′#
2 |y

′#
1 ) + H(W1|y

′#
1 , y

′#
2 )

= H(W1|y
′#
1 ) + h(y

′#
2 |W1, y

′#
1 )

≤ H(W1|y#
1) + h(y

′#
2 |W1, y

′#
1 ).
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Therefore,

h(y
′#
2 |y

′#
1 ) ≤ h(y

′#
2 |W1, y

′#
1 ) + 'ε#

(b)
≤ h(y

′#
2 |x#

1, y
′#
1 ) + 'ε#

(c)
= h(y

′#
2 |x#

1,
√

g12x
#
2 + z

′#
1 ) + 'ε#

≤ h(
√

g22x
#
2 + z

′#
2 |√g12x

#
2 + z

′#
1 ) + 'ε#

= h(
√

g22x
#
2 + z

′#
2 −

√
g22√
g12

(
√

g12x
#
2 + z

′#
1 )|√g12x

#
2 + z

′#
1 ) + 'ε#

≤ h(z
′#
2 −

√
g22√
g12

z
′#
1 ) + 'ε#

=
'

2
log(2πe)

(
1 +

g22

g12

)
+ 'ε#, (6.13)

where (b) holds since x#
1 is a function of W1, and in (c) we used the invertibility

property of the function y#
1 = √

g11x#
1 +√

g12x#
2 +z

′#
1 . Replacing h(y

′#
2 |y′#

1 ) from
(6.13) in (6.12), we get the desired bound.

! (GZS-10): R1 +R2 < 1
2 log

(
1 + h11

h21

)
+ 1

2 log(1+h21 +h22 +2
√

h21h22)
The sum-rate can be upper bounded as in Lemma 6.7. Next, we have

'(R1 + R2) ≤ I(x#
1, x

#
2; y

#
1, y

#
2) + 'ε#

≤ I(x
′#
1 , x

′#
2 ; y#

1, y
#
2) + 'ε#

= I(x
′#
1 , x

′#
2 ; y#

2) + I(x
′#
2 ; y#

1|y#
2) + I(x

′#
1 ; y#

1|x
′#
2 , y#

2) + 'ε#. (6.14)

The first term in (6.14) can be simply upper bounded as

I(x
′#
1 , x

′#
2 ; y#

2) ≤
'

2
log(1 + h21 + h22 + 2

√
h21h22). (6.15)

In order to bound the second term, we can use the fact that W2 can be decoded
from y#

2, and write

I(x
′#
2 ; y#

1, W2|y#
2) = I(x

′#
2 ; y#

1|y#
2) + I(x

′#
2 ; W2|y#

1, y
#
2)

= I(x
′#
2 ; y#

1|W2, y
#
2) + I(x

′#
2 ; W2|y#

2)

≤ I(x
′#
2 ; y#

1|W2, y
#
2) + H(W2|y#

2)

≤ I(x
′#
2 ; y#

1|y#
2, W2) + 'ε#.

Therefore,

I(x
′#
2 ; y#

1|y#
2) ≤ I(x

′#
2 ; y#

1|y#
2, W2) + 'ε# ≤ I(y

′#
2 ; y#

1|y#
2, W2) + 'ε# = 'ε#, (6.16)

where the second inequality follows from the fact that x
′#
2 is a function of y

′#
2 ,

and (6.16) holds since y
′#
2 and y#

1 are independent if W2 is given.
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Finally, we bound the last term as follows.

I(x
′#
1 ; y#

1|x
′#
2 , y#

2) = I(x
′#
1 ; y#

1|x
′#
2 ,
√

h21x
′#
1 + z#2)

= h(
√

h11x
′#
1 + z#1|x

′#
2 ,
√

h21x
′#
1 + z#2)

− h(y#
1|x

′#
2 ,
√

h21x
′#
1 + z#2, x

′#
1 )

≤ h(
√

h11x
′#
1 + z#1 −

√
h11√
h21

(
√

h21x
′#
1 + z#2))− h(z#1)

≤ '

2
log
(

1 +
h11

h12

)
. (6.17)

Replacing the bound derived for the three terms, (6.15), (6.16), and (6.17) in
(6.14), we get the desired bound.

b) The proofs of cut-set type bounds
! (GZS-1): R1 < 1

2 log(1 + g11)
We start by Lemma 6.7, and write

'R1 = I(x#
1; y

#
1) + 'ε#

(a)
≤ I(x#

1; y
′#
1 ) + 'ε#

≤ I(x#
1; x

#
2, y

′#
1 ) + 'ε#

(b)
= I(x#

1; x
#
2) + I(x#

1; y
′#
1 |x#

2) + 'ε#

≤ '

2
log(1 + g11) + 'ε# (6.18)

where (a) follows from the data-processing inequality for the Markov chain
x#

1 ↔ y
′#
1 ↔ x

′#
1 ↔ y#

1, and in (b) we used the fact that x#
1 and x#

2 are
independent. It is worth mentioning that this inequality essentially bounds
the maximum flow that can be transmitted through the cut Ωs = {S1} and
Ωd = {S2, A, B, D1, D2}.

! (GZS-2): R2 < 1
2 log(1 + g12 + g22)

Again starting from Lemma 6.7, we have

'R2 ≤ I(x#
2; y

#
2) + 'ε#

(a)
≤ I(x#

2; y
′#
1 , y

′#
2 ) + 'ε#

≤ I(x#
2; x

#
1, y

′#
1 , y

′#
2 ) + 'ε#

= I(x#
2; x

#
1) + I(x#

2; y
′#
1 , y

′#
2 |x#

1) + 'ε#

= h(y
′#
1 , y

′#
2 |x#

1)− h(y
′#
1 , y

′#
2 |x#

1, x
#
2) + 'ε#

≤ h(
√

g12x
#
2 + z

′#
1 ,
√

g22x
#
2 + z

′#
2 )− h(z

′#
1 , z

′#
2 ) + 'ε#

≤ '

2
log(1 + g12 + g22) + 'ε#, (6.19)
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where the data processing inequality implies (b) for the Markov chain x#
2 ↔

(y
′#
1 , y

′#
2 ) ↔ (x

′#
1 , x

′#
2 ) ↔ y#

1. Note that this bound is essentially the cut-set
bound for the cut Ωs = {S2} and Ωd = {S1, A, B, D1, D2}.

! (GZS-4): R2 < 1
2 log(1 + g12) + 1

2 log(1 + h22)
Again we use Lemma 6.7 to upper bound R2 as

'R2 ≤ I(x#
2; y

#
2) + 'ε#

≤ I(x
′#
2 , x#

2; x
#
1, y

′#
1 , y#

2) + 'ε#

= I(x
′#
2 , x#

2; x
#
1) + I(x

′#
2 , x#

2; y
′#
1 , y#

2|x#
1) + 'ε#

= I(x
′#
2 , x#

2; y
′#
1 |x#

1) + I(x
′#
2 , x#

2; y
#
2|x#

1, y
′#
1 ) + 'ε#

(a)
= I(x#

2; y
′#
1 |x#

1) + I(x
′#
2 ; y

′#
1 |x#

1, x
#
2)

+ I(x
′#
2 ; y#

2|x#
1, y

′#
1 ) + I(x#

2; y
#
2|x#

1, y
′#
1 , x

′#
2 ) + 'ε#

= I(x#
2; y

′#
1 |x#

1) + I(x
′#
2 ; y#

2|x#
1, y

′#
1 ) + 'ε#

≤ '

2
log(1 + g12) +

'

2
log(1 + h22) + 'ε#. (6.20)

Note that we used the fact that the second and fourth terms in (a) are zero.
This follows from

I(x
′#
2 ; y

′#
1 |x#

1, x
#
2) ≤ I(x

′#
2 ; y

′#
1 −√

g11x
#
1 −

√
g12x

#
2|x#

1, x
#
2)

= I(x
′#
2 ; z

′#
1 |x#

1, x
#
2) = 0,

and

I(x#
2; y

#
2|x#

1, y
′#
1 , x

′#
2 ) ≤ I(x#

2; y
#
2|x#

1, x
′#
1 , x

′#
2 )

≤ I(x#
2; y

#
2 −
√

h21x
′#
1 −

√
h22x

′#
2 |x#

1, x
′#
1 , x

′#
2 )

≤ I(x#
2; z

#
2|x#

1, x
′#
1 , x

′#
2 ) = 0.

! (GZS-5): R1 + R2 < 1
2 log(1 + g22) + 1

2 log(1 + h11 + h21)
We start from Lemma 6.7 and write

'(R1 + R2) ≤ I(y#
1, y

#
2; x

#
1, x

#
2) + 'ε#

(a)
≤ I(y#

1, y
#
2; x

′#
1 , x#

2) + 'ε#

≤ I(y#
1, y

#
2, y

′#
2 ; x

′#
1 , x#

2) + 'ε#

= I(y
′#
2 ; x#

2) + I(y
′#
2 ; x

′#
1 |x#

2) + I(y#
1, y

#
2; x

′#
1 , x#

2|y
′#
2 ) + 'ε#

= I(y
′#
2 ; x#

2) + I(y#
1, y

#
2; x

′#
1 , x#

2|x
′#
2 ) + 'ε#

= I(y
′#
2 ; x#

2) + h(y#
1, y

#
2|x

′#
2 )− h(y#

1, y
#
2|x#

2, x
′#
1 , x

′#
2 ) + 'ε#

≤ I(y
′#
2 ; x#

2) + h(
√

h11x
′#
1 + z#1,

√
h21x

′#
1 + z#2)− h(z#1, z

#
2) + 'ε#
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≤ '

2
log(1 + g22) +

'

2
log(1 + h11 + h21) + 'ε# (6.21)

where (a) follows from the data processing inequality and the fact that given
x

′

1, x1 is independent of all the other transmitted/received signals. Note that
this bound essentially captures the maximum flow of information through the
cut Ωs = {S1, S2, A} and Ωd = {B, D1, D2}.

! (GZS-6): R1 + R2 < 1
2 log(1 + g11 + g12) + 1

2 log(1 + h22)
Similar to the previous bounds, we start from Lemma 6.7 and write

R1 + R2 ≤ I(y#
1, y

#
2; x

#
1, x

#
2) + 'ε#

(a)
≤ I(y

′#
1 , y#

2; x
#
1, x

#
2) + 'ε#

≤ I(y
′#
1 , y#

2; x
#
1, x

#
2, x

′#
2 ) + 'ε#

(b)
= I(y

′#
1 ; x#

1, x
#
2) + I(y

′#
1 ; x

′#
2 |x#

1, x
#
2)

+ I(y#
2; x

′#
2 |y

′#
1 ) + I(y#

2; x
#
1, x

#
2|y

′#
1 , x

′#
2 ) + 'ε#

= I(y
′#
1 ; x#

1, x
#
2) + I(y#

2; x
′#
2 |y

′#
1 ) + 'ε#

≤ '

2
log(1 + g11 + g12) + I(y#

2; x
′#
2 |y

′#
1 ) + 'ε#. (6.22)

Note that in (a) we used the data processing inequality. An argument similar
to that is used in the proof of (GZS-4) shows that the second and fourth terms
in (b) are zero. Now, we have

I(y#
2; x

′#
2 |y

′#
1 ) = h(y#

2|y
′#
1 )− h(y#

2|x
′#
2 , y

′#
1 )

≤ h(y#
2|x

′#
1 )− h(y#

2|x
′#
1 , x

′#
2 , y

′#
1 )

= h(
√

h22x
′#
2 + z#2|x

′#
1 )− h(z#2|x

′#
1 , x

′#
2 , y

′#
1 )

≤ h(
√

h22x
′#
2 + z#2)− h(z#2)

≤ '

2
log(1 + h22) (6.23)

Finally, we obtain the desired bound by replacing (6.23) in (6.22). It is worth
mentioning that this bound is the same as the cut-set bound for the cut Ωs =
{S1, S2, B} and Ωd = {A, D1, D2}.

! (GZS-7): R1 < 1
2 log(1 + h11)

Using Lemma 6.7 and the data processing inequality, we can write

'R1 ≤ I(x
′#
1 ; y#

1) + 'ε# ≤ I(x
′#
1 ; y#

1) + 'ε# ≤
'

2
log(1 + h11) + 'ε#. (6.24)

! (GZS-8) R2 < 1
2 log(1 + h21 + h22 + 2

√
h21h22)
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Starting from Lemma 6.7 and applying the data processing inequality for
the Markov chain x#

2 ↔ (y
′#
1 , y

′#
2 ) ↔ (x

′#
1 , x

′#
2 ) ↔ y#

2, we have

'R2 ≤ I(x#
2; y

#
2) + 'ε#

≤ I(x
′#
1 , x

′#
2 ; y#

2) + 'ε#

≤ '

2
log(1 + h21 + h22 + 2

√
h21h22) + 'ε#. (6.25)

Note that x
′#
1 and x

′#
2 are not independent. However, their variance is upper

bounded by (
√

h21 +
√

h22)2.
! (GZS-9): R2 < 1

2 log(1 + g22) + 1
2 log(1 + h21)

Consider the cut which partitions the network into Ωs = {S1, S2, A, D1}
and Ωd = {B, D2}. We have

'R2 ≤ I(x#
2; y

#
2) + 'ε#

≤ I(x
′#
1 , x#

2; y
′#
2 , y#

2) + 'ε#
(a)
= I(x#

2; y
′#
2 ) + I(x

′#
1 ; y

′#
2 |x#

2) + I(x
′#
1 ; y#

2|y
′#
2 ) + I(x#

2; y
#
2|y

′#
2 , x

′#
1 ) + 'ε#

= I(x#
2; y

′#
2 ) + I(x

′#
1 ; y#

2|y
′#
2 ) + 'ε#

= I(x#
2; y

′#
2 ) + I(x

′#
1 ; y#

2|y
′#
2 , x

′#
2 ) + 'ε#

≤ '

2
log(1 + g22) +

'

2
log(1 + h21) + 'ε#. (6.26)

We again used an argument similar to that is used in proof of (GZS-4) to show
that the second and fourth terms in (a) are zero.

This completes the proof of the outer bound in Theorem 6.2.

6.4.2 The Achievability Part

In this section we provide an encoding scheme for the Gaussian ZS network,
and show that the rate region that can be achieved using this scheme is only a
constant bit gap away from the outer bound. We distinguish the following two
cases: (i) large channel gains where all the links have gain at least 1, and (ii)
small channel gains, wherein there exists at least one link in the GZS network
with gain less than 1, In the first case, more sophisticated schemes schemes are
required to (approximately) achieve the capacity of the network. However, in
the second case, the network can be approximated by a simpler network.

Large Channel Gains

In this part, we assume that all channel gains are at least 1, i.e., gij ≥ 1, and
hij ≥ 1. Note that if any of the gains is small, then either one of the rates is
small (of the order of our constant bit gap), or the cross links are negligible.
We will discuss these cases later.

We first give an overview of the encoding/decoding strategies we use to
achieve the capacity of the network, and then analyze the performance of the
proposed scheme, to show that it is within constant bit gap of the outer bound.
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Transmission Strategies The coding strategy for the Gaussian ZS net-
work is essentially a partial-decode-and-forward strategy, along with a strate-
gic rate-splitting of the messages. Let the messages to be sent from S1, S2

be denoted by W1, W2 respectively (see Figure 6.2). We will break the ZS
network into two cascaded interference channels, where we require particu-
lar messages to be decoded at the relays and forwarded to the destinations.
The first stage is a Z interference channel, where the message W2 is split into
three parts:

(
U (1)

2 , U (2)
2 , U (3)

2

)
. The intention of this strategic split is to al-

low the the node G1 (which is relay A in the original ZS network) to decode(
U (1)

1 , U (1)
2 , U (2)

2

)
and node G2 (which is relay B in the original ZS network),

to decode
(
U (1)

2 , U (3)
2

)
. This is illustrated in Figure 6.7. Here, U (1)

2 plays the
role of a common message which can be decoded at both receivers, whereas
U (2)

2 and U (3)
2 are the private messages for G1 and G2 respectively.

The next stage of the ZS network is a S interference channel depicted in
Figure 6.8. Here we take the messages delivered and decoded by the Z inter-
ference channel of the first stage and further process them to ensure delivery
of the desired messages to the destination. In particular, we further split the
decoded messages from the first stage into several parts and require delivery
of messages as shown in Figure 6.8. This splitting and delivery of appropri-
ate pieces, finally ensures that W1 and W2 are decodable at the destinations.
This is the encoding strategy in the ZS network. In the following lemmas, we
give the rates at which messages at each stage can be delivered. Putting these
lemmas together, we get the desired result given in Theorem 6.2. This will be
discussed in detail in the rest of this section.

A formal statement of the argument above is given below.

Definition 6.8. Consider the Gaussian Z network shown in Figure 6.7, where
the first transmitter, F1, has a messages U (1)

1 of rate Υ1,1 and the second trans-
mitter, F2, has three independent messages U (1)

2 , U (2)
2 , and U (3)

2 , of rates Υ2,1,
Υ2,2, and Υ2,3, respectively. The transmitters wish to encode their messages
and send them to the transmitters such that G1 be able to decode U1, U (1)

2 and
U (2)

2 and G2 can decode U (1)
2 and U (3)

2 , with arbitrary small error probability.

The following lemma gives an achievable rate region for the Gaussian Z
network defined in Definition 6.8. We will present its proof in Appendix E.3.

Lemma 6.9. Consider a Gaussian Z interference network with channel param-
eters (g11, g12, g22), and decoding requirements as shown in Figure 6.7. Denot-
ing the rate of the sub-message U (j)

i by Υi,j, any rate tuple (Υ1,1,Υ2,1,Υ2,2,Υ2,3)
which satisfies

Υ1,1 ≤
(

1
2

log (1 + g11)−
1
2

)+

, (6.27)

Υ2,2 ≤
(

1
2

log
(

1 +
g12

g22

)
− 1

2

)+

, (6.28)
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Figure 6.7: The Z interference channel with particular message requirements,
captures the proposed coding scheme for the first layer of the Gaussian ZS network.

Υ2,1 + Υ2,2 ≤
(

1
2

log (1 + g12)−
1
2

)+

, (6.29)

Υ1,1 + Υ2,1 + Υ2,2 ≤
(

1
2

log (1 + g11 + g12)−
1
2

)+

, (6.30)

Υ2,3 ≤
(

1
2

log
(

1 +
g22

g12

)
− 1

2

)+

, (6.31)

Υ2,1 + Υ2,3 ≤
(

1
2

log (1 + g22)−
1
2

)+

, (6.32)

is achievable.

The next definition and corresponding lemma give an achievable rate re-
gion for the second layer of the ZS network, which is a S interference network
depicted in Figure 6.8. Let us first formally define this interference network,
with its message decodability requirements.

Definition 6.10. Consider the Gaussian S network shown in Figure 6.8, where
the first transmitter, F1, has six independent messages V (1)

1 , V (2)
1 , V (1)

2 , V (2)
2 ,

V (3)
2 and V (4)

2 and the second transmitter has F2 three independent messages
V (1)

2 , V (2)
2 , and V (5)

2 . We denote by Qi,j the rate of message V (j)
i . The trans-

mitters wish to encode their messages and send them to the transmitters such
that G1 be able to decode V (1)

1 , V (2)
1 , V (1)

2 and V (3)
2 and G2 can decode V (1)

1 ,
V (1)

2 , V (2)
2 , V (3)

2 , V (4)
2 and V (5)

2 , with arbitrary small error probability.

Lemma 6.11. Consider the Gaussian S interference network with channel
gains (h11, h21, h22), and decoding requirements as shown in Figure 6.8, where
Θi,j denotes the rate of message V (j)

i . Any rate tuple (Θ1,1,Θ1,2,Θ2,1,Θ2,2,Θ2,3,
Θ2,4,Θ2,5) which satisfies

Θ1,1 + Θ1,2 + Θ2,1 + Θ2,3 ≤
(

1
2

log (1 + h11)−
1
2

)+

, (6.33)
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Figure 6.8: The S interference channel with particular message requirements,
depicting the proposed coding strategy for the second layer of the Gaussian ZS
network.

Θ1,2 ≤
(

1
2

log
(

1 +
h11

h12

)
− 1

2

)+

, (6.34)

Θ2,4 ≤
(

1
2

log
(

1 +
h21

h11

)
− 1

2

)+

, (6.35)

Θ1,1 + Θ2,3 + Θ2,4 ≤
(

1
2

log (1 + h21)−
1
2

)+

, (6.36)

Θ2,5 ≤
(

1
2

log (1 + h22)−
1
2

)+

, (6.37)

Θ1,1 + Θ2,1 + Θ2,2 + Θ2,3 + Θ2,4 + Θ2,5 ≤
(

1
2

log (1 + h21 + h22)−
1
2

)+

,

(6.38)

is achievable.

We present the proof of this lemma in Appendix E.4.

Performance Analysis The encoding scheme proposed for the Gaussian ZS
network consists of two separate parts. We first split the message of the second
source nodes as W1 = U (1)

1 and W2 = (U (1)
2 , U (2)

2 , U (3)
2 ), where U (1)

2 can be
decoded at both relay nodes A and B, and U (2)

2 and U (3)
2 can be decoded only

at A and B, respectively (see Figure 6.7). Denoting the rate of message W (j)
i

by Υi,j, the following rate constraints are imposed by this message splitting

R1 = Υ1,1, (6.39)
R2 = Υ2,1 + Υ2,2 + Υ2,3. (6.40)

An achievable rate region for this message splitting is given in Lemma 6.9.
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In the second layer of the network (see Figure 6.8), relay node A further
splits its messages as follows: W1 = U (1)

1 =
(
V (1)

1 , V (2)
1

)
, U (1)

2 =
(
V (1)

2 , V (2)
2

)
,

and U (2)
2 =

(
V (3)

2 , V (4)
2

)
. A similar message splitting is also performed at

node B to obtain U (1)
2 =

(
V (1)

2 , V (2)
2

)
and U (3)

2 = V (5)
2 . This message splitting

imposes the following rate equations

Υ1,1 = Θ1,1 + Θ1,2, (6.41)
Υ2,1 = Θ2,1 + Θ2,2, (6.42)
Υ2,2 = Θ2,3 + Θ2,4, (6.43)
Υ2,3 = Θ2,5, (6.44)

where Θi,j denotes the rate of the message V (j)
i . Next, the relay nodes have

to convey the messages to the destination nodes such that D1 can decode V (1)
1 ,

V (2)
1 , V (1)

2 and V (3)
2 , and D2 be able to decode V (1)

1 , V (1)
2 , V (2)

2 , V (3)
2 , V (4)

2

and V (5)
2 . An achievable rate region for this transmission scenario is given in

Lemma 6.11.
Putting the rate constraints in Lemma 6.9 and Lemma 6.11 together with

the equations in (6.39)-(6.40) and (6.41)-(6.44), we obtain the following achiev-
able rate region for the Gaussian ZS network.

R(1)
GZS =

{
(R1, R2) : ∃Υ1,1,Υ2,1,Υ2,2,Υ2,3,

Θ1,1,Θ1,2,Θ2,1,Θ2,2,Θ2,3,Θ2,4,Θ2,5 ≥ 0,

R1 = Υ1,1,

R2 = Υ2,1 + Υ2,2 + Υ2,3,

Υ1,1 = Θ1,1 + Θ1,2,

Υ2,1 = Θ2,1 + Θ2,2,

Υ2,2 = Θ2,3 + Θ2,4,

Υ2,3 = Θ2,5,

Υ1,1 ≤
(

1
2

log (1 + g11)−
1
2

)+

,

Υ2,2 ≤
(

1
2

log
(

1 +
g12

g22

)
− 1

2

)+

,

Υ2,1 + Υ2,2 ≤
(

1
2

log (1 + g12)−
1
2

)+

,

Υ1,1 + Υ2,1 + Υ2,2 ≤
(

1
2

log (1 + g11 + g12)−
1
2

)+

,

Υ2,3 ≤
(

1
2

log
(

1 +
g22

g12

)
− 1

2

)+

,
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Υ2,1 + Υ2,3 ≤
(

1
2

log (1 + g22)−
1
2

)+

,

Θ1,1 + Θ1,2 + Θ2,1 + Θ2,3 ≤
(

1
2

log (1 + h11)−
1
2

)+

,

Θ1,2 ≤
(

1
2

log
(

1 +
h11

h12

)
− 1

2

)+

,

Θ2,4 ≤
(

1
2

log
(

1 +
h21

h11

)
− 1

2

)+

,

Θ1,1 + Θ2,3 + Θ2,4 ≤
(

1
2

log (1 + h21)−
1
2

)+

,

Θ2,5 ≤
(

1
2

log (1 + h22)−
1
2

)+

,

Θ1,1 + Θ2,1 + Θ2,2 + Θ2,3 + Θ2,4 + Θ2,5

≤
(

1
2

log (1 + h21 + h22)−
1
2

)+ }
.

We apply the Fourier-Motzkin elimination on this region, to project it on
the coordinated R1 and R2, and obtain the following rate region. After some
simplifications, we get:

R(1)
GZS =

{
(R1, R2) :R1 ≤

(
1
2

log (g11)−
1
2

)+

,

R2 ≤
(

1
2

log (g12 + g22)−
1
2

)+

,

R1 + R2 ≤
(

1
2

log (g11 + g12) +
1
2

log
(

g22

g12

)
− 1

2

)+

,

R2 ≤
(

1
2

log (g12) +
1
2

log (h22)−
1
2

)+

,

R1 + R2 ≤
(

1
2

log (g22) +
1
2

log (h11 + h21)−
1
2

)+

,

R1 + R2 ≤
(

1
2

log (g11 + g12) +
1
2

log (h22)−
1
2

)+

,

R1 ≤
(

1
2

log (h11)−
1
2

)+

,

R2 ≤
(

1
2

log (h21 + h22)−
1
2

)+

,

R2 ≤
(

1
2

log (g22) +
1
2

log (h21)−
1
2

)+

,
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R1 + R2 ≤
(

1
2

log (h21 + h22) +
1
2

log
(

h11

h21

)
− 1

2

)+ }
.

Note that this rate region is characterized by a set of constraints which are
similar to the inequalities in the definition of RGZS, except for the additive
constants, and the fact that log(1 + x) is replaced by log(x). Note that since
x ≥ 1, we have

1
2

log(1 + x)− 1
2

log(x) ≤ 1
2
. (6.45)

Hence, the difference between the RHS’s of two sets of inequalities do not
exceed 1 for R1, and 3/2 for R2 and R1 + R2. Therefore, for any rate pair
(R1, R2) ∈ RGZS, we have (R1 − 1, R2 − 1.5) ∈ R(1)

GZS. Therefore, we have
RGZS ⊆ R(1)

GZS ⊆ RGZS. This completes the proof.

Small Channel Gains

We will show in this part that if any of the channel gains in the GZS network
is small, then the outer bound in Theorem 6.2 is still within a constant bit
gap of an achievable rate region. This argument is based on the analysis of a
modified version of the network, in which all the links with gain smaller than 1
are removed. One can show that the capacity region of this modified network is
within a constant gap from that of the original one. On the other hand, we can
argue that the gap between the achievable rate pairs of the modified network
and the outer bound in Theorem 6.2 is bounded by a constant. Therefore, we
can conclude that if (R1, R2) ∈ RGZS then (R1 − δ1, R2 − δ2) is achievable for
the original network, where δ1 = 1 and δ2 = 1.5.

The main intuition behind this argument is the fact that since all the
nodes are assumed to have power constraint equal to 1, the flow of information
through a link with gain not exceeding 1 is upper bounded by 1

2 log(1+SNR) ≤
1
2 log(1 + 1) = 1

2 bit. Therefore, by removing such links from the network, the
achievable rates change by at most 1

2 bit. On the other hand, the incoming
signals over small channel gains may act as an interference on the original net-
work, which cause a total noise power not exceeding 1. Therefore, by doubling
the noise variances in the original network, we guarantee that capacity region
of the modified network is always smaller than that of the original one.

The advantage of analyzing the modified network instead of the original one
is that some of the links are removed in the modified network, which convert
it to simpler network to analyze.

A precise analysis of the modified networks requires considering several
cases separately. However, similar techniques and ideas will be used for all
cases. In the following we present one illustrating example, and skip the details
for the other cases.

Example 6.12. Consider the Gaussian ZS network in Figure 6.2, and assume
that g12 = 0. Therefore, the first layer of the network would be two parallel
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Figure 6.9: A modified GZS network obtained assuming g12 = 0.

links as shown in Figure 6.9, where [z̃
′2
1 ] = 2. Moreover, the rate region in

(GZS-1)-(GZS-10) will be reduced to

R1 ≤
1
2

log(1 + g11) (6.46)

R2 ≤
1
2

log(1 + g12) (6.47)

R1 ≤
1
2

log(1 + h11) (6.48)

R2 ≤
1
2

log(1 + h22) (6.49)

R1 + R2 ≤
1
2

log(1 + h21 + h22 + 2
√

h21h22) +
1
2

log
(

1 +
h11

h21

)
. (6.50)

The encoding strategy for this network is fairly simple. Let (R1, R2) be a
rate pair satisfying (6.46)-(6.50). The goal is to show that (R1 − 1, R2 − 1) is
achievable. Since (R1−1, R2−1) satisfies (6.46) and (6.47), transmission over
the first layer of the network from the source nodes to the relays is simply done
using random Gaussian codes. The relays decode the messages and forward
them through the second layer of the network. The encoding at A is performed
by splitting the message into two parts W1 =

(
W (1)

1 , W (2)
1

)
, where W (1)

1 can

be decoded at both D1 and D2, but W (2)
1 is decodable only at D1. Note that the

region characterized by (6.48)-(6.50) is a two-dimensional polytopes with two
corner-points. It is easy to show that each corner-point can be approximately
achieved using a proper power allocation for the sub-message sent by A.

6.5 The Gaussian ZZ Network

We will present the proof of Theorem 6.4 in this section. We start by showing
that RGZZ establishes an outer bound for the achievable rate region. We then
present our encoding scheme which guarantees achieving any rate pair in RGZZ.
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6.5.1 The Outer Bound

In the following we present the proof for each of the inequalities in (GZZ-1)-
(GZZ-6), separately. We again present the Gaussian ZZ network in Figure 6.10,
to clarify the notation used in the proof. In particular, we use two variables,
which are the noisy signals received at A and D1 through the cross links as-
suming the direct links were absent, namely,

γ1 =
√

g12x2 + z′1,

γ2 =
√

h12x
′
2 + z1.

Note that y′
1 = √

g11x1 + γ1 and y1 =
√

h11x′
1 + γ2.

Suppose that the rate pair (R1, R2) is achieved with a small decoding error
probability ε# using a code of length '. The following chains of inequalities
provide upper bounds on the individual rates as well as the sum-rate. We
again use Lemma 6.7, which essentially captures the decodability requirements
of the network.
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Figure 6.10: The Gaussian ZZ network.

The individual rate bounds in (GZZ-1)-(GZZ-4) have the same structure
as the cut-set bound, although we derive them through a slightly different
argument. However, the two sum-rate bounds in (GZZ-5) and (GZZ-6) are
conceptually different than the cut-set bounds. These two bounds which are
tighter than cut-set bounds are derived through a genie-aided argument; that is,
we assume that the signal sent over the cross link of one layer is given by a genie
to the receiver of the other layer (relay node A in layer 1 and destination node
D1 in layer 2). Therefore, we present the proofs of (GZZ-5) and (GZZ-6) first.
The more standard cut-set type bounds are provided later for completeness.

a) The proof of the genie-aided bounds
! (GZZ-5): R1+R2 ≤ 1

2 log(1+g11+g12)+ 1
2 log

(
1 + g22

g12

)
+ 1

2 log(1+h12)
We start with the sum-rate inequality in Lemma 6.7, and write

'(R1 + R2) ≤ I(y#
1, y

#
2; x

#
1, x

#
2) + 'ε#

≤ I(y
′#
1 , y

′#
2 ; x#

1, x
#
2) + 'ε#
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≤ I(y
′#
1 , y

′#
2 , γ#2; x

#
1, x

#
2) + 'ε#

= I(y
′#
1 , γ#2; x

#
1, x

#
2) + I(y

′#
2 ; x#

1, x
#
2|y

′#
1 , γ#2) + 'ε#

≤ I(y
′#
1 , γ#2; x

#
1, x

#
2) + I(y

′#
2 , γ#1; x

#
1, x

#
2|y

′#
1 , γ#2) + 'ε#

= I(y
′#
1 , γ#2; x

#
1, x

#
2) + I(γ#1; x

#
1, x

#
2|y

′#
1 , γ#2)

+ I(y
′#
2 ; x#

1, x
#
2|y

′#
1 , γ#1, γ

#
2) + 'ε#

= I(y
′#
1 , γ#2; x

#
1, x

#
2) + I(γ#1; x

#
1, x

#
2|y

′#
1 , γ#2) + I(y

′#
2 ; x#

2|y
′#
1 , γ#1, γ

#
2)

+ I(y
′#
2 ; x#

1|x#
2, y

′#
1 , γ#1, γ

#
2) + 'ε#. (6.51)

Each of the terms in (6.51) can be bounded as follows. In order to bound the
first term, we can simply write

I(y
′#
1 , γ#2; x

#
1, x

#
2) = I(γ#2; x

#
1, x

#
2) + I(y

′#
1 ; x#

1, x
#
2|γ#2)

= I(γ#2; x
#
1, x

#
2) + h(y

′#
1 |γ#2)− h(y

′#
1 |x#

1, x
#
2, γ

#
2)

(a)
≤ I(γ#2; x

#
1, x

#
2) + h(y

′#
1 )− h(y

′#
1 |x#

1, x
#
2)

= I(γ#2; x
#
1, x

#
2) + I(y

′#
1 ; x#

1, x
#
2)

(b)
≤ I(γ#2; x

′#
2 ) + I(y

′#
1 ; x#

1, x
#
2)

=
'

2
log(1 + h12) +

'

2
log(1 + g11 + g12), (6.52)

where in (a) we have used the fact that conditioning decreases the entropy,
and the Markov chain γ#2 ↔ x

′#
2 ↔ y

′#
2 ↔ (x#

1, x
#
2) ↔ y

′#
1 . Also (b) follows from

the same Markov chain.
The second term can be bounded as

I(γ#1; x
#
1, x

#
2|y

′#
1 , γ#2) = I(y

′#
1 − γ#1; x#

1, x
#
2|y

′#
1 , γ#2)

= I(
√

g11x
#
1; x

#
1, x

#
2|y

′#
1 , γ#2)

≤ I(W1; x#
1, x

#
2|y

′#
1 , γ#2)

≤ H(W1|y
′#
1 , γ#2)

(c)
≤ H(W1|y#

1) ≤ 'ε#, (6.53)

where (c) holds since y#
1 =

√
h11x

′#
1 + γ#2 = f1(y

′#
1 ) + γ#2 = f2(y

′#
1 , γ#2).

In order to bound the third term in (6.51) we can write

I(y
′#
2 ; x#

2|y
′#
1 , γ#1, γ

#
2) = h(x#

2|y
′#
1 , γ#1, γ

#
2)− h(x#

2|y
′#
1 , y

′#
2 , γ#1, γ

#
2)

(d)
≤ h(x#

2|γ#1)− h(x#
2|y

′#
1 , y

′#
2 , γ#1, γ

#
2)

= h(x#
2|γ#1)− [h(x#

2, t
#
1|y

′#
1 , y

′#
2 , γ#2)− h(t#1|y

′#
1 , y

′#
2 , γ#2)]

(e)
= h(x#

2|γ#1)− [h(x#
2, t

#
1|y

′#
1 , y

′#
2 )− h(t#1|y

′#
1 , y

′#
2 )]
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= h(x#
2|γ#1)− h(x#

2|y
′#
1 , y

′#
2 , γ#1)

(f)
= h(x#

2|γ#1)− h(x#
2|x#

1, y
′#
2 , γ#1)

= h(x#
2|γ#1)− [h(x#

2|y
′#
2 , γ#1) + h(x#

1|x#
2, y

′#
2 , γ#1)− h(x#

1|y
′#
2 , γ#1)]

(g)
= h(x#

2|γ#1)− h(x#
2|y

′#
2 , γ#1)

= I(y
′#
2 ; x#

2|γ#1)

= h(y
′#
2 |γ#1)− h(y

′#
2 |γ#1, x#

2)
(h)
= h(y

′#
2 |γ#1)− h(y

′#
2 |x#

2)

= h(y
′#
2 −

√
g22

g12
γ#1|γ#1)− h(y

′#
2 −√

g22x
#
2|x#

2)

= h(z
′#
2 −

√
g22

g12
z

′#
1 |γ#1)− h(z

′#
2 |x#

2)

(i)
≤ h(z

′#
2 −

√
g22

g12
z

′#
1 )− h(z

′#
2 )

=
'

2
log
(

1 +
g22

g12

)
, (6.54)

where in (d) we have used the fact that conditioning reduces the differential
entropy, and (e) holds due to the Markov chain (x#

2, t
#
1) ↔ (y

′#
1 , y

′#
2 ) ↔ γ#2. Then

in (f) we replaced (y
′#
1 , γ#1) by (x#

1, γ
#
1) since there is an one-to-one map, y

′#
1 =√

g11x#
1+t#1, between these joint variables, and in (g) we used the fact that x#

1 is
independent of (x#

2, y
′#
2 , t#1) to conclude h(x#

1|x#
2, y

′#
2 , γ#1) = h(x#

1|y
′#
2 , γ#1) = h(x).

Also (h) holds due to the Markov chain y
′#
2 ↔ x#

2 ↔ γ#1. Finally, (i) is true due
to removing conditioning and the fact that z′2 is independent of x2.

The last term in (6.51) is negligible since

I(y
′#
2 ; x#

1|x#
2, y

′#
1 , γ#1, γ

#
2) ≤ I(y

′#
2 ; W1|x#

2, y
′#
1 , γ#1, γ

#
2)

≤ H(W1|x#
2, y

′#
1 , γ#1, γ

#
2)

≤ H(W1|y
′#
1 , γ#2)

(j)
≤ H(W1|y#

1)
(k)
≤ 'ε#, (6.55)

where (j) is due to the fact that y#
1 =

√
h11x

′#
1 +γ#2 = f1(y

′#
1 )+γ#2 = f2(y

′#
1 , γ#2)

is a function of (y
′#
1 , γ#2), and (k) follows the Fano’s inequality.

Replacing (6.52)–(6.55) in (6.51), we get the desires bound.
! (GZZ-6): R1+R2 ≤ 1

2 log(1+h11+h12)+ 1
2 log

(
1 + h22

h12

)
+ 1

2 log(1+g12)
Before proving this inequality, we present a lemma which will be used in

this proof. We will present the proof of this lemma later in Appendix E.5.
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Lemma 6.13. Let X1 and X2 be two (arbitrarily correlated) random variables
with variance constraints [X2

1 ] = σ2
1 and [X2

2 ] = σ2
2, which form a Markov

chain X1 ↔ Γ ↔ X2 for some random variable Γ. Also assume that Z is a
zero-mean unit variance Gaussian random variable independent of X1, X2 and
Γ. Then the conditional differential entropy of Y = X1 + X2 + Z is upper
bounded by

h(Y |Γ) ≤ 1
2

log 2πe(1 + σ2
1 + σ2

2). (6.56)

Now, in order to prove (GZZ-5), we start with Lemma 6.7.

'(R1 + R2) ≤ I(y#
1, y

#
2; x

#
1, x

#
2) + 'ε#

≤ I(y#
1, y

#
2, γ

#
1; x

#
1, x

#
2) + 'ε#

= I(y#
1, γ

#
1; x

#
1, x

#
2) + I(y#

2; x
#
1, x

#
2|y#

1, γ
#
1) + 'ε#

= I(γ#1; x
#
1, x

#
2) + I(y#

1; x
#
1, x

#
2|γ#1) + I(y#

2; x
#
1, x

#
2|y#

1, γ
#
1) + 'ε#.

(6.57)

Since γ#1 is independent of x#
1, the first term can be simply bounded as

I(γ#1; x
#
1, x

#
2) = I(γ#1; x

#
2) + I(t#; x#

1|x#
2)

= I(γ#1; x
#
2) + I(z

′#
1 ; x#

1|x#
2) ≤

'

2
log(1 + g12). (6.58)

For the second term we can write

I(y#
1; x

#
1, x

#
2|γ#1) = h(y#

1|γ#1)− h(y#
1|x#

1, x
#
2, γ

#
1)

(a)
≤ h(y#

1|γ#1)− h(y#
1|x

′#
1 , x

′#
2 )

= h(y#
1|γ#1)− h(z#1|x

′#
1 , x

′#
2 )

= h(
√

h11x
′#
1 +

√
h12x

′#
2 + z#1|γ#1)− h(z#1)

(b)
≤ '

2
log
(
2πe(1 + h11 + h12)

)
− '

2
log 2πe

=
'

2
log(1 + h11 + h12), (6.59)

where (a) follows from the Markov chain y#
1 ↔ (x

′#
1 , x

′#
2 ) ↔ (x#

1, x
#
2, γ

#
1). In (b)

we have used Lemma 6.13 for t#1, x
′#
1 and x

′#
2 which form a Markov chain, since

I(x
′#
1 ; x

′#
2 |t#1) ≤ I(y

′#
1 ; y

′#
2 |t#1)

= I(
y

′#
1 − t#1√

g11
; y

′#
2 |t#1)

= I(x#
1; y

′#
2 |t#1)
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= h(x#
1|t#1)− h(x#

1|t#1, y
′#
2 ) = 0.

The third term can be further upper bounded by

I(y#
2; x

#
1, x

#
2|y#

1, γ
#
1) = h(y#

2|y#
1, γ

#
1)− h(y#

2|x#
1, x

#
2, y

#
1, γ

#
1)

(c)
≤ h(y#

2|y#
1, γ

#
1)− h(y#

2|x
′#
2 )

(d)
≤ h(y#

2|y#
1, γ

#
1)− h(y#

2|x
′#
2 , x

′#
1 , y#

1, γ
#
1)

= I(y#
2; x

′#
1 , x

′#
2 |y#

1, γ
#
1)

≤ I(y#
2, γ

#
2; x

′#
1 , x

′#
2 |y#

1, γ
#
1)

= I(γ#2; x
′#
1 , x

′#
2 |y#

1, γ
#
1) + I(y#

2; x
′#
1 , x

′#
2 |y#

1, γ
#
1, γ

#
2), (6.60)

where both (c) and (d) follow from the Markov chain y#
2 ↔ x

′#
2 ↔ (x#

1, y
#
1, γ

#
1).

Now, we have

I(γ#2; x
′#
1 , x

′#
2 |y#

1, γ
#
1) = I(y#

1 − γ#2; x
′#
1 , x

′#
2 |y#

1, γ
#
1)

= I(
√

h11x
′#
1 ; x

′#
1 , x

′#
2 |y#

1, γ
#
1)

(e)
≤ I(y

′#
1 ; x

′#
1 , x

′#
2 |y#

1, γ
#
1)

≤ I(y
′#
1 − t#1; x

′#
1 , x

′#
2 |y#

1, γ
#
1)

= I(
√

g11x
#
1; x

′#
1 , x

′#
2 |y#

1, γ
#
1)

≤ I(W1; x
′#
1 , x

′#
2 |y#

1, γ
#
1)

≤ H(W1|y#
1) ≤ 'ε#, (6.61)

where (e) follows from the fact that x
′#
1 is a function of y

′#
1 . Finally,

I(y#
2; x

′#
1 , x

′#
2 |y#

1, γ
#
1, γ

#
2) = h(y#

2|y#
1, γ

#
1, γ

#
2)− h(y#

2|y#
1, γ

#
1, γ

#
2, x

′#
1 , x

′#
2 )

= h(y#
2 −
√

h22

h12
γ#2|y#

1, γ
#
1, γ

#
2)− h(y#

2 −
√

h22x
′#
2 |y#

1, γ
#
1, γ

#
2, x

′#
1 , x

′#
2 )

= h(z#2 −
√

h22

h12
z#1|y#

1, γ
#
1, γ

#
2)− h(z#2|y#

1, γ
#
1, γ

#
2, x

′#
1 , x

′#
2 )

(f)
≤ h(z#2 −

√
h22

h12
z#1)− h(z#2)

=
'

2
log
(

1 +
h22

h12

)
. (6.62)

Here, in (f) we have used the fact that conditioning decreases the differential
entropy, and the fact that z#2 is independent of (y#

1, γ
#
1, γ

#
2, x

′#
1 , x

′#
2 ). Replacing

(6.58)– (6.62) in(6.57), we will obtain the desired inequality.
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b) The proofs of cut-set type bounds
! (GZZ-1): R1 ≤ 1

2 log(1 + g11)
The individual rate bound can be simply obtained from

'R1 = I(x#
1; y

#
1) + 'ε#

≤ I(x#
1; y

′#
1 , y

′#
2 ) + 'ε# (6.63)

= I(x#
1; y

′#
1 |y

′#
2 ) + I(x#

1; y
′#
2 ) + 'ε#

= h(y
′#
1 |y

′#
2 )− h(y

′#
1 |x#

1, y
′#
2 ) (6.64)

≤ h(y
′#
1 |x#

2)− h(z
′#
1 |x#

1, y
′#
2 )

= h(
√

g11x
#
1 + z

′#
1 )− h(z

′#
1 ) + 'ε#

≤ '

2
log(1 + g11) + 'ε#,

where (6.63) follows from the data processing inequality for the Markov chain
x#

1 ↔ (y
′#
1 , y

′#
2 ) ↔ y#

1, and (6.64) follows from the Markov chain y
′#
1 ↔ x#

2 ↔ y
′#
2 ).

Note that ε# → 0 as ' grows. It is worth mentioning that this bound is similar
to the cut-set bound for the cut Ωs = {S1} and Ωd = {S2, A, B, D1, D2}.

! (GZZ-2): R2 ≤ 1
2 log(1 + g22)

For the second rate bound, we can start with Lemma 6.7 and write

'R2 ≤ I(x#
2; y

#
2) + 'ε# ≤ I(x#

2; y
′#
2 ) + 'ε# ≤

'

2
log(1 + g22) + 'ε#,

where we have used the data processing inequality and the Markov chain x#
2 ↔

y
′#
2 ↔ x

′#
2 ↔ y#

2 in the second inequality. Note that this bound captures the
maximum flow of information through the cut specified by Ωs = {S2} and
Ωd = {S1, A, B, D1, D2}.

! (GZZ-3): R1 ≤ 1
2 log(1 + h11) In order to prove this upper bound, we

use the cut-set bound for the cut Ωs = {S1, S2, A, B, D2} and Ωd = {D1}.

'R1 ≤ I(x
′#
1 ; y#

1|x
′#
2 ) + 'ε#

= h(y#
1|x

′#
2 )− h(y#

1|x
′#
1 , x

′#
2 ) + 'ε#

= h(
√

h11x
′#
1 + z#1|x

′#
2 )− h(z#1|x

′#
1 , x

′#
2 ) + 'ε#

≤ h(
√

h11x
′#
1 + z#1)− h(z#1) + 'ε#

≤ '

2
log(1 + h11) + 'ε#.

! (GZZ-4): R2 ≤ 1
2 log(1 + h22) Starting from Lemma 6.7, we can write

'R2 ≤ I(x
′#
2 ; y#

2) + 'ε# ≤ I(x
′#
2 ; y#

2) + 'ε# ≤
1
2

log(1 + h22) + 'ε#,

where the second inequality follows from the data processing inequality for the
Markov chain x#

2 ↔ y
′#
2 ↔ x

′#
2 ↔ y#

2.
This shows that the rate region RGZZ is an outer bound for the achievable

region region of the Gaussian ZZ network.
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6.5.2 The Achievability Part

In this section we present an encoding/decoding scheme, and derive an achieve
rate region for this strategy. We then show that the gap between the boundary
of this achievable rate region and that of RGZZ is upper bounded by a constant.

Like in the Gaussian ZS network, we only consider the large channel gain
case, where we assume that all the channel gains are lower bounded by 1. A
similar argument to that we used for the ZS network shows that for small
channel gain cases the network is reduced to a simple one and its achievability
and gap analysis are fairly simple.

The encoding scheme needed for the ZZ network is more sophisticated than
the ZS network. An additional component to strategic message splitting is that
of interference neutralization. We used this technique to achieve the capacity
of the deterministic ZZ network as illustrated in Example 5.8 in Section 5.3.

This technique can be applied to the Gaussian network as discussed in
Example 6.6. This along with message splitting inspired by the network de-
composition illustrated in Example 5.9 of Section 5.3 form the basis of the
encoding scheme for the Gaussian ZZ network.

More formally, the interference that has to be neutralized, will be combined
with the main message in the first layer according to some partially-invertible
function. In the second layer the inverse of the function is applied on this
combination and the other interference received through the cross link. The
remaining parts of the interference has to be either decoded or treated as noise.
The neutralization is implemented using lattice codes and the rate-splitting
along with appropriate power allocation is also used.

We formally define a partially-invertible function and a Z-neutralization net-
work in the following. The Gaussian ZZ network is essentially a cascade of two
Z-neutralization networks. An achievable rate region for the Z-neutralization
network is given in Lemma 6.16. This rate region will be later used to obtain
an achievable rate region for the Gaussian ZZ network. We will analyze the
performance of the Gaussian encoding/decoding in the following.

Definition 6.14. Let U and V be two finite sets. A function φ(·, ·) defined on
U ×V is called partially-invertible, if and only if having φ(u, v) and u, one can
always reconstruct v for any u ∈ U and v ∈ V. Similarly, u can be obtained
from φ(u, v) and v.

An intuitive way of thinking about a partially-invertible φ(u, v) is the fol-
lowing. An arbitrary function defined on a finite sets U and V creates a table
with rows corresponding to the elements of U and columns corresponding to
the elements of V , the each cell of the table consists the value assigned to its
row and column by the function. A function will be partially-invertible, if and
only if no two cells in the same column or row of its table be identical.

Note that summation over real numbers, and multiplication over non-zero
numbers are two examples of partially-invertible functions. However, it is clear
multiplication over real numbers is not partially-invertible, since w = φ(1, 0) =
φ(2, 0), and therefore having w and v = 0, u can be anything.
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Definition 6.15. Consider the Z network shown in Figure 6.11, which con-
sists of a Gaussian broadcast channel from F2 to the receivers and a Gaussian
multiple access channel from F1 and F2 to G1. A Z-neutralization network is a

F1

F2

G1

G2

√
g11

√
g12

√
g22

z1

z2

x1

x2

y1

y2

(
U (0)

1 , U (1)
1

)

(
U (0)

2 , U (1)
2

)

(
Û (1)

1 , φ̂(U (0)
1 , U (0)

2 )
)

(
Û (0)

2 , Û (1)
2

)

Figure 6.11: The Gaussian Z-neutralization channel.

Z network, wherein the first source node has two messages (U (0)
1 , U (1)

1 ) of rates
Υ0 and Υ1, respectively. Similarly the second source observes two independent
messages (U (0)

2 , U (1)
2 ) of rates Υ0 and Υ2.

The second receiver is interested in decoding U (0)
2 and U (1)

2 , while the first
destination wishes to decode φ(U (0)

1 , U (0)
2 ) and U (1)

1 , where φ(·, ·) can be any ar-
bitrary partially-invertible function. A rate tuple (Υ0,Υ1,Υ2) is called achiev-
able if the receivers can decode their messages with arbitrary small error prob-
ability.

Lemma 6.16. Consider the Z-neutralization network defined Definition 6.15
with channel gains (g11, g12, g22) (see Figure 6.11). Let

λ ! min{g11, g12, g22}, (6.65)

and

µ ! max
{

g11, g12, g22,
g11g22

g12

}
. (6.66)

Any rate tuple (Υ0,Υ1,Υ2) satisfying

Υ0 ≤
(

1
2

log (λ)− 1
2

)+

, (6.67)

Υ0 + Υ1 ≤
(

1
2

log (g11)− 1
)+

, (6.68)

Υ0 + Υ2 ≤
(

1
2

log (g22)− 1
)+

, (6.69)

Υ0 + Υ1 + Υ2 ≤
(

1
2

log (µ)− 3
2

)+

, (6.70)
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is achievable.

The proof of this lemma is presented in Appendix E.6.
As mentioned before, we strategically split the messages and require func-

tional reconstructions for some of them at the relay nodes to facilitate neutral-
ization at the destinations. More precisely, in the first layer of the network,
each source node splits its message into two parts, namely, “functional” and
private parts, W1 =

(
U (0)

1 , U (1)
1

)
and W2 =

(
U (0)

2 , U (1)
2

)
. The “functional”

parts U (0)
1 , U (0)

2 both have the same rates Υ0. Both transmitters use a com-
mon lattice code to encode their functional sub-messages. Now the first layer
encodes the message such that the first receiver (which is relay A in the origi-
nal ZZ network) can decode U (1)

1 and φ(U (0)
1 , U (0)

2 ), and the second one (relay
B in the original ZZ network) can decode U (0)

2 and U (1)
2 . Lemma 6.16 gives

the rates at which these can be sent reliably. The second stage operates in a
manner similar to the first stage, by splitting the messages into functional and
private parts. The first sender (relay A in the original network) uses U (1)

1 and
φ(U (0)

1 , U (0)
2 ) as the private and functional parts and the other one (relay B)

uses U (1)
2 and U (0)

2 as the private and functional parts.
The functional parts are sent appropriately, using a common lattice code in

both stages. Let x(N)
1 and x(N)

2 be the lattice codewords, corresponding to U (0)
1

and U (0)
2 , respectively. The power allocation In the first layer it is done so that

two lattice points get received at A at the same power (see Figure 6.5). The
group structure of the lattice code implies that the summation of two received
lattice point, x̃(N) = x(N)

1 +x(N)
2 is still a valid codeword, and can be decoded

by A. The function φ(·, ·) is in fact the decoded message from x̃(N). In the
second stage, relay node B, sends the inverse of the the received lattice point,
that is x

′(N)
2 = −x(N)

2 , while A forwards the sum lattice point, x
′(N)
1 = x̃(N).

Again these lattice points are scaled properly so that they get received at D1

at the same power. Thus, their summation would be a lattice point and equals
x

′(N)
1 + x

′(N)
2 = (x(N)

1 + x(N)
2 ) − x(N)

2 = x(N)
1 , which will be decoded to U (0)

1 .
The other destination D2, receives −x(N)

2 , finds its inverse x(N)
2 , and finally

decodes it to U (0)
2 .

We essentially use the result of Lemma 6.16 as an achievable rate region
for the Z-neutralization network. We use notation (λg, µg) and (λh, µh) to
distinguish between λ and µ parameters of the first and the second layers of
the network.

In the first layer of the network, each source node splits its message into
two parts, namely, functional and private parts, W1 =

(
U (0)

1 , U (1)
1

)
and W2 =

(
U (0)

2 , U (1)
2

)
, where the functional parts, have the same rate, i.e., Υ1,0 =

Υ2,0 = Υ0. Both transmitters use a common lattice code to encode their
functional sub-messages into x1,0 = ψ(U (0)

1 ) and x2,0 = ψ(U (0)
2 ), where ψ

is the one-to-one encoding map induced by the lattice code. We define the
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partially-invertible function by

φ
(
U (0)

1 , U (0)
2

)
= ψ−1

(
ψ(U (0)

1 ) + ψ(U (0)
2 )
)

= ψ−1(x1,0 + x2,0). (6.71)

We denote the rates of the private sub-messages by Υ1 and Υ2, where
Υi = Ri − Υ0, for i = 1, 2. The goal is to encode and forward messages to
A and B in such a way that A can decode U (1)

1 and φ(U (0)
1 , U (0)

2 ), and B can
decode U (0)

2 and U (1)
2 . Based on Lemma 6.16, this can be done provided that

Υ0 ≤
(

1
2

log (λg)−
1
2

)+

,

Υ0 + Υ1 ≤
(

1
2

log (g11)− 1
)+

,

Υ0 + Υ2 ≤
(

1
2

log (g22)− 1
)+

,

Υ0 + Υ1 + Υ2 ≤
(

1
2

log (µg)−
3
2

)+

.

The second layer of the network is another Z-neutralization network with
transmitters A and B, and receivers D1 and D2. In this layer, we use V (0)

1 =
ψ−1

(
ψ(U (0)

1 ) + ψ(U (0)
2 )
)
, V (1)

1 = U (1)
1 as the functional and private messages

of the first relay node, and V (0)
2 = ψ−1(−x2,0) = ψ−1(−ψ(U (0)

2 )) and V (1)
2 =

U (1)
2 for the functional and private messages of second relay. Denoting the

corresponding rates by Θ0, Θ1, and Θ2, we have

Θi = Υi, i = 0, 1, 2. (6.72)

The goal is to encode and send these messages to the destinations, such that D1

can decode φ(V (0)
1 , V (0)

2 ) and V (1)
1 , and D2 can decode V (0)

2 and V (1)
2 . Again

we use the achievable rate region proposed in Lemma 6.16.

Θ0 ≤
(

1
2

log (λh)− 1
2

)+

,

Θ0 + Θ1 ≤
(

1
2

log (h11)− 1
)+

,

Θ0 + Θ2 ≤
(

1
2

log (h22)− 1
)+

,

Θ0 + Θ1 + Θ2 ≤
(

1
2

log (µh)− 3
2

)+

.
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Note that the first destination observes φ(V (0)
1 , V (0)

2 ), which is equivalent to

φ
(
V (0)

1 , V (0)
2

)
= ψ−1

(
ψ(V (0)

1 ) + ψ(V (0)
2 )
)

= ψ−1
(
ψ(U (0)

1 ) + ψ(U (0)
2 )− ψ(U (0)

2 )
)

= U (0)
1 . (6.73)

Therefore, combining it with V (1)
1 = U (1)

1 , the first destination node can decode
W1. The second destination node D2 has V (0)

2 and V (1)
2 = U (1)

2 , and can
compute

ψ−1
(
−ψ(V (0)

2 )
)

= U (0)
2 , (6.74)

and hence it decodes W2.
It is clear that this scheme can reliably transmit the messages with rate

pair in

R(1)
GZZ =

{
(R1, R2) :∃ Υ0,Υ1,Υ2,Θ0,Θ1,Θ2 ≥ 0,

R1 = Θ0 + Θ1,

R2 = Θ0 + Θ2,

Θi = Υi, i = 0, 1, 2,

Υ0 ≤
(

1
2

log (λg)−
1
2

)+

,

Υ0 + Υ1 ≤
(

1
2

log (g11)− 1
)+

,

Υ0 + Υ2 ≤
(

1
2

log (g22)− 1
)+

,

Υ0 + Υ1 + Υ2 ≤
(

1
2

log (µg)−
3
2

)+

,

Θ0 ≤
(

1
2

log (λh)− 1
2

)+

,

Θ0 + Θ1 ≤
(

1
2

log (h11)− 1
)+

,

Θ0 + Θ2 ≤
(

1
2

log (h22)− 1
)+

,

Θ0 + Θ1 + Θ2 ≤
(

1
2

log (µh)− 3
2

)+ }
. (6.75)
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It only remains to apply Fourier-Motzkin elimination to project this region
onto (R1, R2). This gives us

R(1)
GZZ =

{
(R1, R2) :R1 ≤

(
1
2

log (g11)− 1
)+

,

R1 ≤
(

1
2

log (h11)− 1
)+

,

R2 ≤
(

1
2

log (g22)− 1
)+

,

R2 ≤
(

1
2

log (h22)− 1
)+

,

R1 + R2 ≤
(

1
2

log (µg) +
1
2

log (λh)− 3
2

)+

,

R1 + R2 ≤
(

1
2

log (µh) +
1
2

log (λg)−
3
2

)+ }
.

Note that the RHS’s of the sum-rate bounds depend on the order of the
channel gains. For most of possible orderings, these two inequalities would be
consequences of the individual rate bounds. For example, if λh = h22, then the
last bound is implied by the first and fourth bounds, since µg ≥ g11. It can be
shown in general that RGZZ

ach is equivalent to

R(1)
GZZ =

{
(R1, R2) :R1 ≤

(
1
2

log(g11)− 1
)+

,

R1 ≤
(

1
2

log(g22)− 1
)+

,

R2 ≤
(

1
2

log(h11)− 1
)+

,

R2 ≤
(

1
2

log(h22)− 1
)+

,

R1 + R2 ≤
(

1
2

log(µg) +
1
2

log(h12)−
3
2

)+

,

R1 + R2 ≤
(

1
2

log(µh) +
1
2

log(g12)−
3
2

)+ }
.

Note that the RHS’s of the inequities in the characterization of R(1)
GZZ and

that of RGZZ in Definition 6.3 are not similar. However, we can show that the
gap between the RHS of each inequality in R(1)

GZZ and its corresponding one in
RGZZ is bounded by a constant. For the individual rate inequalities, we have

1
2

log(1 + x) ≤ 1
2

log(x) +
1
2

(6.76)
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for all x ≥ 1. Moreover, for the sum-rate inequalities we can write

1
2

log(1 + g11 + g12) +
1
2

log
(

1 +
g22

g12

)

≤ 1
2

log(3 max{g11, g12}) +
1
2

log
(

2 max{g12, g22}
g12

)

≤ 1
2

log
(

max{g11, g12} · max{g22, g12}
g12

)
+

1
2

log 6

≤ 1
2

log(µg) +
1
2

log 6. (6.77)

for g11 ≥ 1, g12 ≥ 1, and g22 ≥ 1. This implies
[1
2

log(1 + g11 + g12) +
1
2

log
(

1 +
g22

g12

)
+

1
2

log(1 + h12)
]

−
[1
2

log(µg) +
1
2

log(h12)−
3
2

]+
≤ 2 +

1
2

log 6. (6.78)

A similar argument holds for the other sum-rate bound.
Applying (6.76) and (6.78), we obtain the following achievable rate region,

which is a subset of R(1)
GZZ.

RGZZ =

{
(R1, R2) :R1 ≤

(
1
2

log(1 + g11)−
3
2

)+

,

R2 ≤
(

1
2

log(1 + g22)−
3
2

)+

,

R1 ≤
(

1
2

log(1 + h11)−
3
2

)+

,

R2 ≤
(

1
2

log(1 + h22)−
3
2

)+

,

R1 + R2 ≤
(

1
2

log(1 + g11 + g12) +
1
2

log
(

1 +
g22

g12

)

+
1
2

log(1 + h12)− 2 +
1
2

log 6

]+

,

R1 + R2 ≤
[

1
2

log(1 + h11 + h12) +
1
2

log
(

1 +
h22

h12

)

+
1
2

log(1 + g12)− 2 +
1
2

log 6

]+}

Therefore, we have

RGZZ ⊆ R(1)
GZZ ⊆ RGZZ.
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Since for any rate pair (R1, R2) ∈ RGZZ, the rate pair (R1 − 1
4 log 96, R2 −

1
4 log 96) belongs to RGZZ. This argument leads to an approximate capacity
characterization for the Gaussian ZZ network, with a gap bounded by 1

4 log 96 9
1.65 bits per user.



The Diamond Network with
Adversarial Jammer 7
Wireless communication is inherently susceptible to malicious interference at-
tempting to disrupt communications. An adversary can utilize the broadcast
medium to insert disruptive signals. This problem has been well-studied for
point-to-point communication, with early works in arbitrarily varying channels
(AVC) [75]. This topic has not received significant attention in the context of
wireless networks, where there are relay nodes to assist communication. In this
chapter we formulate and study coding strategies in this problem for a simple
relay network.

Here, we start with study of this problem in a deterministic context. That
is, examining the impact of the adversarial node using a linear deterministic
signal interaction on a simple wireless network, which we call deterministic
diamond network, shown in Figure 7.2. Then we use the insights for both en-
coding scheme as well as bounding techniques obtained from the deterministic
model, to build similar results for the Gaussian diamond network depicted in
Figure 7.1.

The role of malicious jamming nodes in wired networks has received recent
significant attention in network coded systems (see [76], [77] and references
therein). However, the problem in wireless networks is quite different due to
the signal interactions caused by the broadcast nature of the channel. We will
utilize the fact that the disrupting signal transmitted by the adversary (see
Figure 7.1) cause the received signals at the authenticated relays to be related
to each other. We use this in order to neutralize the adversarial signal without
separating it from the legitimate transmitted signal. The idea is that we utilize
the “correlation” in the received signal at the relays to cancel part of the un-
desired adversarial signal. A similar idea is used in [66] for an amplify-forward
relaying strategy to reduce the interference at the receiver, and assuming a sum
power constraint at the relays allows to utilize a beam-forming strategy.

173
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The main contributions of this chapter are the following. We formulate
the problem of adversarial jamming for a wireless (diamond) network, and
study it under the deterministic model as well as noisy Gaussian model, called
the DDA and GDA networks, respectively. In particular, we show an exact
characterization of reliable transmission rate for a diamond network with linear
deterministic model [65]. The coding strategy for this case is based on ideas
similar to that of the interference neutralization technique developed in [20], to
reduce the effect of the jamming signal on the received signal at the destination.
However, a fundamental difference here is that, the jamming signal does not
have to describe a message from a given codebook, and can be any thing.
Hence, instead of decoding a functional message, the relay nodes forward that
part of the received signal which cannot be decoded at signal level. The power
allocated to these two interfered part should be chosen such that the effective
interference power at the destination be small. From this point of view, what
happens in the diamond network is interference nulling, but not interference
neutralization.

Moreover, we use insight obtained by analysis of the simplified problem in
order to derive an approximate capacity characterization for the GDA network.
We provide an outer bound as well as achievable strategies for this network.
The coding scheme proposed here is based on a superposition coding at the
source, and partially decoding the message and utilizing interference nulling at
the relays,. This is shown that the gap between the performance of the proposed
scheme and the any optimal strategy is bounded above by 4 bits/sample, which
results in an approximate capacity characterization.

The deterministic version of this problem is studied for some regimes of pa-
rameters in a recent work [78]. However, here we generalize the deterministic
characterization for arbitrary channel parameters. More importantly, we show
that the achievable strategy inspired by the deterministic analysis is within a
constant number of bits of the outer bound in the Gaussian case. A similar
problem is also studied in [79], where the signal received at the relays are cor-
rupted by the the same copies of an interfering signal. An important difference
between [79] and our work is that they assume orthogonal bit pipes from relays
to the destination, while we consider a noisy multiple access channel to the
destination. The main focus of [79] is to characterize the scaling laws of the
capacity (the pre-log as the power of the transmitter and the interference are
taken to infinity) in this setting.

We describe the problem and main results in Section 7.1. The analysis
for linear deterministic networks is given in Section 7.2. Section 7.3 develops
the outer bound and the achievable strategy for the Gaussian case. The re-
sults presented here lead to several natural questions on the generalizations to
arbitrary networks, multiple adversaries etc. These are topics of future work.
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7.1 Problem Formulation and Main Results

Consider the diamond network in Figure 7.1, where the source wishes to send
the message W reliably to the destination D. It encodes the message and
broadcasts Xn to the relays B1 and B2 through the Gaussian channels. How-
ever, the relays receive interference from an adversarial node A, who wishes to
jam the transmission by inserting noise to the system. The signal received by
the relays can be written as

y1[t] =
√

f1x[t] +
√

g1u[t] + z1[t]

y2[t] =
√

f2x[t] +
√

g2u[t] + z2[t],

where x is the transmitted signal by the source, u is the interfering signal
inserted by the jammer, and z1 and z2 are the additive white Gaussian noise
with unit variance over each channel. The relay nodes perform any (causal)
processing on their received signal sequences {y1[t]} and {y2[t]} respectively, to
obtain their transmitting signal sequences, {x1(t)} and {x2(t)}. The received
signals at the destination nodes from the Gaussian multiple access channel can
be written as

y[t] =
√

h1x1[t] +
√

h2x2[t] + z[t],

and wishes to decode M based on its received signal. We also assume equal
power constraints for the source, relays, and adversarial node, that is, [x2] ≤ 1,
[x2

1] ≤ 1, [x2
2] ≤ 1, and [u2] ≤ 1. We term this network the Gaussian

diamond network with adversary (GDA).

S

A B1

B2

D

√
g1

√
g2

√
f1

√
f2

z1

z2

z

x

u

x1

x2

y

y1

y2

√
h1

√
h2

Figure 7.1: Transmission model; Source node S wishes to communicate to D,
while the system is jammed by the adversarial node A.

The AVC problem in a point-to-point system is studied under two assump-
tions [75]: (i) there exists common randomness shared between the source and
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destination, unknown to adversary; This facilitates the use of random code-
books chosen using the common randomness; (ii) if there is no such a common
randomness, and a fixed codebook is used for transmission. This notion of
shared randomness plays no role in the analysis of the deterministic network.
For the Gaussian problem, though we present the work for case (i), i.e., shared
secret common randomness between source and the relays, these results can be
easily extended to case (ii).

c

u

S

A B1

D

m1

m2

n1

n2

q1

q2

X

X1

X2

Y

Y1

Y2

Figure 7.2: The deterministic model of the problem.

The deterministic counterpart of this problem is shown in Figure 7.2, where
source node S wishes to communicate its message to the destination node D
via the relay nodes B1 and B2. The channels from source to relays are modeled
by M1 and M2 and from the relays to the destination are denoted by N1 and
N2. We also use P1 and P2 to denote the transition matrix from the adversarial
node to the relays. Similar lowercase letters are used to denote the rank of the
matrices (channel gains). Therefore, the transmission over the first and second
layers of the network can be respectively written as

Yi[t] = MiX [t] + QiU [t], i = 1, 2, (7.1)

and

Y [t] = N1X1[t] + N2X2[t] (7.2)

where here X , U , Y1 and Y2 are vectors of length p with elements form a finite
field F, and the channel matrices are powers of the shift matrix J, e.g., M1 =
Jp−m1 , were J is defined in (5.3). We refer to this network by the deterministic
diamond network with adversary (DDA) for the rest of this chapter.

The following theorem states the capacity characterization for this deter-
ministic network.
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Theorem 7.1 (The capacity of the deterministic adversarial diamond net-
work). The capacity of the deterministic diamond network with adversarial
node is given by

CDDA = min
{
ψ(m1, m2, q1, q2)−max{q1, q2},

max(n1, n2)

(m1 − q1)+ + n2,

(m2 − q2)+ + n1,
}
, (7.3)

where

Ψ(m1, m2, q1, q2) =
{

max{m1, m2, q1, q2} if m1 + q2 = m2 + q1

max{m1 + q2, m2 + q1} otherwise. (7.4)

We will use this result to devise a coding strategy which gives an approxi-
mate capacity characterization for the Gaussian network. This is given in the
following theorem.

Theorem 7.2 (An approximate capacity for the Gaussian adversarial diamond
network). For a given GDA network with parameters given in Figure 7.1, define

CGDA = min
{1

2
log
(

1 +
f1 + f2 + (

√
f1g2 −

√
f2g1)2

1 + g1 + g2

)
, (7.5)

1
2

log
(
1 + (

√
h1 +

√
h2)2

)
, (7.6)

1
2

log
(

1 +
f1

1 + g1

)
+

1
2

log(1 + h2), (7.7)

1
2

log
(

1 +
f2

1 + g2

)
+

1
2

log(1 + h1).
}
. (7.8)

Then the randomized capacity of the network CGDA satisfies

CGDA − 4 ≤ CGDA ≤ CGDA. (7.9)

A trivial sub-optimal scheme here is to treat the interference as indepen-
dent noises, and follow the known schemes for noisy diamond relay network
[65]. However, such noises are correlated since they are generated by the same
jamming source. This correlation can be utilized to significantly improve the
communication rate.

We will discuss and present the proof of these two theorems in the following
section.
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7.2 The DDA Network

We study a deterministic version of the diamond network with jammer problem
in this section. In this model the randomness of the noise is ignored by con-
sidering the interference limited regime, and we focus on the signal interaction
instead. The main goal is to prove Theorem 7.1.

a) The converse part
We first show that any achievable rate R satisfies R ≤ CDDA. In order

to do this, we show that R is upper bounded by all the four terms in the
minimization in (7.3). Assume we use code of length ', and W can be decoded
from Y # with error probability ε#, where ε# → 0 as ' grows. Therefore, using
Fano’s inequality, we have

H(X#|Y #) ≤ H(W |Y #) ≤ 'ε#. (7.10)

We denote by GX and GU the transfer matrix from the adversarial node
and the source to the relays, respectively. These matrices are defined as

GX =
[

M1

M2

]
, GU =

[
Q1

Q2

]
. (7.11)

So, the signals received by the relays can be written as
[

Y1

Y2

]
= GX,U

[
X
U

]
(7.12)

where GX,U = [GX |GU ] is the transfer matrix from A and S to the relay nodes.
We use bold face notation to denote ' copies of a channel matrix, which is the
transfer matrix applied over a codeword of length ', e.g., GX,U = I# ⊗GX,U .

Note that the Markov chain X# ↔ (Y #
1 , Y #

2 ) ↔ Y # implies that the sig-
nals received at B1 and B2 are enough to decode the message. It is also
clear that once B1 and B2 can decode X , they also know GUU #. Hence,
H(X#,GUU #|Y #

1 , Y #
2 ) ≤ 'ε#. Therefore,

'R + H(GUU #) = H(X#) + H(GUU #) = H(X#,GUU #)

≤ I(X#,GUU #; Y #
1 , Y #

2 ) + 'ε#

≤ H(Y #
1 , Y #

2 ) + 'ε# = rank (GX,U ) + 'ε#

= 'rank (GX,U ) + 'ε# (7.13)

It is clear that the adversary can choose U # such that H(GUU #) = 'rank (GU ) =
'max{q1, q2}. Therefore, we have R ≤ rank (GX,U )−max{q1, q2}+ ε#. We use
the following lemma to evaluate rank (GX,U ) which is proved in Appendix F.1.

Lemma 7.3. Let G be a diagonal matrix of the form

G =
[

Jp−m1 Jp−q1

Jp−m2 Jp−q2

]
.
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Then, we have rank (G) = Ψ(m1, m2, q1, q2), where the function Ψ is defined
in (7.4).

Having this lemma, and by evaluating rank (GX,U ) in (7.13), we get the
desired inequality. Note that this bound essentially captures the maximum
amount of information can be transmitted from through the cut with partitions
Ω1 = {S, A} and Ωc = {B1, B2, D}.

In order to show that R ≤ (m1− q1)+ +n2, we first recall that decodability
of W from Y # implies

H(X#,Q1U
#|Y #

1 , Y #) = H(X#|Y #
1 , Y #) + H(Q1U

#|X#, Y #
1 , Y #)

≤ H(W |Y #
1 , Y #) + H(Y #

1 −M1X
#|X#, Y #

1 , Y #)
≤ 'ε#. (7.14)

Hence,

'R + H(Q1U
#) = H(X#) + H(Q1U

#)
(a)
= H(X#,Q1U

#)

≤ I(X#,Q1U
#; Y #

1 , Y #) + 'ε#

≤ H(Y #
1 , Y #) + 'ε#

= H(Y #
1 ) + H(Y #|Y #

1 ) + 'ε#
(b)
≤ H(Y #

1 ) + H(N2X
#
2|Y #

1 ) + 'ε#

≤ H(Y #
1 ) + H(N2X

#
2) + 'ε#

≤ 'max{m1, q1} + 'n2 + 'ε#. (7.15)

where in (a) we used the assumption that the adversary does not know the
message, and therefore, its interfering signal is independent of X#, and (b)
holds since X#

1 is a function of Y #
1 . Combining (7.15) with the fact that the

adversarial node can make H(Q1U #) as large as 'q1, gives the second bound.
It is worth mentioning that this bound essentially captures the maximum flow
of information through the cut Ω = {S, A, B1}. The proof of the third bound
is just repeating the same argument for a symmetric situation.

Finally, in order to proof the last inequality, we consider Ω = {S, A, B1, B2}.
It is clear that

'R ≤ H(X#) ≤ I(X#; Y #) + 'ε#

≤ H(Y #) + 'ε# ≤ 'max{n1, n2} + 'ε#. (7.16)

b) The achievability part
In the following we present an encoding scheme to achieve rates any R ≤

CDDA. The idea is provide enough number of linearly independent equations
about the message codeword. Note that some of sub-nodes in B1 and B2 receive
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A

S

B1

B2

D

Figure 7.3: Transmission strategy to provide interference nulling.

the same bit from A, and therefore this interfering bit can get nulled [20] if
they get forwarded and received on the same sub-node of D.

We split the message into two parts, which essentially leads to a network
decomposition, based on the sub-levels of each node which are involved in
transmitting each of the sub-messages. We first identify the maximum num-
ber of bits of the message that can be recovered by nulling the interference.
Any sub-level which is involved in such nulling would belong the first network
partition.

There are also possibly a subset of message bits received at the relays above
the interference level, and therefore not corrupted with interference. These
bits can be directly forwarded to the destination. This idea is illustrated in
Figure 7.3.

We use R(N) and R(P ) to denote the number of equations can be received
at the destination using interference nulling, and forwarding pure signal bits
from the relays, respectively.

We denote the levels of B1 at the receiver side by Y1,1 (for the highest) to
Y1,p (for the lowest), and similarly for B2. Define

δ ! min
{
q1, q2

}
−min

{
(q1 −m1)+, (q2 −m2)+

}
.

It is easy to show that Y1,(p−(q1−q2)++κ) and Y2,(p−(q2−q1)++κ) are corrupted
by the same bit from A, for κ = 0, . . . , δ − 1. Moreover, at least one of
Y1,(p−(q1−q2)++κ) and Y2,(p−(q2−q1)++κ) receive a bit from the source. There-
fore, for each κ, if Y1,(p−(q1−q2)++κ) and Y2,(p−(q2−q1)++κ) can get forwarded on
the same destination sub-node, the destination receives an equation about the
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source whose interference is nulled. It is worth mentioning that if m1 + q2 =
m2 + q1, then the interference-nulled equations received at D are zero, since
the message bits would be also nulled. On the other hand, the condition
m1 + q2 (= m2 + q1 guarantees that such received legitimate bits are differ-
ent.

Each bit nulling utilizes one sub-link for B1 to D, and one sub-link from
B2 to D. Hence, we can send up to

R(N) ≤ ν !
{

0 if m1 + q2 = m2 + q1

min{δ, n1, n2} otherwise. (7.17)

On the other hand, nodes B1 and B2, respectively, receive (m1 − q1)+
and (m2 − q2)+ bits from the source which are above the interference level,
and therefore not corrupted. These bits can be forwarded to D through the
remaining (n1 − ν) and (n2 − ν) links in the second layer of the network.
However, these two set of bits have overlap, since they both are the upper level
bits sent by A. Analysis of the number of non-interfered bits can be sent to the
destination node, is equivalent to a study of another linear shift deterministic
diamond network without adversary, where there are (m1−q1)+ and (m2−q2)+
links from S to the relays, and (n1 − ν) and (n2 − ν) links from the relays to
the destination. The capacity of this network is easy to compute as in [65]. We
get

R(P ) ≤ min
{

max{(m1 − q1)+, (m2 − q2)+}, (m1 − q1)+ + (n1 − ν),
(m2 − q2)+ + (n2 − ν), max{n2 − ν, n2 − ν}

}
. (7.18)

It is easy to show that equations we receive using two method are linearly
independent, and therefore any rate R ≤ R(N)+R(P ) is achievable. Using some
algebra and manipulations, one can show that adding the RHS’s of (7.17) and
(7.18), gives us the same bound claimed in the theorem. This is discussed in
detail in Appendix F.2. #

In the following example we discuss this network decomposition idea in
more detail.

Example 7.4. Consider a diamond network with parameters m1 = 4, m2 = 6,
q1 = 3, q2 = 2, n1 = 5, and n2 = 4. Also assume p = 7. Theorem 7.1 implies
that C = 5. In the following we show how the destination can get 5 linearly
independent equations about the bits transmitted by the source node. Denoting
the source and interference bits by Xi and uj, for i = 1, . . . , 6, and j = 1, 2, 3,
we have

Y1 =





Y1(1)
Y1(2)
Y1(3)
Y1(4)
Y1(5)
Y1(6)
Y1(7)





=





0
0
0

X(1)
X(2) + U(1)
X(3) + U(2)
X(4) + U(3)





, Y2 =





Y2(1)
Y2(2)
Y2(3)
Y2(4)
Y2(5)
Y2(6)
Y2(7)





=





0
X(1)
X(2)
X(3)
X(4)

X(5 + U(1)
X(6) + U(2)





.
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Recall that we can null up to ν = min{δ, n1, n2} = 2 bits. This will be done by
forwarding Y1(5) and Y1(6) by B1 and Y2(6) and Y2(7) by B2 over the lowest
2 links to D. The destination node will receive Y (6) = X(2) + X(5) and
Y (7) = X(3) + X(6) on its lowest level.

The relay node B1 has only one bit of non-corrupted signal, X1 and node
B2 has four of them, X(1), X(2), X(3), and X(4). In order to send these
bits, B1 send X(1) on its highest level, and B2 forwards X(2) and X(3) on
its highest levels. Note that, we cannot decode all the six bits, but obtain five
linearly independently equations involving X(1), . . . , X(6).

7.3 The GDA Network

In this section, we translate the deterministic case analysis in Section 7.2 into a
universally approximate characterization for the (noisy) Gaussian network, and
prove Theorem 7.2. In fact, we use the insights given by analysis of the network
in deterministic model for both deriving an upper bound for the capacity, as
well as proposing an (approximately) optimal encoding strategy which leads
to a lower bound for the capacity within a constant bit gap from the upper
bound.

As mentioned before, we assume that there exist a common randomness
shared between all the legitimate nodes (source, relays, and destination), which
is not available for the jammer. These nodes use this common randomness to
randomly choose a codebook from a family of pre-determined codebooks, for
each message. This allows us to assume that the adversary is not aware of
the current codebook used at the time, although it knows the family of the
codebooks. It can be shown that the number of random bits required for a
secret choice of codebook, is asymptotically negligible [75] in comparison of
the number of bits communicated over the network. We can use the technique
of elimination of correlation developed in [75] to extend this result to the case
when such shared randomness does not exist.

a) The Upper Bound
We imitate the same bounding techniques we used to prove Theorem 7.1.

We first start with the cut Ω = {S, A}. Recall that since we assume a shared
randomness between the the legitimate nodes, the adversary does not know
the currently used codebook, and therefor the worst distribution it can use to
generate its signal is the Gaussian distribution [80].

'R ≤ I(y#
1, y

#
2; x

#) + 'ε# = h(y#
1, y

#
2)− h(y#

1, y
#
2|x#) + 'ε#

≤ '

2
log
(

1 + g1 + g2 + f1 + f2 + (
√

f1g2 −
√

f2g1)2

1 + g1 + g2

)
+ 'ε#. (7.19)

The second bound is easy to derive.

'R ≤ I(y#
1, y

#; x#) + 'ε#
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= I(y#
1; x

#) + I(y#; x#|y#
1) + 'ε#

= I(y#
1; x

#) + h(y#|y#
1)− h(y#|x#, y#

1) + 'ε#

≤ I(y#
1; x

#) + h(y#|x#
1)− h(y#|x#

1, x
#
2) + 'ε# (7.20)

= I(y#
1; x

#) + h(
√

h2x
#
2 + z#|x#

1)− h(y#|x#
1, x

#
2) + 'ε#

≤ I(y#
1; x

#) + h(
√

h2x
#
2 + z#)− h(y#|x#

1, x
#
2) + 'ε#

≤ '

2
log
(

1 +
f1

1 + g1

)
+
'

2
log(1 + h2) + 'ε#. (7.21)

where in (7.20) we used the fact that x#
1 is a function of y#

1, and also the
Markov chain y# ↔ (x#

1, x
#
2) ↔ (x#, y#

1). The third bound can be proved by
repeating the same argument for I(y#

2, y
#; x#).

In order to show the last upper bound, we can write

'R ≤ I(y#; x#) + 'ε#

≤ I(y#; x#
1x

#
2) + 'ε# (7.22)

≤ '

2
log
(
1 + (

√
h1 +

√
h2)2

)
. (7.23)

We again used the data processing inequality for the Markov chain y# ↔
(x#

1, x
#
2) ↔ x# in (7.22).

b) The Lower Bound The achievability scheme we propose here is induced
by the strategy proposed for the deterministic model. It is based on message
splitting and superposition coding. The power allocation should be performed
such that the part of the message which is not corrupted by interference can be
decoded at the relays. Moreover, the interfered part get forwarded to the des-
tination such that the effective interference at the destination be small enough
such that this part of the message can be decoded at the destination. In the
following we only explain this idea in more details.

Without loss of generality, we assume that the relay B1 is stronger than
B2, i.e., SINR1 ≥ SINR2, where SINRi = fi/(1 + gi). We first split the message
W into three parts, namely, Wc, Wp, Wn, with rates Rc, Rp, and Rn. Our
encoding and decoding strategy guarantees that the common message, Wc,
can be decoded at both relays, while the private sub-message, Wp, can be only
decoded at B1. However, neither of the relays can decode the neutralization
sub-message, Wn, and it can be only decoded at the destination, once the
interference is nulled.

We use three random codebooks of rates Rc, Rp, and Rn, generated ac-
cording to the Gaussian distribution with unit variance. The source maps its
sub-messages to the codewords from corresponding codebooks, and obtains xc,
xp, and xn. Then the signal transmitted by the source is formed as a super-
position of the three codewords, using a proper power allocation,

x =
√
αcxc +√

αpxp +
√
αnxn, (7.24)
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where the power allocation coefficients satisfy

αc + αp + αn ≤ 1. (7.25)

In particular, we choose αn = min(1, 1/SINR1), αp = min(1, 1/SINR2)−αn, and
αc = 1−αn−αp, which clearly satisfy the power constraint at the transmitter.

The relay nodes receive

y1 =
√

f1αcxc +
√

f1αpxp +
√

f1αnxn +
√

g1u + z1

y2 =
√

f2αcxc +
√

f2αpxp +
√

f2αnxn +
√

g2u + z2. (7.26)

Both nodes B1 and B2, first decodes xc treating everything else as noise. Note
that assuming randomized coding, this Wc can be decoded at B1 and B2 as
long as Rc < Rc,1 and Rc < Rc,2, where

Rc,1 ! 1
2

log
(

1 + f1 + g1

1 + f1(αn + αp) + g1

)

Rc,2 ! 1
2

log
(

1 + f2 + g2

1 + f2(αn + αp) + g2

)

=
1
2

log
(

1 + f2 + g2

1 + min(f1, g2 + 1) + g2

)

>
1
2

log
(

1 + f2 + g2

2(1 + g2)

)

=
1
2

log (1 + SINR2)−
1
2
. (7.27)

It is easy to show that Rc,1 > Rc,2. Therefore, any common rate satisfying

Rc <

(
1
2

log (1 + SINR2)−
1
2

)+

(7.28)

is achievable for the relays.
Once xc is decoded, B1 can cancel it from its received signal, and decode

xp treating xn, u and z1 as noise. This can be done if and only if Rp < Rp,1,
where

Rp,1 ! 1
2

log
(

1 + f1(αp + αn) + g1

1 + f1αn + g1

)

>
1
2

log (1 + SINR1)−
1
2

log (1 + SINR2)−
1
2
. (7.29)

Therefore, any private rate satisfying

Rp <

(
1
2

log (1 + SINR1)−
1
2

log (1 + SINR2)−
1
2

)+

(7.30)

is achievable.
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The operation at the relays in order to generate their transmitting signals
is just to allocate proper power to their available different components. Note
that the remaining (uncoded) parts of the signals will be also used for forming
the transmitting signal. The relays nodes B1 and X2, send

x1 =
√
βcxc +

√
βpxp +

√
βn

y1 −
√

f1αcxc −
√

f1αpxp√
f1αn + g1 + 1

x2 =
√
γcxc −

√
γn

y2 −
√

f2αcxc√
f2αp + f2αn + g2 + 1

, (7.31)

where again the power coefficients satisfy

βc + βp + βn ≤ 1
γc + γn ≤ 1.

Finally the decoder receivers a noisy linear combination of x1 and x2 over the
multiple access channel. The signal received at the destination node can be
written as

y =
√

h1x1 +
√

h2x2 + z

=
(√

h1βc +
√

h2γc

)
xc +

(
√

h1βp −

√
h2γnf2αp

f2(αp + αn) + g2 + 1

)
xp

+

(√
h1βnf1

f1αn + g1 + 1
−

√
h2γnf2

f2(αp + αn) + g2 + 1

)
√
αnxn

+

(√
h1βng1

f1αn + g1 + 1
−

√
h2γng2

f2(αp + αn) + g2 + 1

)
u

+

(√
h1βn

f1αn + g1 + 1
z1 −

√
h2γn

f2(αp + αn) + g2 + 1
z2 + z

)
. (7.32)

In order to seek of simplicity, we denote the received power of xc, xp, xn

and u by Pc, Pp, Pn, and Pu, respectively. We also use N to denote the received
noise power at the destination.

We can choose the power allocation coefficients arbitrarily. In particular,
we can set them such that

η ! h1βn(g1 + 1)
f1αn + g1 + 1

=
h2γn(g2 + 1)

f2(αp + αn) + g2 + 1
. (7.33)

Note that

η <
h1βn(g1 + 1)

g1 + 1
= h1βn. (7.34)
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We also have f1αn ≤ f1/SINR1 = g1 + 1, which implies

η ≥ h1βn(g1 + 1)
2(g1 + 1)

= h1βn/2. (7.35)

Therefore, η is sandwiched by

h1βn/2 ≤ η < h1βn, (7.36)

and similarly,

h2γn/2 ≤ η < h2γn. (7.37)

Using this new notation, we can rewrite the power of neutralization part
and the jamming signal as

Pn = αn

(√
h1βnf1

f1αn + g1 + 1
−

√
h2γnf2

f2(αp + αn) + g2 + 1

)2

= αnη
(√

SINR1 −
√

SINR2

)2
, (7.38)

and

Pu =

(√
h1βng1

f1αn + g1 + 1
−

√
h2γng2

f2(αp + αn) + g2 + 1

)2

= η

(√
g1

g1 + 1
−
√

g2

g2 + 1

)2

. (7.39)

Similarly, the total power of the noise would be

N =
h1βn

f1αn + g1 + 1
+

h2γn

f2(αp + αn) + g2 + 1
+ 1 = η(

1
g1 + 1

+
1

g2 + 1
) + 1.

(7.40)

The first task of the destination is to jointly decode Wc and Wp, treating
xn and u as noise. This can be done as long as

Rc ≤
1
'
I(y;xc|xp),

Rp ≤
1
'
I(y;xp|xc),

Rc + Rp ≤
1
'
I(y;xcxp).

The total noise and interference for decoding xc and xp is upper bounded by

Pn + Pu + N ≤ (
√

h1βn +
√

h2γn)2 + 1 < 8η + 1, (7.41)
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where we used (7.36) and (7.37) in the last inequality. Therefore, the decod-
ability conditions for xc and xp can be further tightened, and rewritten as

Rp ≤
1
2

log
(

h1 + 1
8η + 1

)
(7.42)

Rc + Rp ≤
1
2

log
(

h1 + h2 + 1
8η + 1

)
. (7.43)

Combining (7.28), (7.30), (7.42), and (7.43), gives the following achievable rate.

Rc + Rp ≤ min
{1

2
log (1 + SINR1)− 1,

1
2

log (1 + SINR2) +
1
2

log (1 + h1)−
1
2

log(1 + 8η)− 1
2
,

1
2

log (1 + h1 + h2)−
1
2

log(1 + 8η)
}

. (7.44)

One xc and xp are decoded, the destination node can remove them and
decode xn. In order to do this, it has to treat u as noise. Note that, xn is
decodable as long as Rn ≤ Rn, where

Rn ! 1
2

log
(

1 +
Pn

Pu + N

)

=
1
2

log



1 +
αnη

(√
SINR1 −

√
SINR2

)2

η
(√

g1
g1+1 −

√
g2

g2+1

)2
+ η( 1

g1+1 + 1
g2+1 ) + 1





(7.45)

It is easy to show that
(√

g1

g1 + 1
−
√

g2

g2 + 1

)2

<
1

min(g1, g2) + 1
(7.46)

and
1

g1 + 1
+

1
g2 + 1

≤ 2
min(g1, g2) + 1

. (7.47)

Therefore, we have

Rn >
1
2

log



1 +
αnη

(√
SINR1 −

√
SINR2

)2

η
(

3
min(g1,g2)+1

)
+ 1



 . (7.48)

We can further show that Rn is lower bounded by

min

{
1
2

log

(
1 +

αn(min(g1, g2) + 1)
(√

SINR1 −
√

SINR2

)2

3

)
,
1
2

log
(
1 +

η

2

)}
.

(7.49)
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In the next step, we can prove

(min(g1, g2) + 1)
(√

SINR1 −
√

SINR2

)2
≥
(√

f1g2 −
√

f2g1

)2

3(g1 + g2 + 1)
. (7.50)

Hence,

Rn ≥ min

{
1
2

log

(
1 +

αn

(√
f1g2 −

√
f2g1

)2

9(g1 + g2 + 1)

)
,
1
2

log (1 + 8η)− 2

}
. (7.51)

Summing up (7.44) and (7.51), we get the total achievable rate. It is worth
mentioning that

1
2

log(1+SINR1) +
1
2

log

(
1 +

αn

(√
f1g2 −

√
f2g1

)2

9

)

≥ 1
2

log

(
1 + SINR1 +

(√
f1g2 −

√
f2g1

)2

9(g1 + g2 + 1)

)

≥ 1
2

log

(
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(√
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√
f2g1

)2
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)
− 1

2
log 18

≥ 1
2

log

(
1 + SINR1 + SINR2 +

(√
f1g2 −

√
f2g1

)2

g1 + g2 + 1

)
− 1

2
log 18

≥ 1
2

log

(
1 +

f1 + f2 +
(√

f1g2 −
√

f2g1

)2

g1 + g2 + 1

)
− 1

2
log 18

where in the first inequality we used the fact that

(1 + SINR1)αn = (1 + SINR1)min
(

1,
1

SINR1

)

= min
(

1 + SINR1, 1 +
1

SINR1

)
≥ 1. (7.52)

#



Discussion and Future Work 8
We focused on the approximation in network information theory problems in
this thesis. While a complete and exact solution is not available for most of the
problems in multi-user information theory, we can make progress by seeking
approximate solutions with a guarantee on the gap from the optimal solution.
This approach, in its general setting, suggests to simplify the problem, obtain
optimal solution for the simplified problem, and translate optimal schemes as
well as bounding techniques to the main problem. In fact, the insight obtained
by analysis of the simplified problem can be used as a guideline in treating the
original problem.

This approach yields interesting results in various long standing problems
in network information theory, both in lossy data compression (e.g., see Chap-
ters 3 and 4, as well as [36]), and wireless communication (e.g., see Chap-
ter 6, and [15, 17]). Based on these, we hope that this technique can lead to
meaningful results in other difficult communication problems. A more unified
connection between such difficult problems and their simplified counterparts,
obtained by different kinds of determination, is expected in near future.

8.1 Approximation in Lossy Data Compression

In the first part of the thesis is dedicated to provide an approximate charac-
terization for the achievable rate region of the multiple description problem.
We provided approximate characterizations of the individual-description rate-
distortion function, as well as the achievable rate region, for the Gaussian SMD
problem. This is done by combining two inter-connected parts: the derivation
of an outer bound, and careful analysis of achievability schemes to generate in-
ner bounds. Either component alone will not be able to provide these results.
The new lower bound is obtained by generalizing Ozarow’s well-known tech-
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nique, and expanding the probability space of the original problem by many
random variables with special structure among them.

The symmetric multi-level diversity (SMLD) coding problem, which can be
understood as a lossless counterpart of the SMD problem, shed tremendous
light on the geometric structure of the SMD rate-distortion region. We use the
lossless SMLD coding rate region as a polytopic template for both inner and
outer bounds for the SMD rate-distortion region.

A similar analysis for the general Gaussian multiple description problem
(without posing symmetric distortion constraints), required understanding the
asymmetric lossless counterpart. We formulated the asymmetric multilevel
diversity coding problem, an asymmetric counterpart for the symmetric version
of the problem. A complete characterization of the achievable rate region is
provided for the three description case.

The optimal encoding scheme consists partitioning independent source se-
quences and applying linear network coding (binary xor) on the partitioned
subsequences. It turns out that using such a strategy of jointly encoding the
independent data streams is crucial, and the outer bound is not achievable
without using it, in contrast to the symmetric problem, in which the source-
separation coding is known to be optimal.

Using the intuition gained through analysis of the AMLD problem, we
studied the Gaussian asymmetric three description problem. Inner and outer
bounds for the achievable rate region are provided, and the difference between
them is shown to be bounded by small universal constants.

Though the general asymmetric Gaussian MD rate distortion region is hard
to characterize, it is satisfying to see that a simple coding architecture is al-
most optimal. With the increasing complexity of a source coding problem
being considered in information theory literature, the complexity of its loss-
less counterpart increases as well, and it can become an increasingly dominant
component of the overall problem. In this context, our work can be understood
as an attempt to make explicit connection between the lossless source coding
problem and its lossy counterpart.

8.2 Approximation in Multiple Unicast Wireless Networks

Interference management is perhaps the most fundamental open problem in
wireless networks. The recent progress in (approximate) characterization of
the interference channel capacity and the utility of the deterministic approach
inspired the questions studied in the second part of the thesis.

Even though the interference-relay networks studied in this work were spe-
cial, they revealed several new features needed for information transmission.
In particular, the interference neutralization and network flow decomposition
techniques were uncovered through the study of ZZ and ZS networks. We also
saw the importance of using structured lattice codes for interference neutral-
ization. Moreover, we believe that the neutralization technique is robust to
channel uncertainties and one could get partial neutralization in such situa-
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tions. This is a topic of ongoing work on this topic. We also believe that
the outer bounding techniques developed in this work could have more general
applicability in the wireless multiple-unicast problem.

8.3 Extensions

The main goal of studying various approximation results in network informa-
tion theory is to bring them in a common framework and unify this approach.
We hope this technique can lead to meaningful results in other difficult com-
munication problems.

In both data compression and wireless network contexts, the connection
between the original problem and the simplified one provides useful insight
to the coding scheme and outer bounding proof technique. We expect that
the connection between the deterministic (lossless) problems and their non-
deterministic (lossy) counterparts can be used on other information theoretic
problems, and the approach of using the former as a guideline in treating the
latter to be a fruitful path.

In particular, the lossy distributed source coding is one of the most im-
portant problems in data compression which has been open for many years.
Recent attempts in [35, 36] shows partial success in approximate characteriza-
tion of the rate region, for some specific class of correlation between the sources.
In these works, both ideas of transmitting bits above the distortion level (as
in the MD problem) and neutralization of interference without post-processing
(as in ZZ network) are utilized to approach the upper bound of the rate region.
However, it is not clear if these are enough to arrive at an approximation for
an arbitrarily correlated set of sources. A deep understanding of this problem
can be one interesting direction for further studies in this context.

A deterministic perspective to analyze larger networks allows us to have
a broader view of the significant phenomena happening in a network, instead
of struggling with small effect complicated issues. Such an overview and in-
sight obtained by analysis of the deterministic networks, can potentially be
used to discover new schemes for transmission over such networks. The long
time impact of this analysis can lead to performance improvement in various
communication networks, such as cellular networks and ad-hoc networks. The
relay-interference network is the simplest model studied in this context. The
two-unicast problem in arbitrary layered wireless networks would be a natural
next step arising out of our work, in order to analyze complex networks.

Another application of a deterministic study of information theoretic prob-
lems is to quantify how a simple scheme performs if applied in a difficult prob-
lem. In a recent work by Tian et. al. [81] it is shown that a single source-
channel separation architecture in networks is optimal for the distributed net-
work source coding problem and the general network unicast problem. More-
over, the separation approach is also approximately optimal for the general
network multicast problem under the “difference” distortion measure, that is
the distortion between the original and reconstructed source is only a function
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of their difference. These results are given in terms of rate-distortion trade-off,
however, clearly they also hold for lossless coding. These results provide strong
theoretical justification for using the separation approach in these scenarios.



Appendix for Chapter 2 A
A.1 Proof of Lemma 2.9

Note that i ≤ j ≤ L (v). Therefore, the decoding requirement for the decoder
with access to v implies that the reconstructed sequence Ûn

j (v) equals to Un
j

with high probability. Then

H(Γv|Un
i )

(a)
= H(Γv, Ûn

j (v)|Un
i )

= H(Γv, Un
j , Ûn

j (v)|Un
i )−H(Un

j |Γv, Ûn
j (v), Un

i )

≥ H(Γv, Un
j |Un

i )−H(Un
j |Ûn

j (v))
(b)
= H(Γv|Un

j ) + H(Un
j |Un

i )−H(Un
j |Ûn

j (v)), (A.1)

where (a) holds since Ûn
j (v) is function of Γv, for j ≤ L (v), and (b) is due to

the fact that Un
i is a subsequence of Un

j for j ≥ i. The underlying independent
distribution of Un

i and Un
j implies H(Un

j |Un
i ) = n(Hj −Hi). The last term in

(A.1) can be upper bounded using the Fano’s inequality [3] as

H(Un
j |Ûn

j (v)) ≤ hb(Pe) + Pe log(|Un
j |− 1) ≤ 1 + ncPe (A.2)

where Pe = Pr(Ûn
j (v) (= Un

j ) which tends to zero as n grows, hb(p) defined as

hB(p) = −p log2(p)− (1 − p) log2(1− p)

is the binary entropy function, and c = log |Uj | is a constant. The proof is
complete by setting δn = 1

n + cPe. #
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A.2 List of Corner points for Different Ordering in AMLD

In this section we list all of the corner points of the 3-description AMLD achiev-
able rate region for different orderings and regimes. This would be useful to
figure out the proper achievable scheme for each corner point, which is essen-
tially similar to those presented in Section 2.4. For each ordering and regime
listed in Table 2.2, we present a table, in which each row represents the in-
tersecting hyper-planes, and the coordinates of the rate triple for one corner
point.

It is shown that the supporting hyper-planes of the rate regions are charac-
terized by (AMLD-1)-(AMLD-5). Note that each of (AMLD-1), (AMLD-2), and
(AMLD-3) represent three constraints for different permutations of i, j, and k.
Hence, the rate region would be characterized by 11 hyper-planes. To sake of
brevity, we refer to these hyper-planes as in Table A.1. However, depending
on the underlying ordering and regime, some of the constraint might be domi-
nated by the others, and do not contribute in the characterization of the corner
points.

Table A.1: Short-hand notations for the hyper-planes in 3-description AMLD.

Short-cut Constraint
1 (AMLD-1) for i = 1
2 (AMLD-1) for i = 2
3 (AMLD-1) for i = 3
4 (AMLD-2) for i = 1, j = 2
5 (AMLD-2) for i = 1, j = 3
6 (AMLD-2) for i = 2, j = 3
7 (AMLD-3) for i = 1
8 (AMLD-3) for i = 2
9 (AMLD-3) for i = 3
10 (AMLD-4)
11 (AMLD-5)
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A.2.1 Ordering L1: L1(100) < L1(010) < L1(001) < L1(110) <
L1(101) < L1(011) < L1(111)

Table A.I.1: Ordering: L1, Regime: h3 ≥ h4 + h5

Planes R1 R2 R3

〈1, 4, 7〉 H1 H4 H7

〈1, 5, 7〉 H1 H4 + h6 + h7 H5

〈2, 4, 8〉 H1 + h3 + h4 H2 H7

〈2, 6, 8〉 H1 + h3 + h4 + h7 H2 H6

〈3, 5, 10〉 H1 + h4 + h5 H3 + h6 + h7 H3

〈3, 6, 10〉 H1 + h3 + h7 H2 + h4 + h5 + h6 H3

〈4, 7, 10〉 H1 + h4 H3 H3 + h5 + h6 + h7

〈4, 8, 10〉 H1 + h3 H2 + h4 H3 + h5 + h6 + h7

〈5, 7, 10〉 H1 + h4 H3 + h6 + h7 H3 + h5

〈6, 8, 10〉 H1 + h3 + h7 H2 + h4 H3 + h5 + h6

Table A.I.2: Ordering L1, Regime: h4 ≤ h3 ≤ h4 + h5

Planes R1 R2 R3

〈1, 4, 7〉 H1 H4 H7

〈1, 5, 7〉 H1 H4 + h6 + h7 H5

〈2, 4, 8〉 H1 + h3 + h4 H2 H7

〈2, 6, 8〉 H1 + h3 + h4 + h7 H2 H6

〈3, 5, 9〉 H1 + h4 + h5 H2 + h4 + h5 + h6 + h7 H3

〈3, 6, 9〉 H1 + h4 + h5 + h7 H2 + h4 + h5 + h6 H3

〈4, 7, 10〉 H1 + h4 H3 H3 + h5 + h6 + h7

〈4, 8, 10〉 H1 + h3 H2 + h4 H3 + h5 + h6 + h7

〈5, 7, 10〉 H1 + h4 H3 + h6 + h7 H3 + h5

〈5, 9, 10〉 H1 + h3 H3 + h6 + h7 H2 + h4 + h5

〈6, 8, 10〉 H1 + h3 + h7 H2 + h4 H3 + h5 + h6

〈6, 9, 10〉 H1 + h3 + h7 H3 + h6 H2 + h4 + h5

Table A.I.3: Ordering L1, Regime: h3 ≤ h4

Planes R1 R2 R3

〈1, 4, 7〉 H1 H4 H7

〈1, 5, 7〉 H1 H4 + h6 + h7 H5

〈2, 4, 8〉 H1 + h3 + h4 H2 H7

〈2, 6, 8〉 H1 + h3 + h4 + h7 H2 H6

〈3, 5, 9〉 H1 + h4 + h5 H2 + h4 + h5 + h6 + h7 H3

〈3, 6, 9〉 H1 + h4 + h5 + h7 H2 + h4 + h5 + h6 H3

〈4, 7, 8, 11〉 H1 + h3+h4
2 H2 + h3+h4

2 H2 + h3+h4
2 + h5 + h6 + h7

〈5, 7, 9, 11〉 H1 + h3+h4
2 H2 + h3+h4

2 + h6 + h7 H2 + h3+h4
2 + h5

〈6, 8, 11〉 H1 + h3+h4
2 + h7 H2 + h3+h4

2 H2 + h3+h4
2 + h5 + h6

〈6, 9, 11〉 H1 + h3+h4
2

+ h7 H2 + h3+h4
2

+ h6 H2 + h3+h4
2

+ h5
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A.2.2 Ordering L2: L2(100) < L2(010) < L2(001) < L2(110) <
L2(011) < L2(101) < L2(111)

Table A.II.1: Ordering L2, Regime: h3 ≥ h4 + h5

Planes R1 R2 R3

〈1, 4, 7〉 H1 H4 H7

〈1, 5, 7〉 H1 H4 + h7 H6

〈2, 4, 8〉 H1 + h3 + h4 H2 H7

〈2, 6, 8〉 H1 + h3 + h4 + h6 + h7 H2 H5

〈3, 5, 10〉 H1 + h4 + h5 + h6 H3 + h7 H3

〈3, 6, 10〉 H1 + h3 + h6 + h7 H2 + h4 + h5 H3

〈4, 7, 10〉 H1 + h4 H3 H3 + h5 + h6 + h7

〈4, 8, 10〉 H1 + h3 H2 + h4 H3 + h5 + h6 + h7

〈5, 7, 10〉 H1 + h4 H3 + h7 H3 + h5 + h6

〈6, 8, 10〉 H1 + h3 + h6 + h7 H2 + h4 H3 + h5

Table A.II.2: Ordering L2, Regime: h4 ≤ h3 ≤ h4 + h5

Planes R1 R2 R3

〈1, 4, 7〉 H1 H4 H7

〈1, 5, 7〉 H1 H4 + h7 H6

〈2, 4, 8〉 H1 + h3 + h4 H2 H7

〈2, 6, 8〉 H1 + h3 + h4 + h6 + h7 H2 H5

〈3, 5, 9〉 H1 + h4 + h5 + h6 H2 + h4 + h5 + h7 H3

〈3, 6, 9〉 H1 + h4 + h5 + h6 + h7 H2 + h4 + h5 H3

〈4, 7, 10〉 H1 + h4 H3 H3 + h5 + h6 + h7

〈4, 8, 10〉 H1 + h3 H2 + h4 H3 + h5 + h6 + h7

〈5, 7, 10〉 H1 + h4 H3 + h7 H3 + h5 + h6

〈5, 9, 10〉 H1 + h3 + h6 H3 + h7 H2 + h4 + h5

〈6, 8, 10〉 H1 + h3 + h6 + h7 H2 + h4 H3 + h5

〈6, 9, 10〉 H1 + h3 + h6 + h7 H3 H2 + h4 + h5

Table A.II.3: Ordering L2, Regimes: h3 ≤ h4

Planes R1 R2 R3

〈1, 4, 7〉 H1 H4 H7

〈1, 5, 7〉 H1 H4 + h7 H6

〈2, 4, 8〉 H1 + h3 + h4 H2 H7

〈2, 6, 8〉 H1 + h3 + h4 + h6 + h7 H2 H5

〈3, 5, 9〉 H1 + h4 + h5 + h6 H2 + h4 + h5 + h7 H3

〈3, 6, 9〉 H1 + h4 + h5 + h6 + h7 H2 + h4 + h5 H3

〈4, 7, 8, 11〉 H1 + h3+h4
2 H2 + h3+h4

2 H2 + h3+h4
2 + h5 + h6 + h7

〈5, 7, 11〉 H1 + h3+h4
2 H2 + h3+h4

2 + h7 H2 + h3+h4
2 + h5 + h6

〈5, 9, 11〉 H1 + h3+h4
2 + h6 H2 + h3+h4

2 + h7 H2 + h3+h4
2 + h5

〈6, 8, 9, 11〉 H1 + h3+h4
2 + h6 + h7 H2 + h3+h4

2 H2 +
h3+ 1

2 h4
2 + h5
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A.2.3 Ordering L3: L3(100) < L3(010) < L3(001) < L3(101) <
L3(110) < L3(011) < L3(111)

Table A.III.1: Ordering L3, Regimes: h3 ≥ h4 + h5 and h4 ≤ h3 ≤ h4 + h5

Planes R1 R2 R3

〈1, 4, 7〉 H1 H5 H4 + h6 + h7

〈1, 5, 7〉 H1 H7 H4

〈2, 4, 8〉 H1 + h3 + h4 + h5 H2 H7

〈2, 6, 8〉 H1 + h3 + h4 + h5 + h7 H2 H6

〈3, 5, 7, 10〉 H1 + h4 H3 + h5 + h6 + h7 H3

〈3, 6, 10〉 H1 + h3 + h7 H2 + h4 + h5 + h6 H3

〈4, 7, 10〉 H1 + h4 H3 + h5 H3 + h6 + h7

〈4, 8, 10〉 H1 + h3 H2 + h4 + h5 H3 + h6 + h7

〈6, 8, 10〉 H1 + h3 + h7 H2 + h4 + h5 H3 + h6

Table A.III.2: Ordering L3, Regime: h3 ≤ h4

Planes R1 R2 R3

〈1, 4, 7〉 H1 H5 H4 + h6 + h7

〈1, 5, 7〉 H1 H7 H4

〈2, 4, 8〉 H1 + h3 + h4 + h5 H2 H7

〈2, 6, 8〉 H1 + h3 + h4 + h5 + h7 H2 H6

〈3, 5, 9〉 H1 + h4 H2 + h4 + h5 + h6 + h7 H3

〈3, 6, 9〉 H1 + h4 + h7 H2 + h4 + h5 + h6 H3

〈4, 7, 8, 11〉 H1 + h3+h4
2 H2 + h3+h4

2 + h5 H2 + h3+h4
2 + h6 + h7

〈5, 7, 9, 11〉 H1 + h3+h4
2 H2 + h3+h4

2 + h5 + h6 + h7 H2 + h3+h4
2

〈6, 8, 11〉 H1 + h3+h4
2 + h7 H2 + h3+h4

2 + h5 H2 + h3+h4
2 + h6

〈6, 9, 11〉 H1 + h3+h4
2 + h7 H2 + h3+h4

2 + h5 + h6 H2 + h3+h4
2
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A.2.4 Ordering L4: L4(100) < L4(010) < L4(001) < L4(101) <
L4(011) < L4(110) < L4(111)

Table A.IV.1: Ordering L4, Regimes: h3 ≥ h4 + h5 and h4 ≤ h3 ≤ h4 + h5

Planes R1 R2 R3

〈1, 4, 7〉 H1 H6 H4 + h7

〈1, 5, 7〉 H1 H7 H4

〈2, 4, 8〉 H1 + h3 + h4 + h5 + h6 H2 H5 + h7

〈2, 6, 8〉 H1 + h3 + h4 + h5 + h6 + h7 H2 H5

〈3, 5, 7, 10〉 H1 + h4 H3 + h5 + h6 + h7 H3

〈3, 6, 8, 10〉 H1 + h3 + h6 + h7 H2 + h4 + h5 H3

〈4, 7, 10〉 H1 + h4 H3 + h5 + h6 H3 + h7

〈4, 8, 10〉 H1 + h3 + h6 H2 + h4 + h5 H3 + h7

Table A.IV.2: Ordering L4, Regime: h3 ≤ h4

Planes R1 R2 R3

〈1, 4, 7〉 H1 H6 H4 + h7

〈1, 5, 7〉 H1 H7 H4

〈2, 4, 8〉 H1 + h3 + h4 + h5 + h6 H2 H5 + h7

〈2, 6, 8〉 H1 + h3 + h4 + h5 + h6 + h7 H2 H5

〈3, 5, 9〉 H1 + h4 H2 + h4 + h5 + h6 + h7 H3

〈3, 6, 9〉 H1 + h4 + h6 + h7 H2 + h4 + h5 H3

〈4, 7, 11〉 H1 + h3+h4
2 H2 + h3+h4

2 + h5 + h6 H2 + h3+h4
2 + h7

〈4, 8, 11〉 H1 + h3+h4
2 + h6 H2 + h3+h4

2 + h5 H2 + h3+h4
2 + h7

〈5, 7, 9, 11〉 H1 + h3+h4
2 H2 + h3+h4

2 + h5 + h6 + h7 H2 + h3+h4
2

〈6, 8, 9, 11〉 H1 + h3+h4
2 + h6 + h7 H2 + h3+h4

2 + h5 H2 + h3+h4
2
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A.2.5 Ordering L5: L5(100) < L5(010) < L5(001) < L5(011) <
L5(110) < L5(101) < L5(111)

Table A.V.1: Ordering L5, Regimes: h3 ≥ h4 + h5 and h4 ≤ h3 ≤ h4 + h5

Planes R1 R2 R3

〈1, 4, 7〉 H1 H5 H7

〈1, 5, 7〉 H1 H5 + h7 H6

〈2, 4, 8〉 H1 + h3 + h4 + h5 H2 H4 + h6 + h7

〈2, 6, 8〉 H1 + h3 + h4 + h5 + h6 + h7 H2 H4

〈3, 5, 10〉 H1 + h4 + h5 + h6 H3 + h7 H3

〈3, 6, 8, 10〉 H1 + h3 + h5 + h6 + h7 H2 + h4 H3

〈4, 7, 10〉 H1 + h4 + h5 H3 H3 + h6 + h7

〈4, 8, 10〉 H1 + h3 + h5 H2 + h4 H3 + h6 + h7

〈5, 7, 10〉 H1 + h4 + h5 H3 + h7 H3 + h6

Table A.V.2: Ordering L5, Regime: h3 ≤ h4

Planes R1 R2 R3

〈1, 4, 7〉 H1 H5 H7

〈1, 5, 7〉 H1 H5 + h7 H6

〈2, 4, 8〉 H1 + h3 + h4 + h5 H2 H4 + h6 + h7

〈2, 6, 8〉 H1 + h3 + h4 + h5 + h6 + h7 H2 H4

〈3, 5, 9〉 H1 + h4 + h5 + h6 H2 + h4 + h7 H3

〈3, 6, 9〉 H1 + h4 + h5 + h6 + h7 H2 + h4 H3

〈4, 7, 8, 11〉 H1 + h3+h4
2 + h5 H2 + h3+h4

2 H2 + h3+h4
2 + h6 + h7

〈5, 7, 11〉 H1 + h3+h4
2 + h5 H2 + h3+h4

2 + h7 H2 + h3+h4
2 + h6

〈5, 9, 11〉 H1 + h3+h4
2 + h5 + h6 H2 + h3+h4

2 + h7 H2 + h3+h4
2

〈6, 8, 9, 11〉 H1 + h3+h4
2 + h5 + h6 + h7 H2 + h3+h4

2 H2 + h3+h4
2
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A.2.6 Ordering L6: L6(100) < L6(010) < L6(001) < L6(011) <
L6(101) < L6(110) < L6(111)

Table A.VI.1: Ordering L6, Regimes: h3 ≥ h4 + h5 and h4 ≤ h3 ≤ h4 + h5

Planes R1 R2 R3

〈1, 4, 7〉 H1 H6 H5 + h7

〈1, 5, 7〉 H1 H7 H5

〈2, 4, 8〉 H1 + h3 + h4 + h5 + h6 H2 H4 + h7

〈2, 6, 8〉 H1 + h3 + h4 + h5 + h6 + h7 H2 H4

〈3, 5, 7, 10〉 H1 + h4 + h5 H3 + h6 + h7 H3

〈3, 6, 8, 10〉 H1 + h3 + h5 + h6 + h7 H2 + h4 H3

〈4, 7, 10〉 H1 + h4 + h5 H3 + h6 H3 + h7

〈4, 8, 10〉 H1 + h3 + h5 + h6 H2 + h4 H3 + h7

Table A.VI.2: Ordering L6, Regime: h3 ≤ h4

Planes R1 R2 R3

〈1, 4, 7〉 H1 H6 H5 + h7

〈1, 5, 7〉 H1 H7 H5

〈2, 4, 8〉 H1 + h3 + h4 + h5 + h6 H2 H4 + h7

〈2, 6, 8〉 H1 + h3 + h4 + h5 + h6 + h7 H2 H4

〈3, 5, 9〉 H1 + h4 + h5 H2 + h4 + h6 + h7 H3

〈3, 6, 9〉 H1 + h4 + h5 + h6 + h7 H2 + h4 H3

〈4, 7, 11〉 H1 + h3+h4
2 + h5 H2 + h3+h4

2 + h6 H2 + h3+h4
2 + h7

〈4, 8, 11〉 H1 + V
2 + h5 + h6 H2 + h3+h4

2 H2 + h3+h4
2 + h7

〈5, 7, 9, 11〉 H1 + h3+h4
2 + h5 H2 + h3+h4

2 + h6 + h7 H2 + h3+h4
2

〈6, 8, 9, 11〉 H1 + h3+h4
2 + h5 + h6 + h7 H2 + h3+h4

2 H2 + h3+h4
2
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A.2.7 Ordering L7 : L7(100) < L7(010) < L7(110) < L7(001) <
L7(101) < L7(011) < L7(111)

Table A.VII.1: Ordering L7, Regime: h3 ≥ h5

Planes R1 R2 R3

〈1, 4, 7, 10〉 H1 H3 H7

〈1, 5, 7, 10〉 H1 H3 + h6 + h7 H5

〈2, 4, 8, 10〉 H1 + h3 H2 H7

〈2, 6, 8, 10〉 H1 + h3 + h7 H2 H6

〈3, 5, 10〉 H1 + h5 H3 + h6 + h7 H4

〈3, 6, 10〉 H1 + h3 + h7 H2 + h5 + h6 H4

Table A.VII.2: Ordering L7, Regimes: h3 ≤ h5

Planes R1 R2 R3

〈1, 4, 7, 10〉 H1 H3 H7

〈1, 5, 7, 10〉 H1 H3 + h6 + h7 H5

〈2, 4, 8, 10〉 H1 + h3 H2 H7

〈2, 6, 8, 10〉 H1 + h3 + h7 H2 H6

〈3, 5, 9〉 H1 + h5 H2 + h5 + h6 + h7 H4

〈3, 6, 9〉 H1 + h5 + h7 H2 + h5 + h6 H4

〈5, 9, 10〉 H1 + h3 H3 + h6 + h7 H2 + h4 + h5

〈6, 9, 10〉 H1 + h3 + h7 H3 + h6 H2 + h4 + h5
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A.2.8 Ordering L8: L8(100) < L8(010) < L8(110) < L8(001) <
L8(011) < L8(101) < L8(111)

Table A.VIII.1: Ordering L8, Regime: h3 ≥ h5

Planes R1 R2 R3

〈1, 4, 7, 10〉 H1 H3 H7

〈1, 5, 7, 10〉 H1 H3 + h7 H6

〈2, 4, 8, 10〉 H1 + h3 H2 H7

〈2, 6, 8, 10〉 H1 + h3 + h6 + h7 H2 H5

〈3, 5, 10〉 H1 + h5 + h6 H3 + h7 H4

〈3, 6, 10〉 H1 + h3 + h6 + h7 H2 + h5 H4

Table A.VIII.2: Ordering L8, Regimes: h3 ≤ h5

Planes R1 R2 R3

〈1, 4, 7, 10〉 H1 H3 H7

〈1, 5, 7, 10〉 H1 H3 + h7 H6

〈2, 4, 8, 10〉 H1 + h3 H2 H7

〈2, 6, 8, 10〉 H1 + h3 + h6 + h7 H2 H5

〈3, 5, 9〉 H1 + h5 + h6 H2 + h5 + h7 H4

〈3, 6, 9〉 H1 + h5 + h6 + h7 H2 + h5 H4

〈5, 9, 10〉 H1 + h3 + h6 H3 + h7 H2 + h4 + h5

〈6, 9, 10〉 H1 + h3 + h6 + h7 H3 H2 + h4 + h5



Appendix for Chapter 3 B
B.1 Proof of Lemma 3.12

Lemma. For any given non-increasing distortion vector D, its enhanced dis-
tortion vector D∗ defined in (3.9) satisfies the following properties.

• It imposes more stringent distortion constraints, i.e., D∗
α ≤ Dα, for α =

1, 2, . . . , K.

• It is a non-increasing vector, i.e., D∗
1 ≥ D∗

2 ≥ · · · ≥ D∗
K .

• It induces a non-increasing Φ sequence, i.e., Φ1(D∗
1) ≥ Φ2(D∗

2) ≥ · · · ≥
ΦK(D∗

K).

Proof. Note that the condition Φα(Dα) > Φα−1(D∗
α−1) can be written as Dα >

(α−1)D∗
α−1

α−D∗
α−1

. Moreover, the function Φα(D) is an increasing function for α =
1, . . . , K and D ∈ (0, 1). Therefore, (3.9) can be rewritten as

D∗
1 = D1,

D∗
α = min

{
(α− 1)D∗

α−1

α−D∗
α−1

, Dα

}
, α = 2, 3, . . . , K, (B.1)

which directly implies D∗
α ≤ Dα ≤ 1. Also, since D∗

α−1 ≤ 1, we have

D∗
α ≤

(α− 1)D∗
α−1

α−D∗
α−1

≤ D∗
α−1, (B.2)

which proves the second property. In order to show the last property, we again
use monotonicity of Φα(D) and (B.2), and write

Φα−1(D∗
α−1) =

(α− 1)D∗
α−1

1−D∗
α−1

= Φα

(
(α− 1)D∗

α−1

α−D∗
α−1

)
≥ Φα(D∗

α).
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B.2 Proof of Lemma 3.30

Lemma. Let D∗ be the enhanced distortion vector associated with any valid
distortion vector D, then the random variables defined by (3.33), (3.34), (3.35)
and (3.36) exist, and they satisfy

[
X − (X |Y|v|,j ; j : vj = 1)

]2 = D∗
|v|, |v| = 1, 2, . . . , K − 1,

[X − (X |{YK−1,j; j ∈ IK}, YK)]2 = D∗
K .

Proof. First note that Φα(D∗
α) ≤ Φα−1(D∗

α−1) for any enhanced distortion
vector due to Lemma 3.12. , and it is then clear that (3.35) and (3.36) indeed
specify a valid set of non-negative variances, and therefore, Yα,k variables exist.
In order to verify the condition in (3.37), notice that linear minimum mean
square-error estimation of X based on {Y|v|,j; j : vj = 1} is

X̂ =
∑

j:vj=1

βjY|v|,j, (B.3)

where βj is the estimation coefficient for the j-th observation, and symmetry
of the Y|v|,j ’s implies βj = βj′ = β for j : vj = 1 and j′ : vj′ = 1. Moreover, we
have

[(X − X̂)Y|v|,j] = 0, j : vj = 1

which together with [Y|v|,jY|v|,j′ ] = 1 and [Y 2
|v|,j] = 1 + Φα(D∗

|v|) imply
β(|v| + Φα(D∗

|v|)) = 1. Hence, the estimation error would be

[(X − X̂)]2 = 1− β|v| = D∗
|v|.

Finally, the condition in (3.38), we first recall from definition of YK in (3.34)
that

[YKYK−1,j ] = 0, j ∈ IK ,

[YKX ] =
ΦK−1(D∗

K−1)
K + ΦK−1(D∗

K−1)
,

[Y 2
K ] =

ΦK−1(D∗
K−1)

K + ΦK−1(D∗
K−1)

+ σ̃2
K . (B.4)

Then, it is easy to show that

[X |{YK−1,j; j ∈ IK}, YK ] =
1

K + ΦK−1(D∗
K−1)

K∑

j=1

YK−1,j

+
(1 −D∗

K)[ΦK−1(D∗
K−1)− ΦK(D∗

K)]
ΦK−1(D∗

K−1)
YK ,

which together with (B.4) give us the estimation error claimed in the lemma.
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B.3 Proof of Lemma 3.32

Define Za = Na + Nb and Zb = Nb. To prove the first statement, we consider
the following chain of inequalities

I(Γv; Y n
a ) = nh(Ya)− h(Y n

a |Γv)
= nh(Ya)− h(Xn + Zn

a |Γv)

= nh(Ya)− h(Xn + Zn
a − X̂n

v |Γv)
(a)
≥ nh(Ya)− h(Xn + Zn

a − X̂n
v )

(b)
≥ nh(Ya)−

n∑

i=1

h[X(i) + Za(i)− X̂v(i)]

(c)
≥ nh(Ya)−

n∑

i=1

1
2

log
{
(2πe) [(X(i) + Za(i)− X̂v(i))2]

}

= nh(Ya)−
n∑

i=1

1
2

log
[
(2πe)( d(X(i), X̂v(i)) + da)

]
,

where X̂n
v is the reconstruction with descriptions Γv = {Γi; i : vi = 1}, and its

i-th position is denoted as X̂v(i). The inequality (a) is because conditioning
reduces entropy, (b) is because of the chain rule for differential entropy and the
fact that conditioning reduces entropy, and (c) is because Gaussian distribution
maximizes the differential entropy for a given second moment. Since log(·) is
a concave function, we have

n∑

i=1

1
2

log
[
(2πe)( d(X(i), X̂v(i)) + da)

]
≤ n

2
log
[
2πe
(

d(Xn, X̂n
v ) + da

)]
.

It follows

I(Γv ; Y n
a ) ≥ nh(Ya)− n

2
log
[
2πe
(

d(Xn, X̂n
v ) + da

)]

≥ nh(Ya)− n

2
log
[
2πe(D|v| + da)

]

=
n

2
log

1 + da

D|v| + da
,

which is the first claim in the lemma.
To prove the second claim, we write the following

I(Γv; Y n
b )− I(Γv; Y n

a ) = nh(Yb)− nh(Ya) + h(Y n
a |Γv)− h(Y n

b |Γv).

For the latter two terms, we have

h(Y n
a |Γv)− h(Y n

b |Γv)
(a)
= h(Y n

a |Γv)− h(Y n
b |Nn

a ,Γv)
(b)
= h(Y n

a |Γv)− h(Y n
a |Nn

a ,Γv)
= I(Y n

a ; Nn
a |Γv),
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where (a) is because Nn
a is independent of Y n

b and Γv; (b) is by the definition
of Ya. Continuing the chain of inequalities, we have

I(Y n
a ; Nn

a |Γv)
(a)
= h(Nn

a )− h(Nn
a |Xn + Nn

a + Nn
b ,Γv)

= h(Nn
a )− h(Nn

a |Xn + Nn
b + Nn

a , X̂n
v ,Γv)

(b)
≥ h(Nn

a )− h(Nn
a |Xn − X̂n

v + Nn
a + Nn

b )
(c)
≥

n∑

i=1

[
h(Na(i))− h

(
Na(i)|X(i)− X̂v(i) + Na(i) + Nb(i)

)]

=
n∑

i=1

I
(
Na(i); X(i)− X̂v(i) + Nb(i) + Na(i)

)

(d)
≥

n∑

i=1

1
2

log
d(X(i), X̂v(i)) + da

d(X(i), X̂v(i)) + db

(e)
≥ n

2
log

D|v| + da

D|v| + db
,

where (a) is because Na is independent of Γv; (b) is because conditioning
reduces entropy; (c) is by applying the chain rule, and the facts that Nn

a is an
i.i.d. sequence and conditioning reduces entropy; (d) is by applying the mutual
information game result (see page 263, [3], as well as [80]) that Gaussian noise
is the worst additive noise under a variance constraint, and taking Na(i) as
channel input; finally (e) is due to the convexity and monotonicity of log x+da

x+db

in x ∈ (0,∞) when da ≥ db ≥ 0. This completes the proof for the second claim.
A similar line of argument was used in [28] to derive a sum rate lower bound

for a system with two levels of distortion constraints. However, Lemma 3.32
generalizes that result since there exists only one auxiliary random variable in
the setting of [28], but there are two auxiliary random variables Ya and Yb in
the current setting. #

B.4 Proof of Corollary 3.33

To facilitate discussion, define the following index set of loose constraints

CL = {α : D∗
α < Dα},

and it follows that Cc
L = IK\CL; note that 1 ∈ Cc

L. For a given α ∈ CL, define
N(α) as the index of lower neighboring distortion constraint to α that is not
loose, i.e.,

N(α) = max
k<α

k∈Cc
L

k.

We may distinguish the following two cases for clarity.
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Case I. First consider the case when the distortion vector is given such
that it satisfies the conditions

Φα−1(Dα−1) ≥ Φα(Dα), (B.5)

for all α = 2, 3, ..., K, where we take D0 ! 1. Note this implies Dα = D∗
α, for

α = 1, 2, ..., K, and hence CL = ∅. In this case we choose ďα = Φα(Dα), for
α = 1, 2, ..., K − 1, which is clearly valid. Evaluating RSMD(D, d) for d = ď,
we have

RSMD(D, ď) =
1
2

K∑

α=1

1
α

log
(1 + ďα)(Dα + ďα−1)
(1 + ďα−1)(Dα + ďα)

=
1
2

K−1∑

α=2

1
α

log

[
Dα−1

Dα

1 + (α− 1)Dα

1 + (α− 2)Dα−1

α− 1−Dα + Dα
Dα−1

α+ 1−Dα

]

+
1
2

log
1

D1(2−D1)
+

1
2

log

[
DK−1

DK

K − 1−DK + DK
DK−1

1 + (K − 2)DK−1

]

=
1
2

K∑

α=1

1
α

log
Dα−1

Dα
+

1
2

K−1∑

α=2

1
α

log

[
1 + (α− 1)Dα

1 + (α− 2)Dα−1

α− 1−Dα + Dα
Dα−1

α+ 1−Dα

]

+
1
2

log
1

(2−D1)
+

1
2

log

[
K − 1−DK + DK

DK−1

1 + (K − 2)DK−1

]

=
1
2

K∑

α=1

1
α

log
Dα−1

Dα
+

1
2

log
1

(2 −D1)

+
1
2

K−1∑

α=2

[
1
α
− 1
α+ 1

] log (1 + (α− 1)Dα)

+
1
2

K−1∑

α=2

1
α

log
α− 1−Dα + Dα

Dα−1

α+ 1−Dα
+

1
2

log
(

K − 1−DK +
DK

DK−1

)

(a)
≥ 1

2

K∑

α=1

1
α

log
Dα−1

Dα
+

1
2

log
1

(2 −D1)
+

1
2

K−1∑

α=2

1
α

log
α− 1

α+ 1−Dα

+
1
2

log (K − 1)

=
1
2

K∑

α=1

1
α

log
Dα−1

Dα
− 1

2

K∑

α=2

1
α− 1

log(α−Dα−1) +
K

2

K∑

α=2

1
α

log(α − 1)

≥1
2

K∑

α=1

1
α

log
Dα−1

Dα
− 1

2

K∑

α=2

1
α− 1

logα+
1
2

K∑

α=2

1
α

log(α− 1)

=
1
2

K∑

α=1

1
α

log
D∗

α−1

D∗
α

− 1
2

K∑

α=2

1
α− 1

logα+
1
2

K∑

α=2

1
α

log(α− 1), (B.6)
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where in (a) we used Dα
Dα−1

≥ Dα, and omitted the third term which is positive.
Thus if (B.5) holds, we have

RSMD(D) ≥ RSMD(D, ď) ≥ ŘSMD(D∗). (B.7)

It is also clear that since RSMD(D) ≥ ŘSMD(D∗), since it is optimized for d.
Case II. For the case when (B.5) does not hold, then we choose ďα =

Φα(Dα), for α ∈ Cc
L as before; however for any α ∈ CL, we choose ďα =

ΦN(α)(DN(α)). Note that with such a choice, we have dα = dα−1 for α ∈ CL,
and therefore,

log
(1 + dα)(Dα + dα−1)
(1 + dα−1)(Dα + dα)

= 0, α ∈ CL.

If we replace Dα with D∗
α in the left hand side of the above equation, the

equality still holds. Moreover, it is easy to verify that this choice of ď is
equivalent to choosing

dα = Φα(D∗
α), α ∈ IK−1.

Thus by using this particular choice of (ď1, ď2, ..., ďK−1), we have

RSMD(D, ď) =
1
2

K∑

α=1

1
α

log
(1 + ďα)(Dα + ďα−1)
(1 + ďα−1)(Dα + ďα)

=
1
2

K∑

α=1

1
α

log
(1 + ďα)(D∗

α + ďα−1)
(1 + ďα−1)(D∗

α + ďα)
,

and the exact same derivation holds as in the case when (B.5) holds, with D∗
α

replacing Dα. This completes the proof. #

B.5 Proof of Theorem 3.41

We first give another characterization for R̂PPR
SMD(Y ).

Definition B.1. Let R̃PPR
SMD(Y ) be the set of all R ≥ 0 such that for all A ∈ K

+

but A (= 0

A · R ≥
K∑

α=1

fα(A)H̃α(Y ), (B.8)

where fα(A) is defined in (3.5) of Section 3.2, and H̃α(Y ) is defined in (3.3)
and (3.4).

The following theorem extracted from [30].

Theorem B.2 ([30] Theorem 2).
R̃PPR

SMD(Y ) = R̂PPR
SMD(Y ).
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Remark B.3. In the definition of R̃PPR
SMD(Y ), the requirement that R ≥ 0 can

be safely removed without loss of generality when H̃α(Y ) ≥ 0. To see this, let
A = (1, 0, ..., 0), then (B.8) reduces to R1 ≥ H̃1(Y ) by applying Lemma 3.11.

In order to prove Theorem 3.41, consider the following. For a fixed set
of (generalized symmetric) random variables {{Yα,k;α ∈ IK−1, k ∈ IK}, YK},
since both RSMD(D) and R̂PPR

SMD(Y ) are convex, they can be characterized by
the supporting hyper-planes. As such if we can prove that for any A ∈ K

+ and
A (= 0,

min
R∈RSMD(D)

A · R ≤ min
R∈R̂PPR

SMD(Y )
A · R, (B.9)

holds, then it follows that R̂PPR
SMD(Y ) ⊆ RSMD(D), and hence, R̂PPR

SMD(Y ) is an
achievable region.

By Theorem B.2, we have

min
R∈R̂PPR

SMD(Y )
A · R =

K∑

α=1

fα(A)H̃α(Y ). (B.10)

Thus it suffices to prove that for any A ∈ K
+ and A (= 0, there always exists a

rate vector in the achievable rate region that satisfy (B.10) with equality, i.e.,
there exists R ∈ RSMD(D) such that

A · R =
K∑

α=1

fα(A)H̃α(Y ). (B.11)

This would imply (B.9), which further implies the result of Theorem 3.41.
In order to show (B.11), first fix a set of (generalized symmetric) random

variables {{Yα,k;α ∈ IK−1, k ∈ IK}, YK}. Then, for a given A ≥ 0, let lα be
the non-negative integer defined in Lemma 3.7 for the α-level. For any α ∈ IK ,
set

Rα,k =

{
0 if 1 ≤ k ≤ lα

H̃α
α−lα

if lα + 1 ≤ k ≤ K.
(B.12)

In fact, the rate Rα,k will be the rate assigned to the α-th layer for the k-th
description. Denote (Rα,1, Rα,2, ..., Rα,K) by Rα. It is clear from the original
PPR multilayer scheme [26] that if each of the description has rate approxi-
mately H̃α/α at the α-th level, then any of the α descriptions can guarantees
decoding with high probability. However, because the first lα descriptions are
not given any rate for the α-th layer in (B.12), this can not be achieved directly
without proper coding.

The generalized coding scheme is by combining the original PPR multilayer
scheme with proper MDS channel codes. The PPR multilayer scheme is still
used as the main encoding step, and let us denote the codeword (the output
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index written in a large enough appropriate alphabet) for the α-th level for
description k as Cα,k, for α ∈ IK . A post-coding packaging step is now added
at the α-th layer as follows. The last K − lα codeword indices are written in
the descriptions as in the original scheme. Each of the first lα codeword indices
Cα,k, k = 1, 2, ..., lα is encoded by a (K− lα,α− lα) MDS code, and each of the
resulting codeword (index) is written into one of the last K − lα description.
This results in an additional rate H̃α/α(α− lα) in each description. Note that
since lα ≤ α − 1, the above MDS code rate is always well defined. It is clear
that the rate of the k-th description, k > lα, for the α-th layer is

Rα,k =
H̃α

α
+

H̃α

α(α− lα)
lα =

H̃α

α− lα
,

as we claimed.
Consider a decoder v with |v| = k at which the set of descriptions Γv is

available, and let α ∈ Ik be a specific level. The pre-decoding unpackaging
procedure is as follows. Define v and v as

vi =
{

vi if i ≤ lα
0 if i > lα,

and

vi =
{

0 if i ≤ lα
vi if i > lα,

It is clear that v = v + v, and k = |v| + |v|.
The descriptions Γv clearly can recover their respective codewords, i.e., Cα,i

for i such that vi = 1. However, since |v| ≤ lα, we have also |v| = k − |v| ≥
α − |v| ≥ α − lα pieces of the MDS encoded Cα,i for i ∈ Ilα , which can be
correctly decoded by the property of the MDS code. Therefore, we can recover
all corresponding codewords Cα,i for all i satisfying vi = 1. This holds true
for all α = 1, 2, . . . , k, and then the main decoding step in the PPR multilayer
scheme can be applied.

We remark here that the decoding can be easily improved, because if |v| <
lα, there is additional information that the main decoding step is not utilizing.
However the above simple procedure suffices for proving the current theorem.

It remains to show (B.11) is true with the given rate vector, the proof of
which follows closely the step in [30] for the proof of Theorem B.2. Let {c(v)}
be an optimal α-resolution for A. We have

A · Rα =
∑

v∈Ωα
K

cα(v)(v · Rα) + (A−
∑

v∈Ωα
K

cα(v)v) · Rα.

By Lemma 3.6, for any v where |v| = α such that cα(v) > 0, vi = 1 for
i = 1, 2, . . . , lα; moreover, exactly α− lα of the remaining components are 1’s.
Since the first lα components of Rα are 0’s, and the remaining components are
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equal, we have

v · Rα = (α− lα)
H̃α

α− lα
= H̃α, for v : cα(v) > 0.

It follows that

∑

v∈Ωα
K

cα(v)(v · Rα) = H̃α

∑

v∈Ωα
K

cα(v) = fα(A)H̃α.

Since the vector

A−
∑

v∈Ωα
K

cα(v)v = A− Ă

has zeros in the last K − lα components, and Rα has zeros in the complement
positions, we have

(A−
∑

v∈Ωα
K

cα(v)v) · Rα = 0.

It follows

A · Rα = fα(A)H̃α.

Summing over α ∈ IK now completes the proof since Ri =
∑K

α=1 Rα,i. #

B.6 Proof of Corollary 3.44

Corollary. For the Gaussian source, ŘSMD(D∗) establishes an outer bound
for the SMD rate-distortion region, i.e.,

RSMD(D) ⊆ RSMD(D) ⊆ ŘSMD(D∗). (B.13)

Proof. The proof follows that for Corollary 3.33, however we directly use D∗ to
replace D. Let ďα = Φα(D∗

α) for α = 1, 2, ..., K − 1. Let R = (R1, . . . , RK) ∈
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RSMD(D) be an achievable rate tuple. We start with the result of Theorem 3.23.

K∑

i=1

AiRi ≥
1
2

K∑

α=1

fα(A) log
(1 + ďα)(Dα + ďα−1)
(1 + ďα−1)(Dα + ďα)

(a)
≥ 1

2

K∑

α=1

fα(A) log
(1 + ďα)(D∗

α + ďα−1)
(1 + ďα−1)(D∗

α + ďα)

=
1
2

K−1∑

α=2

fα(A)

[
log

D∗
α−1

D∗
α

+ log
1 + (α− 1)D∗

α

1 + (α− 2)D∗
α−1

+ log
α− 1−D∗

α + D∗
α

D∗
α−1

1 + α−D∗
α

]

+
1
2
f1(A) log

1
D∗

1(2 −D∗
1)

+
1
2
fK(A) log



D∗
K−1

D∗
K

K − 1−D∗
K + D∗

K
D∗

K−1

1 + (K − 2)D∗
K−1





(b)
≥ 1

2

K∑

α=1

fα(A) log
D∗

α−1

D∗
α

+
1
2

K−1∑

α=2

[
fα−1(A)− fα(A)

]
log(1 + (α− 1)D∗

α)

− 1
2

K∑

α=2

fα−1(A) log(α−D∗
α−1) +

1
2

K∑

α=2

fα(A) log(α − 1)

(c)
≥ 1

2

K∑

α=1

fα(A) log
D∗

α−1

D∗
α

− 1
2

K∑

α=2

fα−1(A) log(α−D∗
α−1)

+
1
2

K∑

α=2

fα(A) log(α− 1), (B.14)

where (a) follows from the fat that (x+ ďα−1)/(x+ ďα) is an increasing function
and the fact that Dα ≥ D∗

α due to Lemma 3.12; (b) is true because D∗
α

D∗
α−1

≥ D∗
α;

and (c) we omitted the second term, because Lemma 3.10 implies fα(A) ≤
α−1
α fα−1(A) ≤ fα−1(A). This completes the proof.

B.7 Proof of Corollary 3.45

The key idea is the following: though we have an uncountable number of
supporting hyper-planes to characterize ŘSMD(D∗), if there exists a set SR ⊆
ŘSMD(D∗) with finite number of elements, such that for each A, inequality
(3.50) can be satisfied with equality for some element in SR, then ŘSMD(D∗)
is a polytope. In the following we show the existence of such a finite set.

Since log(α −D∗
α−1) ≥ 0 for α ≥ 2, we can construct a set of independent

fictitious sources U1, U2, ..., UK , such that

H(Uα) =
1
2

log(α+ 1−D∗
α), α = 1, 2, ..., K − 1,

and H(UK) = 0. The MLD coding rate region for this K-source can be equiv-
alently given in two forms, as implied by Theorem B.2, with H̃α(Y ) replaced
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by H(Uα). Since the rate region of this MLD coding problem is clearly a poly-
tope, there exists a finite set of rate vectors, denoted as Sr, such that for any
A, there exists at least one rate vector (r1, r2, ..., rK) ∈ Sr, such that

K∑

i=1

Airi =
1
2

K∑

α=2

fα−1(A) log(α−D∗
α−1)

Now define R̀i = Ri + ri, i = 1, 2, ..., K, and consequently (3.50) reduces to
the condition that

K∑

i=1

AiR̀i ≥
1
2

K∑

α=1

fα(A) log
D∗

α−1

D∗
α

+
1
2

K∑

α=2

fα(A) log(α− 1), (B.15)

We can again define a set of fictitious independent sources W1, W2, ..., WK ,
such that

H(Wα) = log
D∗

α−1

D∗
α

+ log(α− 1), α = 2, 3, ..., K,

and

H(W1) = log
1

D∗
α

.

Now we would like to apply Theorem B.2 to assert (B.15) is in fact a character-
ization of the MLD coding rate region for this source, however one technicality
has to be addressed first. Recall that R is not constrained to be non-negative,
because otherwise R̀ must satisfy the additional constraint R̀ ≥ r, and Theo-
rem B.2 can not be applied directly. However, by relaxing R to allow negative
component, R̀ may have non-positive components, which will render Theo-
rem B.2 not applicable without the fact given in the remark immediately after
Theorem B.2. With that remark, now by applying Theorem B.2, we see that
(B.15) is indeed a characterization of the MLD coding rate region for this set
of fictitious sources.

Since the MLD coding rate region is a polytope, there exists a finite set
of rate vectors SR̀ such that for any A, there exists at least one rate vector
(R̀1, R̀2, ..., R̀1) ∈ SR̀, such that (B.15) is satisfied with equality. Since both
Sr and SR̀ are finite, it follows that there exists a finite set SR, such that for
any A, there exists at least one vector R = R̀ − r ∈ SR satisfying (3.50)
with equality. This subsequently implies that the set ŘSMD(D∗) is a polytope,
which completes the proof.

Remark B.4. It is worth mentioning that ŘSMD(D∗) ⊆ K
+ . This is true

since for the choice of A = 1i(K), we have f1(A) = 1 and fα(A) = 0, for
α = 1, 2, . . . , K. Therefore, the inequality in (3.50) will be translated to

Ri ≥
1
2

log
1

D∗
1

− 1
2

log(2−D∗
1) =

1
2

log
1

D∗
1(2−D∗

1)
≥ 0,

which implies that all the elements of any rate tuple in ŘSMD(D∗) are non-
negative. #
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B.8 Proof of Theorem 3.46

We pick up the story from (3.44) for the lower bound and rewrite it slightly
differently.

RSMD(D) + ε =
1
K

K∑

i=1

(Ri + ε)

≥
K−1∑

α=1

1
nα
(K
α

)
∑

v:|v|=α

[
I(Γv; Y n

α )− I(Γv; Y n
α−1)

]

+
1

nK

[
I({Γi; i ∈ IK}; Xn)− I({Γi; i ∈ IK}; Y n

K−1)
]
, (B.16)

where now the random variables Yα, α = 1, 2, ..., K − 1 are defined as in (3.31)
and (3.32), and for simplicity we define Y0 = 0, i.e., a constant.

Next we consider the upper bound R
′
SMD(D), (c.f. Theorem 3.36), using

the same set of random variables Yα, α = 1, 2, ..., K as above

R
′
SMD(D) =

K∑

α=1

1
α

I(X ; Yα|Yα−1)

=
K∑

α=1

1
α

[I(X ; Yα)− I(X ; Yα−1)]. (B.17)

Note we have used that fact that X ↔ Yα ↔ Yα−1 is a Markov chain for any
α ∈ IK . The auxiliary random variables used in the lower and upper bounds
are in fact the same, and it is clear that this is a valid choice in deriving the
lower bound by definition.

Thus we can now bound the difference between the upper and lower bound
on the symmetric individual-description rate using (B.16) and (B.17) as follows

R
′
SMD(D)−RSMD(D)

≤
K∑

α=1

1
α

I(X ; Yα|Yα−1)−
1

nK

[
I({Γi; i ∈ IK}; Xn)− I({Γi; i ∈ IK}; Y n

K−1)
]

−
K−1∑

α=1

[
1

nα
(K
α

)
∑

v:|v|=α

[I(Γv; Y n
α )− I(Γv; Y n

α−1)]

]

=
K−1∑

α=1

{
1

α
(K
α

)
∑

v:|v|=α

[
I(X ; Yα)− I(X ; Yα−1)−

1
n

I(Γv; Y n
α ) +

1
n

I(Γv; Y n
α−1)

]}

+
1
K

{
I(X ; YK)− I(X ; YK−1)

− 1
n

I({Γi; i ∈ IK}; Xn) +
1
n

I({Γi; i ∈ IK}; Y n
K−1)

}
. (B.18)
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Now, consider an arbitrary α ∈ IK−1, and an arbitrary v such that |v| = α, it
follows that

I(X ; YK)−I(X ; YK−1)−
1
n

I({Γi; i ∈ IK}; Xn) +
1
n

I({Γi; i ∈ IK}; Y n
K−1)

=h(Yα)− h(Yα|X)− h(Yα−1) + h(Yα−1|X)

− 1
n

[h(Y n
α )− h(Y n

α |Γv)] +
1
n

[h(Y n
α−1)− h(Y n

α−1|Γv)]

(a)
= − h(Zα) + h(Zα−1) +

1
n

h(Y n
α |Γv)− 1

n
h(Y n

α−1|Γv)

(b)
=

1
2

log
dα−1

dα
− 1

n
I(Y n

α−1; N
n
α−1|Γv)

(c)
≤ 1

2
log
[
dα−1

dα

Dα + dα
Dα + dα−1

]

=
1
2

log
2−Dα

1−Dα + Dα
Dα−1

(d)
≤ 1

2

where (a) is due to the fact that Y n
α and Y n

α−1 are i.i.d. sequences, (b) holds
since Yα−1 = Yα + Nα−1, and in (c) we used the bounding technique used in
the proof of Lemma 3.32, the equality

dα =
K∑

i=α

σ2
i =

Dα

1−Dα
, α = 1, 2, ..., K − 1, (B.19)

which is implied by (3.32). Finally, in (d) we used the fact Dα− Dα
Dα−1

≤ 0 and
Dα ≥ 0.

The last term in (B.18) can be bounded similarly by noticing I({Γi; i ∈
IK}; Xn) ≥ I({Γi; i ∈ IK}; Y n

K). We can write

I(X ;YK)− I(X ; YK−1)−
1
n

I({Γi; i ∈ IK}; Xn) +
1
n

I({Γi; i ∈ IK}; Y n
K−1)

≤I(X ; YK)− I(X ; YK−1)−
1
n

I({Γi; i ∈ IK}; Y n
K) +

1
n

I(Γi; i ∈ IK}; Y n
K−1)

=− h(ZK) + h(ZK−1) +
1
n

h(Y n
K |{Γi; i ∈ IK})− 1

n
h(Y n

K−1|{Γi; i ∈ IK})
(d)
≤ 1

2
log
[
dK−1

σ2
K

DK + σ2
K

DK + dK−1

]
≤ 1

2
(B.20)

where again we used Lemma 3.32 in (d), and the last step is due to the fact
that σ2

K = DK
1−DK

.
Now, summarize all the bounds and replacing (B.19) and (B.20) in (B.18)

we have

R
′
SMD(D)−RSMD(D) ≤

K∑

α=1

1
2α

,

which completes the proof. #





Appendix for Chapter 4 C
C.1 Proof of Lemma 4.1

Lemma. For a given distortion vector D, define D̃ as D̃ = (D̃v; v ∈ ΩK),
where

D̃v = min
u:u≤v

Du.

Then RAMD(D̃) = RAMD(D).

Proof. It is clear that D̃v ≤ Dv for all v ∈ ΩK , and therefore RAMD(D̃) ⊆
RAMD(D). So, it remains to prove RAMD(D) ⊆ RAMD(D̃). Let R ∈ RAMD(D)
be an achievable rate tuple for D, and (n; Mi;∆v) be a code for a given ε which
achieves the distortion constraints D, with encoding functions {Fi; i ∈ IK} and
decoding functions {Gv; v ∈ ΩK}. We can easily modify the decoding functions
and obtain a code which satisfies D̃. By the definition of D̃, for all v we have
D̃v = Dṽ, where

ṽ ! arg min
u:u≤v

Du.

Define

X̃n
v = G̃v(Fj(Xn); j : vj = 1) ! X̂n

ṽ .

Obviously,

d(Xn, X̃n
v ) = d(Xn, X̂n

ṽ ) ≤ Dṽ + ε = D̃v + ε.

Thus the similar code with the modified decoding functions satisfies the con-
straint tuple D̃, and therefore R ∈ RAMD(D̃).
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Appendix for Chapter 5 D
D.1 Cut-set Type Bounds for the Capacity of the DZS

Network

We only proved the optimality of the sum-rate bounds in (DZS-3) and (DZS-10)
in Subsection 5.5.1. As mentioned before, the other bounds follow from the
generalized cut-set bound [74]. In the following we present the proof of the
remaining inequalities in Theorem 5.10. Let rate pair (R1, R2) is achievable
using a code of length '. So, the n-length multi-letter signal interactions can
be written using ' copies of the original channel matrices, and denoted by bold
letters, e.g., M11 = I# ⊗M11.

• (DZS-1) R1 ≤ m11: Consider the cut which partition the network into
Ω = {S1} and Ωc = {S2, A, B, D1, D2}. We denote the received signal at
Ωc by YΩc = (Y ′

1 , Y ′
2 , Y1, Y2). It can be written in terms of the transmitted

signal XΩ = X1 as follows.





Y
′#
1

Y
′#
2

Y #
1

Y #
2



 =





M11

0
0
0





︸ ︷︷ ︸
GΩ,Ωc

X#
1 +





M12 0 0
M22 0 0
0 N11 0
0 N21 N22








X#

2

X
′#
1

X
′#
2



 .

Hence, the cut-set upper bound gives us

'R1 ≤ rank (GΩ,Ωc) = rank (M11) = 'rank (M11) = 'm11. (D.1)

Dividing both sides of (D.1) by ', we get the bound in (DZS-1).
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• (DZS-2) R2 ≤ max(m12, m22): Similar to the proof of (DZS-1), the transi-
tion matrix for the cut specified by Ω = {S2} and Ωc = {S1, A, B, D1, D2}
with input and output signals XΩ = X2 and YΩc = (Y ′

1 , Y ′
2 , Y1, Y2) can

be written as

GΩ,Ωc =





M12

M22

0
0





Therefore,

'R2 ≤ rank (GΩ,Ωc) = 'rank
[

M12

M22

]
= 'max(m12, m22). (D.2)

• (DZS-4) R2 ≤ m12 + n22: Consider the cut with partitions Ω = {S2, B}
and Ωc = {S1, A, D1, D2} with input signal XΩ = (X2, X ′

2) and YΩc =
Y ′

1 , Y1, Y2. The transfer matrix for this cut can is

GΩ,Ωc =




M12 0
0 0
0 N22



 .

Hence, the flow of information through this cut be bounded by

'R2 ≤ rank (GΩ,Ωc) = 'rank
[

M12 0
0 N22

]

= ' (rank (M12) + rank (N22)) = '(m12 + n22). (D.3)

• (DZS-5) R1 + R2 ≤ m22 + max(n11, n21): This bound corresponds to the
cut Ω = {S1, S2, A} and Ωc = {B, D1, D2}. The transition matrix from
the input of the cut XΩ = (X1, X2, X ′

1) to its output YΩc = (Y ′
2 , Y1, Y2)

can be written as



Y

′#
2

Y #
1

Y #
2



 =




0 M22 0
0 0 N11

0 0 N21





︸ ︷︷ ︸
GΩ,Ωc




X#

1

X#
2

X
′#
1



+




0
0

N22



X
′#
2 .

Therefore, from [74] we have

'(R1 + R2) ≤ rank (GΩ,Ωc) = rank (M22) + rank
[

N11

N21

]

= 'm22 + 'max(n11, n21). (D.4)

• (DZS-6) R1 + R2 ≤ max(m11, m12) + n22: The sum-rate can be also
bounded by the flow of information through the cut Ω = {S1, S2, B}
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and Ωc = {A, D1, D2}. The transfer matrix between the input signals
XΩ = (X1, X2, X ′

2) and the outputs YΩc = (Y ′
1 , Y1, Y2) can be written as

GΩ,Ωc =




M11 M12 0
0 0 0
0 0 N22



 .

Therefore, the maximum flow of information through this cut can is

'(R1 + R2) ≤ rank (GΩ,Ωc) = rank
[

M11 M12

]
+ rank (N22)

= 'max(m11, m12) + 'n22. (D.5)

• (DZS-7) R1 ≤ n11: The rate of the first message can be bounded by the
cut-set value of Ω = {S1, S2, A, B, D2} and Ωc = {D1}. The transfer
matrix or this cut from XΩ = (X1, X2, X ′

1, X
′
2) to YΩc = Y1 is

GΩ,Ωc =
[

0 0 0 N11

]
,

hence,

'R1 ≤ rank (GΩ,Ωc) = rank (N11) = 'n11. (D.6)

• (DZS-8) R2 ≤ max(n21, n22): This inequality corresponds to the infor-
mation flow through the cut Ω = {S1, S2, A, B, D1} and Ωc = {D2}, with
XΩ = (X1, X2, X ′

1, X
′
2) and YΩc = Y2. We have

GΩ,Ωc =
[

0 0 N21 N22

]
.

Thus,

'R2 ≤ rank (GΩ,Ωc) = rank
[

N21 N22

]
= 'max(n21, n22). (D.7)

• (DZS-9) R2 ≤ m22 + n21: Consider the cut which partitions the network
to Ω = {S1, S2, A, D1} and Ωc = {B, D2}. The transfer matrix of this
cut between XΩ = (X1, X2, X ′

1) and YΩc = (Y ′
2 , Y2) would be

GΩ,Ωc =
[

0 M22 0
0 0 N21

]
.

Therefore, the flow of information through this cut is bounded by

'R2 ≤ rank (GΩ,Ωc) = rank (M22) + rank (N21) = '(m22 + n21). (D.8)

#
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D.2 Proof of Lemma 5.15

Lemma. For any deterministic ZS network,

RDZS ⊆
⋃

r≤min(m11,n11)

RDZS(r). (D.9)

Proof. Let (R1, R2) ∈ RDZS be an arbitrary rate pair which satisfies (DZS-
1)-(DZS-10). In particular R1 ≤ min{m11, n11}. We claim that (R1, R2) ∈
RDZS,1(κ) × RDZS,2(κ) for κ = R1, and therefore (R1, R2) is achievable using
network decomposition. In order to do this we have to show that any R2 satis-
fying (DZS-1)-(DZS-10), fulfills the constraints in the definition of RDZS,2(R1).

Using (DZS-2) and (DZS-3), we have

R2 ≤ min
{

max(m11, m12) + (m22 −m12)+ −R1, max(m12, m22)
}

= min
{

max(m11, m12)−R1, m12

}
+ (m22 −m12)+

= m′
12(R1) + (m22 −m12)+

≤ m′
12(R1) + (m′

22(R1)−m′
12(R1))+ (D.10)

= max(m′
12(R1), m′

22(R1)), (D.11)

where in (D.10) we have used the fact that

(min(a, b)−min(c, d))+ ≥ min
(
(a− c)+, (b− d)+

)
.

Moreover, since R2 satisfies (DZS-3), (DZS-5), and (DZS-8), we have

R2 ≤ min
{

max(m11, m12) + (m22 −m12)+ −R1,

m22 + max(n11, n21)−R1, m22 + n21

}

≤ min
{

max(m11, m12) + (m22 −m12)+ −R1, m22

}

+ min
{

max(n11, n21)−R1, n21

}
(D.12)

= m′
22(R1) + n′

21(R1), (D.13)

where (D.12) holds since

min(a, b) + min(c, d) ≥ min(a, b + c, b + d),

for non-negative a, b, c, and d.
In order to show that the third constraint is satisfied, we can start with

(DZS-4), (DZS-6), and (DZS-10).

R2 ≤ min
{

max(m11, m12) + n22 −R1, m12 + n22,

max(n11, n21) + (n22 − n21)+ −R1

}
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≤ min
{

max(m11, m12) +−R1, m12

}

+ min
{

max(n11, n21) + (n22 − n21)+ −R1, n22

}

= m′
12(r1) + n′

22(r1). (D.14)

Finally, using (DZS-8) and (DZS-10), we have

R2 ≤ min
{

max(n11, n21) + (n22 − n21)+ − r1, max(n21, n22)
}

= min
{

max(n11, n21)− r1, n21

}
+ (n22 − n21)+

= n′
21(r1) + (n22 − n21)+

≤ n′
21(r1) + (n′

22(r1)− n′
21(r1))+

= max(n′
21(r1), n′

22(r1)). (D.15)

Putting inequalities in (D.11) and (D.13)-(D.15) together shows that R2 ∈
RDZS,2(R1), and completes the proof.

D.3 Cut-set Type Bounds for the Capacity of the DZZ
Network

As mentioned in Section 5.6.1, the individual rate constraints in Theorem 5.11
are straight-forwardly follow from the the generalized cut-set bound [74]. In
this part we we present the proof of (DZZ-1)-(DZZ-4), which together with the
sum-rate bounds proved in Section 5.6.1 show the optimality of the rate region
define in Theorem 5.11 for the deterministic ZZ network. We again start with
(R1, R2) ∈ RDZZ and assume that this rate pair is achievable using a code of
length '. Let the

• (DZZ-1) R1 ≤ m11: Consider the cut which partitions the network into
Ω = {S1} and Ωc = {S2, A, B, D1, D2}. We have





Y
′#
1

Y
′#
2

Y #
1

Y #
2



 =





M11

0
0
0





︸ ︷︷ ︸
GΩ,Ωc

X#
1 +





M12 0 0
M22 0 0
0 N11 N12

0 0 N22








X#

2

X
′#
1

X
′#
2



 .

Therefore, the rate of the first message can be upper bounded by

'R1 ≤ rank (GΩ,Ωc) = rank (M11) = 'm11. (D.16)

• (DZZ-2) R2 ≤ m22: Similarly for the cut specified by Ω = {S1, S2, A, D1}
and Ωc = {B, D2}, and input and out signals XΩ = (X1, X2, X ′

1) and
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YΩc = (Y ′
1 , Y2), the transfer matrix would be simply

GΩ,Ωc =
[

0 M22 0
0 0 0

]
.

Hence,

'R2 ≤ rank (GΩ,Ωc) = rank (M22) = 'm22. (D.17)

• (DZZ-3) R1 ≤ n11: Consider the cut with partitions Ω = {S1, A} and
Ωc = {S2, B, D1, D2}. The transition matrix for this cut can be written
as

GΩ,Ωc =




0 0
0 N11

0 0



 ,

which upper bounds the rate of the first message by

'R1 ≤ rank (GΩ,Ωc) = rank (N11) = 'n11. (D.18)

• (DZZ-4) R2 ≤ n22: Similarly for Ω = {S1, S2, A, B, D1} and Ωc = {D2},
we have

GΩ,Ωc =
[

0 0 0 N22

]
,

and hence,

'R2 ≤ rank (GΩ,Ωc) = rank (N22) = 'n22. (D.19)

#

D.4 Proof of Lemma 5.19

Lemma. Consider the deterministic Z-neutralization network defined in Defi-
nition 5.18 with channel gains (n11, n12, n22) (see Figure 5.13). Any rate tuple
(Υ0,Υ1,Υ2) satisfying

Υ0 ≤ λ ! min{n11, n12, n22}, (D.20)
Υ0 + Υ1 ≤ n11, (D.21)
Υ0 + Υ2 ≤ n22, (D.22)

Υ0 + Υ1 + Υ2 ≤ µ ! max{n11, n12, n22, n11 + n22 − n12}. (D.23)

is achievable for this network.
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F1

F2

G1

G2

k0 = 3

k1 = 1

k2 = 2

Figure D.1: A deterministic Z-neutralization network. The upper 2 sub-nodes
in G1 are only connected to F2, and therefore k2 = 2. The next 3 sub-nodes
receive information from both F1 and F2, and hence k0 = 3. Although the lowest
sub-node is also connected to both transmitters, it only receives information from
F1 since F2 keeps silent on its sub-nodes below n22.

Proof. The coding strategy we present here is based a network decomposition,
where the sub-nodes and the links of the deterministic Z-interference network
are partitioned into two disjoint sets. We analyze the rate region of each
network, and derive an achievable rate region for the original network based
on this analysis.

We just point out here that in this coding strategy, the second sender F2,
never sends a bit on a sub-node which is not received at G2, even if n12 > n22.

The first partition of the network N1, consists of those sub-nodes in G1

which are connected to one of the top m11 sub-nodes of F1 and one of the top
m22 sub-nodes of F2. All the sub-nodes in the network which are related to
(see Definition 5.14) any of these sub-nodes also belong to the first network
partition. The remaining nodes and link form the second part of the network
N2. It is clear that these two networks are node-disjoint, and do not cause
interference on each other.

We first characterize the number sub-nodes in G1 which belong to N1, by
determining whether each of them can receive a bit from F1, F2, or both of
them. We denote the number of levels in G1 which are only connected to a
transmitting level in F1 by k1. Similarly, the number of those only connected to
a a transmitting level (the top min(n12, n22)) in F2 by k2. Finally, k0 denotes
the number of levels which are connected to transmitting levels of both F1 and
F2 (see Figure D.1).

First, we derive k0. Enumerate the levels of G1 from 1 (for the highest) to
q (for the lowest). Let j be the index of a sub-node in G1 belong to N1, i.e., it
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receives bits from both F1 and F2. Its neighbors in F1 and F2 (if there is any)
are indexed by j + n11 − q and j + n12 − q, respectively. Therefore, j belongs
to N1 if and only if 1 ≤ j + n11 − q ≤ n11 and 1 ≤ j + n12 − q ≤ min(n12, n22).
Therefore, the number of such sub-nodes is given by

k0 = [min{q, q − n12 + n22}−max{q − n11, q − n12}]+

= min{n11, n12, n22, (n11 + n22 − n12)+}. (D.24)

It is clear from the definition of k0 that the remaining n11−k0 lowest levels of
G1 are only connected to sub-nodes of F1, and hence, k1 = n11− k0. Similarly,
min{n12, n22} sub-nodes in G1 are receiving information from F2, where k0 of
them are also connected to F1. Therefore, the remaining sub-nodes are only
connected to G2. Thus, k2 = min{n12, n22}− k0.

We partition the network into two parts: The first part consists of the
k0 sub-nodes of G1 connected to both F1 and F2, and sub-nodes connected
to them. The remaining sub-nodes form the second partition of the network.
We characterize the achievable tuples for each, denoted by (Q′

0, Q
′
1, Q

′
2) and

(Q′′
0 , Q′′

1 , Q′′
2), respectively. The fact that these two partitions are isolated al-

lows us to conclude that the summation of such achievable tuples is also achiev-
able for the original network.

Consider the first partition of the network. It is clear that any of the k0

levels of G1 connected to both F1 and F2 and can be used to communicate
a functional bit, since G1 naturally receives the xor of the transmitting bits.
On the other hand, such sub-node can be used to communicate one private bit
from any of F1 or F2 to G1 by keeping the other one silent. Therefore, any
rate tuple satisfying

Q′
0 + Q′

1 + Q′
2 ≤ k0 (D.25)

is achievable.
The non-interfered links of the second partition of the network can be used

to send private bits from the transmitters to G1 simultaneously. Moreover, each
transmitter can use one of its non-interfering sub-nodes to send a functional
bit to G1, and then, G1 computes their xor, after receiving them separately.
This can provide up to min{k1, k2} new functional bits for G1. Moreover, the
lower (n22 − n12)+ sub-nodes of F2 which are connected to G2 but not to G1

can be used to send private bits to G2 without causing any interference at G1.
Hence, this strategy can transmit any rate tuple satisfying

Q′′
0 ≤ min{k1, k2},

Q′′
0 + Q′′

1 ≤ k1,

Q′′
0 + Q′′

2 ≤ k2 + (n22 − n12)+. (D.26)

Summing up the rates achieved on each partition of the network, we have
arrive at Qi = Q′

i + Q′′
i for i = 0, 1, 2, where (Q′

0, Q
′
1, Q

′
2)’s and (Q′′

0 , Q′′
1 , Q′′

2)
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satisfy (D.25) and (D.26), respectively. It only remains to apply the Fourier-
Motzkin elimination to project the rate region on the (Q0, Q1, Q2) space. This
gives us

Q0 ≤ k0 + min{k1, k2},
Q0 + Q1 ≤ k0 + k1,

Q0 + Q2 ≤ k0 + k2 + (n22 − n12)+,

Q0 + Q1 + Q2 ≤ k0 + k1 + k2 + (n22 − n12)+. (D.27)

Some simple manipulations show that the RHS’s of the inequalities in (D.27)
are the same as that claimed in the lemma.

D.5 Proof of Lemma 5.25

Lemma. Given ρk−1 linearly independent equations at the relay node Ak−1,
the minimum number of pure equations achievable at Ak is

min ρk|ρk−1 = max{0, R1 −R2, ρk−1 − γk}.

Proof. Recall that ρk denotes the number of pure linearly independent equa-
tions can be received at node Ak using some encoding scheme. Minimizing the
number of pure equations is equivalent to maximizing the number of mixed
equations. A mixed equations at Ak can be obtained by either receiving a
mixed equation from Ak−1 whose interference is not neutralized by the new
interference, or combination of a pure equation from Ak−1 and an interference
from Bk−1. Note that we have R1−ρk−1 mixed equations, and among the ρk−1

pure equations at most γk of them can become mixed in the next layer. This
can be done by sending such pure equations on the lowest sub-nodes of Ak−1

such that they get interfered at Ak by the bits transmitted from Bk−1. It is
also important that related sub-nodes of Bk−1 transmit equations independent
of the interfering equations at Ak−1.

On the other hand, since W2 has only R2 bits, at most R2 equations can
be affected by the interference. Therefore, the maximum number of mixed
equations would be

R1 −min ρk ≤ min
{
R1 − ρk−1 + min{ρk−1, γk}, R2

}

= min{R1, R1 − ρk−1 + γk.R2}.

Hence, given ρk−1 pure equations at stage k− 1, the number of pure equations
at stage k in lower bounded by

min ρk|ρk−1 ≥ max{0, R1 −R2, ρk−1 − γk}.

It remains to show that this number of pure equations is also achievable. It is,
however, clear that depending on the minimizing term of the expression, the
corresponding encoding scheme discussed above provides the desired number
of linearly independent pure equations.
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D.6 Proof of Lemma 5.26

Lemma. If the relay node Ak−1 sends ρk−1 pure equations, then the maximum
achievable number of pure equations in the next layer’s relay, Ak is

max ρk|ρk−1 = min{R1,Ψk −R2 + R1 − γk − ρk−1, ρk−1 + γk}.

Proof. A pure equation at the next layer Ak can be obtained by either receiving
a pure equation from Ak−1 at a sub-node which is not affected by the message
from Bk−1, or a mixed message from Ak−1 whose interference is neutralized1

by another equation received from Bk−1. We denote the number of these two
sets of equations by ρk(P) and ρk(N), respectively.

We first enumerate the first kind of such messages. The maximum number
of sub-nodes in Ak which can receive message from Ak−1 and have not occupied
by the signal received from Bk−1 can be found as illustrated in Figure D.2. The
relay node Bk−1 chooses R2 sub-nodes among its top βk sub-nodes to transmit
its message to Bk, and at least R2 − (βk − γk)+ of them would be among
the top γk sub-nodes, whose message will be also observed by Ak. Among
them, at most (γk − αk) are out of the range of Ak−1, but the remaining
will have overlap with the sub-nodes in range of Ak−1. Therefore, at least
[R2 − (βk − γk)+ − (γk − αk)+]+ sub-nodes among the αk sub-nodes of Ak get
interfered. Hence, the maximum number of pure equations of the first kind
would be the minimum of the number of available pure equations, and the
number of non-occupied sub-nodes, which equals to

ρk(P) = min
{
ρk−1,αk −

[
R2 − (βk − γk)+ − (γk − αk)+

]+ }

= min
{
ρk−1,αk − [R2 −max(αk, γk) + αk −max(βk, γk) + γk]+

}

= min
{
ρk−1,αk − [R2 + αk + γk −Ψk]+

}
(D.28)

On the other hand, we have R1 − ρk−1 mixed equations, where at most γk

of them can be neutralized by the message from Bk−1. Thus, the maximum
number of the second class of pure equations at the k-th layer would be

ρk(N) = min{R1 − ρk−1, γk}. (D.29)

By adding up (D.28) and (D.29) we have

max ρk|ρk−1 = min
{
ρk−1,αk − [R2 + αk + γk −Ψk]+

}
+ min{R1 − ρk−1, γk}

(a)
= min {ρk−1,αk − [R2 + αk + γk −Ψk]} + min{R1 − ρk−1, γk}
= min{R1,Ψk −R2 + R1 − γk − ρk−1, ρk−1 + γk,Ψk −R2}

1This is done by pre-coding at Bk−1. Since it can decode the whole vector X2, it can
encode it again such that a desired number of mixed equations get neutralized.
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Ak−1

Bk−1

Ak

Bk

αk

βk

(γk − αk)+

(βk − γk)+

[R2 − (γk − αk)+ − (βk − γk)+]+

Figure D.2: The maximum number of nodes in Ak which are not affected by
interference.

(b)
= min{R1,Ψk −R2 + R1 − γk − ρk−1, ρk−1 + γk} (D.30)

where in (a) we have used the fact that ρk−1 ≤ R1 ≤ αk, and (b) is due to the
inequality Ψk ≥ αk + βk ≥ R1 + R2 which shows that dropping the last term
does not change the minimum.

Note that this value is always achievable by choosing the transmitting nodes
of Bk−1 and the equations they send properly, such that the required number
of nodes Ak do not affected by interference and a specific number of the rest
get neutralized.

D.7 Proof of Theorem 5.27

Lemmas 5.25 and 5.26 determine the minimum and maximum achievable ρk

provided that the relay node Ak−1 sends ρk−1 pure equations. A similar ar-
gument shows that the extreme values in both lemmas are in fact achievable.
Not surprisingly, it can be shown that if ρk = u1 and ρk = u2 are achievable
for u1 < u2, then any integer u ∈ [u1, u2] is also achievable.

The minimum and maximum values obtained in Lemmas 5.25 and 5.26
depend on ρk−1. However depending on the required ρk at the k-layer, one
can choose any ρk−1 ∈ Pk−1 for encoding at Ak−1. We will prove (5.66) using
induction over k. For k = 1, the claim is just rewriting Lemma 5.25 since
m0 = R1. Assuming (5.66) for k − 1, we have

mk = min
ρk−1∈Pk−1

max{0, R1 −R2, ρk−1 − γk}

= max{0, R1 −R2, mk−1 − γk}
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= max {0, R1 −R2, max{0, R1 −R2, R1 − Φk−1}− γk}
= max{0, R1 −R2, R1 − Φk}.

Similarly, using (D.30) Mk can be obtained as the maximum achievable ρk is
the maximum value that the RHS of (D.30) can get for different value of ρk−1.

Mk = max
ρk−1∈Pk−1

min{R1, R1 + Ψk −R2 − γk − ρk−1, γk + ρk−1}

= min{R1, R1 + Ψk −R2 − γk −mk−1, γk + Mk−1}. (D.31)

Replacing mk from (5.66), we get

R1 + Ψk −R2 − γk −mk−1

= R1 + Ψk −R2 − γk −max{0, R1 −R2, R1 − Φk−1}
= R1 + Ψk −R2 − γk + min{0, R2 −R1,Φk−1 −R1}
= min{R1 + Ψk −R2 − γk,Ψk − γk,Ψk + Φk − 2γk −R2}

where the first two terms are not less than R1 and do not affect the minimiza-
tion in (D.31). Therefore,

Mk = min{R1,Ψk + Φk − 2γk −R2, γk + Mk−1} (D.32)

However, solving the last recursive relation and evaluating Mk is not easy and
we leave it as an optimization expression. #

D.8 Proof of Lemma 5.28

Lemma. For any Z-chain network with arbitrary number of layers, we have

ρ∗k ∈ Pk, k = 1, 2, . . . , N. (D.33)

Proof. In order to prove the lemma, we need to show mk ≤ ρ∗k ≤ Mk. The first
inequality is straight forward and shown as follows.

ρ∗k −mk=min
{

R1, min
1≤#≤k

{Ψ# + Φk − 2γ# −R2}
}
−max{0, R1 −R2, R1 − Φk}

=min
{

R1, min
1≤#≤k

{Ψ# + Φk − 2γ# −R2}
}

+ min{0, R2 −R1,Φk −R1}

=min

{
R1, R2,Φk, min

1≤#≤k
{Ψ# + 2Φk − 2γ# −R1 −R2} ,

min
1≤#≤k

{Ψ# + Φk − 2γ# −R1} , min
1≤#≤k

{Ψ# + Φk − 2γ# −R2}
}

≥ 0

where the last inequality follows from the facts that R1 ≤ α# and R2 ≤ β# for
' = 1, . . . , N .



D.8. Proof of Lemma 5.28 231

To show the second inequality we use induction over k, namely, we show
that ρ∗k ≤ Mk provided that ρ∗k−1 ≤ Mk−1. For k = 1, is claim is trivial by
just comparing ρ∗1 and M1 in (5.67). Assuming ρ∗k−1 ≤ Mk−1 and using (5.67),
we have

Mk ≥ min{R1,Ψk + Φk − 2γk −R2, γk + ρ∗k−1}

= min

{
R1,Ψk + Φk − 2γk −R2,

γk + min
{

R1, min
1≤#≤k−1

{Ψ# + Φk−1 − 2γ# −R2}
}}

= min

{
R1,Ψk + Φk − 2γk −R2,

min
(

R1 + γk, min
1≤#≤k−1

{Ψ# + Φk − 2γ# −R2}
)}

= min

{
R1,Ψk + Φk − 2γk −R2, min

1≤#≤k−1
{Ψ# + Φk − 2γ# −R2}

}

= min
{

R1, min
1≤#≤k

{Ψ# + Φk − 2γ# −R2}
}

= ρ∗k.

which shows that ρ∗k does not exceed Mk. Hence ρ∗k ∈ Pk.
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E.1 Discussion of Example 6.5

The converse proof is fairly simple and follows from a similar argument we used
to prove (GZS-1), (GZS-2), and (GZS-3) in Appendix 6.4.

In the following we will present an encoding strategy which guarantees to
achieve rate pair (R1 − 1

2 , R2 − 1
2 ), provided that (R1, R2) ∈ RZ. This gives

us an approximate capacity characterization for the Gaussian Z network. In
order to do this, we consider the following two cases.
Case A: g12 ≥ g22:

Assume (R1, R2) be an achievable rate pair. Then, the first receiver G1 is
able to decode W1 sent at rate R1, and remove the signal associated to W1 from
its received signal. The remaining signal provides a higher SNR to decode W2

than the signal received at G2. Therefore, in this particular regime, the first
receive would be able to decode both messages. Hence, we have a Gaussian
multiple access channel from F1 and F2 to G1, combined with a line network
from F2 to G2. Therefore, the intersection of the rate regions of the Gaussian
MAC and the line networks is simply achievable. That is

RZ
ach,A =

{
(R1, R2) : R1 ≤

1
2

log (1 + g11) , R2 ≤
1
2

log (1 + g12) ,

R1 + R2 ≤
1
2

log (1 + g11 + g12)

}

⋂

{
(R1, R2) : R2 ≤

1
2

log (1 + g22)

}

233
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=

{
(R1, R2) : R1 ≤

1
2

log (1 + g11) , R2 ≤
1
2

log (1 + g22) ,

R1 + R2 ≤
1
2

log (1 + g11 + g12)

}
. (E.1)

Note that the individual rate bounds in RZ and RZ
ach,A are the same. More-

over, the difference between the sum rate bounds is bounded by

1
2

log
(

1 +
g22

g12

)
≤ 1

2
log (1 + 1) =

1
2
. (E.2)

Therefore, the gap between each boundary point of RZ and RZ
ach,A is at most

1
2 bit.
Case B: g12 ≤ g22:

The encoding scheme we use for this case is similar to Han-Kobayashi’s
scheme for 2-user interference channel. We first split the second message W2

into the common and private parts, W2 = (W c
2 , W p

2 ), with rates Rc
2 and Rp

2,
respectively, where W c

2 can be decoded at both receivers and W p
2 is only de-

codable at G2. Sub-messages W1, W c
2 , and W p

2 are encoded by corresponding
randomly generated Gaussian codes to x1, xc

2 and xp
2, and the resulting code-

words are sent over the channel.
We allocate αp = 1/g12 fraction of the transmission power available at F2

to W p
2 , and the remaining power αc = 1 − αp is allocated to W c

2 . Therefore,
we have

x2 =
√
αcxp

2 +
√
αcxp

2.

The first receiver, G1, decodes W1 and W c
2 treating W p

2 as noise. Therefore,
the effective noise power received at G1 would be [√g12αpxp + z1]2 = 2.
According to the capacity region of Gaussian multiple access channel, this can
be done provided that

R1 ≤ 1
2 log

(
1 + g11

2

)
,

Rc
2 ≤ 1

2 log
( 1+g12

2

)
,

R1 + Rc
2 ≤ 1

2 log
(

1+g11+g12
2

)
.

(E.3)

The second decoder first decodes W c
2 treating W p

2 as noise. It then removes
the corresponding codeword from the received signal, and decodes W p

2 . This
can be done as long as

Rc
2 ≤ 1

2 log
(

1+g22
1+g22/g12

)
,

Rp
2 ≤ 1

2 log
(
1 + g22

g12

)
.

(E.4)

Note that we have two upper bounds for Rc
2. However, it is easy to show that

1+g22
1+g22/g12

≥ 1+g12
2 , for 1 ≤ g12 ≤ g22, and therefore, the first bound dominates
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the second one. Using Fourier-Motzkin elimination to write the achievable
region in terms of R1 and R2 = Rc

2 + Rp
2, and after some simplification, we get

that the region

RZ
ach,B =

{
(R1, R2) :R1 ≤

1
2

log (1 + g11)−
1
2
,

R2 ≤
1
2

log (1 + g22)−
1
2
,

R1 + R2 ≤
1
2

log (1 + g11 + g12) +
1
2

log
(

1 +
g22

g12

)
− 1

2

}
.

is achievable. Therefore, if (R1, R2) ∈ RZ, then (R1 − 1
2 , R2 − 1

2 ) is achievable.
#

E.2 Proof of Lemma 6.7

Lemma. Any achievable rate pair (R1, R2) satisfies

'R1 ≤ I(x#
1; y

#
1) + 'ε#,

'R2 ≤ I(x#
2; y

#
2) + 'ε#,

'(R1 + R2) ≤ I(x#
1, x

#
2; y

#
1, y

#
2) + 'ε#.

Note that ε# → 0 as ' grows.

Proof. As mentioned before, we will use the Fano’s inequality in order to prove
this lemma. We have

'R1 = H(W1) = I(W1; y#
1) + H(W1|y#

1)

≤ I(W1; y#
1) + 'e# (E.5)

≤ I(x#
1; y

#
1) + 'e#, (E.6)

where (E.5) is implied by the Fano’s inequality, and in (E.6) we used the data
processing inequality for the Markov chain W1 ↔ x#

1 ↔ y#
1. Note that where

ε# → 0 as ' grows. The proofs of the other two inequalities follow the same
lines, and we skip them to sake of brevity.

E.3 Proof of Lemma 6.9

The following achievability scheme simply uses superposition encoding of sub-
messages at F2, and a successively decode and cancel strategy at G1 and G2.
We use a random codebook with a proper number of codewords, generated ac-
cording to a zero-mean unit-variance Gaussian distribution for each message. A
proper power allocation for the messages at the transmitters allow the decoders
to apply a decode and cancel strategy. We denote the codeword corresponding
to the message U (j)

i by xi,j , and the power allocated to this message by αi,j .
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The available power at F2 can be arbitrarily allocated to its sub-messages.
In particular, we choose the power coefficients so that they satisfy α2,2 ≤ 1/g22,
α2,3 ≤ 1/g12, and α2,1 = 1 − α2,2 − α2,3. In the decoding part, G1 and
G2 treat U (3)

2 and U (2)
2 , respectively, as noise. Therefore, the total noise at

G1 and G2 would be z̃1 = √
g12α2,3x2,3 + z1 and z̃2 = √

g22α2,2x2,2 + z2.
However, the effective noise power cannot exceed 2 since [g12α2,3 +1] ≤ 2 and
[g22α2,2 + 1] ≤ 2.

The receiver F1 observes a Gaussian multiple access channel (with noise
power upper bounded by 2), where U (1)

1 is sent by one user, and (U (1)
2 , U (2)

2 ) is
sent by the other user. The bounds in (6.27)-(6.30) guarantee that these rates
are achievable over the multiple access channel.

On the other hand, the channel from F2 to G2 is Gaussian point-to-point
channel with modified additive noise. Therefore, any total rate not exceeding
its capacity can be reliably transmitted. This is condition is fulfilled here since
Υ2,1 + Υ2,3 satisfies (6.32). Finally, the bound on the power allocated to U (3)

2
upper bounds its rate as in (6.31). #

E.4 Proof of Lemma 6.11

Again, the achievability scheme we propose for the Gaussian S interference
network (illustrated in Figure 6.8) is based on superposition coding, and a
successively decode and cancel decoding strategy, such that the requirements
of the problem are fulfilled. A proper power allocation is required to guarantee
achievability of the rate tuples mentioned in this lemma.

Note that G1 does not decode V (2)
2 and V (4)

2 , and treats them as noise. We
choose the total fraction of power allocated to V (2)

2 and V (4)
2 to be at most

1/h11, that is α2,2 +α2,4 ≤ 1/h11. Therefore, the total noise power received at
G1 is upper bounded as [h11(α2,2 + α2,4) + 1] ≤ 2.

Similarly, V (2)
1 is treated as noise at G2. By bounding the fraction of power

allocated to this sub-message, we can upper bound the effective noise power
observed at G2 by [h11(α2,2 + α2,4) + 1] ≤ 2.

The point-to-point Gaussian channel from F1 to G1 can support any sum-
rate below its capacity as in (6.33). Moreover, Θ1,2 is bounded above since its
allocated power does not exceed 1/h12.

On the other hand, we have a Gaussian multiple access channel from F1 and
F2 to G2, with total noise power not exceeding 2. The bounds in (6.35)-(6.38)
guarantee that the desired rates belong to the capacity region of this channel,
and therefore they are achievable. We skip the details of power allocation here,
but we point out that the achievability of the region is a consequence of the
Gaussian multiple access rate region achievability. #
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E.5 Proof of Lemma 6.13

Note that Z is independent of everything else, and X1 and X2 are conditionally
independent. Without loss of generality we can also assume that µi(γ) =
[Xi|Γ = γ] = 0 for ∀γ (otherwise, for any given Γ = γ, we can shift Xi

by µi(γ), while the entropy does not change). Let [X2
i |Γ = γ] = σ2

i (γ) for
i = 1, 2. Therefore the conditional variance of Y can be bounded as

[Y 2|Γ = γ] = [(X1 + X2 + Z)2|Γ = γ] = σ2
1(γ) + σ2

2(γ) + 1. (E.7)

Therefore,

h(Y |Γ) = Γ[h(Y |Γ = γ)] = T [h(X1 + X2 + Z|Γ = γ)]

≤ Γ[log 2πe(σ2
1(γ) + σ2

2(γ) + 1)] (E.8)

≤ log 2πe( Γ[σ2
1(γ) + σ2

2(γ) + 1]) (E.9)

= log 2πe(σ2
1 + σ2

2 + 1), (E.10)

where in (E.8) we have used the fact that Gaussian random variable has
the maximum differential entropy among all random variables with the same
variance, and (E.9) follows from the concavity of the function log(·). Finally,
(E.10) is just the tower property, Γ[ [X2

i |Γ]] = [X2
i ]. #

E.6 Proof of Lemma 6.16

In this part we show that any rate tuple satisfying (6.67)-(6.70) is achievable.
We represent the channel model again for clarity in Figure E.1.

F1

F2

G1

G2

√
g11

√
g12

√
g22

z1

z2

x1

x2

y1

y2

(
U (0)

1 , U (1)
1

)

(
U (0)

2 , U (1)
2

)

(
Û (1)

1 , φ̂(U (0)
1 , U (0)

2 )
)

(
Û (0)

2 , Û (1)
2

)

Figure E.1: The Gaussian Z-neutralization channel.

The main idea of this proof can be summarized as follows.

• Use a common codebook with group structure, such as lattice codes, for
W (0)

1 and W (0)
2 , which maps them to x1,0 and x2,0, i.e., ψ(

(
W (0)

i

)
) = xi,0,

for i = 1, 2.
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• Choose a proper power allocation for x1,0 and x2,0 such that they get
received at G1 at the same power level; More precisely, denoting their
power allocation by α0 and β0, they should satisfy g11α0 = g12β0. This
condition guarantees that the two lattice points get scaled by the same
factor, and therefore the result is still a lattice point on the scaled lattice
and can be decoded as long as enough signal to noise ratio is provided.

• Use random Gaussian codebooks to encode the private sub-messages to
x1,1 and x2,1, and use proper power allocation, α1 and β1, i.e., [x2

1,1] ≤
α1, and [x2

2,1] ≤ β1.

The first receiver G1 needs to decode the partial-invertible φ which we define
as

φ
(
W (0)

1 , W (0)
2

)
= ψ−1

(
ψ
(
W (0)

1

)
+ ψ

(
W (0)

1

))

= ψ−1 (x1,0 + x2,0)

where ψ is the one-to-one encoding function which maps the functional mes-
sages to the common lattice codebook. Note that the group structure of the
code implies that x1,0 + x2,0 is still a valid codeword. It is easy to check that
this function is partial-invertible.

Let us define

η ! min
{

g11, g12, g22,
g11g22

g12

}
, (E.11)

and recall the definitions of λ and µ from Lemma 6.16:

λ = min{g11, g12, g22},

and

µ = max
{

g11, g12, g22,
g11g22

g12

}
.

Depending on the minimizer in η, we identify four cases. In each case, the
achievable rate region is a polytopes, with a certain number of corner points.
It suffices to show the achievability only for the cornet points, since a standard
time-sharing argument guarantees achievability for the rest of the region.

The proof details for each corner point includes message splitting, and
power allocation for sub-messages such that the decoders be able to decode
corresponding messages. In the following we describe this strategy in details
for the case where η = g11. The extension of this method for other cases is
straight-forward, and therefore we skip it here to sake of brevity.

Case I. η = g11 It is clear from the definition of η that in this case g11 ≤
g12 ≤ g22, and therefore λ = g11 and µ = g22. Hence, the characterization
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of the region in the lemma reduces to the set of all non-negative rate tuples
(Υ0,Υ1,Υ2) satisfying

Υ0 + Υ1 ≤
(

1
2

log (g11)− 1
)+

,

Υ0 + Υ1 + Υ2 ≤
(

1
2

log (g22)−
3
2

)+

.

This rate region is depicted in Figure E.2. It suffices to show that the corner
points A, B and C are achievable, since the points D and E are degenerated
from B and C, respectively.

Υ0

Υ1Υ2
A

B

C

D

E

Figure E.2: Achievable rate region of the Z-neutralization network when η = g11.

• A, with coordinates (Υ0,Υ1,Υ2) =
(
0, 0,

(
1
2 log (g22)− 3

2

)+): The en-
coding strategy for this corner point is fairly simple. The second trans-
mitter uses all its available power to send W (1)

2 , while the first transmit-
ter keeps silent. That is, x1 = 0 and x2 = x2,1. The first decoder has
nothing to decode, and the second one can decode x2 from y2 as long as
Υ2 ≤ 1

2 log (1 + g22). It is clear that in particular Υ2 =
(

1
2 log (g22)− 3

2

)+

is achievable.

• B: The rate triple for this point is given by Υ0 =
(

1
2 log (g11)− 1

)+,
Υ1 = 0, and Υ2 =

(
1
2 log (g22)− 3

2

)+ −
(

1
2 log (g11)− 1

)+. In order to
achieve this rate triple, the first encoder sends its lattice codeword with
power allocation α0 = (g11−1)/g11. The second encoder splits its private
message into W (1)

2 = (W (1,1)
2 , W (1,2)

2 ) of rates Υ2,1 and Υ2,2 where Υ2 =
Υ2,1 + Υ2,2. Then it sends

x2 =
√
β1,1x2,1,1 +

√
β0x2,0 +

√
β1,2x2,1,2
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where the power allocation coefficients are fixed to be β1,2 = 1/g12, β0 =
(g11 − 1)/g12, and β1,1 = 1 − β0 − β1,2. The signal received at the
destinations are

y1 =
√

g11x1 +
√

g12x2 + z1,

=
√

g11[
√
α0x1,0] +

√
g12[
√
β1,1x2,1,1 +

√
β0x2,0 +

√
β1,2x2,1,2] + z1,

=
√

g12 − g11x2,1,1 +
√

g11 − 1[x1,0 + x2,0] + x2,1,2 + z1, (E.12)
y2 =

√
g22x2 + z2,

=
√

g22[
√
β1,1x2,1,1 +

√
β0x2,0 +

√
β1,2x2,1,2] + z2

=

√
g22(g12 − g11)

g12
x2,1,1 +

√
g22(g11 − 1)

g12
x2,0 +

√
g22

g12
x2,1,2 + z2.

(E.13)

The first node decode and cancel x2,1,1, x̃0 = x1,0 + x2,0, and x2,1,2 in
order, while the second one performs the same decoding for x2,1,1, x2,0,
and x2,1,2. Note that x2,1,1 is decodable at G1 and G2 if Υ2,1 does not
exceed

1
2

log
(

g12 + 1
2g11

)
>

1
2

log
(

g12

g11

)
− 1

2
, (E.14)

and

1
2

log
(

g22 + 1
g11g22/g12 + 1

)
>

1
2

log
(

g12

g11

)
− 1

2
, (E.15)

respectively. Therefore Υ2,1 = 1
2 log

(
g12
g11

)
− 1

2 is achievable.

Once x2,1,1 is decoded and removed from the received signal, G1 has to
decode x̃0, which can be done as long as

Υ0 ≤
1
2

log
(

g11 + 1
2

)
. (E.16)

On the other hand, Υ0 is upper bounded as

Υ0 ≤
1
2

log
(

g11g22/g12 + 1
g22/g12 + 1

)
, (E.17)

since x2,0 should be decodable at G2. Clearly Υ0 = 1
2 log (g11)−1 satisfies

both (E.16) and (E.17), and therefore, is achievable.
The last step is to decode x2,1,2 at G2. This can be done if Υ2,2 is upper
bounded by

1
2

log
(

1 +
g22

g12

)
. (E.18)
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Again, it is easy to show that Υ2,2 = 1
2 log (g22/g12) satisfies this bound.

Hence, the total rate of

Υ2 = Υ2,1 + Υ2,2 =
1
2

log
(

g12

g11

)
− 1

2
+

1
2

log (g22/g12)

is achievable, which proves achievability of the cornet point B.

• C: This point is characterized by Υ0 = 0, Υ1 =
(

1
2 log (g11)− 1

)+, and
Υ2

(
1
2 log (g22)− 3

2

)+ −
(

1
2 log (g11)− 1

)+. For this rate tuple, the rate
of the functional message is zero, and we have to deal with a usual Z
channel. The second transmitter splits its private message similar to
that of corner point B. The transmission power is distributed between
among the sub-message as α0 = 0, α1 = 1, β1,2 = 1/g12, β0 = 0, and
β1,1 = 1− β1,2. The received signals at G1 and G2 would be

y1 =
√

g11x1 +
√

g12x2 + z1,

=
√

g11[
√
α1x1,1] +

√
g12[
√
β1,1x2,1,1 +

√
β1,2x2,1,2] + z1,

=
√

g12 − 1x2,1,1 +
√

g11x1,1 + x2,1,2 + z1, (E.19)
y2 =

√
g22x2 + z2,

=
√

g22[
√
β1,1x2,1,1 + +

√
β1,2x2,1,2] + z2

=

√
g22(g12 − 1)

g12
x2,1,1 +

√
g22

g12
x2,1,2 + z2. (E.20)

The first sub-message of W2, x2,1,1 has to be decoded at both G1 and
G2, Therefore its rate is upper bounded by

Υ2,1 ≤
1
2

log
(

g12 + g11 + 1
g11 + 2

)
,

and

Υ2,1 ≤
1
2

log
(

g22 + 1
g22/g12 + 1

)
.

Hence, Υ2,1 = 1
2 log (g12/g11) − 1

2 satisfies both inequalities since we as-
sumed g11 ≤ g12 ≤ g22. Then G1 removes x2,1,1, and decodes x1,1,
treating x2,1,2 as noise. Therefore, any rate satisfying

Υ1 ≤
1
2

log
(

g11 + 2
2

)
,

and in particular, Υ1 = 1
2 log (g11) − 1 is achievable. It only remains to

decode x2,1,2 at G2, which can be done, provided that

Υ2,2 ≤
1
2

log
(

1 +
g22

g12

)
.
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Hence, Υ2,2 = 1
2 log (g22/g12) is a valid choice, which yields in the total

rate of

Υ2 = Υ2,1 + Υ2,2 =
1
2

log (g22/g12) +
1
2

log (g12/g11)−
1
2

=
1
2

log (g22)−
1
2

log (g11)−
1
2
,

which implies the achievability of the rate point C.

#



Appendix for Chapter 7 F
F.1 Proof of Lemma 7.3

Consider a block matrix with shift matrix block as

G =
[

Jp−m1 Jp−q1

Jp−m2 Jp−q2

]
.

We can, without loss of generality assume that m1 = max{m1, m2, q1, q2} =
p. Let r denote the rank of this matrix, and our goal is to prove that r =
Ψ(m1, m2, q1, q2), defined in (7.4). Therefore, G can be written as a product
of two full-rank matrices as

G = G1G2 =
[

I Jm1−q1

Jm1−m2 Jm1−q2

]
=
[

I 0
Jm1−m2 G′

1

]

︸ ︷︷ ︸
r

[
I Jm1−q1

0 G′
2

]}
r

where I is the identity matrix of size p × p and 0 is the zero matrix of size
p× (r − p). Moreover, G1 and G2 are full-rank matrices which satisfy

J2m1−m2−q1 + G1G2 = Jm1−q2 .

It is clear that the fact that G1 is full-rank, implies G′
1 is also full-rank, and

moreover, the first p columns and the last (r − p) columns of G1 are linearly
independent. Therefore, r = rank (G1) = p + rank (G′

1).
Note that if m1 + q2 = m2 + q2, then 2m1 − m2 − q1 = m1 − q2, and

G1 = G2 = 0. Recall that G1 and G2 are full-rank. So, they should have zero
columns, and hence r = m1, in this case.

On the other hand, if m1+q2 (= m2+q2, then G′
1G

′
2 = Jm1−q2−J2m1−m2−q1 ,

and

rank (G′
1G

′
2) = max{p− (m1 − q2), m1 − (2m1 −m2 − q1)}.
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Since G′
1 and G′

2 are also full-rank, each of them is of the same rank. Therefore,

r = p + rank (G′
1) = m1 + max{q2, m2 + q1 −m1} = max{m1 + q2, m2 + q1}.

#

F.2 Evaluation of R(N) + R(P )

Note that combining (7.17) and (7.18), we conclude any rate satisfying

R ≤ ν + min
{

max{(m1 − q1)+, (m2 − q2)+}, (m1 − q1)+ + (n1 − ν),
(m2 − q2)+ + (n2 − ν), max{n2 − ν, n2 − ν}

}
(F.1)

is achievable.
First assume m1 + q2 = m2 + q2. In this case, from (7.17) we have ν = 0.

Therefore, (F.1) can be written as

R ≤ min
{
(m1 − q1)+, (m1 − q1)+ + n1, (m2 − q2)+ + n2, max{n2, n2}

}
.

It remains to show that (m1−q1)+ = max{m1, m2, q1, q2}−max{q1, q2}, which
is straight-forward, since we assumed m1 + q2 = m2 + q1.

In the second case, where m1 + q2 (= m2 + q2, we have ν = min{n1, n2, δ}.
Therefore, (F.1) can be written as

R ≤ min
{

max{(m1 − q1)+, (m2 − q2)+} + ν, (m1 − q1)+ + n1,

(m2 − q2)+ + n2, max{n2, n2}
}

= min
{

max{(m1 − q1)+, (m2 − q2)+} + min{δ, n1, n2}, (m1 − q1)+ + n1,

(m2 − q2)+ + n2, max{n2, n2}
}

= min
{

max{(m1 − q1)+, (m2 − q2)+} + δ, (m1 − q1)+ + n1,

(m2 − q2)+ + n2, max{n2, n2}
}

(F.2)

where the last equality holds, since if δ = n1 then the first expression is always
greater than or equal to the second term, and does not appear in the minimiza-
tion result. Similarly if δ = n2. Now, without loss of generality, we can assume
that m1 + q2 > m2 + q1, and conclude (m1 − q1)+ ≥ (m2 − q2)+. Hence,

δ + max{(m1 − q1)+, (m2 − q2)+}
= min{q1, q2}−min{(q1 −m1)+, (q2 −m2)+}

+ max{(m1 − q1)+, (m2 − q2)+}
= (q1 + q2 −max{q1, q2})− (q1 −m1)+ + (m1 − q1)+

= (q1 + q2 −max{q1, q2})− (max{q1, m1}−m1) + (max{q1, m1}− q1)
= q1 + q2 −max{q1, q2} + m1 − q1

= m1 + q2 −max{q1, q2}
= max{m1 + q2, m2, q1}−max{q1, q2}. (F.3)

Replacing this in the (F.3) in (F.2) gives us the desired result. #



Notation, Symbols, and Abbreviations

! definition
IN {1, 2, . . . , N}; Subsection 2.1.1
Ωα

K {v ∈ {0, 1}K : |v| = α}; Subsection 2.1.1
|v| Hamming weight of the vector v
dH(·, ·) Hamming distance between two vectors∏

set product
expectation operator
set of real numbers

+ set of positive real numbers
set of integer numbers

+ set of positive integer numbers
u ≤ v coordinate-wise inequality for vectors u and v; see Definition 2.2
1j(K) indicator for position j in a K-dimensional space; see Def. 2.4
L ordering level; see Definition 2.5
N (µ,σ2) the Gaussian distribution with mean µ and variance σ2

π(·) permutation
/ covering for optimal α-resolutions; see Defi. 3.8
Amin minimum component of a vector
Asum summation of the components of a vector
conv convex hull operator
D" enhanced distortion vector; see (3.9)
MLD multi-level diversity coding
SMLD symmetric multi-level diversity coding
RSMLD(H) achievable rate region of the SMLD problem; see Thm. 2.1
AMLD asymmetric multi-level diversity coding
RAMLD(H) achievable rate region of the AMLD problem; see Thm. 2.7
RL

AMLD(H) achievable rate region of the AMLD problem for a specific order
MD multiple description coding
SMD symmetric multiple description coding
RSMD(D) admissible rate region of the SMD problem; see (3.1)
RSR

SMD(D) inner bound for RSMD based on successive refinement
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RPPR
SMD(D) inner bound for RSMD based on PPR scheme

RSMD(D) outer bound for RSMD
RSMD(D, d) parametric outer bound for RSMD
RSMD(D) symmetric individual-description rate-distortion; see (3.2)
R

SR
SMD(D) upper bound for RSMD based on successive refinement

R
PPR
SMD(D) upper bound for RSMD based on PPR scheme

RSMD(D) lower bound for RSMD

RSMD(D, d) parametric lower bound for RSMD

RAMD(D) admissible rate region of the AMD problem
RAMD(D) inner bound for RAMD
RAMD(D) outer bound for RAMD
RAMD(D, d) parametric outer bound for RAMD
SID− RD symmetric individual description rate-distortion
PPR Puri, Pradhan and Ramchandran coding scheme
SR successive refinement
SR−MLD successive refinement with multi-level diversity coding
SR− ULP successive refinement with unequal loss protection coding
MDS maximum distance separable
AMD asymmetric multiple description coding
MSB most significant bit
BC broadcast channel
MAC multiple access channel
XX the XX network
Z the Z network
S the S network
ZS the ZS network
ZZ the ZZ network
DZS the deterministic ZS network
DZZ the deterministic ZZ network
GZS the Gaussian ZS network
GZZ the Gaussian ZZ network
Z− chain the deterministic Z-chain network
C capacity
Cdet capacity of the deterministic network
Cg capacity of the Gaussian network
Ω a cut in a network
Λ(S;D) the set of cuts which separate S and D
GΩ,Ωc the transfer matrix of cut Ω
RDZS achievable rate region of DZS network
RDZZ achievable rate region of DZZ network
RGZS outer bound for the achievable rate region of GZS network
RGZS inner bound for the achievable rate region of GZS network
RGZZ outer bound for the achievable rate region of GZZ network
RGZZ inner bound for the achievable rate region of GZZ network
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(x)+ positive part of x
SNR signal to noise ratio
INR interference to noise ratio
SINR signal to interference and noise ratio
AVC arbitrarily varying channel
GDA the Gaussian diamond network with adversarial jammer
DDA the deterministic diamond network with adversarial jammer
CDDA capacity of DDA network
CGDA upper bound on the capacity of GDA network
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