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ABSTRACT

This thesis deals with the asymptotic analysis of coding systems based on sparse graph 
codes.  The goal of this work is to analyze the decoder performance when transmitting 
over a general binary-input memoryless symmetric-output (BMS) channel.  We consider 
the two most fundamental decoders, the optimal maximum a posteriori (MAP) decoder 
and the sub-optimal belief propagation (BP) decoder.  The BP decoder has low-complexity 
and its performance analysis is, hence, of great interest. The MAP decoder, on the other
hand, is computationally expensive.  However, the MAP decoder analysis provides 
fundamental limits on the code performance.  As a result, the MAP-decoding analysis is 
important in designing codes which achieve the ultimate Shannon limit. 

It would be fair to say that, over the binary erasure channel (BEC), the performance 
of the MAP and BP decoder has been thoroughly understood.  However, much less 
is known in the case of transmission over general BMS channels. The combinatorial 
methods used for analyzing the case of BEC do not extend easily to the general case. 

The main goal of this thesis is to advance the analysis in the case of transmission over 
general BMS channels.  To do this, we use the recent convergence of statistical physics 
and coding theory.  Sparse graph codes can be mapped into appropriate statistical 
physics spin-glass models. This allows us to use sophisticated methods from rigorous 
statistical mechanics like the correlation inequalities, interpolation method and cluster 
expansions for the purpose of our analysis.  One of the main results of this thesis is that 
in some regimes of noise, the BP decoder is optimal for a typical code in an ensemble 
of codes. This result is a pleasing extension of the same result for the case of BEC. An 
important consequence of our results is that the heuristic predictions of the replica and 
cavity methods of spin-glass theory are correct in the realm of sparse graph codes.
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Abstract


This thesis deals with the asymptotic analysis of coding systems based on
sparse graph codes. The goal of this work is to analyze the decoder perfor-
mance when transmitting over a general binary-input memoryless symmetric-
output (BMS) channel. We consider the two most fundamental decoders,
the optimal maximum a posteriori (MAP) decoder and the sub-optimal be-
lief propagation (BP) decoder. The BP decoder has low-complexity and its
performance analysis is, hence, of great interest. The MAP decoder, on the
other hand, is computationally expensive. However, the MAP decoder analysis
provides fundamental limits on the code performance. As a result, the MAP-
decoding analysis is important in designing codes which achieve the ultimate
Shannon limit.


It would be fair to say that, over the binary erasure channel (BEC), the
performance of the MAP and BP decoder has been thoroughly understood.
However, much less is known in the case of transmission over general BMS
channels. The combinatorial methods used for analyzing the case of BEC do
not extend easily to the general case.


The main goal of this thesis is to advance the analysis in the case of trans-
mission over general BMS channels. To do this, we use the recent convergence
of statistical physics and coding theory. Sparse graph codes can be mapped
into appropriate statistical physics spin-glass models. This allows us to use
sophisticated methods from rigorous statistical mechanics like the correlation
inequalities, interpolation method and cluster expansions for the purpose of
our analysis. One of the main results of this thesis is that in some regimes of
noise, the BP decoder is optimal for a typical code in an ensemble of codes.
This result is a pleasing extension of the same result for the case of BEC.
An important consequence of our results is that the heuristic predictions of
the replica and cavity methods of spin-glass theory are correct in the realm of
sparse graph codes.


Keywords: Low-Density Parity-Check Codes, Low-Density Generator-
Matrix Codes, Maximum A Posteriori Decoder, Belief Propagation Decoder,
Statistical Physics, Spin-Glass.
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Résumé


Le sujet de cette thèse concerne l’analyse asymptotique de systèmes de codages
basés sur les graphes dilués. Le but de ce travail est l’analyse de la performance
du décodage lors de la transmission à travers un canal symétrique sans mémoire
à entrées binaires (BMS). Nous considérons les décodeurs les plus fondamen-
taux, le décodeur optimal maximum a posteriori (MAP) et le décodeur sous-
optimal de propagation des messages (BP). D’une part, le décodeur BP possède
une faible complexité et son analyse est donc d’un grand intérêt. D’autre part,
bien que le décodeur MAP possède une grande complexité, celui-ci donne les
limites fondamentales de la performance du code considéré. Par conséquent
son analyse est importante pour construire les codes qui atteignent la limite
de Shannon.


Il est justifié de dire que sur le canal binaire à effacement (BEC) les per-
formances des décodeurs MAP et BP sont bien comprises. Par contre, sur les
canaux généraux BMS la situation est beaucoup moins bien comprise. En effet
les méthodes combinatoires utilisées pour l’analyse du BEC ne se généralisent
pas aisément au cas général.


Le but principal de cette thèse est de faire des progrès dans l’analyse du
cas de la transmission à travers des canaux BMS généraux. Pour cela nous
utilisons la connexion récente entre la physique statistique et le codage. Les
codes correcteurs d’erreurs basés sur les graphes dilués peuvent être trans-
formés en modèles équivalents de physique statistique des verres de spins. Ceci
nous permet d’utiliser des méthodes sophistiquées provenant de la mécanique
statistique rigoureuse telles que, les inégalités de corrélations, la méthode
d’interpolation et le développement en clusters. L’un des résultats princi-
paux de cette thèse est que, dans certains régimes de bruit, le décodeur BP est
optimal pour un code typique dans l’ensemble considéré. Cela constitue une ex-
tension du même résultat obtenu précédemment sur le BEC. Une conséquence
importante de nos résultats est aussi que les prédictions heuristiques de la
théorie des verres de spins obtenues par la méthode des répliques et de la
cavité, sont correctes en ce qui concerne les codes correcteurs sur des graphes
dilués.


Mots clés: Low-Density Parity-Check Codes, Low-Density Generator-
Matrix Codes, Décodeur Maximum A Posteriori, Décodeur Belief Propagation,
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Physique Statistique, Verres de spins.







Acktionary


SNF: 1) Swiss National Foundation. Use in a sentence – I gratefully ac-
knowledge the money provided by the Swiss National Foundation for funding
my stay in EPFL.
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Introduction 1
The title “Statistical Physics Methods for Sparse Graph Codes” is in reference
to the recent convergence of communication science and statistical physics. In
this thesis we focus on the performance analysis of sparse graph codes when
transmitting over binary-input memoryless symmetric-output (BMS) channels
(see Section 1.2 for a definition) using tools from statistical physics.


Low-density parity-check (LDPC) codes based on sparse graphs (see Sec-
tion 1.1) have emerged as a new chapter in the theory of error correcting codes.
This is largely because they are amenable to low-complexity decoding and, at
the same time, have good performance (measured as the gap to Shannon’s
capacity) [1], [2]. After their invention by Gallager in 1962 in his thesis [3],
LDPC codes were largely forgotten due to a lack of computational resources to
implement them. In 1993, Berrou, Glavieux and Thitimajshima provided an
impetus to the search of low-complexity decoding by inventing Turbo codes
[4]. They showed that Turbo codes achieved performance very close to the
Shannon limit under low-complexity decoding.


Shortly afterwards, LDPC codes were re-invented by MacKay and Neal [5],
[6] and independently by Spielman in his thesis on LDPC codes based on ex-
pander graphs [7]. One of the two most notable outcomes of this resurrection
was the discovery of irregular LDPC codes (see Section 1.1) by Luby, Mitzen-
macher, Shokrollahi and Spielman [8], which by optimizing the degrees, could
approach the capacity of the binary erasure channel (BEC). The other no-
table outcome was the density evolution technique of Richardson and Urbanke
[9]. This technique allowed to design codes which empirically approached the
Shannon limit on the binary-input additive white-gaussian noise channel (BI-
AWGNC)1 [1].


It was shown by Wiberg in his thesis [10], and independently by Tanner in


1See Section 1.2 for a definition of the BEC and BIAWGNC.
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[11], that both Turbo codes and LDPC codes fall under the umbrella of codes
based on sparse graphs. They also showed that their low-complexity decoding
algorithm was an instance of a general sum-product rule, and is equivalently
known as the belief propagation (BP) decoder. A summary of this development
can be found in [12]. We would like to mention at this point that the BP rules
have multiple and independent origins: they were suggested by Kim and Pearl
in [13], [14] to approximately compute the a posteriori marginals in Bayesian
inference networks in the field of artificial intelligence; they also appeared as
the Bethe-Peierls equations for computing partition functions in the field of
statistical physics [15].


The analysis of codes based on sparse graphs has evolved in two directions:
(i) analysis of the optimal decoding (decoder minimizing the average bit-error
rate) and (ii) analysis of the low-complexity (sub-optimal) BP decoder. There
is an obvious interest in analyzing the BP decoder, as it is the choice for any
practical decoding system. However, there is also an interest in analyzing the
performance of the optimal decoder, since it makes it clear whether attempts
to increase the performance should focus on finding better codes or better
decoding algorithms.


It is probably fair to say that the analysis of the optimal decoder has
lagged the BP decoder analysis. The basic techniques for analyzing the optimal
decoder has not evolved much from its inception in Gallager’s thesis. Although
much effort has gone into refining the techniques and applying them to a large
set of communication scenarios [16], [17].


The BP decoder analysis of sparse graph codes has been the main focus over
the last decade. In the case of transmission over the BEC, the BP decoder has
been thoroughly analyzed [18], [19], [20]. In fact there are code constructions
which achieve the Shannon limit of the BEC under BP decoding [21], [22].
We refer to the recent book [23] for the state of the art of this general theory.
However much less is known for the case of transmission over more general
channels. One of the goals of this thesis is to advance the analysis of the BP
decoder in the more general case.


Recently, Measson, Montanari and Urbanke in [24] have demonstrated the
optimality of the BP decoder, with high probability, for some regimes of chan-
nel erasure probability, when transmitting over the BEC. The codes they use
for transmission belong to a fairly general class of LDPC code ensembles. This
is one of the few instances, where it is known that BP rules perform exact in-
ference, with high probability, even in the presence of loops in the graphical
representation! It would be desirable to have such a statement in the case
of general channels. For this, the combinatorial techniques, employed in the
analysis of the BEC, do not seem to be useful and radical new ideas seem to
be necessary.


Sourlas in his work in [25], showed that the decoding problem of sparse
graph codes can be mapped to the computation of local magnetizations or
magnetic fields of a spin-glass system in statistical mechanics. Building on
the work of Sourlas, Kanter and Saad in [26], Murayama, Kabashima, Saad
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and Vicente in [27] and Franz, Leone, Montanari and Ricci-Tersenghi in [28]
used methods from statistical physics to study both, optimal and BP decoding
LDPC codes.


Recently, Montanari in [29] showed that predictions of statistical physics
are tight bounds on the performance of the optimal decoder, when transmitting
over general BMS channels. The methods used in [29] have their origins in
the analysis of mean-field models of statistical physics of disordered systems.
These methods were pioneered by Guerra, Toninelli and Talagrand in [30],
[31], [32] for the analysis of the Sherrington-Kirkpatrick model of statistical
physics.


In this thesis our main focus is to use tools from statistical physics for
performance analysis of sparse graph codes when transmitting over general
BMS channels. We study various quantities appearing in the optimal-decoder
analysis. As a consequence of our analysis we show that the BP decoder does
exact inference, with high probability, for appropriate regimes of channel noise
value. We employ tools from statistical physics for the purpose of our analysis.


In the next section we define codes based on sparse graphs. We mention the
two most popular codes based on sparse graphs, namely, the low-density parity-
check codes and the low-density generator-matrix codes. This thesis focuses
solely on the performance analysis of these two codes. We also describe the
channels over which the transmission takes place. In Section 1.3, we describe
the optimal MAP decoder. The sub-optimal BP decoder is outlined in Section
1.4. In Section 1.5 we mention the associated tools for performance analysis.
A brief history of the performance analysis of sparse graph codes in given
in Section 1.6. We show the connection to statistical physics in Section 1.7.
Finally, we end the chapter by delineating the contribution and organization
of this thesis.


1.1 Codes based on Sparse Graphs


It is our aim to study the performance of block codes defined on sparse graphs.
We have k bits of information. We transform them via encoding into a code-
word. Throughout this thesis, n will denote the block-length of the code. The
two families of codes we consider are low-density parity-check codes and low-
density generator-matrix codes. Most of our results deal with ensembles of
codes rather than a fixed code. However, wherever applicable, we show that
our results hold also for any fixed code. The codes we consider are defined
over F2 = {0, 1}. Let us now describe these two code families in more detail.


1.1.1 Low-Density Parity-Check (LDPC) Codes


A parity-check code, C, is defined by a parity-check matrix H of dimension
m × n. Each entry of H belongs to {0, 1}. Here, m represents the number of
parity-check constraints on the n code-bits. The codewords of C are all the
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n length binary tuples x = (x1, x2, . . . , xn) which satisfy Hx = 0. Thus the
code is the null space of the parity-check matrix H. The rate of the code is
defined to be the dimension of the null space normalized by the block-length.
A related quantity is the design rate of the code, denoted by R. It is given by
R = 1 − m


n
. Note that the rate is always at least R. The inequality is strict if


some of the constraints are linearly dependent. Throughout this thesis we will
call xi the “code-bit” i. An example of a parity-check matrix code is shown in
Example 1.1.


Example 1.1 (Parity-Check Code). Consider the parity-check matrix


H =


1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


 . (1.1)


We have n = 7 and m = 3 (i.e., the block-length is 7 and there are 3 parity-
check constraints). The design rate of the code is R = (7 − 3)/7 = 4/7. The
code consists of all 7−tuples x = (x1, x2, x3, x4, x5, x6, x7) satisfying the three
equations


x1 + x2 + x4 + x5 = 0,


x1 + x3 + x4 + x6 = 0,


x2 + x3 + x4 + x7 = 0.


It is not hard to see that the above set of equations are linearly independent
over the field F2. Thus the rate of the code is equal to the design rate.


We use the standard Tanner graph representation [23], [33] to visualize the
parity-check code. In this representation the code-bits are represented by a
circle and the parity-check constraints are represented by squares. The circles
are usually called variable nodes and the squares are called check nodes. The
Tanner graph is a bipartite graph with two sets of nodes; one set, V, consists
of the variable nodes and the other set, C, consists of check nodes. There
is an edge between a variable node i ∈ V and a check node a ∈ C, if the
corresponding code-bit i participates in the parity-check constraint a. Figure
1.1 shows the Tanner graph corresponding to the parity-check matrix of (1.1).


Low-Density parity-check codes are parity-check codes which have a sparse
Tanner graph representation [23]. By sparse we mean that the number of edges
in the Tanner graph is proportional to n. From the Tanner graph one can
deduce a degree distribution of the variable nodes and a degree distribution
of the check nodes. The variable node degree distribution is given by the
function Λ(x) ,


∑
i Λix


i, where Λi denotes the fraction of nodes with degree


i. Similarly, the check node degree distribution is given by P (x) ,
∑
Pix


i. It
is standard practice to represent the code by its node degree distribution pair
(Λ(x), P (x)). We will also be interested in the degree distribution from the
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x4


x3
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x1


Figure 1.1: The Tanner graph corresponding to the code in Example 1.1. Here
n = 7 and the (design) rate is equal to 4


7
. The variable node degree distribution is


given by Λ(x) = 3
7
x+ 3


7
x2 + 1


7
x3. The check node degree distribution is given by


P (x) = x4. The average variable node degree is equal to lavg = Λ′(1) = 12
7


and
average check node degree is equal to ravg = P ′(1) = 4. The edge perspective
degree distributions are given by λ(x) = 1


4
+ 1


2
x+ 1


4
x2 and ρ(x) = x3.


edge perspective. We denote by λ(x) ,
∑


i λix
i−1 the edge degree distribution


of variable nodes. Here λi denotes the fraction of edges attached to variable
nodes of degree i. Similarly, we denote by ρ(x) ,


∑
i ρix


i−1 the edge degree
distribution of the check nodes. Here ρi gives the fraction of edges connected
to check nodes of degree i. Clearly, lavg , Λ′(1) and ravg , P ′(1) gives the
average variable node degree and the average check node degree respectively.
Since nlavg = mravg = number of edges, the design rate is also given by R =
1−m


n
= 1− lavg


ravg
. From the definitions above we deduce λi = iΛi


Λ′(1)
and ρi = iPi


P ′(1)
.


We will use, whenever convenient, either (Λ(x), P (x)) or (λ(x), ρ(x)) to denote
the code. We let lmax and rmax denote the maximum variable node and check
node degrees. In most of our results, we consider codes with bounded lmax


and rmax.
We now define an ensemble of codes, C, using the variable node and check


node degree distributions. Thus we define an ensemble of codes of degree
distribution (Λ(x), P (x)) as follows.


Definition 1.1 (Standard Ensemble). A code from the standard ensemble
(n,Λ(x), P (x)) is constructed as follows. Let the maximum variable node de-
gree be given by lmax and the maximum check node degree be given by rmax.
Associate i sockets to each of nΛi variable nodes of degree i (choose n such that
nΛi is an integer for all i), for all 1 ≤ i ≤ lmax. Similarly, associate k sockets
for mPk check nodes (choose m such that mPk is an integer for all k) of degree
k. Number the sockets on both sides. Consider a random permutation, π of
nlavg objects and connect socket number i on the variable node side to socket
number π(i) on the check node side. For each permutation we get a code in
the ensemble and we associate a uniform probability over all the permutations.


The most popular example of LDPC code ensembles, is the regular LDPC
code ensemble, for which Λ(x) = xl and P (x) = xr. In words, all the variable
nodes have degree l and all the check nodes have degree r. These codes are
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also known as Gallager codes, as they first apppeared in his thesis [3]. Irregular
LDPC code ensembles refer to codes which do not have the same variable node
degree and the same check node degree.


1.1.2 Low-Density Generator-Matrix (LDGM) Codes


In the previous section we defined a code via the null space of a matrix. Let
us now take a dual approach and define a code by the image space of a matrix.
More precisely, suppose that we have m information bits. Consider a matrix
G of dimension m× n. Let u ∈ {0, 1}m denote the vector consisting of the m
information bits, u1, u2, . . . , um. We say that u is the information word. Then
the codeword, generated by the matrix G, for the information word u is given by
x> = uG. Thus the code, C, is the image set of the matrix G. We say that C is
a generator-matrix code. As above, we represent the code via a Tanner graph.
Consult Figure 1.2 for an illustration. In this case, the variable nodes (circles)
on the left, denote the information bits. The variable nodes on the right
(attached to check nodes (squares)) denote the code-bits which are transmitted
over the channel. An edge is present between a variable node, representing an
information bit, and a check node if the corresponding information bit is used
in the generation of the code-bit. The design rate is given by R = m


n
. Contrary


to parity-check codes, the design rate of a generator-matrix code is an upper
bound to the actual rate. Similar to LDPC codes, low-density generator-matrix
codes are generator-matrix codes having a Tanner graph representation which
is sparse. Again we can specify Λ(x), P (x), λ(x), ρ(x) in the same manner as
for LDPC codes. The standard ensemble of LDGM codes is also defined in an
equivalent way as Definition 1.1.


Example 1.2 (Generator-Matrix Code). Consider the generator-matrix


G =



1 1 0 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 0 1 0 1 1


 . (1.2)


The block-length is 7, the dimension of the code is 4 and the design rate is
equal to 4/7. The Tanner graph representation is shown in Figure 1.2.


1.1.3 Notation


We fix the following notation for both LDPC and LDGM codes. Variable nodes
(resp. check nodes) will be denoted by i, j (resp. a, b). The set of variable
nodes (resp. check nodes) is denoted by V (resp. C). The neighborhood of a
node v (variable node or a check node), defined to be the set of nodes which
have an edge with the node v in the Tanner graph, is denoted by ∂v. We define
the graph distance between any two nodes (variable or check) i, j, denoted by
dist(i, j), to be the minimum number of edges between the nodes i, j. For
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x7 = u1 + u2


x6 = u1 + u3


x5 = u2


x4 = u2 + u3 + u4
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Figure 1.2: The variable nodes on the left represent the information bits and
the check nodes on the right represent the code-bits. The degree distributions
from the node perspective are given by Λ(x) = x3, P (x) = 3


7
x+ 3


7
x2 + 1


7
x3. The


average variable node degree is equal to Λ′(1) = 3 and the average check node
degree is equal to P ′(1) = 12/7. The edge perspective degree distributions are
given by λ(x) = x2, ρ(x) = 1


4
+ 1


2
x+ 1


4
x2.


any variable node i, for d even, denote by Nd(i) the neighborhood of depth d
around the variable node i. More precisely, Nd(i) contains all variable nodes
j such that dist(i, j) ≤ d. Similarly for any check node a, for d odd, Nd(a)
denotes the neighborhood of depth d around the check node a and contains
all variable nodes j such that dist(a, j) ≤ d. We use N̊d(i) to denote the
set of check nodes at a distance d + 1 from the root node i. We call N̊d(i)
as the boundary of the node i. Figure 1.3 shows a neighborhood of depth 3
around a check node a and its boundary in an LDGM code. It also shows a
neighborhood of depth 2 around a variable node i and its boundary of check
nodes in a LDPC code.


a


d = 3
N3(a)


N̊3(a)


N2(i)


i


N̊2(i)


d = 2


Figure 1.3: The figure on the left shows a neighborhood of depth 3, denoted by
N3(a), around the check node a in an LDGM code. The boundary of check nodes
is also shown and denoted by N̊3(a). The figure on the right shows a neighborhood
of depth 2, denoted by N2(a), around the variable node i in an LDPC code. The
boundary of check nodes is also shown and denoted by N̊2(i).
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1.2 Channel Models


We consider noisy communication, where we transmit information over a chan-
nel by encoding it into a codeword of block-length n and the channel introduces
random errors according to a certain model. We consider binary-input chan-
nels with transition probability between input and output given by pY |X(y | x).
Although the code is defined over F2, we map 0 → +1 and 1 → −1 before
transmitting the symbol on the channel. Thus x ∈ {−1,+1}. The channels
we consider are memoryless and without feedback, which implies


pY |X(y | x) =
n∏
i=1


pYi|Xi(yi | xi) (memoryless and no feedback). (1.3)


Let us now review the three most fundamental channels which we will consider
throughout this thesis:


Example 1.3 (Binary Erasure Channel – BEC(ε)). The input alphabet is
x ∈ {−1,+1} and the output alphabet is y ∈ {−1, ∗,+1}, where ∗ denotes
the erasure symbol. The channel transition probability is given by pY |X(+1 |
−1) = pY |X(−1 | +1) = 0, pY |X(+1 | +1) = pY |X(−1 | −1) = 1 − ε and
pY |X(∗ | −1) = pY |X(∗ | +1) = ε, where ε is the erasure probability, ε ∈ [0, 1].


Example 1.4 (Binary Symmetric Channel – BSC(ε)). The input alphabet is
x ∈ {−1,+1} and the output alphabet is y ∈ {−1,+1}. The channel transition
probability is given by pY |X(+1 | −1) = pY |X(−1 | +1) = ε and pY |X(+1 |
+1) = pY |X(−1 | −1) = 1− ε, where ε is the flip probability, ε ∈ [0, 1


2
].


Example 1.5 (Binary-Input Additive White Gaussian Noise Channel
– BIAWGNC(ε)). The input alphabet is x ∈ {−1,+1} and the output alpha-
bet is y ∈ R. The channel transition probability is given by pY |X(y | x) =


1√
2πε2


e−
(y−x)2


2ε2 where ε2 is the noise variance, ε ∈ [0,+∞).


All three channels above are parametrized by a single scalar value ε. In
general we will denote a channel by BMS(ε) where the scalar parameter is in
one-to-one correspondence with the channel entropy (equals the single letter
entropy, H(X | Y )).


Definition 1.2 (Channel Symmetry). A binary-input channel with transition
probability pY |X(y | x) is symmetric if


pY |X(y | x) = pY |X(−y | −x).


All three channels presented above satisfy the channel symmetry. An im-
portant consequence of channel symmetry is that the uniform distribution
over the input alphabet achieves the capacity. Another consequence of chan-
nel symmetry (coupled with the fact that the code is a vector space) is that
for the purpose of performance analysis of the decoders we consider (see next
section), one can assume without loss of generality that the all-one codeword
is transmitted.







1.2. Channel Models 9


Definition 1.3 (Channel Loglikelihood Ratio). For any binary-input channel,
the loglikelihood ratio is given by


l(y) = ln
pY |X(y | +1)


pY |X(y | −1)
.


Since the output of the channel y is random, the loglikelihood ratio, called
henceforth LLR , is also a random variable. We denote the distribution of l,
under the assumption that +1 is transmitted, by cL(l). In the literature [23],
this is known as the L−density. Another representation of the densities is the
G−domain representation. The G−domain representation of cL(l) is given by
g(l) = (H(l), ln coth |l/2|), where H(l) = +1 if l > 0 and H(l) = −1 if l < 0
and is equal to +1 or −1 with equal probability when l = 0 (see [23] for more
details). For the three channels above we have


cL(l) = εδ0(l) + (1− ε)δ∞(l), BEC(ε)


cL(l) = εδln ε
1−ε


(l) + (1− ε)δln 1−ε
ε


(l), BSC(ε)


cL(l) =


√
1


8πε−2
e−


(l−2ε−2)2


8ε−2 . BIAWGNC(ε)


It is not difficult to show the following fact about the channel LLR [23].


Fact 1.1. Consider any binary-input symmetric channel with transition prob-
ability given by pY |X(y | x). Let cL(l) denote the distribution of the output LLR
given that +1 is transmitted. Then cL(−l) = e−lcL(l).


In this thesis our focus will be on a fixed LDPC or LDGM code or a fixed
ensemble of LDPC or LDGM codes and its performance under various de-
coders when the underlying scalar parameter characterizing the channel noise
is varied. Inherent in the above statement is the notion of a family of chan-
nels, characterized by a single scalar parameter, which is complete, ordered
and smooth. All of the above notions are standard and details can be found
in [34], [23], but for completeness we state them here. We will consider a
family of binary-input memoryless symmetric channels denoted by BMS(ε),
characterized by the scalar ε which is in one-to-one correspondence with the
channel entropy. For any general BMS(ε), we define the range of the noise


parameter to be [0, εmax], where εmax ∈ R+
. For all BMS(ε) channels, ε = 0


denotes a noiseless channel and ε = εmax denotes a maximally noisy channel.
For example, for all the three channels mentioned above, the corresponding
channel families are given by BEC(ε) with ε ∈ [0, 1] (εmax = 1), BSC(ε) with
ε ∈ [0, 1/2] (εmax = 1/2) and BIAWGNC(ε) with ε ∈ [0,∞) (εmax =∞). Com-
pleteness requires that the channel entropy varies over the entire range from 0
(ε = 0) to the entropy of the input, H(X) (ε = εmax), when ε is varied over its
entire range.


We say that the channel pZ|X(z | x) is physically degraded with respect
to pY |X(y | x), if there exists a joint distribution pY,Z|X(y, z | x) = pY |X(y |
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x)pZ|Y (z | y). A simple way to understand this is that, physical degradation
implies that the symbol error probability of the channel pZ|X(z | x) is greater
than the symbol error probability of the channel pY |X(y | x). The channels are
said to be ordered by physical degradation if and only if ε1 < ε2 implies that
the channel pε2Y |X is physically degraded with respect to the channel pε1Y |X . The


notion of ordered family allows us to define decoding thresholds (depending on
the decoder) beyond which reliable communication is not possible using that
decoder.


A natural assumption on the channel family that we impose is that of
smoothness, which implies that the channel entropy varies smoothly with re-
spect to the channel parameter ε.


Definition 1.4 (Channel Smoothness, [23]). The channel family BMS(ε) is
said to be smooth if for all x ∈ {−1,+1} and all bounded continuously dif-
ferentiable functions f(y), the integral


∫
f(y)pεY |X(y | x)dy exists and is a


continuously differentiable function with respect to ε.


Above, the notation pεY |X(y | x) denotes the transition probability of a
channel with noise value ε. If the channel family is smooth, one can formally


set d
dε


∫
f(y)pεY |X(y | x)dy ,


∫
f(y)


dpε
Y |X(y|x)


dε
dy.


A quick computation tells us that the channel families: BEC(ε), BSC(ε)
and BIAWGNC(ε) are complete, ordered and smooth.


1.3 Maximum a Posteriori Decoder


Consider transmission over a BMS(ε) channel using a code of block-length n.
Denote the transmitted codeword by x = (x1, x2, . . . , xn). One of the most
fundamental decoders is the bit maximum a posteriori decoder (MAP). The
decoder is defined as follows. The estimate provided by the bit MAP decoder
for the ith bit is denoted by x̂i,MAP and is given by,


x̂i,MAP , argmaxxi∈{−1,+1}pXi|Y (xi | y). (1.4)


An important fact is that the bit MAP decoder minimizes the bit probability
of error under random channel errors. Thus it is optimal with respect to bit
error rate.


We denote by y∼i, the vector of all observations except of the code-bit at
position i. Crucial to our analysis are the notions of intrinsic and extrinsic
MAP estimate given in the LLR form by,


φi,MAP(y) , log
pXi|Y (+1 | y)


pXi|Y (−1 | y)
, φi,MAP(y∼i) , log


pXi|Y ∼i(+1 | y∼i)
pXi|Y ∼i(−1 | y∼i)


. (1.5)


In words, φi,MAP(y∼i) is the estimate of the MAP decoder of the code-bit i,
when all the observations except yi are available to the decoder. The intrinsic
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and extrinsic MAP estimate are a random variables since the outputs y and
y∼i are random. We denote the random intrinsic and extrinsic MAP estimates


by Φi,MAP(Y ) and Φi,MAP(Y ∼i) respectively. An important fact is that the
extrinsic (intrinsic) MAP estimate is a sufficient statistic for estimating the
code-bit i given Y ∼i (Y ) (see [23]). In the language of information theory, this
means that H(Xi | Y ∼i) = H(Xi | Φi,MAP(Y ∼i)) and H(Xi | Y ) = H(Xi |
Φi,MAP(Y )).


Since the family of channels that we consider here are physically degraded,
one defines the notion of the MAP threshold, which is denoted by εMAP, as
the minimum channel noise for which reliable communication is not possible
on an average. In other words, above the MAP threshold, the average (over
the ensemble of codes) error probability, denoted by Pe, MAP, is strictly greater
than zero.


Although the MAP decoder is optimal with respect to the bit error rate, it is
computational expensive when we consider coded transmission. More precisely,
to perform MAP estimation we are required to know the a posteriori marginal
distribution pXi|Y (xi | y). Computing this marginal involves summing out
all the code-bits except code-bit i in the joint distribution pX|Y (x | y). This
sum involves an exponential number of terms and optimal decoding comes at
a price of expensive computation time. More precisely, consider the case of
LDPC codes as an example. The a posteriori distribution can be written as


pXi|Y (xi | y) =
∑
∼xi


pX|Y (x | y) =
1


pY (y)


∑
∼xi


pY |X(y | x)pX(x)


=
1


|C|pY (y)


∑
∼xi


n∏
i=1


pYi|Xi(yi | xi)11(x ∈ C)


=
1


|C|pY (y)


∑
∼xi


n∏
i=1


pYi|Xi(yi | xi)
m∏
a=1


11(⊕k∈∂axk = 0), (1.6)


where pX(x) =
Qm
a=1 11(⊕k∈∂axk=0)


|C| , is the uniform distribution over all the code-
words and xk denotes the code-bit k present in the check constraint a. Above,∑
∼xi denotes sum over all variables except xi. From above we can conclude


that to evaluate the exact marginal (MAP decoder), one has to consider an
exponential in n number of terms.


1.4 Belief Propagation Decoder


LDPC/LDGM codes are described by constraints which act locally. This has
resulted in the application of the sum-product rule [23], [33], [18], [35] to esti-
mate the a posteriori marginal distributions. The resulting decoder is called
the belief propagation decoder (BP).


The first step in developing the sum-product rules is to recognize that
the function, whose marginal is required, is a product of a large number of
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local functions (often called as kernels). Indeed in the case of transmission
using LDPC codes, the function in (1.6) is a product of n kernels of the form
pYi|Xi(yi | xi) (depends only on xi) for 1 ≤ i ≤ n and m kernels of the form
11(⊕k∈∂axk = 0) (depends only on ∂a) for 1 ≤ a ≤ m. Both these kernels
act locally and the application of the distributive law of the underlying field
(the field with which we work is R) yields the sum-product rules (see [23],
[33], [35]) to approximately evaluate the marginal. A very important theorem
regarding the sum-product rule is that it is exact if the Tanner graph is a tree.
On general Tanner graphs with loops, the rules do not evaluate the marginals
exactly, and the estimation is truly an approximation. The complexity of
decoding all code-bits, for the BP decoder with fixed iterations for a bounded
degree code, is proportional to n.


Let us now state the rules more precisely for the case of transmission using
LDPC codes. It is convenient to state the sum-product rules in terms of the
channel LLR , defined in Definition 1.3, which gets rid of the common factor,
|C|pY (y) in (1.6). The sum-product rule is stated in terms of messages, which
are exchanged between the variable nodes and check nodes of the Tanner graph,
depending on a schedule (see [23], [9]). Each edge carries a message in both
the directions.


The message from the variable node i to the check node a is denoted by
ζi→a(∈ R) and intuitively corresponds to the belief of the variable node i of
its LLR value depending only on the information provided by the check nodes
other than a and the channel LLR . The rule assumes that the information
provided are conditionally independent given the value of the variable node.


The message from the check node a to the variable node i is denoted by
ζa→i(∈ R) and intuitively corresponds to the belief provided by the check
node a of the LLR value of the variable node i, given only the information
provided by the remaining variable nodes in its neighborhood. The schedule
that we consider throughout this thesis is the parallel schedule, where ζi→a
are computed first for all variable nodes i and check nodes a, followed by the
computation of ζa→i. The rules are


• Variable node rule (message from variable node i to check node a):


ζ
(d)
i→a = li +


∑
b∈∂i\a


ζ
(d−1)
b→i . (1.7)


• Check node rule (message from variable node a to check node i):


ζ
(d)
a→i = 2 tanh−1


( ∏
j∈∂a\i


tanh
(ζ(d−1)


j→a


2


))
. (1.8)


• Initial value (initial message from variable node i to check node a):


ζ
(0)
i→a = li. (1.9)
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• Final value (BP estimate of the code-bit i after d iterations):


φ
(d)
i,BP (y) = li +


∑
a∈∂i


ζ
(d)
a→i, (1.10)


where d denotes the iteration number. The final estimate of the BP decoder,
φ


(d)
i,BP (y) is a random variable with respect to randomness in the channel LLR


values and also with respect to the randomness in the code picked from the en-
semble. A related quantity is the extrinsic BP estimate denoted by φ


(d)
i,BP (y∼i)


which is equal to
∑


a∈∂i ζ
(d)
a→i. The initial values are given by the channel LLR


present at the variable nodes.
For the case of transmission using LDGM codes, the channel observation


is present at the check nodes and not at the variable nodes, hence the variable
node message ζ


(d)
a→i, at iteration d, is given by


ζ
(d)
a→i =


∑
j∈∂a\i


ζ
(d−1)
j→a ,


the check node rule modifies to


ζ
(d)
i→a = 2 tanh−1


(
tanh


( li
2


) ∏
b∈∂i\a


tanh
(ζ(d−1)


b→i
2


))
,


and the final estimate of the information bit a becomes


φ
(d)
a,BP (y) =


∑
i∈∂a


ζ
(d)
i→a.


A related estimate which we will need is the BP estimate of the check node
bit i, denoted by


φ
(d)
i,BP (y) = 2 tanh−1


(
tanh


( li
2


)∏
a∈∂i


tanh
(ζ(d−1)


a→i
2


))
.


The initial values are given by complete erasure messages from the variable
nodes, i.e. ζ(0)a→i = 0. Similar to LDPC codes, we define φ


(d)
i,BP (y∼i) as the


extrinsic BP estimate for the code-bit i. As a consequence of the rules, the
BP decoder for LDGM codes never starts. However, with the presence of
an arbitrarily small fraction of degree one check nodes, this problem can be
overcome.


Again, since the family of channels that we consider here are physically
degraded, one defines the notion of the BP threshold, which is denoted by
εBP, as the minimum channel noise for which reliable communication using
BP decoder (average (over the code ensemble) error probability, Pe,BP > 0) is
not possible.


An important simplification in the analysis of the BP decoder presented
above is that the error probability under BP decoding is independent of the
codeword transmitted and one can thus restrict to the all-one codeword (see
Lemma 4.90 in [23]).
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Example 1.6 (BP decoder for the BEC(ε)). Assume the all-one codeword
transmission over the BEC(ε) with erasure fraction given by ε ∈ [0, 1]. Since
initial LLR values are either 0 or +∞, the messages along any edge at any
time in the schedule is always 0 or +∞. We call 0 message (resp. +∞) an
erasure (resp. known) message. The BP decoder rules in this case simplify to:
(i) ζi→a is erasure if all the incoming messages (this includes the channel LLR
in the case of LDPC codes) ζb→i, b ∈ ∂i \ a are erasures, else ζi→a is known;
(ii) ζa→i is erasure if any incoming message (this includes the channel LLR in
the case of transmission using LDGM codes) is an erasure and is equal to ∞
if all incoming are known.


As mentioned previously, the sum-product rule defined above, exactly com-
putes the a posteriori distribution pXi|Y (xi | y) for a code whose Tanner graph
is a tree. An intuitive reason for this is that, the messages on a tree are inde-
pendent, which is what the BP decoding rules assume. The sum-product rule
on a general graph with cycles does not give the exact estimate. In fact, the
rules need not even converge in general.


Nevertheless, for the case of transmission over the BEC(ε) using regular
LDPC code ensemble, it was shown recently by Measson et al. [24], that above
εMAP, the bit MAP error rate equals the BP error rate, with high probability2.
I.e., BP decoder, in this case, is computing the exact marginals, with high
probability, even in the presence of loops! It was possible to show this result,
in the case of BEC, mainly due the simplicity of the message space ({0,∞}).
One of the main contribution of this thesis is to establish that even in the
presence of cycles, there are non-trivial regimes of the noise parameter ε, for
a fairly general class of BMS(ε) channels, where the BP decoder estimate is
exact with high probability.


1.5 Tools for Performance Analysis


In this section we briefly review the important tools and quantities which
appear in the asymptotic analysis of the bit MAP and BP decoders. In the
literature, as we will see in the next section, the analysis of the MAP and
BP decoders have largely been developed in an orthogonal fashion. On one
hand, the MAP decoding analysis heavily relied on the weight spectrum of
the code [16], and on the other hand the BP decoder (when transmitting over
general BMS channels) was analyzed using the density evolution technique of
Richardson and Urbanke (see [23], [9]).


The convergence of statistical physics and communication has brought out
a very deep connection exists between the density evolution analysis and the
MAP decoding analysis in the limit of infinite block-length [26], [28], [27]. We
will talk more about this connection in Section 1.6. The tools important to this
thesis are the conditional entropy (described in Section 1.5.2) and the density


2The probability here is with respect to the ensemble of codes.
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evolution equations (described in Section 1.5.1), for the MAP decoding and
BP decoding analysis respectively.


Recently, Measson et al. [24], [36] introduced and used the generalized
extrinsic information transfer function (GEXIT) to demonstrate an intimate
relationship between the BP decoder and the MAP decoder. We describe the
GEXIT functions in Section 1.5.3, which will be central to this thesis.


Some of the results in this thesis hold for any fixed code, but some results
we show only on an average with respect to the code ensemble. However
most of the quantities of interest in the analysis are very tightly concentrated
around the ensemble average and we suffer minimal loss in showing average
results [23], [29].


1.5.1 Density Evolution: Asymptotic Analysis of the BP
Decoder


Consider transmission over a general BMS channel using an LDPC or LDGM
code, of block-length n, picked u.a.r. from an ensemble of codes. As usual we
can restrict the analysis to the all-one codeword transmission [23]. Let φ


(d)
i,BP (y)


denote the estimate of the code-bit i (in terms of LLR ) after d iterations of the
BP decoder. The density evolution technique gives a formula to evaluate the
average (over the code ensemble) of the distribution of the estimate φ


(d)
i,BP (y),


when n goes to ∞. I.e., for a fixed number of iterations, it provides a formula
for the density of the BP estimate for large block-lengths.


Often one is interested in a different limit, i.e., the BP estimate when one
fixes the block-length n and the number the iterations d go to infinity. It is
conjectured that the probability of error of the BP decoder under the limit
limd→+∞ limn→+∞ is the same as that under the limit limn→+∞ limd→+∞ and
this was recently shown for some cases to be true in [37]. For the BP-GEXIT
function, which we will introduce shortly, we will show in some cases also that
under both order of limits (first n→ +∞ and then d→ +∞ and vice-versa),
the computation of the average BP-GEXIT function is the same.


An important object which occurs in the density evolution analysis is the
computation tree. The computation tree of depth d, as defined in [9], is the
unraveling of the graph, starting from the code-bit to be estimated, to include
all variable nodes which are at most a distance d from the root node. Note
that in the computation tree one can have labels of variable nodes and check
nodes repeating. Thus it is not a tree in the typical graph-theoretical sense.


The advantage of taking the block-length to infinity first is that, as shown
in [9], the sparsity of the code ensures that with high probability the computa-
tion tree of depth d around the root node becomes a tree in the graph-theoretic
sense and the BP estimate, after a fixed d number of iterations, can be easily
evaluated. This gives rise to the density evolution technique. Here we only
state the final result of density evolution. For details see [23], [18], [9], [19], [8].
An important result of [9] is that for a fixed d and block-length n going to in-
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finity, the BP estimate is exactly given by the density evolution estimate, with
high probability. We present here a slightly weaker version of their theorem.


Theorem 1.1 (Richardson and Urbanke). Consider an LDPC code picked
u.a.r. from an ensemble of codes with edge perspective (resp. node perspec-
tive) degree distributions given by λ(x), ρ(x) (resp. Λ(x) and P (x)). Consider
transmission over a general BMS(ε) channel with the distribution of the LLR l
under the all-one codeword transmission given by cL(l). Consider d iterations


of the BP decoder and let φ
(d)
i,BP (y) denote the BP estimate of code-bit i. Then


the random variable 1
n


∑n
i=1 φ


(d)
i,BP (y), for any d ≥ 1, converges in distribution


to the random variable with probability density function given by


cL(l) ~ Λ(ρ(ad−1)),


where


ad−1 = cL(l) ~ λ(ρ(ad−1)),


a0 = cL(l), (1.11)


and where Λ(a) =
∑


i Λia
~(i−1), λ(a) =


∑
i λia


~(i−1) and ρ(a) =
∑


k ρka
�(k−1).


Here ~ denotes the normal convolution of two functions in R and � is the
convolution of densities represented in the G−domain (see Section 1.2). Also
a0 is fixed to cL(l).


Remark 1.1. In fact one can show that [23] the probability of error of the BP
decoder with d iterations converges (as n → ∞) almost surely to E(ad) where
E is the “error functional” (see [23] for a precise definition).


Remark 1.2. Consider the case of transmission using an LDGM code picked
u.a.r. from an ensemble of codes with edge perspective degree distributions
given by λ(x), ρ(x) (Λ(x) denotes the variable node degree distribution and


P (x) denotes the check node degree distribution). Then 1
n


∑n
i=1 φ


(d)
i,BP (y), for


any d ≥ 1, converges in distribution to the random variable with probability
density function given by cL(l) � P (ad), where


ad = λ(cL(l) � ρ(ad−1)),


a0 = δ0(l), (1.12)


and where P (a) =
∑


k Pka
�(k−1), ρ(a) =


∑
k ρka


�(k−1) and λ(a) =
∑


i λia
~(i−1).


Remark 1.3. In this thesis the above equations will appear in integral form.
For the case of LDPC code ensembles we have the following. The average BP
estimate 1


n


∑
i φ


(d)
i,BP converges in distribution to the random variable ∆(d) =


l +
∑`


a=1 u
(d)
a . Here ` is random and distributed as Λ(x) and l is the LLR
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distributed as cL(l). The u
(d)
a are i.i.d. random variables with distribution


obtained from the iterative system equations


η̂(d)(u) =
∑
l


λl


∫ l−1∏
j=1


dvj η
(d)(vj) δ


(
u− 2 tanh−1


( l−1∏
j=1


tanh
vj
2


))
,


η(d)(v) =
∑
k


ρk


∫
dl cL(l)


k−1∏
a=1


dua η̂
(d−1)(ua) δ


(
v − l −


k−1∑
a=1


u(d)
a


)
.


The initial condition is given by η(0)(v) = cL(v). One can write similar for-
mulas for the case of LDGM code ensembles.


The density evolution equations gives us a nice recursive procedure to evaluate
the average BP decoder estimate after d iterations for a code-bit.


Example 1.7 (Density Evolution for BEC(ε)). Consider transmission over
the BEC(ε) using an LDPC code ensemble given by the edge perspective degree
distributions (λ(x), ρ(x)). Then Theorem 1.1 tells us that the probability of a
code-bit being in erasure after fixed d iterations of the BP decoder, is given by
εΛ(1− ρ(1− ad)), with high probability, where


ad = ελ(1− ρ(1− ad−1)),


a0 = ε and Λ(x) is the node perspective degree distribution of the variable nodes.
Note that for the BEC(ε), λ(ad) =


∑
i λi(ad)


i−1 and ρ(ad) =
∑


i ρi(ad)
i−1.


For transmission using LDGM code ensemble given by edge degree distribu-
tions (λ(x), ρ(x)), the probability of a code-bit being in erasure after d iterations
of the BP decoder, is given by 1−(1−ε)P (1−ad)), with high probability, where


ad = λ(1− (1− ε)ρ(1− ad−1)), (1.13)


a0 = 1 and Λ(x) is the node perspective degree distribution of the variable
nodes representing the information bits. As is seen from the equation (1.13),
if the fraction of edges attached to degree one check nodes ρ1 = 0, then ad = 1
for all d. For any ensemble with ρ1 > 0, the iterations start and will give a
non-trivial fixed-point.


1.5.2 Conditional Entropy


The conditional entropy is the entropy of the transmitted codeword (informa-
tion word) given the received message, H(X | Y ) (H(U | Y )) for transmission
using an LDPC code (LDGM code). From Fano’s inequality, see [29], we know
that for a given code C of block-length n and rate r,


Pblock,MAP ≥
H(Z | Y )− 1


nr


h(Pbit,MAP) ≥ H(Z | Y )


n
,
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where Z = X(U) is the codeword (information word) in case of LDPC codes
(LDGM codes) and h(·) = −x log2(x)−(1−x) log2(1−x) is the binary entropy
function. From the above, it is clear that knowing the conditional entropy ex-
actly would provide an upper bound on the channel parameter beyond which
reliable transmission using the code C with given parameters n, r is not possi-
ble. Indeed, channel noise for which the per-bit conditional entropy is strictly
positive, i.e., H(Z | Y )/n > 0, implies a non-zero bit error probability for the
MAP decoder. Thus the conditional entropy is an important quantity in the
analysis of the MAP decoder. As it turns out, in this thesis we will show that
the conditional entropy has a very intimate relation to the density evolution
analysis of the BP decoder.


Let us look at the conditional entropy of a bit more closely. Assume trans-
mission using LDPC codes. The conditional entropy is by definition


H(X | Y ) = −EY


[∑
x


pX|Y (x | y) ln pX|Y (x | y)
]
,


where EY denotes the expectation with respect to pY (y). Since the channel is
output symmetric, i.e., pY |X(y | x) = pY |X(−y | −x), and the code used for
transmission is a vector space, it is not difficult to show that the conditional
entropy can equivalently be written as


H(X | Y ) = −EY |1


[∑
x


pX|Y (x | y) ln pX|Y (x | y)
]
. (1.14)


Above we use EY |1 to denote the expectation with respect to the probability
measure


∏n
i=1 pYi|Xi(yi | +1). As seen from the above equation, to evaluate the


conditional entropy, one must perform a sum which has exponentially many
terms. Thus again we see that computation of the conditional entropy is hard.
One of the main contributions of this thesis is an analytical formula for the
conditional entropy in terms of the code and the noise parameters only, as the
block-length goes to infinity.


1.5.3 GEXIT Functions


It is observed that under MAP decoding there is a phase transition phe-
nomenon. More precisely, there is a critical noise value at which the error
probability of the MAP decoder changes abruptly. We stress that there can
be many discontinuities in the error probability of the MAP decoder. At one
such critical noise value, the average conditional entropy becomes non-zero
(from zero). This is known as the MAP decoding threshold denoted by εMAP.
At εMAP, the derivative of the conditional entropy is discontinuous. Thus it
seems natural to study the derivative of the conditional entropy to estimate
the MAP threshold.


Consider transmission of a fixed code C (LDPC or LDGM) over a BMS(ε)
channel. Let us denote the per-bit conditional entropy by hn = 1


n
H(Z | Y ),
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where Z = X in the case of LDPC codes and Z = U in the case of LDGM
codes. The dependence on the code C has been suppressed for notational
convenience. Under the assumption of a smooth channel family BMS(ε), the
MAP generalized extrinsic information transfer function or in short, the MAP-
GEXIT function is defined as in [36]


Definition 1.5 (MAP-GEXIT). Assume transmission over a smooth channel
family BMS(ε) using a fixed LDPC or LDGM code of block-length n. Then
the MAP-GEXIT function, denoted by gn(ε) is given by the derivative, with
respect to the noise parameter, of the conditional entropy. More precisely,


gn(ε) =
dhn
dε


. (1.15)


Under the assumption of a smooth channel family it can be shown, for both
the LDPC and LDGM case, [36] that


gn(ε) =
1


n


n∑
i=1


∂H(Xi | Y )


∂εi


∣∣∣
εi=ε


. (1.16)


For the MAP decoder there is an integral formula of ∂H(Xi|Y )
∂εi


∣∣∣
εi=ε


. We have


Theorem 1.2 (Integral Formula – Measson et al. [36]). Assume that trans-
mission takes place over a smooth BMS(ε) channel family using a LDPC or
LDGM code C3.


∂H(Xi | Y )


∂εi


∣∣∣
εi=ε


=


∫
dli
dcL(li)


dε
EY ∼i|1 ln


[
1 + tanh li


2
tanh


(
φi,MAP(Y ∼i)


2


)
1 + tanh li


2


]
,


(1.17)


where EY ∼i|1 is the expectation with respect to all the Y except Yi, under the
assumption of the all-one codeword transmission. Also, cL(li) denotes the dis-
tribution of the LLR li under the assumption of the all-one codeword transmis-
sion.


Proof. We will provide a proof of this in Section 2.3 after we introduce a
convenient language to state and prove all our results.


Note that in the equation (1.17), the extrinsic MAP estimate φi,MAP(Y ∼i)
requires an exponential in the block-length n operations to compute its value.
As a result the MAP-GEXIT is a hard quantity to determine. Also the defi-
nition and the integral formula of the MAP-GEXIT function is not restricted
to sparse codes and can be easily extended to any linear code.


3We require that the code is proper, meaning that the apriori symbol probability is 1/2.
But this is the case if the dual of the code C has a generator-matrix representation with no
zero column, see [34].
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Example 1.8 (MAP-GEXIT for the BEC(ε)). Consider transmission over a
BEC(ε) with erasure probability ε using an LDPC code. It is convenient to
imagine that each code-bit i is transmitted through an independent BEC with
erasure probability given by εi. It can be shown that the MAP-GEXIT function
is equal to 1


n


∑n
i=1H(Xi | Y ∼i) (see [23], [34]). Indeed, for the erasure channel


we have,


H(Xi | Y ) = H(Xi | Y ∼i, Yi) =
∑
yi


H(Xi | Y ∼i, Yi = yi)P(Yi = yi)


= P(yi = ∗)H(Xi | Y ∼i) = εiH(Xi | Y ∼i),


Thus taking the derivative w.r.t. εi we find,


∂H(Xi | Y )


∂εi
= H(Xi | Y ∼i).


Above, ∗ denotes the erasure symbol. In obtaining the above equations we used
the fact that (i) if yi is either +1 or −1, then Xi is perfectly known, implying
that H(Xi | Y ∼i, yi ∈ {+1,−1}) = 0 and (ii) H(Xi | Y ∼i) is independent of
the noise parameter εi. Thus we have gn(ε) = 1


n


∑
iH(Xi | Y ∼i). The func-


tion H(Xi | Y ∼i) is called the average extrinsic information transfer function
(EXIT) and was introduced by Ashikhmin et al. in [38]. Intuitively the EXIT
function determines the amount of information that all other noisy code-bits
provide about the code-bit i. More precisely, one can show that H(Xi | Y ∼i)
is equal to the erasure probability of the MAP decoder given the observations
Y ∼i. Although for the BEC(ε), this turns out to be a pivotal quantity in design
and analysis of LDPC codes [23], it seems to have lesser use in the analysis of
LDPC codes over general BMS(ε) channels, most notably because of its failure
to satisfy the area theorem [38], [23], [36]. The area theorem for the BEC(ε)
channel states that the area under the EXIT function, when ε is varied from
0→ 1, is equal to the rate of the code. Unfortunately, if we consider the EXIT
function for general BMS(ε) channels, the area theorem is not satisfied. But
the MAP-GEXIT function, from its definition, trivially satisfies the area the-
orem. Also, importantly, as shown in this example, it matches the definition
of the EXIT function for the BEC(ε).


Definition 1.6 (Average MAP-GEXIT). Assume transmission over a smooth
channel family BMS(ε) using a fixed LDPC or LDGM code of block-length
n picked u.a.r. from an ensemble of codes given by edge degree distributions
(λ(x), ρ(x)). Then the average MAP-GEXIT function, with abuse of notation,
is denoted by gn(ε) and is given by its average over the code ensemble, EC[gn(ε)].


Example 1.9. In the Figure 1.4 we illustrate the asymptotic average MAP-
GEXIT function for two classes of codes when transmitting over the BEC. The
figure on the left is the asymptotic average MAP-GEXIT curve for the
LDPC(Λ(x) = x3, P (x) = x6) code ensemble. The figure on the right is the
asymptotic average MAP-GEXIT function for the LDGM(Λ(x) = x3, P (x) =
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0.3x + 0.7x3) code ensemble. Both the curves have one discontinuity. From
the Example 1.8, we have that the error probability of the MAP decoder is pro-
portional to the MAP-GEXIT function for the case of transmission over the
BEC. Thus for the LDPC(Λ(x) = x3, P (x) = x6) code ensemble, the jump in
asymptotic average MAP-GEXIT signifies the MAP-decoding threshold. For
the LDGM codes we know that the error probability is always non-zero. Thus
we stress that the discontinuity in the asymptotic average MAP-GEXIT curve
for LDGM(Λ(x) = x3, P (x) = 0.3x+ 0.7x3) does not signify the MAP thresh-
old. Nevertheless, it signifies a phase transition in the average (over the code
ensemble) error probability of the MAP decoder.
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Figure 1.4: The figure on the left plots the asymptotic average MAP-GEXIT for
transmission over the BEC using a code from the LDPC(Λ(x) = x3, P (x) = x6)
ensemble. The figure on the right shows the asymptotic average MAP-GEXIT
for transmission over the BEC using a code from the LDGM(Λ(x) = x3, P (x) =
0.3x+ 0.7x3) ensemble.


Similar to the MAP-GEXIT, we define the GEXIT function associated to the
BP decoder.


Definition 1.7 (BP-GEXIT). Assume transmission over a smooth channel
family BMS(ε) using a fixed LDPC or LDGM code of block-length n. Consider
the BP decoder with d iterations. Then the BP-GEXIT function, denoted by
gBPn,d (ε) is given by


gBPn,d (ε) =
1


n


n∑
i=1


gBPn,i,d(ε).


gBPn,i,d(ε) =


∫
dli
dcL(li)


dε
EY ∼i|1 ln


[
1 + tanh li


2
tanh


(
φi,BP (Y ∼i)


2


)
1 + tanh li


2


]
. (1.18)
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Similar to the Definition 1.6, we define the average (w.r.t the code ensemble)
BP-GEXIT function, and with abuse of notation, denote it by gBPn,d .


Remark 1.4. This definition differs from the one made in [23]. The above
definition, as we will see later, is natural when we want to find an analytical
formula for the average asymptotic MAP-GEXIT function. The definition in
[23] is more natural from an information theoretic point of view and closely
follows the equation (1.16). In the asymptotic limit limd→∞ limn→∞ the two
definitions of the average BP-GEXIT function match.


The average BP-GEXIT function is given by EC[gBPn,d (ε)].


Example 1.10 (Asymptotic Average BP-GEXIT for the BEC(ε)). Assume
transmission over a BEC(ε) using LDPC codes from an ensemble given by
edge degree distributions (λ(x), ρ(x)). In this example we will compute the
asymptotic average BP-GEXIT function. As we will see in Section 4.4, the
limiting object limd→∞ limn→∞ g


BP
n,d (ε) exists and is equal to


lim
d→∞


∫
dl
dcL(l)


dε
E∆d


ln
[1 + tanh l


2
tanh ∆d


1 + tanh l
2


]
,


where ∆d is the density evolution estimate. For the BEC(ε), limd→∞∆d is
distributed as Λ(1 − ρ(1 − xε))δ0(·) + (1 − Λ(1 − ρ(1 − xε)))δ∞(·)) where xε
is the largest solution of the fixed point equation x = ελ(1 − ρ(1 − x)). Since


cL(l) = εδ0(l) + (1− ε)δ∞(l) we have dcL(l)
dε


= δ0(l)− δ∞(l). Thus we get


lim
d→∞


lim
n→∞


gBPn,d (ε) = lim
d→∞


∫
dl(δ0(l)− δ∞(l))E∆d


ln


[
1 + tanh l


2
tanh ∆d


1 + tanh l
2


]


= − lim
d→∞


E∆d
ln


[
1 + tanh ∆d


2


]
= (ln 2)Λ(1− ρ(1− xε)).


In the Figure 1.5 we plot the asymptotic average BP-GEXIT function which is
proportional to the bit error probability of the BP decoder (in the large block-
length and iterations limits). The figure also illustrates the asymptotic average
BP-GEXIT function using LDGM(Λ(x) = x3, P (x) = 0.3x + 0.7x3) code en-
semble when transmitting over the BEC.


1.6 Brief History


The literature on the performance analysis of LDPC codes can be split into
their MAP-decoder and BP-decoder analysis. Most of the work on MAP-
decoder analysis of LDPC codes can be traced back to the seminal work of
Gallager in his thesis [3]. For upper bounding the block probability of error of
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Figure 1.5: The figure on the left shows the asymptotic average BP-GEXIT
curve, normalized by ln 2, for transmission over a BEC(ε) using a LDPC code
from an ensemble with edge degree distributions given by (λ(x) = x2, ρ(x) = x5).
The figure on the right illustrates the asymptotic average BP-GEXIT function for
transmission over the BEC using LDGM(Λ(x) = x3, P (x) = 0.3x + 0.7x3) code
ensemble.


MAP decoding of LDPC codes, Gallager uses the average weight distribution
function of the given LDPC code. The idea of the bound is used as a starting
point to get better bounds in [16], [39]. A summary of bounds on the MAP-
decoder error probability, using the idea of Gallager, can be found in [17]. Let
us describe one such bound in more details. The upper bound, as described by
Burshtein and Miller in [16], involves estimating two terms. One term involves
a union bound over all possible codewords, at a given maximum distance from
the transmitted codeword. The Bhattacharya parameter is used to bound the
probability of error of confusing a codeword, of a particular weight, with the
transmitted codeword (“Bhattacharya distance”). This term usually corre-
sponds to the low-weight codewords, and gives rise to the dominant term in
the error probability. The second term, involving the codewords of remaining
weights, utilizes the error-exponent technique of Gallager in the context of
random coding [40], to provide an exponential in the block-length estimate for
the error probability. In [16], the authors also provide a lower bound on the
error probability for regular LDPC codes, by finding the probability of finding
at least one column of all-zero vector in the parity-check matrix. In general,
the upper and lower bounds in [16] are not tight.


Gallager also provided a lower bound on the conditional entropy when
transmitting over the BSC in terms of the degree of the check nodes. This was
extended to the case of general BMS by Burshtein et al. [41]. This bound,
although not tight in general, is valid for any fixed LDPC code. The basic
idea behind the bound is to compute the conditional entropy of any syndrome
bit given the reliability values of the channel observations. A nice discussion
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on this bound can be found in Section 4.11 of [23].


1.6.1 BP in Communication


Over the last decade there has been a plethora of work on the analysis of BP
decoder. Most of the work has focused on the BEC and this has culminated
in the construction of capacity-achieving sequences for the BEC [42], [21]. Let
us mention here the breakthrough works of Luby, Mitzenmacher, Shokrollahi,
Spielman and Stemann in [19] and [18] and Richardson and Urbanke in [9].
Luby et al. study the BP decoder by analyzing the equivalent peeling decoder
using the differential equation method of Wormald [43]. This was later general-
ized to the case of transmission over general BMS channels in the notable work
of Richardson and Urbanke. In [9], the authors developed the density evolu-
tion technique for analyzing the behavior of the BP decoder in the asymptotic
block-length limit. The density evolution technique takes advantage of the
locally tree-like behavior of sparse graphs. More precisely, in the limit of infi-
nite block-length, any neighborhood of finite depth d around a code-bit (which
corresponds to the subgraph “observed” by the BP decoder with d iterations)
is a tree with high probability. As a result, the BP decoder messages become
independent, yielding the density evolution equation for the BP estimate of
the root code-bit. The analysis relies on two basic simplifications: restriction
to the all-one codeword when transmitting over BMS channels and considering
the average over the ensemble performance (tight concentration) [23].


It is fair to say that for the case of transmission over the BEC, the perfor-
mance analysis of the BP decoder both in the asymptotic block-length limit
and for finite-length have been understood in quite some details. Since the
messages in the BP decoding over the BEC are either erasures or provide com-
plete information, it is not hard to show the convergence of the BP decoder
[23]. The density evolution technique for asymptotic average analysis of the
BP decoder, gives a pleasing one-dimensional fixed-point equation. This al-
lows easy determination of the BP decoding threshold in the limit of infinite
block-lengths. The EXIT functions introduced by Ashikhmin et al. [38], serves
multiple purposes: it is used as a graphical tool to visualize the BP decoder,
it provides the matching condition (see [44]) for capacity-achieving codes and
also provides the remarkable area theorem. The content of the area theorem
is that, the area under the EXIT curve, for the MAP decoder (also called as
the MAP-EXIT) of any LDPC code equals the rate of the code. In the sequel
when we say average MAP-GEXIT or average BP-GEXIT, we mean it in the
limit of infinite block-length. In the case of BEC it is also not hard to show
that the asymptotic limits of large block-length and number of iterations can
be exchanged when computing the bit-error rate of the BP decoder [23].


Exact finite-length analysis for regular LDPC code ensemble when trans-
mitting over the BEC was done by Di et al. [20]. In their analysis, they used
the stopping set characterization of the failure of the BP decoder, provided by
Richardson and Urbanke [45]. Recently, Amraoui et al. [46] have provided an
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alternative approach to finite-length analysis using scaling laws of statistical
physics.


As we have seen above, the analysis techniques for the MAP and BP de-
coder have evolved quite independently. It is well known that for a code whose
graph is a tree, the BP algorithm has the same performance as the MAP de-
coder. This essentially comes from the fact that on a tree the computational
graph of a node matches the original graph itself [23]. However, codes based
on tree graphs have poor performance and one needs to consider graphs with
loops or cycles. With cycles in the original graph, the messages (of the BP
decoder) on the computational tree are no longer independent, and it is not a
priori clear, if and why, the BP decoder should retain any close relationship to
the MAP decoder.


Recently, Measson, Montanari, Richardson and Urbanke demonstrated in
[24], [34], [47] that the BP decoder and the MAP decoder are intimately related
when transmitting over the BEC using LDPC codes with loops present in
their Tanner graphs. For transmission over the BEC, the MAP-EXIT function
simply corresponds to the bit erasure probability of the MAP decoder. They
also define the BP-EXIT function which is the bit erasure probability under BP
decoding. In [24], Measson et al. show that for regular LDPC codes, above the
MAP threshold, the average (over the ensemble of codes) BP-EXIT and the
average MAP-EXIT curves match, in the limit of infinite block-length. This
means that the BP decoder above the MAP threshold, for the special case of
regular LDPC codes, is optimal, with high probability! In other words, for some
noise regime, the asymptotic average MAP-EXIT function can be evaluated by
the density evolution equations.


As an immediate consequence, they obtain the exact value of the MAP
decoding threshold for the regular LDPC code ensemble. The proof relies
crucially on the fact that for the regular codes the design rate is equal to the
actual rate, which was first proved by Miller and Cohen in [48]. In fact the
result of Measson et al. holds for a large class of LDPC code ensemble for
which the residual graph (the graph remaining after BP decoding) has design
rate equal to the actual rate.


Measson et al. also provide an operational interpretation of this connec-
tion via the Maxwell decoder and the extended-BP EXIT curve (EBP-EXIT).
The EBP-EXIT curve is a plot depicting all the fixed-points of the density
evolution equation, for all values of the channel erasure probability in the case
of BEC. It is the C-shaped curve in Figure 1.6 for the case of transmission
using LDPC(Λ(x) = x3, P (x) = x6) ensemble. They show how it is possi-
ble to construct the average MAP-EXIT curve from the EBP-EXIT curve by
“matching areas” – consider a vertical line and adjust its position till the area
to the left of this line and bounded on the left by the EBP-EXIT equals the
area to the right of this vertical line and bounded above by the EBP-EXIT
curve. The main result of [24] is that the channel erasure fraction at which
the two areas become equal is the MAP threshold. This immediately provides
the construction of the average MAP-EXIT curve, which is zero till the MAP
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threshold and then jumps and clings onto the EBP-EXIT curve. Thus away
from the transition thresholds, (εBP and εMAP in this case4) the average MAP-
EXIT equals the average BP-EXIT. This construction is illustrated in Figure
1.6. The dark area bounded on the left by the EBP-EXIT and bounded on
the right by the vertical line through the MAP threshold is proportional to the
amount of “guessing work” done by the Maxwell decoder and the other dark
area is proportional to the “confirmation work” of the Maxwell decoder.
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Figure 1.6: In the figure, the C-shaped curve is the EBP-EXIT curve for the
case of transmission over the BEC using regular LDPC(Λ(x) = x3, P (x) = x6)
code ensemble. As shown in [24], the average MAP-EXIT curve is constructed by
“sweeping” the EBP-EXIT curve from the right, till the two regions, shown in dark,
have equal areas. This figure is borrowed from [23] and is gratefully acknowledged.


This construction is proved rigorously for transmission over the BEC for
the regular LDPC code ensembles. To extend their results to general BMS
channels, Measson et al. introduced the GEXIT functions. The main mo-
tivation for this was that the MAP-EXIT function did not satisfy the area
theorem for transmission over general BMS channels. Recall that the MAP-
GEXIT function is given by the derivative of the conditional entropy with
respect to the noise. Hence by definition, it satisfies the area theorem. Re-
markably, the MAP-GEXIT function equals the EXIT function for the BEC
as shown in [36], [23]. The BP-GEXIT functions and EBP-GEXIT functions
for the general BMS channels were also introduced in [36].


For the trivial case of LDPC code ensembles with a smooth average BP-
GEXIT function (no discontinuities), using the area theorem for the MAP-


4For irregular LDPC code ensembles there are many discontinuities (or thresholds) in
both the average MAP-EXIT and the average BP-EXIT curves. The Maxwell construction,
in this case, states that the average BP-EXIT and MAP-EXIT are equal everywhere except
between discontinuities.
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GEXIT, it was shown in [36], that the average MAP-GEXIT equals the average
BP-GEXIT. In general when discontinuities (phase transitions) are present,
not much is known: whether the average MAP-GEXIT and BP-GEXIT are
equal, away from transition thresholds and whether there is a Maxwell con-
struction which yields the average MAP-GEXIT from the EBP-GEXIT curve.
The techniques used for BEC are combinatorial in nature and cannot be easily
extended to the case of transmission over general BMS channels and radically
new methods have to be used. It is believed that in terms of the GEXIT func-
tions, the results obtained for the BEC still hold. In particular, the average
GEXIT curves for the BP and the MAP decoder should match for high and low
noise regimes away from the thresholds. Recently the convergence of statistical
physics and communication science has provided an alternative interpretation
of the problem of decoding of sparse graph codes. The work of Montanari in
[29] is one of the breakthrough papers in this direction. We will investigate
this connection and mention some of the other most notable works in the next
section.


1.6.2 BP in Other Problems


Let us mention few other instances of rigorous results concerning the BP al-
gorithm. We do not attempt to cover all examples, but mention very briefly a
few notable ones.


The max-weight independent set (MWIS) problem is to find the heaviest
set of mutually non-adjacent nodes (independent set) in an arbitrary graph
with positive weights on nodes. One can formulate an integer program for
this problem and provide approximate solutions by solving the corresponding
linear programming (LP) relaxation. For this problem also one can construct
a probability distribution whose MAP estimate is the MWIS of the given
graph. In [49], Sanghavi, Shah and Willsky show that there is a one-to-one
correspondence between the fixed-points of the BP (also called as max-product
in [49]) algorithm and the extreme points of the LP polytope. As a result they
can conclude that the optimality of the BP estimate implies the tightness of
the LP relaxation. They also show how any MAP estimation problem can be
cast as a problem of finding a MWIS on some graph. Similar results were also
shown by Bayati, Shah and Sharma [50] for the maximum weight matching
problem.


Other models where BP does exact inference is the ferromagnetic random
field Ising model of statistical physics, as shown by Chertkov in [51]. Similar
to the previous work, the MAP solution for this problem involves solving an
integer program. It turns out for this problem that the LP relaxation is tight.
As shown in [51], the optimal solution of the LP relaxation minimizes the
Bethe-Free energy approximation for this problem, which is also got via the
BP rules.


Various works [52], [53] have also shown how belief propagation is related
to the Bethe approximation of the free energy, which has led to the inter-
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pretation of the BP rules as finding the minimum of the Bethe-Free energy
approximation. As a result of this observation, various other generalized BP
algorithms have been developed based on a similar variational approach [54],
[52].


In [55], [56], Chertkov and Chernyak develop an expansion of the partition
function corresponding to a problem on a fixed graph. The first term in the
series corresponds to the Bethe-Free energy approximation. The rest of the
terms in the expansion involves average (under BP estimations) of functions
of the spins, over generalized loops in the graph. In this thesis we will follow
a similar philosophy of perturbing the optimal MAP estimate to bring out the
BP estimate plus some correction term, for the problem of decoding of sparse
graph codes. We then show that in appropriate range of the noise value, one
can control the correction term.


Salez and Shah have shown in [57] the optimality of the BP algorithm,
with high probability, in the random assignment problem in which the goal is
to find the minimum cost matching in a complete bipartite-graph with edge
weights being i.i.d with an exponential distribution, in the limit large number
of nodes.


Montanari and Shah [58] show the optimality of the BP algorithm in the
random k-satisfiability problem. Let us discuss this in some more details.
In the random k-satisfiability problem can be stated on a bipartite-graph as
follows. There are n variable nodes representing n Boolean variables, denoted
by x1, x2, . . . , xn. There are m check nodes in the graph. Each of them imposes
a logical-OR constraint on k randomly chosen variable nodes. The parameter
of the problem (analogous to the channel noise in the coding problem), denoted
by α, is the ratio of the number of constraints to the number of variable nodes.
For this problem also one can formulate a probability distribution and use
the BP algorithm to estimate the marginal distribution for the variable nodes.
Montanari and Shah show that if α is small enough, then one can exactly count
the normalized (by n) logarithm of the number of satisfying assignments, with
high probability, by using the estimates provided by the BP algorithm and an
appropriate interpolation method. To show that the BP estimate is optimal,
with high probability, they use the fact that α is small enough, which allows
them to show a “worst-case” decay of correlation.


Similar results were obtained by Bandyopadhyay and Gamarnik in [59] and
by Weitz in [60], for the counting the number of independent sets in graphs
with large girth. In graph theory, an independent set is a set of nodes of the
graph which are mutually disconnected. Bandyopadhyay and Gamarnik show
the “worst case” decay of correlations for low degree graphs with large girth,
to give an approximate value of the normalized (by the number of nodes in
the graph) logarithm of the number of independent sets.


In this thesis we also study decay of correlations in the context of decoding
of sparse graph codes. An important difference we would like to point out
at this moment is that, we study the “typical-case” correlation decay, which
is a stronger form of decay of correlation, as opposed to the “worst case”
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correlation decay shown in the previous work. Also the techniques we use are
completely different and arise in the spin-glass theory of statistical mechanics.
As a consequence we will show the correctness of the BP estimate, with high
probability, whenever correlations decay fast enough.


In [61], an arbitrary graph was considered, wherein nodes represented
jointly Gaussian random variables x (the distribution P (x) factorizes on the
cliques of the graph and variable nodes in a clique are jointly gaussian). The
observations y and x are also jointly gaussian and as usual, the question is to
determine when BP gives the correct estimate of the conditional mean and co-
variance, given the observations. Weiss et al. show that if BP converges then,
under certain conditions on the covariance matrix of x, it gives exact values
for the marginal posterior probabilities. Here also the basic idea is to relate
true means to those obtained by BP via the correlations. Then under assumed
conditions, the correlations decay rapid enough to justify the exactness of the
BP estimates.


In [62], Tatikonda et al. used the Dobrushin’s criteria of Gibbs measure
theory of statistical physics to show the convergence and exactness of BP
on loopy graph models. To show this they define the Gibbs measure on the
computational tree of the graph. And if the Dobrushin’s criteria is satisfied,
then there exists a unique Gibbs measure for the computation tree. This
then implies the convergence and exactness of BP. Unfortunately, the decoding
problem of sparse graph codes over general BMS channels most often does not
satisfy the Dobrushin’s criteria and we resort to more sophisticated techniques
in this thesis to show the exactness of BP, with high probability, in appropriate
regimes of the channel noise.


1.7 Connections to Statistical Physics


In this section we show how statistical physics and decoding of sparse graph
codes are related. This connection was first established in the pioneering
work of Sourlas [25], [63]. There has been a considerable amount of recent
work on developing this connection and understanding the coding problem
from the statistical physics point of view [64], [65], [66], [27], [26], [67], [68],
[28], [69], [70]. The main tool used is the replica method, equivalently known
as the cavity method [71], [72]. This method is one of the main tools in
statistical physics of spin-glasses. In communication, the replica method has
provided a recipe to determine various quantities, like MAP/BP decoding
thresholds, per-bit conditional entropy, error exponents and weight enumerator
function for different codes which include LDPC code ensembles and the Turbo
codes. Vicente, Saad and Kabashima used the replica method to provide a
formula for the average per-bit conditional entropy in [67]. This is known as
the replica solution. As a consequence they obtain the decoding threshold
of the MAP decoder. In [28], Franz, Leone, Montanari and Ricci-Tersenghi
also perform replica symmetric calculations to determine the MAP threshold.
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They further show that, using the replica symmetric breaking ansatz, the BP
threshold is an “ultimate” threshold for local decoding algorithms. I.e., at the
BP threshold there are exponentially many codewords, with energy very close
to the transmitted codeword, which would cause all local algorithms, including
BP, to fail. In [65], Montanari analyzes the random codeword model, using
replica analysis, by exploiting its similarity to the random energy model of
Derrida [73].


Let us say a few more words on spin-glasses and the replica solution.


1.7.1 Random Spin-Glass


Consider a spin system. By a spin system, we mean here a system consisting
of n degrees of freedom that we call “spins”. We label each spin as xi for 1 ≤
i ≤ n. Each spin takes a value in the set {+1,−1}. Such spins are also known
as Ising spins. The state of the system is denoted by x = (x1, x2, . . . , xn).
The state of the system is also known as the configuration of the system. The
energy of the state is given by the function or the Hamiltonian, H(x). Then
the probability that the system is present in a particular state x is given by
the Boltzmann distribution5


P(x) =
1


Z
e−βH(x), (1.19)


where β is the inverse temperature and


Z =
∑
x


e−βH(x). (1.20)


Z is known as the normalization factor or the partition function. Note that
as the inverse temperature varies, the Boltzmann distribution varies from a
uniform distribution (β → 0), to concentrating on a few configurations which
have the minimum energy, also known as ground states (β → +∞). The
averages of observables w.r.t. the Boltzmann measure is usually denoted by the
Gibbs bracket 〈−〉. Later in this section, we will consider systems with random
“external” conditions. The average w.r.t. this randomness will be denoted as
usual by E. It is important to differentiate the two randomness (randomness
w.r.t. Gibbs measure and randomness in the “external” conditions). It is
clear that one cannot interchange the order of the two expectations E and
〈−〉. For taking the average of any observable, we first take the average w.r.t.
the Gibbs measure, followed by the average w.r.t. the external conditions. As
a consequence, we use the bracket notation to differentiate the randomness
w.r.t. the Gibbs measure.


A fundamental quantity of any spin system is its free energy, given by


hn(β) =
1


n
lnZ.


5One of the main postulates of equilibrium statistical physics is that the average of the
observables can be computed from the Boltzmann distribution.
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The behavior of the system is completely determined by knowing its free en-
ergy. If, as a function of the inverse temperature β or some other parameter,
the free energy is non-analytic, then one says that there is a phase transition
in the behavior of the system. For example, we will see later that for LDPC
codes, the free energy is represented by the conditional entropy. At the MAP
threshold εMAP there is a phase transition in the system. The decoder is no
longer able to perform successful decoding, with high probability, above εMAP,
whereas for all noise values below εMAP the decoding is successful, w.h.p.


The Hamiltonian can take many forms. For example, H(x) = −
∑


i lixi
denotes a system without interactions between the particles. For this “free”
model, the free-energy is easily evaluated by exchanging the sum and product
in (1.20). Let us give some examples of models in statistical physics.


Perhaps the simplest mathematical model is the Ising model, wherein par-
ticles are imagined to be positioned on a cube in Zd and have nearest neighbor
interactions. The interactions between the particles are either ferromagnetic
(attractive) or anti-ferromagnetic (repulsive). If all interactions are ferromag-
netic, the Hamiltonian is given by


H(x) = −
∑
(ij)


xixj − l
∑
i


xi,


where (ij) are nearest neighbor pairs. For such a Hamiltonian, the probability
is maximized for a configuration in which all the particles are “aligned” to each
other. These lattice models are in general hard to solve (the exact solution to
the free energy is not known for d ≥ 3).


A solvable Ising model is the model on the complete graph (CG) (this
model is sometimes called as the Curie-Weiss model) wherein the Hamiltonian
is given by


HCG(x) = − 1


n


∑
i<j


xixj − l
∑
i


xi.


In words, the spins do not sit on a lattice and there is a ferro-magnetic inter-
action between all pairs of spins. This is an archetypal example of a mean-field
model. The solution for the free energy of this model is given by


lim
n→+∞


hn[β] = max
m∈[−1,+1]


h[m; β, l] (1.21)


where h[m; β, l] = −β
2


(1 − m2) + βlm − 1+m
2


log(1+m
2


) − 1−m
2


log(1−m
2


). The
maximum of h[m; β, l] satisfies the equation


m∗ = tanh(β(m∗ + l)).


Details on how this solution is obtained by mean-field analysis can be found
in the recent book [74] and also in [68].


Our interest is in systems where the interactions between the particles
are random. Such systems have also been modeled and studied in statistical
physics.
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A canonical model is the Edwards-Anderson (EA) model. In this model,
the spins again sit on a d-dimensional lattice. However, now the interactions
between the spins are random. The Hamiltonian of this model is given by


HEA(x) = −
∑
(ij)


lijxixj − l
∑
i


xi.


Above, the interactions lij are i.i.d. and distributed as c(lij). The typical
choice for c(lij) is the Gaussian distribution.


The geometric structure (lattice) makes it hard to determine the free energy
of the EA model. The mean-field simplification of this model is known as the
Sherrington-Kirkpatrick (SK) model. The SK model is defined on a complete
graph. The Hamiltonian of the SK model is given by


HSK(x) =
−1√
n


∑
i<j


lijxixj − l
∑
i


xi.


with P(lij) = 1√
2πε2


e−
l2ij


2ε2 . We do not present here the replica solution for this


model. The solution can be found in the book [71]. The important feature of
the solution is that, the replica solution for the SK model is also a variational
problem similar to (1.21) (although much more complicated). The SK model
belongs the family of more general fully-connected spin-glass models, known
as p-spin glass models.


We remark here that the replica method is based on mathematically unjus-
tified manipulations, hence there is no guarantee that they provide the correct
solution. However, it is believed that the predictions of replica theory are
correct for mean-field models. Instances where the replica solution has been
proved to give the correct answer includes the SK model. This was shown
by Talagrand in [75] by using the second interpolation method of Guerra and
Toninelli [31].


The non-triviality in analyzing spin-glasses is due to frustration (one cannot
“satisfy” all the interactions simultaneously). Hence there are possibly many
(exponential in n) states which have very similar energy. This results in a
complicated energy landscape.


The fully-connected models are unrealistic, since they involve diverging
number of interactions for each spin. A more realistic model is the dilute spin-
glass model. In this model, the spins are assumed to sit on the nodes of a
random graph, with finite average degrees. Many problems in computer and
communication science can be modeled as a dilute spin-glass6.


In the next section we show a bit more precisely, the mapping of the de-
coding problem of sparse graph codes to the language of statistical mechanics.


6Since the energy landscape of such problems is very complicated, it makes the search
for optimal solutions or ground states very difficult.
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1.7.2 LDPC Code as a Dilute Spin-Glass


Consider transmission over a general BMS channel, with transition probability
given by pY |X(y | x), using a fixed LDPC code or a LDPC code chosen u.a.r.
from an ensemble of codes. Let x denote the transmitted codeword of block-
length n and let y denote the received message. Let us re-write the a posteriori
distribution pX|Y (x | y) as a Boltzmann measure (see (1.19)). Recall from (1.6)
that,


pX|Y (x | y) =
1


|C|pY (y)


n∏
i=1


pYi|Xi(yi | xi)
m∏
a=1


11
( ∏
k∈∂a


xk = +1
)
.


Using


pY (y) =
∑
x


n∏
i=1


pYi|Xi(yi | xi)pX(x)


=
1


|C|
∑
x


n∏
i=1


pYi|Xi(yi | xi)
m∏
a=1


11
( ∏
k∈∂a


xk = +1
)


we get


pX|Y (x | y) =
1


Z


n∏
i=1


pYi|Xi(yi | xi)
m∏
a=1


11
( ∏
k∈∂a


xk = +1
)
, (1.22)


where Z =
∑


x


∏n
i=1 pYi|Xi(yi | xi)


∏m
a=1 11(


∏
k∈∂a xk = +1). A simple calcula-


tion shows that


11
( ∏
k∈∂a


xk = +1
)


=
(1 +


∏
k∈∂a xk)


2
=


(1 + x∂a)


2
,


and


pYi|Xi(yi | xi) =
1


2
pYi|Xi(yi | +1)


1 + e−li


cosh li
2


e
li
2
xi .


Substituting above in (1.22) we get


pX|Y (x | y) =
1


Z


∑
x


m∏
a=1


(1 + x∂a)


2


n∏
i=1


e
li
2
xi , (1.23)


and Z =
∑


x


∏m
a=1


(1+x∂a)
2


∏n
i=1 e


li
2
xi . Realizing that (1+x∂a)


2
= limla→+∞ e


la(x∂a−1),
we see that the a posteriori distribution for LDPC codes represents a spin-glass
with the interactions between spins (code-bits) given by the code constraints
and the external conditions given by the LLR values li, governed by the chan-
nel distribution law cL(li) (under the assumption that the all-one codeword is
transmitted), for 1 ≤ i ≤ n.
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Free Energy


In this section we formulate the conditional entropy as free energy. Details
of the computation can be found in [29] and [65]. In the Gibbs measure
(1.23), the channel randomness is contained in the vector of LLR values l =
(l1, l2, . . . , ln). As a result, we replace the expectation EY |1 with El in (1.14).
Recall that the distribution of each li under the assumption of the all-one
codeword transmission is denoted by cL(li). For the ease of exposition we use
µ(x) to denote the aposteriori distribution pX|Y (x | y).


Using (1.23), we can write the conditional entropy as


H(X | Y )
(1.14)
= −El


[∑
x


µ(x) lnµ(x)
]


= −El


[∑
x


µ(x) ln
( 1


Z


m∏
a=1


1


2
(1 + x∂a)


n∏
i=1


e
li
2
xi
)]


(a)
= El[lnZ]− El


[∑
x


µ(x) ln
(∏


a


1


2
(1 + x∂a)


)]
− El


[∑
x


µ(x) ln
( n∏
i=1


e
li
2
xi
)]


(b)
= El[lnZ]− El


[∑
x


µ(x)
n∑
i=1


li
2
xi


]
(c)
= El[lnZ]−


n∑
i=1


∫ +∞


−∞
dlicL(li)


li
2
. (1.24)


Above, equality (a) follows from the fact that Z does not depend on x.
Since µ(x) = 0 for binary strings which are not codewords, i.e., n−tuples for
which


∏
a


1
2
(1 + x∂a) = 0, and since for binary strings which are codewords


we have
∏


a
1
2
(1 + x∂a) = 1, we must have µ(x) ln


∏
a


1
2
(1 + x∂a) = 0 and (b)


follows. The equality (c) is shown in [65].
Thus we see that the evaluation of the conditional entropy essentially boils


down to the computation of the logarithm of the partition function, or the free
energy.


1.7.3 LDGM Code as a Dilute Spin-Glass


Now consider transmission over a general BMS channel using an LDGM code,
perhaps picked u.a.r. from an ensemble of codes. Let u denote the information
word, x denote the codeword and y denote the received word. The information
word length equals m and the block-length is n. The a posteriori distribution,
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pU |Y (u | y) is


pU |Y (u | y) =
pY |U(y | u)∑
u pY |U(y | u)


=


∏n
i=1 pYi|Xi(yi |


∏
a∈∂i ua)∑


u pYi|Xi(yi |
∏


a∈∂i ua)
.


Again we have


pYi|Xi(yi |
∏
a∈∂i


ua) = pYi|Xi(yi | +1)
1 + e−li


2 cosh li
2


e
li
2
u∂i


where we use u∂i to denote
∏


a∈∂i ua. Putting all together we get


pU |Y (u | y) =
1


Z


n∏
i=1


e
li
2
u∂i , (1.25)


where Z =
∑


u


∏n
i=1 e


li
2
u∂i . Thus we conclude that the LDGM coded system


represents a spin-glass with the external conditions, li distributed by the chan-
nel law cL(l), under the assumption that the all-one codeword is transmitted.
It is not hard to see that a generator-matrix code will always have a posi-
tive bit error rate for any channel noise. To see this, consider transmission
over the BEC with the erasure probability given by ε ∈ (0, 1]. Suppose that
all the code-bits neighboring an information bit (a code-bit is a neighbor of
an information bit if the information bit participates in the generation of the
code-bit) are erased. Then it is impossible to estimate the information bit per-
fectly. The probability that this happens is given by εl, where l is the degree of
the information bit. Nevertheless, LDGM codes are still useful in other com-
munication scenarios like source coding and they are mathematically easier to
analyze. Moreover, most of our ideas can be clearly demonstrated in this case.
Intuitively we see this as follows. The a posteriori distribution for the LDGM
case differs from the LDPC case from the absence of the term 1+u∂i


2
. This


term is usually called as a “hard constraint” and makes the analysis of LDPC
codes more complicated as opposed to the LDGM codes. In the language of
statistical mechanics, LDPC codes correspond to low temperature or β → +∞
(for the parity-check constraints) whereas LDGM codes correspond to high
temperature or β � +∞ (for high noise).


Similar to LDPC codes we can show that the conditional entropy in the
case of LDGM can be written as


H(U | Y ) = El


[
lnZ


]
−


n∑
i=1


Eli


[
li
2


]
.


Thus in this case also, by evaluating the free energy, one can determine the
conditional entropy.
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1.7.4 Replica Solution for the Conditional Entropy


In this section we present the solution of the replica method applied to the
conditional entropy. We do not present the derivation here. The interested
reader can refer to [28] for a detailed analysis.


Let V be a random variable with density dV (v) satisfying the symmetry
condition dV (v) = evdV (−v). Also, let


U = 2 tanh−1


[k−1∏
i=1


tanh
Vi
2


]
LDPC,


U = 2 tanh−1


[
tanh


l


2


k−1∏
i=1


tanh
Vi
2


]
LDGM, (1.26)


where Vi are i.i.d copies of V and k is the (random with distribution given by
P (x)) degree of a check node. We denote by Ub, b = 1, ..., ` i.i.d. copies of
U where ` is the (random with distribution given by Λ(x)) degree of variable
nodes. Recall that l is the channel LLR .


Notice that in the belief propagation (BP) decoding algorithm U appears
as the check-to-variable node message and V appears as the variable-to-check
node message. Define the functional7 (we view it as a functional of the prob-
ability distribution dV )


hRS[dV ; Λ, P ] =El,d,Ub


[
ln


(
e
l
2


∏̀
b=1


(1 + tanh
Ub
2


) + e−
l
2


∏̀
b=1


(1− tanh
Ub
2


)


)]


+
Λ′(1)


P ′(1)
Ek,Vi


[
ln(1 +


k∏
i=1


tanh
Vi
2


)


]
− Λ′(1)EV,U


[
ln(1 + tanh


V


2
tanh


U


2
)


]
− Λ′(1)


P ′(1)
ln 2.


The above functional, hRS[dV ; Λ, P ], is known as the replica solution (or func-
tional). The main conjecture of statistical physics is


Conjecture 1.1. Consider communication over any general BMS channel
using any standard LDPC(Λ(x), P (x)) or LDGM(Λ(x), P (x)) code ensemble.
Then


lim
n→+∞


EC [hn] = sup
dV


hRS[dV ; Λ, P ].


Note that in this case also the replica solution is a variational formula similar
to the solution of the Curie-Weiss model (c.f. (1.21)).


7The subscript RS stands for “replica symmetric” because this functional has been
obtained from the replica symmetric ansatz for an appropriate spin glass, see for example
[65], [66]
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It is not hard to see that the critical points of hRS[dV ; Λ, P ] satisfies the
density evolution equations [29]. This observation provides a bridge between
the MAP and BP analysis of sparse graph codes. It also provides another
interpretation to the work of Measson et al. in [24]. More precisely, consider
the Figure 1.6. In this figure, the average MAP-GEXIT equals the average
BP-GEXIT till the MAP threshold, εMAP. Below the BP threshold, εBP, both
of them are trivially equal. In between the two thresholds, there is a difference
between the average BP and MAP estimates. One can explain this difference
via the replica solution as follows. It is not hard to show, for the case of
transmission over the BEC, that the replica solution between εBP and εMAP is
maximized at the stable fixed-point of density evolution not obtained by BP.
On the other hand, for all the remaining noise values, the replica solution is
maximized at the BP fixed-point of the density evolution equation. Hence for
such noise values, the average BP and MAP estimates are equal.


Many discrete optimization problems in computer science like the random
k-satisfiability, graph partitioning, vertex covering, graph matching have been
analyzed by methods of statistical physics [76], [71], [74], [77], [78], [79], [80],
[81], [82]. The discrete optimization problems mentioned above are also mod-
eled by the dilute spin-glass model. One is then interested in the studying the
behavior of the system under certain “external” conditions. For example, in
the random k-satisfiability problem one is interested in knowing if the given
Boolean formula is satisfiable when the ratio of number of constraints to vari-
able is changed [77], [76], [83]. Replica method is then employed to compute
the free energy of the system. This allows to make predictions on the values
of phase transition thresholds [77]. For example, in the random 3-satisfiability
problem, the ratio of number of constraints to variables greater than αc ≈ 4.27,
signals the onset of the unsatisfiable phase, with high probability.


The process of rigorization of these remarkable yet unproven results, for
dilute spin-glasses, was undertaken recently. In [29], Montanari proved that
the replica solution is a lower bound, for any symmetric dV (v), on the asymp-
totic per-bit conditional entropy when transmitting over any BMS channel.
He shows this result only for a special class of sparse graph codes. The re-
quirement of the class of codes is that the degree distribution P (x) needs to
be convex. In [84], Macris removed this restriction of convexity and showed
that for Poisson-LDPC code ensembles (see Section 2.5 for the definition), the
replica solution is a lower bound on the conditional entropy, when transmit-
ting over the BIAWGNC. In the next chapter we will extend this result to a
more general class of BMS channels and any standard LDPC or LDGM code
ensemble. In [79], Franz and Leone also use the interpolation method to show
that the replica solution is a tight lower bound to the free energy of finite-
temperature random k-satisfiability problem. We also mention the work of
Talagrand in [85], where he proves the replica solution is exact for the high
temperature random k-satisfiability problem, using the decay of correlations.
We point out that the techniques used to show decay of correlations in [85] are
different from those used in this thesis.
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In the next section we delineate the contribution of this thesis.


1.8 Contributions and Organization of this
Thesis


The focus of this thesis is on the analysis of sparse graph codes using methods
from statistical physics. One of the main results in this thesis is the optimality
of the BP estimate in appropriate ranges of noise, with high probability, when
transmitting over general BMS channels using either LDGM or LDPC code
ensembles. Another interpretation of this result is that the replica predictions
of statistical physics are correct. We show this by employing various methods
of statistical mechanics like the interpolation method and the cluster expansion
techniques.


We also develop simple sum-rules which relate the MAP and BP estimates
via correlations between code-bits. Another main result of this thesis is that
the average (over the noise realizations) correlation between any two code-bits
decays exponentially with their graph distance, when we consider transmission
over general BMS channels using either LDPC or LDGM code ensembles with
bounded maximum degrees. This has a pleasing intuitive consequence that
the “far-away” code-bits do not influence each other. We then use the decay
of correlations to show the correctness of BP estimate, with high probability.
In other words, we show that the asymptotic average MAP-GEXIT can be
computed via the density evolution equations!


The thesis is organized as follows:
In Chapter 2 we show that the replica solution of the average per-bit con-


ditional entropy is a lower bound when we consider transmission over general
BMS channels using any sparse graph code ensemble. We use the interpolation
method, first developed by Guerra [86], [30] in the context of spin-glass theory
and used in the context of coding by Montanari [29]. In the proofs we employ
tools of statistical physics, namely, the Griffiths-Kelly-Sherman inequality and
the Nishimori identities.


In Chapter 3, we show that the replica solution for the conditional entropy
is exact when we consider transmission over the BEC. Although this result
is not new, the method is completely different and utilizes the second inter-
polation method developed by Guerra and Toninelli [31]. We stress that the
methods used are non-combinatorial as opposed to the existing techniques.
Thus there would seem to be some hope to extend this method to the general
channels.


In Chapter 4 we study the correlations of the MAP decoder, between any
two code-bits of a fixed LDGM code or a code picked from a special class
of LDPC code ensemble. We show that if the channel noise is high enough,
then the average correlation between two code-bits decays exponentially with
their graph distance. The channels that we consider belong to a fairly general
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class of BMS channels, which include the important case of the BIAWGNC. An
important consequence of the main result is that the asymptotic average MAP-
GEXIT function can be evaluated by density evolution equations for the BP
decoder. Another interpretation of this result is that the replica computations
are exact. The techniques we use are the high-temperature cluster expansions
of statistical physics.


In Chapter 5 we look at the much tougher case of LDPC codes at low
noise. This represents truly a low-temperature spin-glass for which there are
almost no rigorous results in the literature, according to our knowledge. More
precisely, we consider the transmission over a class of general BMS channels,
which includes the BIAWGNC. We use any fixed LDPC code, with bounded
maximum degrees, for transmission. We again show that the average corre-
lations of the MAP decoder, between any two code-bits decays exponentially
with their graph distance, if the channel noise is low enough. As a result we
obtain the exactness of the BP estimate, with high probability, in the low
noise regime. For regular LDPC code ensembles, the content of the previous
conclusion might be trivial, since the BP estimate is zero. Nevertheless for
LDPC code ensemble, with a non-zero fraction of degree one variable nodes,
the content of the result is non-trivial. To prove these results we combine the
duality of LDGM-LDPC codes with a suitable cluster expansion technique of
statistical physics.











Lower Bounds on
Conditional Entropy: The
Interpolation Method 2
2.1 Introduction and Main Results


The replica solution to the normalized conditional entropy introduced in Sec-
tion 1.7 is conjectured to be exact. In this chapter we give a partial proof of
this conjecture. More precisely, we prove that the replica solution is a lower
bound for transmission using LDPC or LDGM code ensembles, with any edge
degree distributions (λ(x), ρ(x)).


Our proof holds for the BEC(ε) and BIAWGNC(ε) for all values of the
channel noise parameter ε. Further, for general BMS(ε) channels, the proof
holds in the high noise regime. Even though all the results presented in this
chapter hold for LDPC as well as LDGM code ensembles, we restrict ourselves
to LDPC code ensembles for the sake of ease of exposition.


A promising approach towards a general proof of the exactness of the replica
formulas is the so-called interpolation method first developed in the context of
the Sherrington-Kirkpatrick model [31], [86], [87] for magnetic systems. Con-
sider an LDPC(n,Λ, P ) ensemble where Λ(x) =


∑
l Λlx


l and P (x) =
∑


k Pkx
k


are the variable and check degree distributions from the node perspective. We
will always assume that the maximal degrees are finite. Montanari [29] (see
also the related work of Franz-Leone [79] and Talagrand- Pachenko [88]) devel-
oped the interpolation method for such a coding system and derived a lower
bound1 for the conditional entropy for ensembles with any polynomial Λ(x),
but with P (x) restricted to be convex for −e ≤ x ≤ e (in particular if the check
degree is constant this means it has to be even).


In the present chapter we drop the convexity requirement for P (x) in the
cases of the BEC and BIAWGNC with any noise level and in the case of


1Called “variational bound” in the sequel.
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general BMS channels in a high noise regime. In other words we prove that
the replica solution is a lower bound on the per-bit conditional entropy, in
the limit n → +∞, for any standard regular (so odd degrees are allowed) or
irregular code ensemble.


We introduce a new tool in the form of a relationship between the second
derivative of the conditional entropy with respect to the noise and correlations
functions of code-bits. These correlation functions are shown to be intimately
related to the mutual information between two code-bits. The formulas are
somewhat similar to those for GEXIT functions [23] which relate the first
derivative of conditional entropy to soft bit estimates. By combining these
relations with the interpolation method we are able to control the fluctuations
of the so-called “overlap” parameters. This part of our analysis is crucial for
proving the general lower bound on the per-bit conditional entropy and relies
heavily on channel symmetry. The next section states our main result, namely
the lower bounding of the conditional entropy.


2.1.1 Variational Bound on the Conditional Entropy


Let pY |X(y | x) be the transition probability of a BMS(ε) channel where ε is
the noise parameter (understood to vary in the appropriate range, see 1.2).
We will work in terms of both the LLR l (see Definition 1.3) and difference
variables


t = pY |X(y | +1)− pY |X(y | −1) = tanh
l


2
.


Recall that cL(l) denotes the distribution of l, assuming that the all-one code-
word is transmitted. It will also be convenient to use cD(t) for the distributions
of t, assuming that the all-one codeword is transmitted (that is to say that
cL(l)dl = cD(t)dt = pY |X(y | +1)dy).


For general BMS(ε) channels, we show that the replica solution is a lower
bound for high noise values.


Definition 2.1 (High Noise Regime: H). For p ∈ N let


m
(2p)
0 = E[t2p], m


(2p)
1 =


d


dε
E[t2p], and m


(2p)
2 =


d2


dε2
E[t2p]. (2.1)


We say that a BMS(ε) channel is in the high noise regime if the series expan-
sions∑


p≥0


(p+ 1)m
(2p)
0 ,


∑
p≥1


(5


2


)2p


|m(2p)
1 |, and


∑
p≥1


|m(2p)
2 |


2p(2p− 1)
, (2.2)


are convergent and if


(
√


2− 1)
(5


2


)2


|m(2)
1 | >


∑
p≥2


(5


2


)2p


|m(2p)
1 |. (2.3)
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Example 2.1 (High Noise BSC(ε)). For the BSC(ε) we have l ∈
{


ln 1−ε
ε
,− ln 1−ε


ε


}
.


Hence tanh l
2


=
(
el/2−e−l/2
el/2+e−l/2


)
∈ {(1 − 2ε),−(1 − 2ε)}. Thus we have m


(2p)
0 =


E[t2p] = (1 − 2ε)2p and consequently, m
(2p)
1 = −4p(1 − 2ε)2p−1 and m


(2p)
2 =


8p(2p − 1)(1 − 2ε)2p−2. It is easy to see that for ε < 1/2, the first series∑
p≥0(p+1)m


(2p)
0 is convergent. From the expression for |m(2p)


2 | above, we also


have that
∑


p≥1
|m(2p)


2 |
2p(2p−1)


equals 4
∑


p≥1(1−2ε)2p−2. The last expression also con-


verges for any ε < 1/2. Let us now consider the middle series. Rearranging,
the series is given by∑


p≥1


(5


2


)2p


|m(2p)
1 | = 4


1− 2ε


(5


2
(1− 2ε)


)2∑
p≥1


p
([5


2
(1− 2ε)


]2)p−1


,


which converges if and only if ε > 3
10


= 0.3. The condition (2.3) implies


(
√


2− 1)
(5


2


)2


4(1− 2ε) >
∑
p≥2


(5


2


)2p


4p(1− 2ε)2p−1.


A little algebra shows that this condition is equivalent to


√
2 >


∑
p≥1


p
((5


2


)2


(1− 2ε)2
)p−1


=
1(


1−
(


5
2


)2


(1− 2ε)2
)2 .


Thus for ε > 1
2
− 1


5


√
1− 1


21/4 ≈ 0.42, all the high noise conditions (2.2), (2.3)


are satisfied.


Any channel with bounded log-likelihoods, such that the support of cL(l)
shrinks to zero as ε→ εmax, satisfies H for a regime of sufficiently high noise.


Note that the BEC(ε) which has mass at l = +∞ does not satisfy this
condition since E[t2p] = 1 − ε. Also, for the BIAWGNC, the second sequence


in (2.2) does not converge, because |m(2p)
1 | does not decay fast enough. One


can check that |m(2p)
1 |, for large p, decays like Θ


(
1


(2p)ln 2p


)
, which does not kill


the exponential growth of
(


5
2
)2p for large p and the second series in (2.2) fails


to converge for any value of the noise variance.
However, for these two channels the variational bound holds for all noise


levels. For the BEC, the positivity of the support LLR values bails us out and
the gaussian integration by parts (see Appendix 2.A.3) comes to the rescue in
the case of the BIAWGNC.


Recall that hn = 1
n
H(X | Y ) denotes the per-bit conditional entropy and


hRS[dV ; Λ, P ] denotes the replica solution (see Section 1.7 for details). We have
the following theorem.


Theorem 2.1 (Variational Bound). Assume communication using a standard
irregular code ensemble C = LDPC(n,Λ, P ) through a BEC(ε) or BIAWGNC(ε)
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with any noise level or a BMS(ε) channel satisfying H. For all ε in the above
ranges we have,


lim inf
n→+∞


EC[hn] ≥ sup
dV


hRS[dV ; Λ, P ],


where the supremum is over symmetric distributions dV (v) = e−vdV (−v).


Let us note that this theorem already appears in [84] for the special case
of the BIAWGNC and Poisson-LDPC code ensemble (Λ(x) = elavg(x−1)).


2.1.2 Second Derivative of the Conditional Entropy


Our proof of the variational bound uses integral formulas for the first and
second derivatives of EC[hn] with respect to the noise parameter ε. The first
derivative formula is given in Theorem 1.2. We provide the proof of this
theorem in Section 2.3. The second derivative formula is also valid for any
fixed linear code and not necessarily restricted to sparse graph codes. To give
the formulation for a fixed linear code it is convenient to introduce a noise
vector ε = (ε1, ..., εn) and a BMS(ε) channel with noise level εi when bit xi is
sent. When all noise levels are set to the same value ε we get back our original
channel BMS(ε). The distributions of the likelihoods li and difference domain ti
depend on εi. In order to keep the notation simple we do not explicitly indicate
the εi dependence and still denote them as cL(li) and cD(ti) respectively.


For ease of notation we drop “MAP” and the dependence on Y from the
soft bit MAP estimate in (1.5). Thus


φi = ln


[
pXi|Y (+1 | y)


pXi|Y (−1 | y)


]
.


For the purpose of our exposition, we introduce the soft MAP estimates of
bit Xi in the difference domain,


Ti = pXi|Y (+1 | y)− pXi|Y (−1 | y) = tanh
(φi


2


)
. (2.4)


We also introduce the soft estimate for the modulo−2 sum Xi⊕Xj, again,
in both the L−domain and the difference domain. Thus


φij = ln


[
pXi⊕Xj |Y (+1 | y)


pXi⊕Xj |Y (−1 | y)


]
,


Tij = pXi⊕Xj |Y (+1 | y)− pXi⊕Xj |Y (−1 | y) = tanh
(φij


2


)
. (2.5)


Recall that the notations v∼i (resp. v∼ij) mean that component vi (resp. vi
and vj) are omitted from the vector v.
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Lemma 2.1 (Correlation Formula). For any BMS(ε) channel and any fixed
linear code we have


∂2H(X | Y )


∂εi∂εj
=δij


∫ +1


−1


dti
∂2cD(ti)


∂ε2i
g1(ti)


+ (1− δij)
∫ +1


−1


∫ +1


−1


dtidtj
∂cD(ti)


∂εi


∂cD(tj)


∂εj
g2(ti, tj) (2.6)


with


g2(ti, tj) = Et∼ij


[
ln


(
1− tiTi − tjTj + titjTij


1− tiTi − tjTj + titjTiTj


)]
and


g1(ti) = −Et∼i


[
ln


(
1− tiTi
1− ti


)]
,


and where δij = 1 if i = j and is zero else. Here Et∼i denotes the expectation
w.r.t. all the random variables t = (t1, t2, . . . , tn) except for ti. Also, Et∼ij


denotes the expectation w.r.t. all t except ti and tj.


For the case of a BMS(ε) channel and a linear code ensemble, using the
symmetry of sites argument, the second derivative of the average per-bit con-
ditional entropy is given by,


d2EC[hn]


dε2
=


∫ +1


−1


dti
∂2cD(ti)


∂ε2
EC[g1(ti)]


+
n∑
j=1
j 6=i


∫ +1


−1


∫ +1


−1


dtidtj
∂cD(ti)


∂ε


∂cD(tj)


∂ε
EC[g2(ti, tj)]. (2.7)


For the BEC these formulas simplify to


∂2H(X | Y )


∂ ln εi∂ ln εj
= (1− δij) ln 2Et


[
Tij − TiTj],


and


d2EC[hn]


d(ln ε)2
= ln 2


n∑
j=1
j 6=i


EC,t
[
Tij − TiTj]. (2.8)


For the BIAWGNC we have


∂2H(X | Y )


∂ε−2
i ∂ε−2


j


=
1


2
Et[
(
Tij − TiTj


)2
], (2.9)
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and


d2EC[hn]


d(ε−2)2
=


1


2


n∑
j=1


EC,t[
(
Tij − TiTj


)2
]. (2.10)


We take the derivatives with respect to the logarithm of the noise in (2.8)
and the inverse of the noise variance in (2.10) to get a clean expression for
the second derivative of the conditional entropy in terms of the correlation.
We stress that it serves no other purpose but convenience of exposition. We
will provide a proof of Lemma 2.1 along with the simplifications in the case
of BEC and BIAWGNC in Section 2.4. Formulas (2.8) and (2.10) involve
the “correlation” (Tij − TiTj) for bits Xi and Xj. The general formula (2.7)
can also be recast in terms of powers of such correlations by expanding the
logarithm (see Section 2.4). Loosely speaking, in the infinite block length limit
n → +∞, the second derivative will be well defined only if the correlations
have sufficient decay with respect to the graph distance (the minimal length
among all paths joining i and j on the Tanner graph). We expect the first
derivative to be smooth everywhere except at the phase transition points.
Thus we expect good decay properties for all noise levels except at the phase
transition thresholds where, in the limit n→ +∞, the first derivative generally
has bounded discontinuities. Thus the second derivative cannot be uniformly
bounded in n at such discontinuities. Before going on to prove the correlation
formula and the variational bound we take a slight detour and show how
the correlation between bits conveys the mutual information between them,
implying that if the correlation is weak then the two bits are weakly dependent.


2.1.3 Relationship to Mutual Information


The correlation (Tij − TiTj) is a measure of the independence of two code-
bits, thus it is natural to expect that it is related to the mutual information
I(Xi;Xj | Y ). We do not pursue this issue in all details because it will not be
used in the rest of the thesis, but wish to briefly state the main relations which
follow naturally form the previous formulas. See [89] for related discussions.


The BEC(ε). Take i 6= j. The chain rule implies H(X | Y ) = H(XiXj |
Y ) + H(X∼ij | XiXjY ). Given Xi and Xj we do not require Yi, Yj for the
estimation and hence we have H(X∼ij | XiXjY ) = H(X∼ij | XiXjY


∼ij).
Further, since H(X∼ij | XiXjY


∼ij) does not depend on εi, εj we have


∂2H(X | Y )


∂εi∂εj
=
∂2H(XiXj | Y )


∂εi∂εj
.


Since we are transmitting over an erasure channel, it is not difficult to see that
the conditional entropy is non-zero except when Yi, Yj are perfectly known.
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Thus,


H(XiXj | Y ) = εiεjH(XiXj | Y ∼ij) + εi(1− εj)H(Xi | XjY
∼ij)


+ (1− εi)εjH(Xj | XiY
∼ij).


In the above expression whenever Yi (resp. Yj) is known, we have uncertainty
only in Xj (resp. Xi) and we replace Yi (resp. Yj) with Xi (resp. Xj). Also the
three conditional entropies above are independent of the channel parameters
εi and εj. Thus,


∂2H(X | Y )


∂εi∂εj
= H(XiXj | Y ∼ij)−H(Xi | XjY


∼ij)−H(Xj | XiY
∼ij)


Using H(U,V )=H(U)+H(V |U)
= H(Xj | Y ∼ij)−H(Xj | XiY


∼ij)


= I(Xi;Xj | Y ∼ij) =
1


εiεj
I(Xi;Xj | Y ).


Summarizing, we have obtained for i 6= j,


∂2H(X | Y )


∂ ln εi∂ ln εj
= I(Xi;Xj | Y )


We have previously shown (see (2.8)) that the second derivative above, equals
the correlation between code-bits i and j.


The BIAWGNC(ε). Take i 6= j. From (2.5) we note that


Tij = pXi,Xj |Y (+1,+1 | y) + pXi,Xj |Y (−1,−1 | y)


− pXi,Xj |Y (+1,−1 | y)− pXi,Xj |Y (−1,+1 | y)


=
∑


xi,xj∈{±1}


xixjpXi,Xj |Y (xi, xj | y),


from which it follows that


(Tij − TiTj)2 =
( ∑
xi,xj∈{±1}


xixj


(
pXi,Xj |Y (xi, xj | y)− pXi|Y (xi | y)pXj |Y (xj | y)


))2


≤
( ∑
xi,xj∈{±1}


∣∣∣pXi,Xj |Y (xi, xj | y)− pXi|Y (xi | y)pXj |Y (xj | y)
∣∣∣)2


≤ 4
∑
xi,xj


∣∣∣pXi,Xj |Y (xi, xj | y)− pXi|Y (xi | y)pXj |Y (xj | y)
∣∣∣2,


where in the last inequality we use (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2).
Applying the Pinsker inequality [90]


1


2


∑
x


|P (x)−Q(x)|2 ≤ D(P‖Q),
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where D(P‖Q) is the Kullback-Leibler divergence of the two distributions
P = pXi,Xj |y and Q = pXi|ypXj |y. We get for i 6= j


(Tij − TiTj)2 ≤ 8I(Xi;Xj | y).


Above we use the standard fact that D(P‖Q) = I(Xi;Xj | y), in our case.
Averaging over the outputs we get


∂2H(X | Y )


∂ε−2
i ∂ε−2


j


= Et[(Tij − TiTj)2] ≤ 8I(Xi;Xj | Y ),


where the equality above follows from (2.10).


Highly noisy BMS channels. From the high noise expansion (see Section
2.4 and the above remarks), we can derive an inequality like the preceding one,
which holds in the high noise regime for general BMS channels. The number
8 gets replaced by some suitable factor which depends on the channel noise.


2.1.4 Organization of the Chapter


The statistical mechanics formulation is convenient to perform many of the
necessary calculations, but also the interpolation method is best formulated
in this framework. Thus we briefly recall it in Section 2.2 as well as a few
connections to the information theoretic language. Section 2.3 gives a deriva-
tion of Theorem 1.2 (the operational formula for the MAP-GEXIT function
as shown in Chapter 1), along with its simplifications for the BEC(ε) and
BIAWGNC(ε). Section 2.4 contains the derivation of the correlation formula
(Lemma 2.1). The interpolation method that is used to prove the variational
bound (Theorem 2.1) is presented in Section 2.5. The main new ingredient of
the proof is an estimate (see Lemma 2.2 in Section 2.5) on the fluctuations of
overlap parameters. The proof of Lemma 2.2 is the object of Section 2.6. The
appendices contain technical calculations involved in the proofs and describe
some tools which are used throughout this chapter and the rest of the thesis.


2.2 Statistical Mechanics Formulation


Consider a fixed code belonging to the ensemble C = LDPC(n,Λ(x), P (x)).
Recall that the posterior distribution pX|Y (x | y) used in MAP decoding can
be viewed as the Gibbs measure of a particular random spin system. We call
code-bit x ∈ {+1,−1} a spin, alluding to the statistical mechanics language.
Given a set A ⊆ {1, ..., n}, we use the notation xA =


∏
i∈A xi. It will be clear


from the context if the subscript is a set or a single bit. For a uniform prior over
the code words and a BMS(ε) channel, Bayes rule implies pX|Y (x | y) = µ(x)
with


µ(x) =
1


Z


m∏
a=1


1


2
(1 + x∂a)


n∏
i=1


e
li
2
xi , (2.11)
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where
∏


a is a product over all check nodes of the given code, and x∂a =∏
i∈∂a xi is the product of the spins (mod 2 sum of the bits) corresponding to


the variable nodes i that are connected to a check a. Z is the normalization
factor or “partition function” and lnZ is the “pressure” associated to the
Gibbs measure µ(x) (see 1.7 for details).


Recall that from (1.24) the conditional entropy is given by


H(X | Y ) = El[lnZ]−
n∑
i=1


∫ +∞


−∞
dlicL(li)


li
2
. (2.12)


Expectations with respect to µ(x) for a fixed graph and a fixed channel
output are denoted by the Gibbs bracket 〈−〉. More precisely, for any A ⊆
{1, ..., n},


〈xA〉 =
∑
xn


xAµ(xn), xA =
∏
i∈A


xi.


Details on the above formalism can be found for example in [84].
Using the new notation, the soft estimate of the bit xi (c.f. (2.4)) is


Ti = 〈xi〉. (2.13)


We will also need soft estimates for xi⊕xj, i 6= j. In the statistical mechanics
formalism they are simply expressed as (c.f. (2.5))


Tij = 〈xixj〉. (2.14)


In particular, the correlation between bits xi and xj becomes (Tij − TiTj) =
〈xixj〉−〈xi〉〈xj〉, which is the usual notion of spin-spin correlation in statistical
mechanics.


In Section 2.4 (and Appendices 2.B and 2.C) the algebraic manipulations
are best performed in terms of “extrinsic” soft bit estimates. We will need
many variants, the simplest one being the estimate of xi when observation yi
is not available


T∼ii = tanh
(Φ∼ii


2


)
= pXi|Y ∼i(+1 | y∼i)− pXi|Y ∼i(−1 | y∼i).


The second is the estimate of xi when both yi and yj are not available


T∼iji = tanh
(Φ∼iji


2


)
= pXi|Y ∼ij(+1 | y∼ij)− pXi|Y ∼ij(−1 | y∼ij).


Finally, we will also need the extrinsic estimate of the mod 2 sum Xi ⊕ Xj


when both yi and yj are not available,


T∼ijij = tanh
(Φ∼ijij


2


)
= pXi⊕Xj |Y ∼ij(+1 | y∼ij)− pXi⊕Xj |Y ∼ij(−1 | y∼ij).
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It is practical to work in terms of a modified Gibbs average 〈xA〉∼i which means
that li = 0 , in other words yi is not available. Similarly, we introduce the
averages 〈xA〉∼ij, in other words the Gibbs average when both yi and yj are
unavailable. One has


T∼ii = 〈xi〉∼i, T∼iji = 〈xi〉∼ij, T∼ijij = 〈xixj〉∼ij.


The extrinsic brackets 〈−〉∼i and 〈−〉∼ij are related to the usual ones 〈−〉 by
the following formulas derived in Appendix 2.B,


〈xi〉∼i =
〈xi〉 − ti
1− 〈xi〉ti


, (2.15)


〈xi〉∼ij =
〈xi〉 − ti − 〈xixj〉tj + titj〈xj〉
1− 〈xi〉ti − 〈xj〉tj + 〈xixj〉titj


, (2.16)


〈xixj〉∼ij =
〈xixj〉 − ti〈xj〉 − 〈xi〉tj + titj
1− 〈xi〉ti − 〈xj〉tj + 〈xixj〉titj


, (2.17)


where recall that ti = tanh li
2


and tj = tanh
lj
2


are the difference domain random
variables.


2.3 First Derivative Formula


We give a quick proof of Theorem 1.2 here. A derivation can be found in [23],
[34], [91]. We assume that transmission takes place over a smooth BMS(ε)
channel. Basic information theory gives us,


H(X | Y ) = H(Xi | Y ) +H(X∼i | Xi, Y )


= H(Xi | Y ) +H(X∼i | Xi, Y
∼i).


Since H(X∼i | Xi, Y
∼i) is independent of εi we have


∂H(X | Y )


∂εi
=
∂H(Xi | Y )


∂εi
.


Note that the channel family is smooth and that only the distribution cL(l)
depends on ε. Using (1.24) and the smoothness of the channel (c.f. Definition
1.4 in Chapter 1), we have


∂H(X | Y )


∂εi
=


∂


∂εi
El[lnZ]−


∫ +∞


−∞
dli
∂cL(li)


∂εi


li
2


= El∼i


∫ +∞


−∞
dli
∂cL(li)


∂εi


(
lnZ − li


2


)
, (2.18)


where we recall that El∼i denotes the expectation w.r.t. all LLR values l except
li. Let


Z∼i =
∑
x


∏
a∈C


1


2
(1 + x∂a)


∏
k 6=i


e
lk
2
xk , (2.19)
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be the partition function for the Gibbs bracket 〈−〉∼i introduced in Section
2.2 and consider


ln
( Z


Z∼i


)
= ln


(
〈e


li
2
xi〉∼i


)
. (2.20)


Consider the identity,


e
li
2
xi = e


li
2


1 + tixi
1 + ti


, (2.21)


which holds for all real li, ti = tanh li
2


and for xi ∈ {+1,−1}. Using the above
identity and (2.20) we get


lnZ − li
2


= lnZ∼i + ln


(
1 + ti〈xi〉∼i


1 + ti


)
. (2.22)


When we replace this expression in the integral (2.18) we see that the
contribution of lnZ∼i vanishes because this latter quantity is independent of
li. Indeed,∫ +∞


−∞
dli
∂cL(li)


∂εi
lnZ∼i = lnZ∼i


( ∂


∂εi


∫ +∞


−∞
dl1cL(li)


)
= 0, (2.23)


since cL(li) is a probability distribution and hence, normalized. Then, using
(2.15) leads to


∂H(X | Y )


∂εi
=


∫ +∞


−∞
dli
∂cL(li)


∂εi
El∼i


[
ln


(
1 + ti〈xi〉∼i


1 + ti


)]
(2.24)


= −
∫ +1


−1


dti
∂cD(ti)


∂εi
Et∼i


[
ln


(
1− ti〈xi〉


1− ti


)]
. (2.25)


Using (2.13) we obtain,


∂H(X | Y )


∂εi
=


∫ +1


−1


dti
∂cD(ti)


∂εi
g1(ti).


Here


g1(ti) = −Et∼i


[
ln


(
1− tiTi
1− ti


)]
.


We will use this expression to derive the formula for the first derivative of
the average (w.r.t. the ensemble) per-bit conditional entropy. Using


dH(X | Y )


dε
=


n∑
i=1


∂H(X | Y )


∂εi


∣∣∣∣
εi=ε


,


and averaging over the code ensemble C, we get for the average per-bit condi-
tional entropy hn,


dEC[hn]


dε
=


∫ +1


−1


dt1
∂cD(t1)


∂ε
EC[g1(t1)].


For the BEC and the BIAWGNC these general formulas take a simpler form.
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Example 2.2 (MAP-GEXIT Equals Erasure Probability for BEC(ε)). For the
BEC we use the extrinsic formula2 in (2.24) and cL(li) = εiδ0(li)+(1−εi)δ∞(li)
to get


∂H(X | Y )


∂εi
=


∫ +∞


−∞
dli
(
δ0(li)− δ∞(li)


)
El∼i


[
ln


(
1 + ti〈xi〉∼i


1 + ti


)]
= −El∼i


[
ln


(
1 + 〈xi〉∼i


2


)]
,


where we used that ti = 0 when li = 0, rendering the logarithm to be zero.
As shown in Appendix 2.A.2, 〈xi〉∼i ∈ {0, 1}. Intuitively, we can argue the
previous statement as follows. When we transmit over the BEC, the soft esti-
mate of the bit (under MAP decoding) is either an erasure or it is +1 (under
the assumption of the all-one codeword transmission). This implies we must
have 〈xi〉∼i ∈ {0, 1}. As a result, we can write ln(1 + 〈xi〉∼i) = 〈xi〉∼i


(
ln 2
)
.


Substituting we get,


∂H(X | Y )


∂εi
= ln 2(1− El∼i [〈xi〉∼i]). (2.26)


Notice that (1−El∼i [〈xi〉∼i]) is equal to the erasure probability of the bit MAP


decoder given the observations l∼i. Hence we can write ∂
∂εi
H(X | Y ) =


P(x̂i,MAP(y∼i) = ∗) ln 2, which is amongst the various characterization of the
MAP-GEXIT as shown in [23]. If the output of the bit i is not an erasure
then li = ∞. In this case 〈xi〉 = 1. If li = 0, then 〈xi〉 = 〈xi〉∼i. Thus we get
El[〈xi〉] = εEl[〈xi〉∼i] + (1− ε). Combining all we have


∂H(X | Y )


∂ ln εi
= ln 2(1− Et[Ti]), (2.27)


and
dEC[hn]


d ln ε
= ln 2(1− EC,t[T1]). (2.28)


Example 2.3 (MAP-GEXIT for BIAWGNC(ε)). For the BIAWGNC, we use
(1.24) and use the gaussian integration by parts formula with f(l, x) = lnZ
and f(l, x) = li


2
(c.f. (2.77) in Appendix 2.A.3) to get


∂H(Xi | Y )


∂εi
= −4ε−3


i El


[( ∂
∂li


+
∂2


∂l2i


)
lnZ


]
− 2ε−3


i .


From the definition of Gibbs averages and the partition function (2.11) we get


∂ lnZ


∂li
=


1


2
〈xi〉,


∂2 lnZ


∂l2i
=


1


4
(〈x2


i 〉 − 〈xi〉2) =
1


4
(1− 〈xi〉2).


2In this case the ratio in the logarithm may take the ambiguous value 0
0 but the formula


is to be interpreted according to (2.27). We will see in Section 2.2 that in terms of extrinsic
soft bit estimates there is an analogous expression that is unambiguous.
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Using the Nishimori identities in Appendix 2.A.2 we get El[〈xi〉] = El[〈xi〉2]
and thus we obtain,


∂H(Xi | Y )


∂εi
= ε−3


i El[1− 〈xi〉]. (2.29)


Using (2.13) and writing in terms of inverse square noise we get


∂H(X | Y )


∂ε−2
i


= −1


2
(1− El[Ti]), (2.30)


and
dEC[hn]


dε−2
= −1


2
(1− EC,t[T1]). (2.31)


We would like to point out here that the average MAP-GEXIT formulas for the
BIAWGNC presented here have been derived in [23], [34]. Also the derivative
w.r.t. the inverse noise variance is just for convenience of exposition.


2.4 Second Derivative – The Correlation
Formula


In this section we prove the correlation formula in Lemma 2.1 for the second
derivative of the conditional entropy. We will then specialize the formula to
the case of transmission over the BEC and BIAWGNC. As a result we will
observe that, for these two channels the relationship of the second derivative
of the conditional entropy w.r.t. ε is very straightforward.


2.4.1 Proof of the Correlation Formula in Lemma 2.1


For any BMS(ε) channel and any linear code we have from (2.18)


∂H(X | Y )


∂εi
= El∼i


[∫ +∞


−∞
dli
∂cL(li)


∂εi
(lnZ − li


2
)


]
.


Differentiating once more, we get


∂2


∂εi∂εj
H(X | Y ) = δijS1 + (1− δij)S2, (2.32)


where


S1 = El∼i


[∫ +∞


−∞
dli
∂2cL(li)


∂ε2i


(
lnZ − li


2


)]
, (2.33)


and


S2 = El∼ij


[∫ +∞


−∞
dlidlj


∂cL(li)


∂εi


∂cL(lj)


∂εj


(
lnZ − li


2


)]
.
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Recall that El∼ij denotes the expectation w.r.t. all the LLR values l except li
and lj. Consider first S1. Recall from (2.22) that


lnZ − li
2


= lnZ∼i + ln


(
1 + ti〈xi〉∼i


1 + ti


)
.


When we replace this expression in the integral (2.33) we again see that the
contribution of lnZ∼i vanishes because this later quantity is independent of li.
Again, using (2.15) leads to


S1 =


∫ +1


−1


dti
∂2cD(ti)


∂ε2i
E ∼i


[
ln


(
1 + ti〈xi〉∼i


1 + ti


)]
(2.34)


= −
∫ +1


−1


dti
∂2cD(ti)


∂ε2i
Et∼i


[
ln


(
1− ti〈xi〉


1− ti


)]
, (2.35)


which (because of (2.13)) coincides with the first term in the correlation for-
mula provided by Lemma 2.1.


Consider next the term S2. Notice that∫ +∞


−∞
dlidlj


∂cL(li)


∂εi


∂cL(lj)


∂εj


( lj
2


)
=


∫ +∞


−∞
dlj
∂cL(lj)


∂εj


lj
2


( ∂


∂εi


∫ +∞


−∞
dlicL(li)


)
= 0.


Similarly,∫ +∞


−∞
dlidlj


∂cL(li)


∂εi


∂cL(lj)


∂εj


( li
2


)
=


∫ +∞


−∞
dli
∂cL(li)


∂εi


li
2


( ∂


∂εj


∫ +∞


−∞
dljcL(lj)


)
= 0.


Thus we can re-write S2 as


S2 = El∼ij


[ ∫ +∞


−∞
dlidlj


∂cL(li)


∂εi


∂cL(lj)


∂εj


(
lnZ − li


2
− lj


2


)]
.


The above manipulations are done to symmetrize the expression for S2. This
helps us in deriving the correlation formula for the second derivative.


Let Z∼ij =
∑


x


∏
c∈C


1
2
(1 + x∂c)


∏
k 6=i,j e


lk
2
xk be the partition function for


the Gibbs bracket 〈·〉∼ij, and consider


ln
( Z


Z∼ij


)
= ln


(
〈e


li
2
xi+


lj
2
xj〉∼ij


)
.


Using again (2.21) we get


lnZ − li
2
− lj


2
= lnZ∼ij + ln


(
1 + ti〈xi〉∼ij + tj〈xj〉∼ij + titj〈xixj〉∼ij


1 + ti + tj + titj


)
.


As before the contribution of lnZ∼ij vanishes because it is independent of li
and lj. Since ln(1+ti〈xi〉∼ij) (resp. ln(1+tj〈xj〉∼ij)) is independent of lj (resp.
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li), we have∫ +∞


−∞
dlidlj


∂cL(li)


∂εi


∂cL(lj)


∂εj
ln(1 + ti〈xi〉∼ij)


=


∫ +∞


−∞
dlidlj


∂cL(li)


∂εi


∂cL(lj)


∂εj
ln(1 + tj〈xj〉∼ij)


= 0. (2.36)


Similarly, notice that∫ +∞


−∞
dlidlj


∂cL(li)


∂εi


∂cL(lj)


∂εj
ln(1 + ti)


=


∫ +∞


−∞
dlidlj


∂cL(li)


∂εi


∂cL(lj)


∂εj
ln(1 + tj)


= 0. (2.37)


Using the above identities (2.36) and (2.37) this leads to the following formula
for S2,


S2 =El∼ij


[∫ +1


−1


dtidtj
∂cD(ti)


∂εi


∂cD(tj)


∂εj


× ln


(
1 + ti〈xi〉∼ij + tj〈xj〉∼ij + titj〈xixj〉∼ij


1 + ti〈xi〉∼ij + tj〈xj〉∼ij + titj〈xi〉∼ij〈xj〉∼ij


)]
. (2.38)


To get the formulas in terms of usual averages we use the relations (2.16),
(2.17). Hence


S2 = El∼ij


[∫ +1


−1


dtidtj
∂cD(ti)


∂εi


∂cD(tj)


∂εj
ln


(
1− ti〈xi〉 − tj〈xj〉+ titj〈xixj〉


1− ti〈xi〉 − tj〈xj〉+ titj〈xi〉〈xj〉


)]
.


(2.39)


Because of (2.13) and (2.14) this coincides with the second term in the corre-
lation formula. The lemma now follows from (2.32), (2.35) and (2.39).


2.4.2 Expressions in terms of the Spin-Spin Correlation


An important step in our analysis is the second derivative of the conditional
entropy formula. Although we made progress in explicitly deriving a formula
for the second derivative in the previous section, it still seems unusable. The
relationship between the second derivative and the correlation is not clear from
(2.39). The reason for this is the presence of the logarithm in the expression.
We show later that a miraculous manipulation of the second derivative formula
(2.6) reveals a nice relationship between the second derivative and spin-spin
correlation which will facilitate the analysis. As a first step, we consider the
BEC and BIAWGNC for which the computations are easier and we also show
how we use the Nishimori identities (see Appendix 2.A.2) for algebraic manip-
ulations.
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Example 2.4 (Correlation Formula for the BEC). From cD(t) = (1− ε)δ(t−
1)+εδ(t), the second derivative in terms of extrinsic quantities (formulas (2.34)
and (2.38)) reduces to


∂2H(X | Y )


∂εi∂εj
= (1− δij)Et∼ij


[
ln


(
1 + 〈xi〉∼ij + 〈xj〉∼ij + 〈xixj〉∼ij


1 + 〈xi〉∼ij + 〈xj〉∼ij + 〈xi〉∼ij〈xj〉∼ij


)]
.


We remark that the term S1 vanishes because ∂2cD(ti)


∂ε2i
equals zero when trans-


mitting over the BEC. From Appendix 2.A.1, when transmitting over the BEC,
the Gibbs average 〈xA〉∼ij equals either 0 or 1. As a result, it is not hard to
see that


ln
(
1 + 〈xi〉∼ij + 〈xj〉∼ij + 〈xixj〉∼ij


)
= (ln 2)


(
〈xi〉∼ij + 〈xj〉∼ij + 〈xixj〉∼ij


)
+ (ln 3− 2 ln 2)


(
〈xi〉∼ij〈xj〉∼ij + 〈xi〉∼ij〈xixj〉∼ij + 〈xj〉∼ij〈xixj〉∼ij


)
+ (5 ln 2− 3 ln 3)〈xi〉∼ij〈xj〉∼ij〈xixj〉∼ij,


and


ln
(
1 + 〈xi〉∼ij + 〈xj〉∼ij + 〈xi〉∼ij〈xj〉∼ij


)
= (ln 2)


(
〈xi〉∼ij + 〈xj〉∼ij


)
.


The difference of the two logarithms is simplified using the following Nishimori
identities (see Appendix 2.A.2),


El[〈xi〉∼ij〈xj〉∼ij] = El[〈xi〉∼ij〈xixj〉∼ij] = El[〈xj〉∼ij〈xixj〉∼ij]
= El[〈xixj〉∼ij〈xi〉∼ij〈xj〉∼ij]. (2.40)


Finally we obtain the simple expression


∂2H(X | Y )


∂εi∂εj
= ln 2(1− δij)El


[
〈xixj〉∼ij − 〈xi〉∼ij〈xj〉∼ij


]
.


It is not hard to see that


El


[
〈xixj〉 − 〈xi〉〈xj〉


]
= εiεjEl


[
〈xixj〉∼ij − 〈xi〉∼ij〈xj〉∼ij


]
.


Indeed, whenever li = +∞ we have xi = +1. As a consequence we have
〈xixj〉−〈xi〉〈xj〉 = 〈xj〉−〈xj〉 = 0. We argue in a similar way when lj = +∞.
Putting everything together we finally get,


∂2H(X | Y )


∂εi∂εj
=


ln 2


εiεj
(1− δij)El


[
Tij − TiTj


]
.


Let us point out that the second GKS inequality (see Appendix 2.A.1) implies
that 〈xixj〉 − 〈xi〉〈xj〉 ≥ 0.
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Example 2.5 (Correlation Formula for the BIAWGNC). Using (2.29) and
the gaussian integration by parts formula with f(l, x) = ε−3


i El[1− 〈xi〉], we get
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Let us show the calculations for the last derivative in more details. We have


∂
(
〈xi〉〈xj〉


)
∂lj


=
(∂〈xi〉
∂lj


)
〈xj〉+ 〈xi〉


(∂〈xj〉
∂lj


)
.


For the first term we get


∂〈xi〉
∂lj


=
1


Z


∑
x


xi
∏
a


1


2
(1 + x∂a)


∏
i 6=j


e
li
2
xi
∂


∂lj
e
lj
2
xj


− 1


Z2


(∑
x


xi
∏
a


1


2
(1 + x∂a)


n∏
i=1


e
li
2
xi
)(∑


x


∏
a


1


2
(1 + x∂a)


∏
i 6=j


e
li
2
xi
∂


∂lj
e
lj
2
xj
)


=
1


2Z


∑
x


xixj
∏
a


1


2
(1 + x∂a)


n∏
i=1


e
li
2
xi


− 1


2Z2


(∑
x


xi
∏
a


1


2
(1 + x∂a)


n∏
i=1


e
li
2
xi
)(∑


x


xj
∏
a


1


2
(1 + x∂a)


n∏
i=1


e
li
2
xi
)


=
1


2
〈xixj〉 −


1


2
〈xi〉〈xj〉.


Multiplying with 〈xj〉 and performing similar calculations for
∂〈xj〉
∂lj


we obtain


the above identity.
Now using (2.40) and the Nishimori identities (see Appendix 2.A.2)
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Thus in terms of inverse square noise we have
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Example 2.6 (Correlation Formula for Highly Noisy BMS Channels). We use
the extrinsic form of the correlation formula given by (2.34) and (2.38). First
we expand the logarithms in S1 and S2 in powers of ti and tj and then use
various Nishimori identities. After a rather tedious algebra (see Appendices
2.C and 2.D) we can organize the expansion in powers of the channel param-
eters (2.1). In the high noise regime this expansion is absolutely convergent.
To lowest order we have
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The second derivative of the conditional entropy is directly related to the aver-
age square of the code-bit or spin-spin correlation.


2.5 The Interpolation Method


We use the interpolation method in the form developed by Montanari to prove
the lower bound for any standard ensemble of LDPC codes. The interpolation
method for standard ensembles has also been developed differently in the con-
text of spin-glasses by Franz et al. [92]. But the latter form is more complex
and less amenable to analysis in the present context.


As the name suggests, the main idea of the interpolation method is to
define a partition function dependent on a scalar interpolating parameter s,
where s varies over some interval of R. The system is set up in such a way
that for one extreme value of the parameter (say s = 1), one recovers the
partition function of the system of interest and for the other extreme value of
the parameter (say s = 0) we obtain a partition function for an “easy” system
(usually a system where the Gibbs measure is a product distribution over the
constituents of the system).


Using the fundamental theorem of calculus, one then relates the two ex-
treme systems via the derivative of the partition function w.r.t. the parameter
s. By carefully designing a “path”, which is a function of s, one controls the
derivative of the partition function with respect to s and thus give an estimate
of the partition function of the system of interest.
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As explained in [29], it is difficult to establish directly the bounds for
the standard ensembles. Rather, one introduces a “multi-Poisson” ensemble
which approximates the standard ensemble. Once the bounds are derived for
the Multi-Poisson ensemble they are extended to the standard ensemble by
a limiting procedure. The interpolation construction is fairly complicated so
that it is helpful to briefly review the simpler pure Poisson case.


2.5.1 Poisson Ensemble


We introduce the ensemble Poisson-LDPC(n, 1−R, P (x)), denoted by P , where
n is the block length, R is the design rate and P (x) =


∑
k Pkx


k is the check
degree distribution. A bipartite graph from the ensemble P is constructed as
follows. The graph has n variable nodes. For any k choose, independently,
a Poisson number mk of check nodes with mean equal to n(1 − R)Pk. Thus
the graph has a total of m =


∑
kmk check nodes. Clearly, m is a Poisson


random variable with mean n(1 − R). For each check node a of degree k,
choose k variable nodes u.a.r. and connect them to a. One can show that the
variable node degree distribution concentrates around a Poisson distribution
ΛP(x) = eP


′(1)(1−R)(x−1) (see [29]). In other words, the fraction of variable
nodes with degree l, Λl, is Poisson with mean P ′(1)(1− R).


The interpolation technique recursively removes the check node constraints,
thus increasing the rate of the code. This increase is compensated by adding
extra observations, U , distributed as (1.26) where dV is a trial distribution to be
optimized in the final inequality. One can interpret these extra observations as
coming from a repetition code whose rate is tuned in a such a way that the total
design rate R remains fixed. More precisely, let s ∈ [0, 1] be an interpolating
parameter. At “time” s we consider a Poisson-LDPC(n, (1 − R)s, P ) = Ps
code. For this code ensemble, the design rate equals 1− (1− R)s. Besides the
usual channel outputs li, each node i receives ei extra i.i.d. observations U i


b ,
b = 1, ..., ei, where ei is Poisson with mean P ′(1)(1 − R)(1 − s) (so the total
effective design rate is fixed to R). Indeed, the average variable node degree is
equal to P ′(1)


(
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)
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Here
∏


a is a product over checks of a given graph in the ensemble Ps. At s = 1
one recovers the original measure for P , while at s = 0 (no check nodes) we
have a simple product measure (corresponding to a repetition code) which is
tailored to yield the replica symmetric entropy hRS[dV ; ΛP , P ] (up to an extra
constant).


The central result of Montanari [29] is the sum-rule


EP [hn] = hRS[dV ; ΛP , P ] +


∫ 1


0


Rn(s)ds. (2.43)
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As a consequence, Montanari in [29] proves that for the special case of convex
P (x), the remainder term Rn(s) is always non-negative. This proves that the
replica solution is a lower bound for the special case of convex P (x).


Details of the sum-rule and its derivation can be found in [29], [79]. For
completeness, we provide a derivation in Appendix 2.A.4. The integral in the
sum-rule arises as a result of taking the derivative of the interpolated partition
function with respect to the parameter s.


The first term on the right hand side of (2.43), hRS,P [dV ; ΛP , P ], is the
replica symmetric functional of Section 2.1 evaluated for the Poisson ensemble.
The remainder term Rn(s) is given by
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Let us explain the various objects appearing above. Define q2p = EV [(tanhV )2p].
Q2p is called the overlap parameter, and is given by
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Here x
(α)
i , α = 1, 2, . . . , 2p are 2p independent copies (replicas) of the spin xi


(each replica corresponds to an identical spin system with the same code and
LLR realizations) and 〈−〉2p,s is the average (Gibbs bracket) associated to the
product measure (replica measure)


2p∏
α=1


µs
(
x(α)


)
. (2.46)


Also we use the short-hand notation Es to denote the expectation w.r.t. all
the randomness present at time s.


2.5.2 Multi-Poisson Ensemble


In this section we describe the interpolation method technique applied to the
Multi-Poisson ensemble introduced by Montanari in [29]. The Multi-Poisson-
LDPC(n,Λ, P, γ) ensemble, denoted byMP , is a more elaborate construction
which allows to approximate a target standard LDPC(n,Λ, P ) ensemble. Its
parameters are the block length n, the target variable and check node degree
distributions Λ(x) and P (x) and the real number γ which controls the closeness
to the standard ensemble. We recall that variable and check node degrees have
finite maximum degrees. We first describeMP and then give the construction
of the ensemble used by the interpolation method.


The construction of a bipartite graph from theMP ensemble proceeds via
rounds: the process starts with a high rate code and at each round one adds a
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very small number of check nodes till one ends up with a code with almost the
desired rate and degree distribution. A graph process Gt is defined for discrete
times t = 0, ..., tmax − 1, tmax = bΛ′(1)/γc − 1 as follows. For t = 0, G0 has no
check nodes and has n variable nodes. The set of variable nodes is partitioned
into the subsets Vl of cardinality nΛl for every l and every node i ∈ Vl is
decorated with l free sockets. The number di(t) keeps track of the number of
free sockets on node i once round t is completed. So for t = 0, G0 has no check
nodes and each variable node i ∈ Vl has di(0) = l free sockets.


At round t, Gt is constructed from Gt−1 as follows. For all k, choose indepen-
dently a Poisson number mt


k of check nodes with mean nγPk/P
′(1). Connect


each socket of these new degree k check nodes (added at time t) to variable


node i according to the probability wi(t) = di(t−1)P
i di(t−1)


. This is the fraction of


free sockets present at node i after round t− 1 was completed. Note that for
the Poisson-LDPC ensemble, wi(t) = 1/n, which is uniform distribution over
all the variable nodes. Thus in order to get the desired degree distribution,
we give a uniform distribution on the free sockets. It is easy to see that at
each round or time t, the average degree of the variable nodes increases by γ.
Hence at the end of all the rounds, the average variable node degree is given
by Λ′(1)− 2γ ≤ γtmax ≤ Λ′(1).


Once all new check nodes are connected, update the number of free sockets
for each variable node di(t) = di(t − 1) − ∆i(t). where ∆i(t) is the number
of times the variable node i was chosen during the round t. For n → ∞ this
construction yields graphs with variable degree distributions Λγ(x) (the check
degree distribution remains P (x)). The variational distance between Λγ(x)
and Λ(x) tends to zero as γ → 0, see [29] for a proof.


The interpolating ensemble now uses two parameters (t∗, s) where t∗ ∈
{0, ..., tmax− 1} and 0 ≤ s ≤ γ. For rounds 0, ..., t∗− 1 one proceeds exactly as
before to obtain a graph Gt∗−1. At the next round t∗, one proceeds as before
but with γ replaced by s. The decrease in the number of check nodes (on an
average) is compensated by adding ei extra observations for each node i, where
ei is a Poisson random number with mean n(γ−s)wi(t∗). The round is ended by
updating the number of free sockets di(t∗) = di(t∗−1)−∆i(t∗)−ei(t∗). Finally,
for rounds t∗+1, ..., tmax no new check node is added but for each variable node
i, ei external observations are added, where ei is a Poisson random number
with mean nγwi(t). Moreover the free socket counter is updated as di(t) =
di(t − 1) − ei(t). Recall that the external observations are i.i.d. copies of the
random variable U (see (1.26)).


The interpolating Gibbs measure µt∗,s(x) has the same form than (2.42)
with the appropriate products over checks and extra observations. Let hn,γ the
conditional entropy of the MP ensemble MP (corresponding to the extreme
values t∗ = tmax and s = γ). Again, the central result of [29] is the sum-rule


EMP [hn,γ] = hRS[dV ; Λγ, P ] +
tmax−1∑
t∗=0


∫ γ
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Rn(t∗, s)ds+ on(1). (2.47)
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We will not give the details of this derivation here, although we provide some
insights into the appearance of various parameters, in the Appendix 2.A.4.
Interested reader is referred to [29]. Explanations on the notation are in order.
The first term hRS,γ[dV ; Λγ, P ] is the replica symmetric functional of 2.1 eval-
uated for the Multi-Poisson ensemble. The remainder term Rn(t∗, s) is given
by
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Es


[〈
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where q2p = EV [(tanhV )2p] as before and Q2p are modified overlap parameters
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Here as before x
(α)
i , α = 1, 2, . . . , 2p are 2p independent copies (replicas) of the


spin xi and 〈−〉2p,t∗,s is the Gibbs bracket associated to the product measure


2p∏
α=1


µt∗,s(x
(α)).


The overlap parameter is now more complicated than in the Poisson case
because of the (positive) terms wi(t∗) and Xi(t∗). Here Xi(t∗) are new i.i.d.
random variables whose precise description is quite technical and can be found
in [29]. The reader may think of the terms wi(t∗)Xi(t∗) as behaving like the 1


n


factor of the pure Poisson ensemble overlap parameter (2.45). More precisely,
the only properties (see Appendix E in [29]) that we need are


n∑
i=1


wi(t∗) = 1 (since wi(t∗) is a probability distribution at any t∗), (2.50)


P
[
wi(t∗) ≤


A


n


]
≥ 1− e−Bn, (2.51)


0 ≤ Xi(t∗) ≤ X, E[Xk] ≤ Ak, (2.52)


for any finite k and finite positive constants A, B, Ak independent of n. Finally
we use the shorthand Es[−] for the expectation with respect to all random
variables involved in the interpolation measure. The subscript s is here to
remind us that this expectation depends on s, a fact that is important to keep
in mind because the remainder involves an integral over s. When we use E
(without the subscript s; as in (2.52) for example) it means that the quantity
does not depend on s. In the sequel the replicated Gibbs bracket 〈−〉2p,t∗,s is
simply denoted by 〈−〉s. There will be no risk of confusion because the only
property that we us is its linearity.
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In [29] it is shown that


EC[hn] = EMP [hn,γ] +O(γb) + on(1), (2.53)


where O(γb) is uniform in n (b > 0 a numerical constant) and on(1) (depends
on γ) tends to 0 as n→ +∞.


In the next section we prove the variational bound on the conditional en-
tropy of the MP ensemble, namely


lim inf
n→+∞


EMP [hn,γ] ≥ hRS[dV ; Λγ, P ]. (2.54)


Note that here on(1) again depends on γ. By combining this bound with (2.53)
and taking limits
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(2.55)
The main Theorem 2.1, for the standard ensemble (Λ(x), P (x)), then follows
by maximizing the right hand side over dV .


2.5.3 Proof of the Variational Bound (Theorem 2.1) for
Multi-Poisson Ensemble


In view of the sum-rule (2.47) it is sufficient to prove that lim infn→+∞Rn(t∗, s) ≥
0. In the case of a convex P (x) considered in [29] this is immediate because
convexity is equivalent to


P (Q2p)− P (q2p) ≥ P ′(q2p)(Q2p − q2p).


Note that P (x) =
∑


k Pkx
k is anyway convex for x ≥ 0 since all Pk ≥ 0. So


if do not assume convexity of the check node degree distribution we have to
circumvent the fact that Q2p can be negative. But note
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where we recall that wi(t∗) and Xi(t∗) are random variables which just depend
on the code parameters and not on the Gibbs measure (because of which
there is no Gibbs bracket around wi(t∗) and Xi(t∗) in the expression above).
Therefore we are assured that for any P (x) (i.e not necessarily convex for
x ∈ R) we have


P
(
〈Q2p〉s
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, (2.56)







64 Lower Bounds on Conditional Entropy: The Interpolation Method


and the proof will follow if we can show that with high probability


P (Q2p) ≈ P
(
〈Q2p〉s


)
.


The following concentration estimate will suffice and is proven in Section 2.6.


Lemma 2.2. Fix any 0 < δ < 1
4
. On the BEC(ε) and BIAWGNC(ε) for a.e.


ε, or on general BMS(ε) satisfying H, we have for any integer p > 0 and a.e.
ε,
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Here Ps(X) is the probability distribution Es〈IX〉s.


This lemma can presumably be strengthened in two directions. First we
conjecture that hypothesis H is not needed (this is indeed the case for the
BEC and BIAWGNC). Secondly the statement should hold for all ε except
at a finite set of threshold values of ε where the conditional entropy is not
differentiable, and its first derivative is expected to have jumps (except for
cycle codes where higher order derivatives are singular). Since we are unable
to control the locations of theses jumps our proof only works for Lebesgue
almost every ε.


We are now ready to complete the proof of the variational bound (2.54).


End of Proof of (2.54). From (2.49) and (2.52)
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Combined with q2p ≤ 1, this implies (since the maximal degree of P (x) is
finite) that
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for some positive constant C1. The only crucial feature here is that this con-
stant does not depend on n and on the number of replicas 2p (a more detailed
analysis shows that it depends only on the maximum degree of P (x)).


Now we split the sum (2.48) into terms with 1 ≤ p ≤ nδ (call this contri-
bution RA) and terms with p ≥ nδ (call this contribution RB), where δ > 0 is
the constant of Lemma 2.2. For the second contribution, (2.60) implies
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For the first contribution we write
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In the equation above, the second sum is positive due to (2.56). Thus we find
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Below, we use Lemma 2.2 to show that for almost every ε in the appropriate
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which implies by Fatou’s lemma
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and thus proves (2.54) for almost every ε in the appropriate range.
Let us now prove (2.62). First we set
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we get∫ γ


0


ds
∑
p≤nδ


1


2p(2p− 1)
Es[F2p]


≤ 1


nδ


∑
p≤nδ


1


2p− 1
+ C2


∑
p≤nδ


1


2p(2p− 1)


∫ γ


0


ds
(
Ps
[
F2p ≥


2p


nδ


])1/2


≤ O
( lnnδ


nδ


)
+ C2


∑
p≤nδ


√
γ


2p(2p− 1)


(∫ γ


0


dsPs
[
F2p ≥


2p


nδ


])1/2


.







66 Lower Bounds on Conditional Entropy: The Interpolation Method


In the second inequality we have first permuted the integral with a finite


sum and then used Cauchy-Schwartz to get
∫ γ


0
ds 1 ·
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. Finally we can apply Lemma 2.2 and


Lebesgue’s dominated convergence theorem to the last sum over p, to conclude
that (2.62) holds.


2.6 Fluctuations of Overlap Parameters


In this section we prove Lemma 2.2. The proofs in this section are done directly
for the Multi-Poisson ensemble. We start by a relation between the overlap
fluctuation and the spin-spin correlation.


Lemma 2.3. For any BMS(ε) channel there exists a finite constant C3 inde-
pendent of n and p (depending only on the maximal check degree) such that
for any positive integer p we have


Ps
[∣∣∣P (Q2p)−P


(
〈Q2p〉s


)∣∣∣ ≥ 2p


nδ


]
≤ C3


p2n
1
2
−2δ


( n∑
i=1


Es


[(
〈x1xi〉s−〈x1〉s〈xi〉s


)2
])1/2


.


(2.63)


Proof. Using the identity


Qk
2p − 〈Q2p〉ks =


(
Q2p − 〈Q2p〉s


) k−1∑
l=0


Qk−l−1
2p 〈Q2p〉ls, (2.64)


and (2.52) we get


∣∣P (Q2p)− P
(
〈Q2p〉s


)∣∣ =
∣∣Q2p − 〈Q2p〉s


∣∣ ∣∣∣∑
k


Pk


k−1∑
l=0


Qk−l−1
2p 〈Q2p〉ls


∣∣∣
≤
∣∣Q2p − 〈Q2p〉s


∣∣(∑
k


kPkX
k−1
)


≤ P ′(X)
∣∣Q2p − 〈Q2p〉s


∣∣. (2.65)


Recall that here X is the bound in (2.58). Using (2.65) and applying the
Chebycheff inequality we get


Ps
[∣∣∣P (Q2p)− P


(
〈Q2p〉s


)∣∣∣ ≥ 2p


nδ


]
≤ Ps


[
P ′(X)


∣∣∣Q2p − 〈Q2p〉s
∣∣∣ ≥ 2p


nδ


]
≤ n2δ


4p2
Es


[
P ′(X)2


〈∣∣∣Q2p − 〈Q2p〉s
∣∣∣2〉


s


]
=
n2δ


4p2
Es


[
P ′(X)2


(
〈Q2


2p〉s − 〈Q2p〉2s
)]
. (2.66)
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where going from the inequality to the equality above we use
〈
|Q2p−〈Q2p〉s|2


〉
s


=
〈Q2


2p〉s − 〈Q2p〉2s. From the definition of the overlap parameters it follows that


〈Q2
2p〉s =


n∑
i,j=1


wi(t∗)wj(t∗)Xi(t∗)Xj(t∗)
〈
x


(1)
i x


(1)
j x


(2)
i x


(2)
j · · ·x


(2p)
i x


(2p)
j


〉
s


=
n∑


i,j=1


wi(t∗)wj(t∗)Xi(t∗)Xj(t∗)〈xixj〉2ps , (2.67)


where in the last equality we used the fact that the replicas are identical
copies of each other. Also in the last equality above 〈−〉s corresponds to a
single system without replicas not to be confused with the Gibbs bracket in
the previous line. Arguing similar as above we also have


〈Q2p〉2s =
( n∑
i=1


wi(t∗)Xi(t∗)
〈
x


(1)
i x


(2)
i · · ·x


(2p)
i


〉
s


)2


=
( n∑
i=1


wi(t∗)Xi(t∗)〈xi〉2ps
)2


=
n∑


i,j=1


wi(t∗)wj(t∗)Xi(t∗)Xj(t∗)〈xi〉2ps 〈xj〉2ps . (2.68)


Thus we have


〈Q2
2p〉s − 〈Q2p〉2s =


n∑
i,j=1


wi(t∗)wj(t∗)Xi(t∗)Xj(t∗)
(
〈xixj〉2ps − 〈xi〉2ps 〈xj〉2ps


)
≤ 2p


n∑
i,j=1


X2wi(t∗)wj(t∗)
∣∣〈xixj〉s − 〈xi〉s〈xj〉s∣∣.


Substituting in (2.66) and applying Cauchy-Schwartz to
∑


i,j Es[−] we get


Ps
[
|P (Q2p)− P (〈Q2p〉s)| ≥


2p


nδ
]
≤n


2δ


2p


( n∑
i,j=1


Es


[
X4P ′(x)4wi(t∗)


2wj(t∗)
2
])1/2


×
( n∑
i,j=1


Es


[(
〈xixj〉s − 〈xi〉s〈xj〉s


)2
])1/2


.


From (2.51), (2.52) it is not hard to see that for any i, j


Es


[
X4P ′(x)4wi(t∗)


2wj(t∗)
2
]
≤ C2


3


n4
,
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where C3 is independent of n. It follows that


Ps
[∣∣∣P (Q2p)− P


(
〈Q2p〉s


)∣∣∣ ≥ 2p


nδ


]
≤ n2δ−1


2p
C3


( n∑
i,j=1


Es


[(
〈xixj〉s − 〈xi〉s〈xj〉s


)2
])1/2


=
n2δ− 1


2


2p
C3


( n∑
i=1


Es


[(
〈xix1〉s − 〈xi〉s〈x1〉s


)2
])1/2


. (2.69)


In the last equality we have used the symmetry of the ensemble with respect
to variable node permutations to eliminate one sum of the sums in the double
sum


∑
i,j.


Denote by hn,γ(t∗, s) the entropy of the µt∗,s interpolating measure. Note
that this should not be confused with the Multi-Poisson ensemble entropy hn,γ
(which corresponds to t∗ = tmax and s = γ).


Lemma 2.4. For the BEC and BIAWGNC with any noise value and for gen-
eral BMS(ε) channels satisfying H we have


n∑
i=1


Es[(〈x1xi〉s − 〈x1〉s〈xi〉s)2] ≤ F (ε) +G(ε)
d2


dε2
Es[hn,γ(t∗, s)], (2.70)


where F (ε) and G(ε) are two finite constants depending only on the channel
parameter.


The proof of Lemma 2.4 is based on the correlation formula of Section
2.1. These are true for any linear code ensemble so they are in particular true
for the interpolating (t∗, s) ensemble3. For the BEC and BIAWGNC we have
already shown the two equalities (2.8) and (2.10): thus the inequality (2.70)
is in fact an equality for appropriate values of F and G. The case of general
(but highly noisy) BMS channels is presented in Appendix 2.C. A converse
inequality can also be proven by the methods of Appendices 2.C and 2.D.


Proof of Lemma 2.2. Note that for all points of the parameter space (ε, s)
such that the second derivative of the average conditional entropy is bounded
uniformly in n the proof immediately follows from (2.69), (2.70) by choosing
δ < 1


4
. However, in the large block length limit n→ +∞, generically the first


derivative of the average conditional entropy has jumps for some values of ε
(these values depend on the interpolation parameter s). This means that for


3In fact one has to check that the addition of
∑ei


b=1 U
i
b to li does not change the derivation


and the final formulas. For this it suffices to follow the calculation of Section 2.4. The
distribution of the Ua depends on the distribution of V , which is freely distributed and
apriori does not depend on the channel noise ε, hence our derivations for the correlation
formula for the BEC and BIAWGNC follow also for the interpolated ensemble.
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these threshold values the second derivative cannot be bounded uniformly in n.
Since we cannot control these locations we introduce a test function ψ(ε): non
negative, infinitely differentiable and with small enough bounded support (let
εa < εb denote the end-points of the support of ψ(ε) and ψ(εa) = ψ(εb) = 0)
included in the range of ε satisfying H. We consider the averaged quantity


Q =


∫
dεψ(ε)


∫ γ


0


dsPs
[∣∣∣P (Q2p)− P


(
〈Q2p〉s


)∣∣∣ ≥ 2p


nδ


]
. (2.71)


Since both ψ()̇ and Ps[]̇ are bounded functions, we can exchange the two in-
tegrals. Then writing ψ(ε) =


√
ψ(ε)


√
ψ(ε), and using Cauchy-Schwartz we


find


Q ≤
∫ γ


0


ds


(∫
dεψ(ε)


(
Ps
[∣∣∣P (Q2p)− P


(
〈Q2p〉s


)∣∣∣ ≥ 2p


nδ


])2)1/2


.


Combining this inequality with (2.69) and (2.70) we get


Q ≤ n2δ− 1
2


2p
C3


∫ γ


0


ds


(∫
dεψ(ε)


(
F (ε) +G(ε)


d2


dε2
Es[hn,γ(t∗, s)]


))1/2


(a)
=
n2δ− 1


2


2p
C3


∫ γ


0


ds


(∫
dεψ(ε)F (ε) + ψ(ε)G(ε)


d


dε
Es[hn,γ(t∗, s)]


∣∣∣ε=εb
ε=εa


−
∫
dε
d


dε


(
ψ(ε)G(ε)


) d
dε


Es[hn,γ(t∗, s)]


)1/2


=
n2δ− 1


2


2p
C3


∫ γ


0


ds


(∫
dεψ(ε)F (ε)−


∫
dε
d


dε


(
ψ(ε)G(ε)


) d
dε


Es[hn,γ(t∗, s)]


)1/2


.


where (a) follows from the integration by parts formula and the last equal-
ity follows because the first derivative of the average conditional entropy is
bounded uniformly in n and s (see Appendix 2.E) by a constant k(ε) that has
at most a power singularity at ε = 0, and again this is not a problem as we
can take the test function to be vanishing sufficiently fast. Note that from the
bounds in Appendix 2.C, F (ε), G(ε) and G′(ε) are integrable except possibly
at the edge of the ε range defined by H. This is not a problem because we can
take the support of ψ(ε) away from such points or alternatively take a ψ(ε)
which vanishes sufficiently fast at these points. Thus by choosing 0 < δ < 1


4


we obtain


lim
n→+∞


Q = 0.


Applying Lebesgue’s dominated convergence theorem to convergent subse-
quences (of the integrand of


∫
dεψ(ε) in (2.71)) we deduce that∫


dεψ(ε) lim
nk→+∞


∫ γ


0


dsPs
[∣∣∣P (Q2p)− P


(
〈Q2p〉s


)∣∣∣ ≥ 2p


nδk


]
= 0,
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which implies that along any convergent subsequences, for almost all ε


lim
nk→+∞


∫ γ


0


dsPs
[∣∣∣P (Q2p)− P


(
〈Q2p〉s


)∣∣∣ ≥ 2p


nδk


]
= 0, (2.72)


as long as δ < 1
4
. Now we apply this last statement to two subsequences that


attain the lim inf and the lim sup (on the intersection of the two measure one
ε sets). This proves that the limn→+∞ exists and vanishes.


2.7 Conclusion


The main new tool introduced in this chapter are relationships between the
second derivative of the conditional entropy and correlation functions or mu-
tual information between code bits. This allowed us to estimate the overlap
fluctuations in order to get a better handle on the remainder. Some aspects of
our analysis bear some similarity with techniques introduced by Talagrand [87]
but is independent. One difference is that we use specific symmetry properties
of the communications problem.


We expect that the technique developed here can be extended to remove the
restriction to high noise (condition H). Indeed the only place in the analysis
where we need this restriction is Lemma 2.4. For the BEC and BIAWGNC
the lemma is trivially satisfied for any noise level (with appropriate constants).
Another issue that would be worthwhile investigating is whether the related
inequalities of paragraph 2.1.3 and the converse of Lemma 2.4 can be derived
irrespective of the noise level.


The next obvious problem is to prove the converse of the variational bound
(Theorem 2.1). For this one should show that the remainder vanishes when
dV is replaced by the maximizing distribution of hRS[dV ; Λ, P ]. This program
has been carried out explicitly in the case of the BEC and the Poisson-LDPC
ensemble in the next chapter. It would be desirable to extend this to more
general ensembles and channels but the problem becomes quite hard.
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2.A Useful Tools and The Interpolation Method


2.A.1 Griffiths-Kelly-Sherman (GKS) Correlation
Inequalities


Consider a spin system given by the Hamiltonian H = −
∑


a lax∂a with la ≥ 0
for all a. Such a system in statistical mechanics is known as a ferromagnetic
system. For a ferromagnetic system the GKS inequalities state that,


〈xA〉 ≥ 0,


〈xAxB〉 − 〈xA〉〈xB〉 ≥ 0,


where A,B are any two finite support subsets of the set of spins and 〈−〉 is
the Gibbs average associated with the Hamiltonian H.


The case of transmission using LDGM codes over the BEC is clearly an
instance of a ferromagnetic system, as seen by (1.25). Therefore the GKS
inequalities apply directly. For the case of LDPC codes, the contribution of
any check node a can be written as


1


2
(1 + x∂a) = lim


la→+∞
ela(x∂a−1).


Thus we can rewrite the Gibbs measure (2.11) as


µ(x) = lim
la→+∞
for all a


1


Z ′


∑
x


m∏
a=1


elax∂a
n∏
i=1


elixi ,


where Z ′ =
∑


x


∏m
a=1 e


lax∂a
∏n


i=1 e
lixi with la ≥ 0 for all 1 ≤ a ≤ m and li ≥ 0


for all 1 ≤ i ≤ n. As a result of this reformulation, the case of LDPC codes
over the BEC also represents a ferromagnetic system and the GKS inequalities
apply.


In general the first GKS inequality is not true if the interactions or the LLR
can take both positive and negative values. But when transmission takes place
over a BMS channel, then the first inequality is satisfied on average, when the
average is w.r.t. the noise realizations. We say more about this in the next
section on Nishimori identities. The second inequality may not be true even
on average in the case of general BMS channels.


Let us give a proof of the first GKS inequality. For the proof of the second
inequality we refer the reader to the literature [93], [94], [95]. We consider the
Gibbs measure given by


µ(x) =
1


Z


∑
x


∏
a


elax∂a ,


where all the notations adhere to the previous ones, la ≥ 0, and the total
number of spins is n.
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We have 〈xA〉 ≥ 0 if and only if Z〈xA〉 ≥ 0. Using the identity elax∂a =
cosh la(1 + x∂a tanh la), we immediately obtain


Z〈xA〉 =
∏
a


cosh la
∑
x


x∂a
∏
a


(1 + x∂ata)


=
∑
x


∑
a1,a2,...,ak


x∂ax∂a1x∂a2 · · ·x∂akta1ta2 · · · tak ,


where the sum over a1, a2, . . . , ak is over all possible subsets of interactions and
t = tanh l. Since the interaction terms la are independent of the spin values,
we have


Z〈xA〉 =
∑


a1,a2,...,ak


ta1ta2 · · · tak
∑
x


x∂ax∂a1x∂a2 · · ·x∂ak .


Now we obtain the first GKS inequality by realizing that all the ta ≥ 0 and
that for any set a1, a2, . . . , ak,


∑
x x∂ax∂a1x∂a2 · · ·x∂ak ∈ {0, 2n}.


2.A.2 Nishimori Identities


The symmetry of the channel mentioned in Fact 1.1 implies remarkable Nishi-
mori identities. Consider transmission of a fixed linear code (need not be
low-density) over a general BMS channel. Consider the random Gibbs mea-
sure, under the assumption of the all-one codeword transmission, given by
(2.11). Then for any collection of subsets A1, A2, . . . , Am of the spins and any
positive integers b1, b2, . . . , bm we have the Nishimori identity


El


(
〈xA1〉b1〈xA2〉b2 · · · 〈xAm〉bm


)
= El


(
〈xb1A1


xb2A2
· · ·xbmAm〉〈xA1〉b1〈xA2〉b2 · · · 〈xAm〉bm


)
.


Note that x
bj
Aj


= 1 if bj is even and x
bj
Aj


= xAj if bj is odd. We do not provide


the proof of this identity here, but refer the reader to [84].
An immediate consequence of the Nishimori identity is that


El


[
〈xA〉


]
= El


[
〈xA〉2


]
≥ 0.


We have the following lemma for the BEC which is crucial for providing an
expression for the second derivative of the conditional entropy in terms of spin-
spin correlation and also for simplifying the remainder term of the interpolation
method as shown in Chapter 3.


Lemma 2.5. For transmission over the BEC using a fixed linear code we have
that for every noise realization, 〈xA〉 either equals zero or one, where A is any
set of code-bits.


Proof. From the Nishimori identity, we have


El


[
〈xA〉


]
= El


[
〈xA〉2


]
. (2.73)







2.A. Useful Tools and The Interpolation Method 73


Re-writing the above we get∑
l∈{0,+∞}n


P(l)
(
〈xA〉(1− 〈xA〉)


)
= 0, (2.74)


where P(l) denotes the probability of the noise realization l, which belongs
to {0,+∞}n. Since we are transmitting over the BEC we use the first GKS
inequality to get


〈xA〉 ≥ 0, (2.75)


which implies that
(
〈xA〉(1 − 〈xA〉)


)
≥ 0. As a result from (2.74) we get, for


every noise realization,


〈xA〉(1− 〈xA〉) = 0, (2.76)


and hence the lemma.


2.A.3 Gaussian Integration


Consider transmission over a BIAWGNC(ε) using any fixed linear code of
blocklength n. Recall that cL(l) denotes the distribution of the LLR l. Let
f(l, x) be any function of the code-bits and noise realization vector l, such


that cL(li)f(l, x) = 0 and dcL(li)
dli


f(l, x) = 0 for li = +∞ or li = −∞. For
example, f(l, x) = lnZ (Z is the partition function for the Gibbs measure
introduced in 2.11 and is bounded by n) or f(l, x) = 〈xi〉 (bounded by 1),
then we have


Fact 2.1 (Gaussian Intergration by Parts).


d


dε
El[f(l, x)] = −4ε−3


n∑
i=1


El


[( ∂
∂li


+
∂2


∂l2i


)
f(l, x)


]
. (2.77)


Proof. For convenience assume that each code-bit is transmitted through in-
dependent channels with noise variance ε2i (finally we will put εi = ε). From
the smoothness of the channel we get


d


dε
El[f(l, x)] =


n∑
i=1


El\li


∫
dli
∂cL(li)


∂εi
f(l, x).


For the BIAWGNC, recall that we have, for all i,


cL(li) =
1√


8πε−2
i


e
−


(li−2ε−2
i


)2


8ε−2
i .


It is easy to check that


∂cL(li)


∂εi
= −4ε−3


i


(
− ∂cL(li)


∂li
+
∂2cL(li)


∂l2i


)
.
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Thus we have


n∑
i=1


El\li


∫
dli
∂cL(li)


∂εi
f(l, x) = −4ε−3


n∑
i=1


El\li


∫
dli


(
− d


dli
+
d2


dl2i


)
cL(li)f(l, x).


Note that in the above formula we have used total derivatives instead of partial
derivatives, because all LLR are independent of each other. Using integration
by parts we have∫


dli
dcL(li)


dli
f(l, x) = cL(li)f(l, x)


∣∣∣li=+∞


li=−∞
−
∫
dlicL(li)


df(l, x)


dli


= −
∫
dlicL(li)


df(l, x)


dli
.


Similarly, using integration by parts twice we obtain∫
dli
d2cL(li)


dl2i
f(l, x) =


dcL(li)


dli
f(l, x)


∣∣∣li=+∞


li=−∞
−
∫
dli
dcL(li)


dli


df(l, x)


dli


=


∫
dlicL(li)


d2f(l, x)


dl2i
.


Substituting above we get the lemma.


2.A.4 Interpolation Method for the Poisson-LDPC
ensemble


In this section we demonstrate the interpolation method, in our notation, in
the context of Poisson-LDPC code ensemble and transmission over any general
BMS channel.


The interpolation method for the more complicated Multi-Poisson ensemble
will not be shown here, but the basic idea remains the same. Nevertheless, we
will give a little explanation about it a bit later. This will also shed some light
on the complicated overlap parameters (see (2.49)).


Consider the interpolated partition function for the Poisson-LDPC (n, (1−
R)s, P (x))


Z(s) =
∑
x


ms∏
a=1


(1 + x∂a)


2


n∏
i=1


e(
li
2


+
Pei
j=1


uj
2


)xi , (2.78)


where recall that tanh
uj
2


=
∏k−1


t=1 tanh
vjt
2


and vjt are i.i.d. random variables
distributed as dV and ms is the total number of check nodes which is a Poisson
random variable with mean n(1−R)s and ei is a Poisson random variable with
mean P ′(1)(1 − R)(1 − s) for every i. We emphasize that the randomness in
the interpolated ensemble arises in the number of check nodes ms present and
in the number of “auxiliary” observations ei, added to each variable node.
We denote the expectation with respect to this randomness by Es. From
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(1.24) we can write Es[hn(s)] = 1
n
Es,l[lnZ(s)]− El[


l
2
], where hn(s) is the per-


bit conditional entropy of the interpolated ensemble. Using the fundamental
theorem of calculus we immediately obtain


EP [hn] = E[hn(s = 0)] +


∫ 1


s=0


ds
dEs[hn[s]]


ds
, (2.79)


where EP denotes the expectation with respect to the original Poisson-LDPC
ensemble corresponding to s = 1. Since the term El[


l
2
] is independent of s we


get


dEs[hn(s)]


ds
=


1


n


dEs,l[lnZ(s)]


ds
.


The dependence on s occurs only in the mean of the Poisson random variables,
ms and ei. For any function f(X) of a Poisson random variable X, with mean
ν, we have the following remarkable identity


dE[f(X)]


dν
= E[f(X + 1)]− E[f(X)], (2.80)


Using the above, we get


1


n


dEs,l[lnZ(s)]


ds
= (1− R)


(
Es,l[lnZ(ms + 1)]− Es,l[lnZ(ms)]


)
− P ′(1)(1− R)


n


n∑
i=1


(
Es,l[lnZ(ei + 1)]− Es,l[lnZ(ei)]


)
.


(2.81)


where Z(ms + 1) corresponds to the partition function obtained from adding,
u.a.r., one more check node to the partition function, Z(ms) (we abuse the
notation to denote Z(s) in (2.78) by Z(ms)), with ms number of check nodes
already present. This extra check node is called as “dummy” check node in
[29]. Similarly, Z(ei+1) corresponds to the partition function got by adding an
extra “auxiliary” observation to the variable node i in the partition function
Z(ei). Since Z(ms + 1) contains an extra check node, it is not hard to see that


Z(ms + 1) =
∑
x


(1 + xi1xi2 · · · xik)
2


µs(x)Z(ms)


= Z(ms)


〈
1 + xi1xi2 · · ·xik


2


〉
s


,


where (1 + xi1xi2 · · ·xik)/2 is the parity-check function associated to the extra
check node. Since the extra check node is added u.a.r. to any k variable nodes







76 Lower Bounds on Conditional Entropy: The Interpolation Method


we have,


Es,l[ lnZ(ms + 1)]− Es,l[lnZ(ms)] = Es,l


[
ln
(Z(ms + 1)


Z(ms)


)]
=
∑
k


Pk
1


nk


∑
i1,i2,...,ik


E
[


ln


(
1 + 〈xi1xi2 · · · xik〉s


2


)]
=
∑
k


PkE
[∑
p=1


(−1)p+1


p


1


nk


∑
i1,i2,...,ik


(
〈xi1xi2 · · ·xik〉s


)p]
− ln 2, (2.82)


where the variable nodes xi1 , . . . , xik represent the extra check node which is
attached uniformly to any k variable nodes (of the system represented by the
partition function Z(ms)). To get the second equality we expand the logarithm
present in the previous equality. Also for convenience we abuse the notation
to denote E to be the average with respect to any randomness. As usual 〈−〉s
denotes the average w.r.t. to Z(ms). Similarly,


1


n


∑
i


Es,l[lnZ(ei + 1)]− Es,l[lnZ(ei)] =
1


n


∑
i


E
[


ln
(
〈exi


ui
2 〉s
)]


=
1


n


∑
i


(
E
[


ln
(


1 + tanh
ui
2
〈xi〉s


)]
+ E


[
ln cosh


ui
2


])
=


1


n


∑
i


E
(∑


p=1


(−1)p+1


p


(
tanh


ui
2


)p
〈xi〉ps


)
+ E


[
ln cosh


u


2


]
,


= E
[∑
p=1


(−1)p+1


p


k−1∏
j=1


(
tanh


vj
2


)p( 1


n


∑
i


〈xi〉ps
)]


+ E
[


ln cosh
u


2


]
,


where we use exi
ui
2 = cosh ui


2
(1 + xi tanh ui


2
) to get the second equality and


we replaced tanh ui
2


with
∏k−1


j=1 tanh
vj
2


to obtain the last equality. Since the
random variable ui does not appear in 〈−〉s (recall that ui was the extra “auxil-
iary” observation added independently to the original partition function), and
since vj are i.i.d., we find that the last expression above is equal to
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From the definition of the overlap parameters in (2.45) we have
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Using ρk = kPk/P
′(1) and combining all the above we get


1


n


dEs,l[lnZ(s)]


ds
= (1− R)


(∑
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[


ln cosh
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. (2.83)


Adding and subtracting the term (1−R)
∑


p=1
(−1)p+1
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∑
k Pk(k−1)


(
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which can be equivalently written as (1−R)
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)
we get that the derivative above is equal to
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(2.84)


We compute the conditional entropy at s = 0 as follows,
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, (2.85)


where to obtain the last equality we use that uj are i.i.d. Combining (2.79),
(2.84) and (2.85) we obtain the sum-rule of Montanari.


To get the remainder in the required for as in (2.44) we do the following.
First we use the Nishimori identities to find


E〈(Q2p)
k〉s =


1


nk


∑
i1,i2,...,ik


E〈xi1xi2 · · ·xik〉2ps


=
1


nk


∑
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E〈xi1xi2 · · ·xik〉2p−1
s = E〈(Q2p−1)k〉s,


and E[tanh2p v
2
] = E[tanh2p−1 v


2
]. This allows us then to combine odd and


even terms in the sum over p in (2.83) and we get the required form for the
remainder.
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For the interpolated Multi-Poisson ensemble, at some t∗, when we take the
derivative w.r.t. s, we again have term corresponding to an extra check node
and an extra auxiliary observation (see (2.81)). But here, the extra check node
is present between the variable nodes i1, . . . , ik with probability governed by
the free sockets at that time, i.e., by wi1(t∗) · · ·wik(t∗). The presence of this
“dummy” check node changes the distribution of wi(t) for all t > t∗ and hence
we cannot combine the two partition functions as easily as we did in (2.82).
To overcome this, the random variables Xi are introduced which “tilt” the old
distribution of wi(t) to the new ones in order to facilitate the combining of the
partition functions in the analysis. As a result we have a more complicated
overlap parameter.


2.B Proof of Identities (2.15), (2.16), (2.17).


We prove the identities (2.15), (2.16), (2.17). By definition
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2
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Thus
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2
xi〉
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2
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,


and plugging the identity
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2
xi = e−
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2


1− xiti
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,


in the brackets immediately leads to (2.15). For the second and third identities
we proceed similarly. Namely,


〈xi〉∼ij =
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〈xixje−


li
2
xie−


lj
2
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Plugging
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2
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2
xj = e


li+lj
2


1− xiti − xjtj + xixjtitj
1− ti − tj + titj


,


in the brackets, leads immediately to (2.16) and (2.17).
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2.C High Noise Expansion


We indicate the main steps of the derivation of the full high noise expansion
for


∂2


∂εi∂εj
H(X | Y ) = δijS1 + (1− δij)S2.


The expansion for S1 is given by (2.86) and that for S2 by (2.91). They are
derived in a form that is suitable to prove Lemma 2.4 of Section 2.6 (see
Appendix 2.D). For this later proof we need to extract a square correlation at
each order as in (2.91). This is achieved here through the use of appropriate
remarkable Nishimori identities, and in order to use these we take the extrinsic
forms (2.34) and (2.38) of S1 and S2.


Let us start with S1 which is simple. Using the power series expansion of
ln(1 + x) we have


ln


(
1 + ti〈xi〉∼i


1 + ti


)
=


+∞∑
p=1


(−1)p+1


p
tp1(〈xi〉p∼i − 1).


This yields an infinite series for S1 which we will now simplify. Because of the
Nishimori identities


E[t2p−1
i ] = E[t2pi ], Et∼i [〈xi〉2p−1


∼i ] = Et∼i [〈x∼i〉2p1 ],


we can combine odd and even terms and using (2.1) we get
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)
. (2.86)


This series is absolutely convergent as long as


+∞∑
p=1


m
(2p)
2


2p(2p− 1)
< +∞,


which is true for channels satisfying H.
In the rest of the appendix we deal with S2 which is considerably more


complicated. However the general idea is the same as above. First we use the
expansion of ln(1 + x) to get
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(
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where
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II =
∞∑
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(−1)p+1


p
tpi 〈xi〉


p
∼ij, III =


∞∑
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p
tpj〈xj〉


p
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We expand the multinomial in I∑
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ka!kb!kc!
tka+kc
i tkb+kcj 〈xi〉ka∼ij〈xj〉


kb
∼ij〈xixj〉


kc
∼ij, (2.88)


and subtract the terms II and III. Then only terms that have powers of the
form tki t


l
j with both k, l ≥ 1 will survive in (2.87). Moreover because of the


identities E[t2k−1
i ] = E[t2ki ] and E[t2l−1


j ] = E[t2lj ] we find for S2
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)
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with (we abuse notation by not indicating the (kl) and (ij) dependence in the
T and T ′ factors)


Tκλ =
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]
,


and
T ′κλ = exchange k, l and κ, λ and i, j.


Let us show the derivation of one of the terms T11. This term corresponds
to all the terms in the multinomial expansion (2.88) which contribute to the
coefficient of t2k−1


i t2j−1
j . Clearly p < 2k − 1 cannot contribute to t2k−1


i t2l−1
j .


Thus we consider only p ≥ 2k − 1. We also have


ka + kc = 2k − 1, kb + kc = 2l − 1, ka + kb + kc = p.


Solving these constraints, we get ka = p − 2l + 1, kb = p − 2k + 1 and kc =
2k + 2l − 2− p and since we must have kc ≥ 0, we get p ≤ 2k + 2l − 2. Thus
the term T11 equals
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We obtain the other terms in a similar manner. Note that the T ′ terms corre-
spond to k < l are got simply by exchanging all the labels in T terms.


The next simplification step occurs by using the Nishimori identity for the
expectation in the above formula
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and using xi ∈ {±1}, to “linearize” the terms (xixj)
m1xm2


i xm3
j . As κ, λ vary


in {0, 1}, p varies from 2k − 1 to 2k + 2l. For each p, we will simplify the
contributions from all Tκλ using the Nishimori identities. For p = 2k − 1,
T10 + T11 contributes to (T01, T00 do not contribute)
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Now consider any 2k − 1 < p ≤ 2k + 2l − 2. Such p has contribution from
all the terms, T00, T01, T10, T11. Thus applying Nishimori identities we get the
contribution to be∑
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The last term in the above sum corresponds to (κ, λ) = (0, 0). In above, for-
getting the factor (−1)p+1/p, the first term is got from the second by replacing
p with p+ 1. Hence for two consecutive values of say p′, p′ + 1 we can add up
the p′ + 1 contribution of p′ and p′ + 1 contribution of p′ + 1 to finally get


∑
κ,λ


Tκ,λ =
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(−1)p+1
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]
.


We have skipped the derivation of the contribution for p = 2k + 2l − 1 and
p = 2k+ 2l from T01, T10, T00, because it is done on very similar lines as above.
A similar formula obtained by exchanging k, l and i, j holds for


∑
κλ T


′
κλ. Re-


placing these sums in (2.89) yields a high noise expansion for S2.
However this is not yet practical for us because we need to extract a general


square correlation factor
(
〈xixj〉∼ij − 〈xi〉∼ij〈xj〉∼ij


)2
. The fact that this is


possible is a “miracle” that comes out of the Nishimori identities that were
used. Setting
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and using the change of variables m = p− 2k+ 1, the last expression becomes
(for k ≥ l)
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One can check that this is equal to
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,


by expanding (X − Y )2l first and then differentiating. On the other hand one
can use the Leibnitz product rule
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to find that the last expectation above is equal to
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We define A011 = 1
2
. We proceed similarly for the terms with k < l. Finally


one finds
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identical expression with k, l and i, j exchanged. (2.90)


Let us now briefly justify that the series is absolutely convergent for chan-
nels satisfying H. We note the following facts: the absolute value of the spin
averages is less than 1 and the value of the correlation in absolute terms is less
than 2, Arlk ≤


(
2l−2
r


)
22k−3 and 22k−232l−2 ≤ (5


2
)2k+2l−4 for k ≥ l (together with


the version with k, l exchanged). It easily follows that


|S2| ≤
8


625
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1 m
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(2.91)


Thus the series for S2 is absolutely convergent as long as


+∞∑
p=1


(5


2


)2p|m(2p)
1 | < +∞.


Note that we have not attempted to optimize the above estimates.


2.D Proof of Lemma 2.4


We prove Lemma 2.4 for highly noisy general BMS channels. For this we use
the high noise expansion derived in Appendix 2.C. There it was derived for
a general linear code ensemble, and this is also the framework of the proof
below. Of course the result applies to the interpolating ensemble of Lemma
2.4 because the interpolating random variable Ua does not depend apriori on
the noise value ε and depends only on the distribution of independent random
variable V . Note that the the final constants F (ε) and G(ε) do not depend on
the code ensemble but only on the channel.


Consider equation (2.7) for d2


dε2
EC,t[hn]. By the same estimates than those


for S1 in Appendix 2.C, the first term on the right hand side is certainly greater
than


−
+∞∑
p=1


|m(2p)
2 |


2p(2p− 1)
= −A.
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To get a lower bound for the second term we consider the series expansion given
by that for S2 in (2.91). In that series we keep the first term corresponding to
k = l = 1, namely


1


2
(m


(2)
1 )2


∑
j 6=1


EC,t∼1j


[(
〈x1xj〉∼1j − 〈x1〉∼1j〈xj〉∼1j


)2]
= B,


and lower bound the rest of the series (k, l) 6= (1, 1) by using estimates of
Appendix 2.C. More precisely, this part is lower bounded by
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= −C.


Putting these three estimates together we get


d2


dε2
EC,t[hn] ≥ −A+B − C. (2.92)


As long as the noise level is high enough so that (see H)


+∞∑
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√
2− 1)


(5


2
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1 |,


the inequality (2.92) implies∑
j 6=1


EC,t∼1j
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〈x1xj〉∼1j − 〈x1〉∼1j〈xj〉∼1j


)2]
≤ F̃ (ε) + G̃(ε)


d2


dε2
EC,t[hn], (2.93)


for two noise dependent positive finite constants F̃ (ε), G̃(ε).
The final step of the proof consists in passing from the extrinsic average


〈−〉∼1j in the correlation to the ordinary one 〈−〉1j. This is achieved as follows.
From the formulas (2.16) and (2.17) we deduce that


〈xjxi〉 − 〈xj〉〈xi〉 =
(
〈xjxi〉∼ij − 〈xj〉∼ij〈xi〉∼ij


)
Rij,


with


Rij =


(
1− 〈xi〉ti − 〈xj〉tj + 〈xixj〉titj


)2


(1− t2i )(1− t2j)
≤ 4


(1− t2i )(1− t2j)
,


a function that depends on all log-likelihood variables.
Thus we have


(〈xjxi〉 − 〈xj〉〈xi〉)2 =
(
〈xjxi〉∼ij − 〈xj〉∼ij〈xi〉∼ij


)2
R2
ij


≤
(
〈xjxi〉∼ij − 〈xj〉∼ij〈xi〉∼ij


)2 16


(1− t2i )2(1− t2j)2
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Taking now the expectation EC,t we get


EC,t
[(
〈xjxi〉 − 〈xj〉〈xi〉


)2]
≤ EC,t∼ij


[(
〈xjxi〉∼ij − 〈xj〉∼ij〈xi〉∼ij


)2]
× Eti,tj


[
16


(1− t2i )2(1− t2j)2


]
.


Since ti, tj are independent we get


Eti,tj


[
16


(1− t2i )2(1− t2j)2


]
= 16


(
E
[


1


(1− t2)2


])2


= 16


(
E
[∑
p≥0


(p+ 1)t2p
])2


= 16


([∑
p≥0


(p+ 1)m
(2p)
0


])2


, (2.94)


which converges for highly noisy channels satisfying H. The result of the
lemma follows by combining (2.93) and (2.94). The constants F (ε) and G(ε)
are equal to F̃ (ε) and G̃(ε) divided by the expression on the right hand side
of the last inequality.


2.E Boundedness of GEXIT


We prove the boundedness and positivity of d
dε


Es[hn,γ(t∗, s)] which is needed
in the proof of Lemma 2.2.


Lemma 2.6. For the BEC and BIAWGNC with any noise level, and any BMS
satisfying H, there exists a constant k(ε) independent of n, γ, t∗ and s such
that


0 ≤ d


dε
Es[hn,γ(t∗, s)] ≤ k(ε). (2.95)


For the BEC we can take k(ε) = ln 2
ε


and for the BIAWGNC k(ε) = 2
ε−3 . For


general BMS channels satisfying H the constant remains bounded as a function
of ε (i.e. in the high noise regime).


Here we have stated the lemma for the Multi-Poisson interpolating en-
semble which is our specific need. However as the proof below shows it is
independent of the specific code ensemble and the bound depends only on the
channel.


Proof. We will use the GEXIT formulas of Section 2.3. Since the lemma
applies for any linear code it also applies for the interpolating ensemble of
interest here. In the case of the BEC and BIAWGNC we have (see (2.28),
(2.31)


d


dε
Es[hn,γ(t∗, s)] =


ln 2


ε
(1− Es[〈x1〉s]),
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and


d


dε
Es[hn,γ(t∗, s)] =


2


ε3
(1− Es[〈x1〉s]).


The bounds of the lemma follow immediately since 0 ≤ Es[〈x1〉s ≤ 1 (Nishimori
identity implies Es[〈x1〉s] = Es[〈x1〉2s]).


For highly noisy BMS channels we proceed by expansions. For this reason
we have to use the “extrinsic form” of the GEXIT formula (analogous to (2.34))


d


dε
Es[hn,γ(t∗, s)] =


∫ +1


−1


dt1
∂cD(t1)


∂ε
Es,∼t1


[
ln


(
1 + t1〈x1〉s,∼1


1 + t1


)]
.


Expanding the logarithm and using Nishimori identities (as in the expansion
of S1 in Appendix 2.B we obtain


d


dε
Es[hn,γ(t∗, s)] =


∞∑
p=1


m
(2p)
1


2p(2p− 1)
Es,∼1[〈x1〉2ps,∼1 − 1].


The positivity follows from m
(2p)
1 ≤ 0 (see [23], Section VI in [91]) and −1 ≤


x1 ≤ 1. The upper bound (and absolute convergence) follow from condition
H. In particular we get


k(ε) =
+∞∑
k=1


|m(2p)
1 |


2p(2p− 1)
,


which is independent of n, γ, t∗ and s.







Binary Erasure Channel:
Second Interpolation
Method 3
3.1 Introduction


In the previous chapter we showed, using the interpolation method, that the
replica solution is a lower bound on the average per-bit conditional entropy
EC[hn]. Let us call this application of the interpolation method the first inter-
polation method.


The natural next step is to prove the equality of the replica solution by
showing a matching upper bound. For the case of transmission over the BEC,
this equality has been rigorously established for a class of LDPC code ensem-
bles, which includes regular LDPC code ensembles (Λ(x) = xl, P (x) = xr)
[23], [24]. There, the methods used are combinatorial and, as such, do not
extend to the case of transmission over general BMS channels.


In this chapter we consider transmission over the BEC using the Poisson-
LDPC (LDGM) code ensemble (c.f. Section 2.5). We use the second interpo-
lation method, developed by Guerra and Toninelli [31], [30] in the context of
the SK model [71], [87] to prove that the replica solution is correct.


In the case of the SK model, the first interpolation shows that the replica
solution1 is a lower bound on the free energy. In [31], Guerra and Toninelli
use the second interpolation to demonstrate that the replica solution is also
an upper bound on the free energy. They are able to show this in the high-
temperature regime. 2


1More precisely, we refer here to the replica symmetric solution.
2In fact, for the SK model, the simple replica symmetric solution (as is the case for the


coding problem) is not correct for all temperatures. A long standing open question was
whether the Parisi formula, which corresponds to full replica symmetric breaking solution,
is the correct solution [71]. Recently, Talagrand [75] used the second interpolation method
as a crucial ingredient to prove the celebrated Parisi formula for the SK model.


87
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In the case of LDPC ensembles the second interpolation has not yet been
developed. This is in essence what we do in this chapter for the simplest case
of Poisson-LDPC ensembles and the BEC. Part of the mathematical analysis
involved in the second interpolation is reminiscent of the one developed recently
for the (simpler) case of a “gauge symmetric p-spin model” [96].


We believe it should be possible to extend these results to any LDPC
code ensemble using the multi-Poisson ensemble approximation of Montanari
[29]. Currently, we are unable to extend our proof to case of transmission
over general channels. However, since our techniques are non-combinatorial
in nature, we hope that it will be possible to extend our proof to the general
case.


For the ease of exposition we restrict ourselves to the Poisson-LDPC code
ensemble.


3.2 Organization of the Chapter


In the next section we state our main result concerning the equality of the
replica solution for the case of transmission over the BEC using Poisson-LDPC
code ensemble. We also describe our proof strategy there. In Section 3.4 we
simplify the statistical physics formulation to the case of transmission over the
BEC. We then show that the remainder term in the first interpolation simplifies
to the evaluation of the “magnetization”. Before estimating the remainder,
we discuss the BP decoder for the “interpolated codes”. In Section 3.5, we
apply the second interpolation method of Guerra and Toninelli to provide an
upper bound on the remainder of the first interpolation. As a consequence,
we will infer the exactness of the replica solution. We conclude the chapter in
Section 3.6 by discussing the case of transmission over general channels and
the relevance of the magnetization.


3.3 Main Result and Strategy of Proof


Consider communication through a BEC with transition probability pY |X(y|x)
and erasure probability given by ε. We briefly recall the Poisson-LDPC code
ensemble here, see Section 2.5 for details. The design rate of the code ensemble
is equal to R. The number of check nodes is a Poisson number with mean
n(1 − R). The check node degree distribution is given by P (x). Each check
node of degree k is attached to k variable nodes u.a.r. As the block-length goes
to infinity, one can show that the variable node degree distribution converges
to a Poisson distribution. More precisely, the variable node degree distribution
is given by,


Λ(x) = eγ(x−1).


For ease of notation we use γ = P ′(1)(1− R) to denote the average left degree.
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For Poisson-LDPC code ensemble it can be shown that


λ(x) = Λ(x).


In words, the edge and variable node degree distribution are the same. In this
chapter, we will denote the Poisson-LDPC ensemble by LDPC(n, γ, P ).


Recall that the replica solution consists of optimizing the function
hRS[dV ; γ, P ] over the space of symmetric probability distributions dV (v). For
the case of transmission over the BEC, code-bits are either known perfectly
(LLR = +∞) or are completely erased (LLR = 0). Thus, without loss of
generality, we assume that the dV (v) = pδ0(v) + (1− p)δ∞(v) with 0 ≤ p ≤ 1.
With this, we can simplify the replica solution functional hRS[dV ; γ, P ] to


hRS[p] = ln 2
(


Λ′(1)pρ(1− p) + εΛ(1− ρ(1− p))− Λ′(1)


P ′(1)
(1− P (1− p))


)
.


(3.1)


Since the replica functional is now only a function of one parameter p, we
denote it by hRS[p]. Also, the variational problem (optimization of hRS[p])
can now be explicitly solved. Note that the replica solution given in, (3.1),
was called trial entropy in [24], [23].


Differentiating hRS[p] with respect to p (for a fixed ε) we get


dhRS[p]


dp
= ln 2


(
Λ′(1)ρ(1− p)− Λ′(1)pρ′(1− p) + εΛ′(1− ρ(1− p))ρ′(1− p)


− Λ′(1)
P ′(1− p)
P ′(1)


)


= ln 2
(


Λ′(1)ρ′(1− p)
)(
− p+ ε


Λ′(1− ρ(1− p))
Λ′(1)


)
= ln 2


(
Λ′(1)ρ′(1− p)


)(
− p+ ελ(1− ρ(1− p))


)
. (3.2)


To get the second equality we used ρ(x) = P ′(x)/P ′(1) to cancel out Λ′(1)ρ(1−
p) and Λ′(1)P


′(1−p)
P ′(1)


. We used the relation λ(x) = Λ′(x)/Λ′(1) to obtain the
last equality.


Thus, from (3.2) we deduce that the maximizer of hRS[p] is a solution of
the stationary point equation


p = ελ(1− ρ(1− p)). (3.3)


We denote the unique maximizer of hRS[p] by pRS. We remark that pRS is a
function of ε, but we suppress this dependence to lighten the notation.


The density evolution analysis of the BP decoder leads to the same sta-
tionary point equation (3.3). The equation is solved iteratively starting from
the initial condition p = ε (channel observation) to obtain the BP decoder







90 Binary Erasure Channel: Second Interpolation Method


0 0.2 0.4 0.6 0.8 1


1


ǫ
0 0.2 0.4 0.6 0.8 1


1


ǫ


Figure 3.1: In this figure we demonstrate our result. We plot pRS as a function
of ε for two class of code ensembles. We then mark out in dark, the regime of
noise where our result holds. Left figure: The thin line is the plot of pRS as a
function of ε (obtained from the replica solution) for Poisson-LDPC code with
γ = 3, P (x) = x6. The dark line corresponds to the regime of channel erasure
fractions, where we prove the exactness of the replica solution. Right figure: The
thin line is plot of pRS as a function of ε obtained from the replica solution for
Poisson-LDGM code with γ = 5, P (x) = 0.1x+ 0.9x5. The dark line is the region
of channel erasure fraction where we prove the exactness of the replica solution.


estimate. The average (over the code ensemble) erasure probability of BP de-
coder is the largest fixed-point obtained from this initial condition and we will
call it pBP . Our main result states that, asymptotically, in appropriate noise
regimes, pBP gives the average error probability of the MAP decoder.


In order to state our theorem below we define an auxiliary function


f(z) =
γ


P ′(1)


(
P (z)− zP ′(z)


)
+ (1− pRS)


γ


P ′(1)


(
P ′(z)− P ′(1− pRS)


)
+ pRS ln cosh


[ γ


P ′(1)


(
P ′(z)− P ′(1− pRS)


)]
. (3.4)


Note that the stationary points of f are the solutions of


z = pRS tanh
( γ


P ′(1)
(P ′(z)− P ′(p̄RS))


)
+ p̄RS,


where we use the notation p̄RS to denote 1− pRS. It is clear that at z = p̄RS,
the stationary point equation is satisfied. Hence 1− pRS is a critical point.
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Theorem 3.1 (Exactness of Replica Solution for BEC). Assume communica-
tion using a Poisson-LDPC(n, γ, P ) code ensemble, through a BEC with era-
sure probability ε. Assume that the function f , defined in (3.4), has a unique
maximizer ẑ. Recall that pBP denotes the fixed-point of density evolution equa-
tion (3.3) obtained via BP. Then for all ε, such that (i) pRS = pBP and (ii)
ε ∈ CP,γ = {ε ∈ [0, 1] | ẑ = 1− pRS} we have


lim
n→+∞


EC[hn] = hRS[pRS].


Example 3.1 (Replica Solution for Poisson-LDPC(n, γ = 3, P (x) = x6)).
Consider transmission over the BEC using Poisson-LDPC code ensemble
LDPC(n, γ, P ) with γ = 3 and P (x) = x6. We illustrate our main theorem in
the Figure 3.3. In the figure, the thin line corresponds to pRS as a function
of the channel erasure probability ε. The dark or thick line corresponds to the
regime of noise where we prove that the replica solution is correct.


For the case of Poisson-LDPC codes we have


dhRS[pRS]


dε
= Λ(1− ρ(1− pRS))


= λ(1− ρ(1− pRS))


=
pRS
ε
.


To get the second inequality we use the fact that for a Poisson-LDPC code
ensemble we have Λ(x) = λ(x). As a consequence of the above calculations,
our result also implies that, for the channel erasure fractions depicted by the
thick line in Figure 3.3,


lim
n→+∞


dEC[hn]


dε
=
pRS
ε
.


I.e. the asymptotic average MAP-GEXIT function is given by pRS/ε. From the
various characterizations of the MAP-GEXIT curve for the case of transmis-
sion over the BEC, as shown in [23], we have that the MAP error probability
is given by ε


2
dhn
dε


. Thus, a consequence of the theorem is that (at least over the
range of ε depicted by the dark region) the MAP error probability is given by
pRS (which is computable from the replica formulas).


Remark 3.1. The condition over the range of ε is not optimal and comes from
the second interpolation that we use. In [24] there is also a condition which is
different from ours. In [24], Measson et al. show that the asymptotic average
MAP-GEXIT and BP-GEXIT curve are equal under the condition that the rate
of the residual graph (graph obtained after the termination of BP decoding)
sharply concentrates on the design rate of the residual graph ensemble. In
fact, the trial entropy or the replica solution corresponds to the uncertainty in
determining the transmitted codeword at the end of BP decoding. Thus, it is
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equal to the design rate of the residual graph ensemble (see proof of Theorem
10 in [24]). Both, our result and the result in [24] hold only when pRS = pBP .
It is an open question, how to prove the exactness of the replica solution when
pRS 6= pBP .


3.3.1 Strategy of Proof


We know from the previous chapter that the interpolation method allows us
to write the per-bit conditional entropy as a sum of the replica solution and
a remainder term. We have already proved in the previous chapter that the
remainder (c.f. (2.44)) is non-negative in the limit of large block-length. A
way to prove the equality of the replica solution would be to show that the
remainder term is exactly zero.


To do this we use the second interpolation method of Guerra and Toninelli.
In the case of SK model, the remainder term of the first interpolation method
consists of only one term, Q2 (c.f. (2.45)). The second interpolation method of
Guerra and Toninelli is the following. They first “couple” the quadratic term,
Q2, with the partition function of the original system, to create a new partition
function. Then using the interpolation method on this new partition function
they prove that the remainder term is less than or equal to zero. Coupled with
the non-negativity of the remainder term, they conclude that it is exactly zero
in the limit n→ +∞. This immediately provides the exactness of the replica
solution. We will provide in Section 3.5.1 an intuitive explanation of the second
interpolation.


In the case of LDPC spin-glass, the remainder term is much more compli-
cated. More precisely, the remainder is a sum of infinite terms, each containing
an overlap parameter (see (2.44) in Section 2.5). As a result, it would be hard
to appropriately “couple the remainder” with the partition function, as done
by Guerra and Toninelli. Fortunately, as we will see in the next section, for the
special case of transmission over the BEC, the remainder simplifies drastically.
Thus, we are able to proceed along such methods.


3.4 Statistical Mechanical Formulation and First
Interpolation


In this section we recall the statistical physics formulation. We also special-
ize the formulation to the case of the BEC. We then apply the interpolation
method to compute the per-bit conditional entropy. We will then see that the
result of the interpolation method simplifies for the case of the BEC.


As usual the Tanner graph has variable nodes, denoted by i that are con-
nected to check nodes denoted by a. We will work in terms of the LLR l (see
Definition 1.3) and their distribution cL(l) under the assumption of the all-one
codeword transmission.
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In the case of the BEC, the LLR value can be +∞ with positive probability.
As a result, to have a well defined Gibbs (MAP) measure (see Section 1.7),
pX|Y (x|y), we re-write it as,


pX|Y (x|y) =
1


Z


∏
a


1


2
(1 + x∂a)


n∏
i=1


e
li
2
xi


2 cosh li
2


, µ(x).


Recall that x∂c =
∏


i∈c xi and Z is the normalization factor or partition func-
tion given by


Z ,
∑
x


∏
a


1


2
(1 + x∂a)


n∏
i=1


e
li
2
xi


2 cosh li
2


.


Also, recall that the expectations with respect to the Gibbs measure for a
fixed graph and a fixed channel output are denoted by the bracket 〈−〉. More
precisely for any A ⊂ {1, ..., n}, 〈xA〉 =


∑
x xAµ(x) where xA =


∏
i∈A xi. As


usual, expectations with respect to the code ensemble and the channel outputs
will be denoted by EC,l[−]. Note that for the BEC, we have a positive mass
at +∞ in the distribution cL(l). Note that this re-definition does not affect
the Gibbs measure, µ(x). Since the Gibbs distribution is unchanged, all the
averages also remain unaffected.


With this re-formulation, a little algebra, on the same lines as (1.24), gives
the following formula for the per-bit conditional entropy


EC[hn] =
1


n
EC,l[lnZ] + ε ln 2.


Since the free energy, n−1EC,l[lnZ], differs from the average conditional entropy
only by a constant, we will focus on the evaluation of the free energy.


3.4.1 First Interpolation


We briefly recall the interpolation method here (see Section 2.5 and Ap-
pendix 2.A.4 for details). Recall that the main idea behind the interpola-
tion technique is to recursively remove the check node constraints from the
code. Then to compensate the increase in rate, extra “observations”, given by
Ua = 2 tanh−1


[∏k−1
i=1 tanh Vi


2


]
, are added to each variable node i. Note that


here k is an random number whose distribution is given by P (x). Also, recall
that V is a random variable with a symmetric density dV (v). In the case of
BEC we have dV (v) = pδ0(v) + (1− p)δ∞(v). Here, 0 ≤ p ≤ 1 is an arbitrary
parameter. Notice that the equation for Ua mimics a check node message in
the belief propagation decoding algorithm.


Let t ∈ [0, 1] be an interpolating parameter and consider the Tanner graphs
Ct from the ensemble LDPC(n, γt, P ). Thus, at “time” t, the number of check
nodes is a Poisson r.v. with mean nγt. As said before, the loss of check nodes is
compensated by “extra observations”. Variable nodes i receive ei i.i.d. copies
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{U i
a}, a = 1, ..., ei of the r.v. Ua. Here ei are i.i.d. copies of a random Poisson


number with mean nγ(1− t). The interpolating Gibbs measure is then given
by,


µt(x) =
1


Z(t)


∏
a∈Ct


1


2
(1 + x∂a)


n∏
i=1


e(
li
2


+
Pei
a=1


uia
2


)xi


2 cosh li
2


∏ei
a=1 2 cosh uia


2


where Ct denotes the code at “time” t. These will be also called as “interpo-
lated codes” in the sequel. Expectations with respect to this measure will be
denoted by 〈−〉t. The average free energy, corresponding to the interpolated
code at time t is given by


αn(t) =
1


n
ECt,l,{uia}[lnZ(t)].


At t = 1 one recovers the original free energy


EC[hn]− ε ln 2 = αn(1) =
1


n
EC,l[lnZ].


While at t = 0, we have a simple product measure which is tailored to yield
hRS[p].


In order to lighten the formulas, from now on we consider the right-regular
case P (x) = xr. It is straightforward to extend the arguments to general
polynomials. Also, we use the simplified notation ECt,l,{uia} = Et and p̄ = 1−p.


From [29] and as shown in the Appendix 2.A.4, we have the following
sum-rule,


αn(1) = hRS[p] +


∫ 1


0


dtR(t),


R(t) =
γ


r


∑
l≥1


(−1)l+1


l
Et


[
〈R(p̄, Ql)〉l,t


]
. (3.5)


Recall that Ql = n−1
∑


i x
1
ix


2
i · · · xli are the overlap parameters and 〈−〉l,t is


the replicated Gibbs average (c.f. (2.45) and (2.46)). Also, recall that the
polynomial R(a, b) is equal to (r − 1)ar − rar−1b+ br.


For the case of BEC, there are two major simplifications that occur for the
remainder term R(t). Firstly, it was shown in the Section 2.6 in the Chapter
2, that for almost every ε,


R(t) =
γ


r


∑
l≥1


(−1)l+1


l
Et


[
R(p̄, 〈Ql〉l,t)


]
+ on(1). (3.6)


We stress that the Gibbs bracket 〈−〉l,t is now present inside the polynomial
rather than outside as in (3.5). Furthermore, when transmitting over the BEC,
we receive a bit either perfectly or it is erased. Thus, we have
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Lemma 3.1. For the BEC the random variables 〈xi〉t take values 0 or 1.


Proof. The proof for the interpolated code ensemble at any “time” t, follows
on the same lines as the proof of Lemma 2.5 in the Appendix 2.A.2 in Chapter
2.


The lemma implies that


〈Ql〉l,t =
1


n


n∑
i=1


〈
x


(1)
i x


(2)
i · · ·x


(l)
i


〉
l,t


=
1


n


n∑
i=1


〈xi〉lt =
1


n


n∑
i=1


〈xi〉t = 〈m〉t. (3.7)


Here m = 1
n


∑n
i=1 xi is called as the “magnetization”. From (3.7) we see that


the remainder simplifies to


γ


r


∑
l≥1


(−1)l+1


l
Et


[
R(p̄, 〈Ql〉l,t)


]
=
γ


r


∑
l≥1


(−1)l+1


l
Et


[
R(p̄, 〈m〉t)


]
=
γ


r
Et


[
R(p̄, 〈m〉t)


](∑
l≥1


(−1)l+1


l


)
= (ln 2)


γ


r
Et


[
R(p̄, 〈m〉t)


]
.


Thus, the sum-rule simplifies to


αn(1) = hRS[p] + ln 2
γ


r


∫ 1


0


dtEt


[
R(p̄, 〈m〉t)


]
+ on(1), (3.8)


By abuse of notation we will also denote the remainder term γ
r
Et


[
R(p̄, 〈m〉t)


]
also by R(t). Above we replaced 1− R by γ


r
. Note that the polynomial R(a, b)


is positive for all a ≥ 0, b ≥ 0 and for all r. Since 〈m〉t ≥ 0 (because of the first
GKS inequality, c.f. Appendix 2.A.1), we have that the remainder is positive.
As a consequence we re-derive the lower bound


EC[hn] ≥ hRS[pRS] + on(1). (3.9)


The simplification of the remainder term gives us a handle on the computations
we will do later. It also shows how the magnetization enters the interpolation
method analysis. We saw in Chapter 2, the MAP-GEXIT function, in the case
of transmission over general channels, can be written in terms of the average
(over the Gibbs measure) magnetization. Moreover, for the case of BEC, it
can be shown that the average (over the Gibbs measure and noise realizations)
magnetization is proportional to the bit-MAP error rate. We will discuss more
about the magnetization in the concluding section of this chapter.


Before we prove the exactness of the replica solution, we digress a bit
and discuss properties of the BP decoding of the interpolated codes. This
will provide us with important technical lemmas that will help us control the
remainder term R(t).
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3.4.2 Belief Propagation for the Interpolated Codes


The aim of this section is to study the BP decoder for the interpolated codes.
The interpolating system at time t can be thought of as a communication
system, where codewords from Ct ∈ LDPC(n, γt, P ) are sent via the BEC.
The receiver also collects “extra observations” U , distributed as dU(u) =


(
1−


ρ(p̄)
)
δ0(u) + ρ(p̄)δ∞(u), where 0 < p < 1 is a free parameter.


Alternatively one can view the system as follows. Codewords from Ct
are transmitted through a BEC with effective erasure probability given by
ελ1−t(1 − ρ(p̄)). Indeed, the channel is in erasure with probability ε and all
the “extra observations” are in erasure with probability λ1−t(1− ρ(p̄)).


Following standard density evolution analysis, we have that the BP decoder
estimate after ` iterations is given by


x`+1,t = ελ1−t
(
1− ρ(p̄)


)
λt
(
1− ρ(1− x`,t)


)
, (3.10)


where λt(x) = eγt(x−1). Above, x`+1,t corresponds to the probability that a
variable-node-to-check-node message is in erasure.


Recall that, pBP denotes the BP fixed-point of the density evolution equa-
tion for the original Poisson-LDPC ensemble LDPC(n, γ, P ). In other words,
pBP is BP fixed-point of the interpolated code at time t = 1. We remark here
that later we will set the free parameter p equal to pBP + δ for some δ > 0.
For the purpose of our analysis, it will be important to study the interpolated
codes, at time t < 1, for this value of p. Let us provide an example illustrating
the fixed-point behavior of the interpolated codes at p = pBP + δ.


Example 3.2 (Density Evolution for the Interpolated Codes). Consider an in-
terpolated Poisson-LDPC(n, γt = 3t, P (x) = x6) code ensemble. From (3.10),
the density evolution equation, for p = pBP + δ, is given by


x = εe−3(1−t)(1−pBP−δ)5e−3t(1−x)5 .


In Figure 3.2, we plot the density evolution curves for ε = 0.55, δ = 0.01 and
for t ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. The BP decoder gets stuck at the largest fixed-
point. In the case of t = 1, the BP decoder fixed-point is equal to pBP ≈ 0.5015.
The thick dashed curve corresponds to t = 0 and the thick continuous curve
corresponds to t = 1. Notice that for x > pBP + δ, the curves are ordered with
t = 1 curve at the top followed by t = 0.8 and so on with the curve at t = 0 at
the bottom. This is illustrated in the zoomed-in figure on the right in Figure
3.2. This previous observation is crucial to prove that the fixed-point of the
BP decoder for the interpolated code at time t < 1 is not “far away” from the
fixed-point at t = 1 when δ is small.


As we mentioned before, we want to show that if we take p = pBP + δ,
for some small δ > 0, then the BP decoder estimate, for an interpolated code
at time t < 1 is not too worse off the BP fixed-point at t = 1. Let us now
formally describe this. Consider the BP decoder estimate of the spin (or bit)
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Figure 3.2: Left figure: Density evolution curves for the interpolated Poisson-
LDPC(n, γt = 3t, P (x) = x6) code ensemble for ε = 0.55, δ = 0.01 and t ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1}. The BP fixed-point for t = 1.0 is equal to pBP =
0.5015. The thick continuous curve corresponds to t = 1. The thick dashed
curve corresponds to t = 0. Right figure: A zoomed-in picture around the point
pBP + δ = 0.5115, where all the curves intersect. The thick continuous curve
corresponds to t = 1. The thick dashed curve corresponds to t = 0.


xi after ` iterations for the interpolated code Ct. It is possible to regard the BP
estimate as a statistical mechanical average on a computation tree Ti(`) [23] of
depth ` for node i. One simply considers the Gibbs measure with appropriate
check node constraints and observations associated to all nodes appearing in
the labeled tree graph Ti(`). We denote this average by 〈xi〉t,Ti(`). Then we
have


Lemma 3.2 (BP Estimate for the Interpolated Code at Time t). For any t and
any δ > 0, one can find a positive number `(δ) (which is equal to the number
of iterations of the BP decoder) and a block-length n(δ), both independent of
t, such that for all n ≥ n(δ) and ` ≥ `(δ), if p = pBP + δ, we have


Et


[
〈xi〉t,Ti(`)


]
≥ p̄BP − g(δ),


where 0 < g(δ) < δ.


We furnish the proof of the above lemma in the Appendix 3.A. Finally we will
need a concentration property for the BP estimate of the interpolated codes.


Lemma 3.3 (Concentration Lemma). One can find a numerical constant β >
0, such that for any δ small enough, any fixed `, for n large enough


Pt


[∣∣∣ n∑
i=1


〈xi〉t,Ti(`) −
n∑
i=1


Et〈xi〉t,Ti(`)
∣∣∣ ≥ nδ


]
≤ e


− nβδ2


(lnn)2` + n1− 1
2


ln(lnn).


The proof of this is also provided in Appendix 3.A.
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3.5 Upper Bound on the Remainder Term R(t)


To prove the exactness of RS solution it remains to show that (c.f. (3.8))∫ 1


0


dtEt [R(p̄RS, 〈m〉t)] ≤ on(1).


Loosely speaking, the philosophy behind the interpolation method is that
for p = pRS the removal of the check nodes is “perfectly compensated” by the
addition of the extra observations. This implies that Et [R(p̄RS, 〈m〉t)] does
not change with t. It is straightforward to verify that for t = 0 we have
Et=0 [R(p̄RS, 〈m〉t=0)] = 0. Hence, the remainder term Et [R(p̄RS, 〈m〉t)] is 0
for all t.


We are unable to show directly this perfect compensation. But we will
show that for any δ > 0 and p = pδ = pRS + δ the compensation is “almost”
perfect. I.e., ∫ 1


0


dtE [R(p̄δ, 〈m〉t)] ≤ on(1) +O(δ).


Therefore,


hRS[pRS] ≤ lim
n→∞


EC[hn] ≤ hRS[pRS + δ] +O(δ). (3.11)


where the lower bound follows from (3.9). Since δ can be made as small as
desired, using the continuity of hRS[p] we prove the theorem.


We remark here that we can prove the Lemma 3.2 only when p = pBP + δ
and not when p = pRS + δ. Thus, we see that for the present proof to work,
ε has to be in the range such that pRS = pBP . This is the first condition
appearing in Theorem 3.1.


3.5.1 Second Interpolation


From the previous chapter, since the fluctuation of R(p̄δ,m) around R(p̄δ, 〈m〉t)
(w.r.t. to the randomness in noise and code realizations) is small, it is enough
to show that E [〈R(p̄δ,m)〉t] ≤ on(1)+O(δ). We will use a second interpolation
in a similar fashion than in [31], [32], [96].


The basic idea is to test the “stability”of the replica solution by coupling
the remainder term with the partition function of the interpolated code. More
precisely, consider the following partition function at time t, parametrized by
a non-negative real number ν,


Z(t, ν, p̄) =
∑
x


eνnR(p̄,m)
∏
a∈Ct


(1 + x∂a
2


) n∏
i=1


e(
li
2


+
Pei
a=1


uia
2


)xi


2 cosh( li
2
)
∏ei


a=1 2 cosh(u
i
a


2
)
. (3.12)


We denote by 〈·〉t,ν the average associated to this partition function. We stress
here that whenever we write 〈−〉t, it denotes the Gibbs average w.r.t. the
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partition function with ν = 0 in (3.12). Also, the associated free energy is
given by


αn(t, ν, p̄) =
1


n
lnZ(t, ν, p̄),


The intuition behind modifying the partition function as in (3.12) is as
follows. Whenever the term R(p̄,m) > 0, the corresponding configuration, x,
has large weight. The idea of the second interpolation method of Guerra [31]
is that, if the parameter ν is chosen carefully, then it can be shown that the
average free energy (ν > 0) is very close to the average of αn(t, 0, p̄) (ν = 0) (in
the thermodynamic limit (n → +∞)). This implies that most configurations
have R(p̄,m) = 0 and one concludes that E [〈R(p̄,m)〉t] is small.


Let us now make this idea more precise. First, we need to relate the free
energy to the remainder term. To do this, we use the convexity of αn(t, ν, p̄)
with respect to ν. This is the content of the following lemma,


Lemma 3.4 (Convexity of Free Energy). The free energy αn(t, ν, p̄) is convex
with respect to ν for any ν ≥ 0.


Proof. Taking the derivative of the free energy we get


d


dν
αn(t, ν, p̄) = 〈R(p̄,m)〉t,ν .


Taking the derivative of 〈R(p̄,m)〉t,ν we have


d


dν
〈R(p̄,m)〉t,ν = 〈R2(p̄,m)〉t,ν − 〈R(p̄,m)〉2t,ν ≥ 0.


Since the second derivative of the free energy is non-negative, we have that
the free energy is convex.


Now using the convexity of the free energy we relate the remainder term to
the difference of free energies as follows,


Et[〈R(p̄,m)〉t] =
∂


∂ν
Et[αn(t, ν, p̄)]


∣∣∣
ν=0


≤ 1


ν
Et[αn(t, ν, p̄)− αn(t, 0, p̄)]. (3.13)


The inequality above follows from the convexity of αn(t, ν, p̄) w.r.t. ν.
So now the next task would be to show that the free energy at ν 6= 0 is


“very close” to ν = 0. However, the presence of the code structure in the
partition function makes it difficult to estimate the free energy αn(t,−,−), for
any ν ≥ 0 and t 6= 0.


To circumvent this problem, we compute αn(0,−,−) and estimate αn(t,−,−)
by using again the interpolation method. The “miracle” that occurs now is
that, by carefully choosing ν to depend on t, the remainder of the second inter-
polation is negative. Thus, if the erasure fraction is such that the estimate of
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αn(0,−,−) is small, then the remainder term is small. Note that the absence
of code structure allows us to estimate α(0,−,−).


It turns out that the good choice for ν is ν(t) = γ
r
(1 − t). Applying the


interpolation method to (3.13) we get,


Lemma 3.5 (Second Interpolation).


Et


[
αn(t, ν(t), p̄)− αn(t, 0, p̄)


]
≤∆n


(γ
r
, p̄
)


+
γ


r


∫ t


0


R(p̄, s)ds+ on(1), (3.14)


where


∆n


(γ
r
, p̄
)


= E
[
αn(0,


γ


r
, p̄)− αn(0, 0, p̄)


]
, (3.15)


R(p̄, s) =
∑
l≥2


(−1)l+1


l
E〈R(p̄, Ql)〉l,s,ν(s). (3.16)


Where Ql is, as before, the overlap parameter (c.f. (2.45)) consisting of
l copies of identical and independent spins x(α) for α = 1, 2, . . . , l. Above,
〈−〉l,s,ν(s) denotes the replicated Gibbs average. More precisely, let µs,ν(s)(x)
denotes the Gibbs measure associated to the partition function in (3.12). Then
the replicated Gibbs measure is given by


µl,s,ν(s)(x
(1), x(2), . . . , x(l)) ,


l∏
α=1


µs,ν(s)(x
(α)). (3.17)


To lighten the notation we denote the replicated Gibbs measure by µl,s,ν(s) and
the un-replicated by µs,ν(s). Also, we stress that at this point the parameter
p̄ is still free. As we will see shortly that, setting it to pBP + δ allows us to
estimate the r.h.s. (3.14).


We remark (and we will show this) that the judicious choice of ν(t) allows
us to cancel the l = 1 term in (3.16). The proof of the Lemma 3.5 is provided
in the Appendix 3.B.


Note that with the choice of ν(t) = γ
r
(1− t), the upper bound provided by


(3.13) on the remainder term Et[〈R(p̄,m)〉t], diverges. But we circumvent this
problem as follows. We split the integral over t in to the two intervals [0, 1− δ]
and [1− δ, 1]. Thus, we get∫ 1


0


dtE〈R(p̄,m)〉t =


∫ 1−δ


0


dtE〈R(p̄,m)〉t +


∫ 1


1−δ
dtE〈R(p̄,m)〉t


≤
∫ 1−δ


0


dtE〈R(p̄,m)〉t + 2rδ


≤ 2rδ +
r


γ
∆n(


γ


r
, p̄) ln


1


δ
+
γ


r


∫ 1−δ


0


dt
1


ν(t)


∫ t


0


R(p̄, s)ds. (3.18)


We use the fact that |R(p̄,m)| ≤ 2r for check node of degree r to get the first
inequality. To obtain the last inequality we combined (3.13) and (3.14). Note
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that in obtaining the term
(
r
γ
∆n(γ


r
, p̄) ln 1


δ


)
, we have used the independence of


∆n(γ
r
, p̄) w.r.t. t.


Note that the r.h.s. of (3.18) has three terms. In the remaining of the
chapter we show that the last term corresponding to the remainder R(p̄, s) is
non-positive when we put p̄ = p̄δ = 1 − pRS − δ. We will also show that the
second term in (3.18) yields a contribution of the form on(1)+O(δ ln δ), for the
choice of p = pδ = pRS + δ. As a consequence, we obtain (3.11) for any δ > 0.
Hence we prove the main theorem on the equality of the replica solution.


3.5.2 Estimate of (3.15)


Recall that we are assuming P (x) = xr, i.e. each check node has degree r. One
can explicitly compute (3.15). Indeed, the free energy αn(0, 0, p̄) corresponds
to a Gibbs measure with a product form (without the code structure and
without the term eνnR(p̄,m)). For the other free energy αn(0, γ


r
, p̄) the situation


is more complicated. Nevertheless, the code Ct is absent and the problem is
similar to the computation of a free energy of a non-random complete p-spin
model [96]. This can be computed by the saddle point methods similar to [96].
Recall that pδ = pRS + δ. The net result of this long calculation, which we
show briefly in Appendix 3.E, is


∆n


(γ
r
, p̄δ
)


=
γ


r
(r − 1)p̄rRS + max


z
f(z) +O(δ) + on(1)


where f(z) was defined in the Section 3.3. For z = p̄RS, we have f(z) =
γ
r
p̄rRS


(
1 − r


)
. Thus, for ε such that the maximizer of f(z) is at ẑ = p̄RS, the


contribution of ∆n


(
γ
r
, p̄δ
)


vanishes as n→ +∞.


3.5.3 Estimate of Second Interpolation Remainder Term
R(p̄δ, s)


Recall that we are assuming P (x) = xr, i.e. each check node has degree r.
In this section we will show that the remainder of the second interpolation,
R(p̄δ, s), is non-positive.


Note that when ν = 0, we could combine the even and odd terms in the
remainder (c.f. (2.44)) using channel symmetry. This then helped to determine
the sign of the remainder term. For example, when P (x) is convex, then the
remainder was positive.


It is difficult to estimate the sign of R(p̄δ, s), because unlike the case ν = 0
we cannot use the channel symmetry to combine odd and even terms (which
could potentially help us to estimate the sign). The term eνnR(p̄,m) is said to
break the symmetry in the partition function (3.12). More precisely, tools such
as the GKS inequality or Nishimori identities (channel symmetry) fail to apply
for ν > 0. As a result, we are also unable to reduce all the overlap terms to
magnetization, as we did in (3.7).
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To estimate the sign of R(p̄δ, s) we first establish a relation between the
ν 6= 0 system and ν = 0 system. Recall that 〈−〉s denotes the Gibbs average
w.r.t. to the partition function (3.12) with ν = 0. We have the following two
crucial technical lemmas.


Lemma 3.6. For any 0 ≤ s ≤ 1 and ν ≥ 0, if 〈xi〉s = 1, then 〈xi〉s,ν = 1.


Lemma 3.7. For any 0 ≤ s ≤ 1 and ν ≥ 0, we have 〈xi〉s,ν ≥ −1 + e−4nνr.


The proofs of the above two lemmas are relegated to the Appendix 3.C.
Before we go on to estimate the sign of the remainder, we first relate the


overlap parameters appearing in R(p̄δ, s) to the magnetization of the original
interpolated code. More precisely, define the random variable q = 〈m〉s. Also
define the random set of variable nodes S = {i : 〈xi〉s = 0}. We stress here
that 〈−〉s is the Gibbs average associated to the partition function in (3.12)
with ν = 0. In words, this is the MAP measure for the original interpolated
code at time s. The randomness of the above defined quantities arises because
of randomness in channel noise and code realizations (at time s).


Recall that µs,ν(s) denotes the Gibbs measure associated to 〈−〉s,ν(s). Also
recall that µl,s,ν(s) denotes the Gibbs measure associated to 〈−〉l,s,ν(s). We have


Lemma 3.8. We have〈
Ql


〉
l,s,ν(s)


= q +
1


n


∑
i∈S


〈
xi
〉l
s,ν(s)


,


〈
Qr
l


〉
l,s,ν(s)


=
r∑
j=0


(
r


j


)
qr−j


1


nj


∑
i1,...ij∈S


〈xi1 ...xij〉ls,ν(s).


Proof. From the definition of q we have


q = 〈m〉s =
1


n


n∑
i=1


〈xi〉s =
1


n


∑
i/∈S


〈xi〉s =
1


n


∑
i/∈S


1. (3.19)


From the Lemma 3.6, for i /∈ S we have 〈xi〉s = 1 which implies 〈xi〉s,ν = 1.
Since −1 ≤ xi ≤ 1 and 〈−〉s,ν is an average w.r.t. a probability measure, we
immediately obtain that xi = +1 with probability 1 under the Gibbs measure
given by µs,ν(s).


Since in Ql we couple l identical systems, associated with the measure
µs,ν(s), we must have that x


(1)
i = x


(2)
i = · · · = x


(l)
i = 1 for all i /∈ S with


probability 1. Thus, we have〈
Ql〉l,s,ν(s) =


〈 1


n


∑
i/∈S


x
(1)
i ...x


(l)
i


〉
l,s,ν(s)


+
〈 1


n


∑
i∈S


x
(1)
i ...x


(l)
i


〉
l,s,ν(s)


,


=
1


n


∑
i/∈S


1 +
1


n


∑
i∈S


〈
x


(1)
i ...x


(l)
i


〉
l,s,ν(s)


,


= q +
1


n


∑
i∈S


〈xi〉ls,ν(s).
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To get the second equality above, we used that for i /∈ S, x
(1)
i = x


(2)
i = · · · =


x
(l)
i = +1 under the Gibbs measure given by µl,s,ν(s). The last equality is got


by using (3.19).
Let us now prove the second expression in the statement of the lemma.


Usual computations give us〈
Qr
l


〉
l,s,ν(s)


=
〈 1


nr


∑
i1,i2,...,ir


l∏
α=1


x
(α)
i1
x


(α)
i2
...x


(α)
ir


〉
l,s,ν(s)


(3.20)


=
1


nr


∑
i1,i2,...,ir


〈 l∏
α=1


x
(α)
i1
x


(α)
i2
...x


(α)
ir


〉
l,s,ν(s)


(3.21)


=
1


nr


∑
i1,i2,...,ir


〈
xi1xi2 ...xir


〉l
s,ν(s)


. (3.22)


Suppose that i1, i2, . . . , ij ∈ S. The remaining indices are such that the cor-
responding variable nodes /∈ S. Under the Gibbs measure given by µs,ν(s) we
know that xij+1


= · · · = xir = 1. This would imply that∑
i1,i2,...,ir


〈
xi1xi2 ...xir


〉l
s,ν(s)


=
∑


i1,i2,...,ij


〈
xi1xi2 ...xij


〉l
s,ν(s)


( ∑
ij+1 /∈S,...,ir /∈S


1
)


(3.23)


=
∑


i1,i2,...,ij


〈
xi1xi2 ...xij


〉l
s,ν(s)


( ∑
ij+1 /∈S


1 . . .
∑
ir /∈S


1
)
(3.24)


= qr−jnr−j
∑


i1,i2,...,ij


〈
xi1xi2 ...xij


〉l
s,ν(s)


. (3.25)


We get the last equality above by using (3.19). We can choose j number of
indices, belonging to S, in


(
r
j


)
ways. Combining (3.20) and (3.23) along with


the previous fact, we get the second expression of the lemma.


Thanks to the lemmas above we can prove the main result,


Lemma 3.9 (Sign of the Remainder Term). Let the channel erasure probabil-
ity, ε, be such that pRS = pBP , i.e. the replica solution is maximized by the
fixed-point of density evolution obtained via BP decoding. Then for any δ > 0,
there exists n(δ) such that for all n ≥ n(δ),


R(p̄δ, s) =
∑
l≥2


(−1)l+1


l
E〈R(p̄δ, Ql)〉l,s,ν(s) ≤ 0.


Proof. Since R(a, b) = (r − 1)ar − rar−1b+ br, using Lemma 3.8 we get


〈R(p̄δ, Ql)〉s,ν(s) =
r∑
j=0


(
r


j


)
qr−j


1


nj


∑
i1,...ij∈S


〈xi1 ...xij〉ls,ν(s) − rp̄r−1
δ q


− rp̄r−1
δ


1


n


∑
i∈S


〈xi〉ls,ν(s) + (r − 1)p̄rδ. (3.26)
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Let us write the previous expression in a convenient form. We separate out
the j = 0, 1 term in the sum in (3.26) to find


〈R(p̄δ, Ql)〉s,ν(s) =
r∑
j=2


(
r


j


)
qr−j


1


nj


∑
i1,...ij∈S


〈xi1 ...xij〉ls,ν(s)


+
(
rqr−1 − rp̄r−1


δ


) 1


n


∑
i∈S


〈xi〉ls,ν(s)


+ (r − 1)p̄rδ − rp̄r−1
δ q + qr. (3.27)


We recognize that the last term above is equal to R(p̄δ, q).
Using 〈xi1 ...xij〉2ks,ν(s) ≥ 〈xi1 ...xij〉


2k+1
s,ν(s) and 〈xi1 ...xij〉2ks,ν(s) ≥ 0, we have


r∑
j≥2


(
r


j


)
qr−j


1


nj


(
−1


2k


∑
i1,...ij∈S


〈xi1 ...xij〉2ks,ν(s) +
1


2k + 1


∑
i1,...ij∈S


〈xi1 ...xij〉2k+1
s,ν(s)


)


≤ −1


2k + 1


r∑
j≥2


(
r


j


)
qr−j


1


nj


∑
i1,...ij∈S


(
〈xi1 ...xij〉2ks,ν(s) − 〈xi1 ...xij〉2k+1


s,ν(s)


)
≤ 0. (3.28)


Using (3.28) and combining j = 0 and j = 1 term, the addition of the odd
and even terms 2k and 2k + 1 in the remainder (3.16) gives us,


− 1


2k
E〈R(p̄δ, Q2k)〉s,ν(s) +


1


2k + 1
E〈R(p̄δ, Q2k+1)〉s,ν(s) (3.29)


≤ − 1


2k(2k + 1)
Es[R(p̄δ, q)]−


1


2k
Es[T2k] +


1


2k + 1
Es[T2k+1].


(3.30)


We use the notation,


Tl = r(qr−1 − p̄r−1
δ )


1


n


∑
i∈S


〈xi〉ls,ν(s).


Let As be the set of channel noise realizations and code realizations (at time


s) such that {q ≥ p̄BP − δ
2
− g(δ)


2
}. Here g(δ) is the same as in Lemma 3.2.


Since g(δ) < δ, we must have q > p̄δ in the set As. As a consequence, in the
set As, we have −T2k


2k
+ T2k+1


2k+1
≤ 0. Thus, we can upper bound the r.h.s. in


(3.29) by


− 1


2k(2k + 1)
Es[R(p̄δ, q)]−


1


2k
EAcs [T2k] +


1


2k + 1
Es[T2k+1]. (3.31)


Furthermore, since |q| ≤ 1 and |p̄δ| ≤ 1 we have |R(p̄δ, q)| ≤ 2r. For the set
As, a quick calculation shows that R(p̄δ, q) ≥ r(r − 1)(δ − g(δ))2p̄r−2


BP . Thus,
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we can bound


− 1


2k(2k + 1)
Es[R(p̄δ, q)] = − 1


2k(2k + 1)
EAs [R(p̄δ, q)]−


1


2k(2k + 1)
EAcs [R(p̄δ, q)]


≤ − 1


2k(2k + 1)
r(r − 1)(δ − g(δ))2p̄r−2


BP P[As] +
2r


2k(2k + 1)
P[Acs].


(3.32)


Thus, combining (3.29), (3.31) and (3.32) we get


− 1


2k
E〈R(p̄δ, Q2k)〉s,ν(s) +


1


2k + 1
E〈R(p̄δ, Q2k+1)〉s,ν(s)


≤ EAcs


[
−T2k


2k
+
T2k+1


2k + 1


]
− r(r − 1)(δ − g(δ))2


2k(2k + 1)
p̄r−2
BP P[As] +


2r


2k(2k + 1)
P[Acs].


Summing over k ≥ 1 and using the fact that
∑


k≥1
1


2k(2k+1)
converges to a


constant κ, we get


R(p̄δ, s) ≤
∑
k≥1


EAcs


[
−T2k


2k
+
T2k+1


2k + 1


]
− κr(r − 1)(δ − g(δ))2p̄r−2


BP P[As]


+ 2rκP[Acs].


Let us estimate the first term above. Writing explicitly the terms T2k and
T2k+1 we have


∑
k≥1


EAcs


[
−T2k


2k
+
T2k+1


2k + 1


]
= rEAcs


[
(qr−1 − p̄r−1


δ )
1


n


∑
i∈S


∑
k≥1


(
−〈xi〉2ks,ν(s)


2k
+
〈xi〉2k+1


s,ν(s)


2k + 1


)]


= rEAcs


[
(qr−1 − p̄r−1


δ )
1


n


∑
i∈S


∑
k≥2


(−1)k+1


k
〈xi〉ks,ν(s)


]


= rEAcs


[
(qr−1 − p̄r−1


δ )
1


n


∑
i∈S


(
ln(1 + 〈xi〉s,ν(s))− 〈xi〉s,ν(s)


)]
Using the Lemma 3.7,


rEAcs
[
(qr−1 − p̄r−1


δ )
1


n


∑
i∈S


ln(1 + 〈xi〉ls,ν(s))
]
≤ 2rEAcs


[ 1


n


∑
i∈S


4nv(s)r
]


≤ 8nr2ν(s)


γ
P[Acs].


Putting everything together, we get


R(p̄δ, s) ≤
(8nr2ν(s)


γ
+ 2r(κ+ 1)


)
P[Acs]− κr(r − 1)(δ − g(δ))2p̄r−2


BP P[As].


This yields a negative contribution for any fixed δ and n large enough
provided that we show P[Acs] → 0 faster than n. To bound the probability of
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the event Acs we note that for any realization of the randomness (channel noise
and code) 〈xi〉s ≥ 〈xi〉s,Ti(`). Note that this is w.r.t. to the original interpolated
code at time s. Indeed, if the iterative decoder succeeds and the BP estimate
is 1 then the MAP estimate is also necessarily 1. On the other hand if the
iterative decoder fails then the BP estimate is 0 and is surely less than the
MAP estimate which is 0 or 1. As a result, when 1


n


∑
i〈xi〉s < p̄BP− δ


2
− g(δ)


2
, we


must have 1
n


∑
i〈xi〉s,Ti(`) < p̄BP − δ


2
− g(δ)


2
. Combining the above with Lemma


3.2, implies that there is a n(δ) such that for n ≥ n(δ),


P[Acs] = P[
1


n


∑
i


〈xi〉s < p̄BP −
δ


2
− g(δ)


2
]


≤ P[
1


n


∑
i


〈xi〉s,Ti(`) < p̄BP −
δ


2
− g(δ)


2
]


≤ P
[∑


i


〈xi〉s,Ti(l) ≤
∑
i


E
[
〈xi〉s,Ti(l)


]
− n


2
(δ − g(δ))


]
,


and the result follows from Lemma 3.3.


3.6 Road (Block) Ahead


In this chapter we showed that the replica solution provides the correct solution
to the per-bit conditional entropy, in the asymptotic limit, when transmit-
ting over the BEC. Similar results can be obtained for the Poisson LDGM
ensembles. The extension of the present methods to a standard irregular
LDPC ensembles and general BMS channels is still open3. Because of the
non-combinatorial nature of the proof we are hopeful that such an extension
is possible.


One of the highlights of the current approach in the case of BEC is that the
remainder term of the first interpolation simplified radically. The remainder
consisted only of the magnetization. As a result, the coupled partition func-
tion is kept simple (c.f. (3.12)). However, for the case of transmission over
general BMS channels, we are unable to simplify the remainder term. Thus,
the coupled partition function may involve a large number of replicas. Conse-
quently, controlling the remainder term of the second interpolation might be
very difficult. Fortunately, as the next lemma shows, if the magnetization (or
the first term in the remainder) can be “controlled”, then the entire remainder
term can be shown to be small.


The lemma holds under the assumption that all the overlap parameters
concentrate on their average. More precisely, we conjecture that the remainder,
R(t), in (3.5) can be written as follows.


3Although, in the next two chapters we will attack the problem for the case of trans-
mission over general BMS, by another method.
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Conjecture 3.1 (Concentration of the Overlap Parameters). Consider trans-
mission over a BMS channel using a standard LDPC(Λ, P ) code ensemble.
Then the remainder term of the first interpolation method is given by


R(t) =
γ


r


∑
l≥1


(−1)l+1


l
R(ql,Et[〈Ql〉t]) + on(1).


Notice that the average w.r.t. all randomness is present inside the polyno-
mial R(−,−). We remark that we have already proven one concentration in
the form of equation (3.6).


We state and prove the following lemma only for Poisson-LDPC code en-
sembles. We hope it would be possible to extend it to any standard LDPC
ensemble via the multi-Poisson ensemble approximation of Montanari [29].


Lemma 3.10 (Magnetization as the Order Parameter). Consider transmission
over any general BMS(ε) channel using Poisson-LDPC(n, γ, r) code ensemble
with r ≥ 2. Let CBP be the set of channel noise values, such that the maxi-
mizer of the replica solution is the BP fixed-point of density evolution. Further
assume Conjecture 3.1 holds. If, for a given channel noise value ε ∈ CBP and
for any δ such that 0 < δ � q1, we have,


lim
n→+∞


∫ 1


0


dtR(q1,Et[〈xi〉t]) < δ, (3.33)


then we have


lim
n→+∞


∫ 1


0


dtR(t) <
4γ


(q1 − δ)
r−2
2


δ1/4 +
2γ


r
δ3/4. (3.34)


Proof. We provide the proof of this lemma in the Appendix 3.D.


The above lemma allows us to consider a partition function coupled with
only the magnetization. Even with the above simplification, proving Lemma
3.9 (controlling the remainder term of the second interpolation) for channels
other than the BEC is still open.


Before we conclude the chapter, we provide a concentration result for the
magnetization and demonstrate some of its implications.


3.6.1 Role of Magnetization


As we saw in the above section, controlling the magnetization would allow us
to prove that the replica solution is correct. Magnetization also appears in a
straightforward way in the MAP-GEXIT formulas for the BEC and BIAWGNC
(see Section 2.3).


In most relevant models in statistical mechanics or communications, the
magnetization is believed to concentrate. But proving this fact is not trivial
because it involves a bound on the second derivative of a free energy. This
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quantity is not uniformly bounded (with respect to system size) at phase tran-
sition thresholds. In this section we provide a concentration theorem for the
magnetization for any linear block-length code. We show various implications
of the concentration result. One of the implications is an informal justification
of the exactness of the replica solution for the communication problem.


The concentration result (Theorem 3.2) is valid for general fixed linear
codes C of length n. This theorem states that, for a given linear code, for
almost all values of the noise parameter, the magnetization concentrates on
its average over the channel output realizations. By minor modifications in
the proofs one can also obtain the corresponding statements for the standard
LDPC and LDGM code ensembles.


Recall that the magnetization is given by m = 1
n


∑n
i=1 xi. With all the


standard notations we have


Theorem 3.2. Consider communication over the BEC(ε), where ε is the era-
sure probability or over the BIAWGNC(ε) where ε2 is the noise variance. There
exists a finite positive constant c possibly depending on a, b and independent of
n such that for any linear block code of length n,∫ b


a


dεEl


[
〈|m− El[〈m〉]|〉


]
≤ c


n
1
8


,


where [a, b] ∈ (0, 1) for BEC and [a, b] ∈ (0,∞) for BIAWGNC.


Proof. For a proof, please see [97].


Remark 3.2. For standard LDPC ensembles and LDGM ensembles, we can
show the same statement with El replaced by EC,l. In particular, by dominated
convergence it follows that for Lebesgue almost every ε > 0


lim
n→∞


EC,l〈|m− EC,l〈m〉|〉 = 0, (3.35)


The statement holds for almost every ε because it cannot be valid at phase
transitions. In fact, one expects that the phase transitions occur at isolated
points. Thus, the statement of the above theorem should hold for all ε away
from these points.


3.6.2 Implications of Concentration of Magnetization


Fraction of bits in error. Consider the BEC and let Pe(l) denote the fraction
of bits in error for a given channel output realization l,


Pe(l) =
1


2
(1− 〈m〉).


This formula is valid for the BEC because a bit xi is either decoded correctly
or not decoded, which implies 〈xi〉 ∈ {0, 1} (for more general channels the
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right hand side has to be replaced by 1
n


∑n
i=1


1
2
(1− sgn〈xi〉) with sgn(0) = 0).


The theorem implies concentration of the fraction of errors over its average
which is nothing else than the bit MAP error probability,


Pe,MAP =
1


2
(1− El〈m〉).


This follows by bounding


El


[
|〈m〉 − El〈m〉|


]
≤ El〈|m− El〈m〉|〉.


From Remark 3.2, the bit error probability of MAP decoding further concen-
trates on its average over the code ensemble EC[Pe].


Concentration of MAP-GEXIT function. For BEC(ε) and BIAWGNC(ε), re-
call from Section 2.3 that we have the following formulas for the MAP-GEXIT
function,


BEC: h′n(ε) =
dhn
dε


=
ln 2


ε
(1− El[〈m〉]),


BIAWGNC: h′n(ε) =
dhn
dε


= ε−3(1− El[〈m〉]).


Theorem 3.2 and (3.35) imply limn→∞ EC|h′n − EC[h′n]| = 0.


Absence of replica symmetry breaking. Some random spin systems are be-
lieved to exhibit the phenomenon of replica symmetry breaking [71], [74]. In
the present context this would mean that in the large block-length limit the
posterior measure becomes a convex combination of large number (exponential
in the block-length) of measures. A criterion that signals such a phenomenon
can be formulated thanks to the overlap parameter


q =
1


n


n∑
i=1


x
(1)
i x


(2)
i , (3.36)


where the superscript is the usual replica index and means that we take two
independent samples (x


(a)
1 , ..., x


(a)
n ) from p(x | y). When the replica symmetry


is broken the overlap parameter has a non trivial distribution [71]. Let Pm(x) =
EC,l〈11(m = x)〉, Pq(x) = EC,l〈11(q = x)〉1,2, where 〈·〉1,2 denotes the product
measure p(x(1) | y) · p(x(2) | y) for the same output realization of y. For any
BMS channel and any linear block code, we have the Nishimori identity [65]


Pm(x) = Pq(x). (3.37)


Thus, concentration of m is equivalent to concentration of q so that the dis-
tribution of the overlap parameter remains a trivial delta function. This argu-
ment further strengthens the belief that the replica solution for communication
over BMS channels using sparse graph codes is correct4.


4Note the replica solution, given in Section 1.7.4, is really the replica symmetric solution
in the language of statistical physics.
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3.A Proof of Lemma 3.2 and Lemma 3.3


We begin with the proof of Lemma 3.2.
Recall that pBP is the BP fixed-point of the density evolution equation for


the interpolated code at t = 1 (the original Poisson-LDPC code ensemble).
I.e., pBP is the largest fixed-point of


x = ελ(1− ρ(1− x)). (3.38)


For the proof we will require the following. Let δ′ = ελ(1 − ρ(1 − pBP −
δ)) − pBP . Since pBP is the largest fixed point of the equation we must have
ελ(1− ρ(1− pBP − δ)) < pBP + δ. As a result,5,


δ′ < δ. (3.39)


In the sequel, x and x`,t will denote erasure probabilities. It should not be
confused with the spin/code-bit variable xi.


Proof. We first claim that for any x such that pBP + δ ≤ x ≤ 1, we have


d


dt


[
ελ1−t(1− ρ(1− pBP − δ))λt(1− ρ(1− x))


]
≥ 0. (3.40)


Let us compute the derivative (3.40) explicitly. We have


d


dt


[
ελ1−t(1− ρ(1− pBP − δ))λt(1− ρ(1− x))


]
=


d


dt


[
εe−γ(1−t)ρ(1−pBP−δ)e−γtρ(1−x)


]
=
[
εe−γ(1−t)ρ(1−pBP−δ)e−γtρ(1−x)γ


(
ρ(1− pBP − δ)− ρ(1− x)


)]
.


Since ρ(·) is monotonic in its argument, for x ≥ pBP + δ we have ρ(1 − x) ≤
ρ(1−pBP − δ), from which we immediately prove the claim. As a consequence
of the above claim we have


ελ1−t(1− ρ(1− pBP − δ))λt(1− ρ(1− x)) ≤ ελ(1− ρ(1− x))


∀x ∈ [pBP + δ, 1]. (3.41)


Recall that we denote the interpolated code at time t by Ct. Our aim is to
find a positive integer ` such that, the average erasure estimate of a random
code-bit after ` iterations of the BP decoder is less than pBP + δ.


From the density evolution equations at time t we have,


x`+1,t = ελ1−t(1− ρ(1− p))λt(1− ρ(1− x`,t)).


Above, x`+1 denotes the density evolution estimate of the probability that the
variable-node-to-check-node message is in erasure at iteration `.


5Note that δ is a small number. Thus, pBP + δ < ε.
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Let ` (which depends only on δ) be the number of iterations such that
x`,1 ≥ pBP + δ and x`+1,1 < pBP + δ. We claim that x`+1,t < pBP + δ for
all t. Indeed, without loss of generality, consider only those values of t < 1,
for which x`,t ≥ pBP + δ. We claim that for such t we have x`,t ≤ x`,1. Let
us prove this sub-claim immediately. Indeed, we have that x0,t = ε for all t.
Thus, at ` = 0, we have x0,t ≤ x0,1. Now suppose that for some 0 < `′ < `
we have x`′,t ≤ x`′,1. Since `′ < `, we must have x`′,t ≥ x`,t (density evolution
estimate of the erasure fraction decreases with increasing iterations). Thus
x`′,t ≥ pBP + δ. As a result, using (3.41) we have,


x`′+1,t = ελ1−t(1− ρ(1− pBP − δ))λt(1− ρ(1− x`′,t))
(3.41)


≤ ελ(1− ρ(1− x`′,t)) (3.42)


Since by assumption x`′,t ≤ x`′,1, we get


ελ(1− ρ(1− x`′,t)) ≤ ελ(1− ρ(1− x`′,1)) = x`′+1,1. (3.43)


Combining above, we obtain x`′+1,t ≤ x`′+1,1. Thus, we deduce that, starting
from ` = 0, as long as x`′,t ≥ pBP + δ, we must have x`′,t ≤ x`,1. Thus, we
prove that x`,t ≤ x`,1.


Now since x`,t ≤ x`,1, we obtain


x`+1,t = ελ1−t(1− ρ(1− pBP − δ))λt(1− ρ(1− x`,t))
≤ ελ(1− ρ(1− x`,t)) ≤ ελ(1− ρ(1− x`,1))


= x`+1,1 < pBP + δ.


Where the first inequality again follows from (3.41), since x`,t ≥ pBP + δ. The
second inequality follows since x`,t ≤ x`,1. Hence we have x`+1,t < pBP + δ.


Since x`+1,t < pBP + δ, from the density evolution equation at time t, we
have


x`+2,t = ελ1−t(1− ρ(1− pBP − δ))λt(1− ρ(1− x`+1,t))


≤ ελ1−t(1− ρ(1− pBP − δ))λt(1− ρ(1− pBP − δ))
= ελ(1− ρ(1− pBP − δ)) = pBP + δ′.


Recall that we denote the neighborhood of depth ` of a random code-bit
(spin) xi in Ct by N`(i). Let us compute E[〈xi〉t,T`+2(i)|N`+2(i) is tree]. Recall
that T`+2(i) is the computation tree of depth ` + 2. In this case the compu-
tation tree coincides with N`+2(i). Thus, 〈xi〉t,T`+2


= 〈xi〉t,N`+2(i). Recall that
〈xi〉t,N`+2(i) ∈ {0, 1} (c.f. 2.5). This implies that E[〈xi〉t,T`+2(i)|N`+2(i) is tree]
equals the probability of not-erasure. From density evolution, we know that
this equals 1 − ελ1−t(1 − ρ(1 − pBP − δ))Λt(1 − ρ(1 − x`+2,t)). Note that,
since the interpolated code is also a Poisson-LDPC code, we can replace
Λt(1− ρ(1− x`+2,t)) with λt(1− ρ(1− x`+2,t)) in the previous expression.


Thus, using ελ1−t(1− ρ(1− pBP − δ))λt(1− ρ(1− x`+2,t)) ≤ x`+2,t we get
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E[〈xi〉t,T`+2(i)] ≥ E[〈xi〉t,T`+2(i)|N`+2(i) is tree] Pr(N`+2(i)is tree)


≥ x̄`+2,t


(
1− (c lnn)4(`+2)


n


)
≥ p̄BP − δ′ −


δ − δ′


3


where in the second inequality we use the fact that for a Poisson-LDPC code,


N`+2(i) is a tree with probability greater than 1− (c lnn)4(`+2)


n
. The last inequality


follows by choosing n large enough. We get the lemma by putting g(δ) =
2δ′


3
+ δ


3
< δ.


We now turn to the proof of Lemma 3.3.


Proof. The sub exponential term comes from removing the codes with maxi-
mum degree greater than lnn. The exponential term follows by adapting the
proof of [9] for maximum degree of lnn.


3.B Second Interpolation


In this appendix we prove Lemma 3.5 which uses the interpolation method.
Notice that with the modified partition function, Z(t, ν, p̄), there is no more
channel symmetry (Nishimori symmetry). This makes the determination of
the sign of the remainder of the interpolation term a bit more complicated.
However by choosing ν(t) = γ


r
(1− t), we can easily determine the sign and we


obtain the lemma. Using the fundamental theorem of calculus we have


E[αn(t, ν(t), p̄)− αn(t, 0, p̄)] =E[αn(0,
γ


r
, p̄)− αn(0, 0, p̄)]


+


∫ t


0


dE[αn(s, ν(s), p̄)− αn(s, 0, p̄)]


ds
ds.


Since ν(s) also depends on s, the total derivative w.r.t. s is given by


dE[αn(s, ν(s), p̄)]


ds
=
∂E[αn(s, ν, p̄)]


∂s
− γ


r


∂E[αn(s, ν, p̄)]


∂ν
. (3.44)


Let us compute the partial derivative with respect to s first. This compu-
tation is similar to the one in Appendix 2.A.4. We have


∂E[αn(s, ν, p̄)]


∂s
=
γ


r
E
∑
l=1


(−1)l+1


l


(
〈Qr


l 〉s,ν − r
(
E[tanhl(v)]


)r−1〈Ql〉s,ν
)


+ γ ln 2
(


1− 1


r


)
=
γ


r
E
∑
l=1


(−1)l+1


l
〈R(p̄, Ql)〉s,ν −


γ


r
E
∑
l=1


(−1)l+1


l
(r − 1)p̄r


+ γ ln 2
(


1− 1


r


)
. (3.45)
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Above, we used dV (v) = pδ0(v) + p̄δ∞(v) to deduce (E[tanhl(v)]
)r


= p̄r and


(E[tanhl(v)]
)r−1


= p̄r−1. The partial derivative with respect to ν is easily
found out to be,


∂E[αn(s, ν, p̄)]


∂ν
= E[〈R(p̄,m)〉s,ν ]. (3.46)


Thus, combining the two partial derivatives we get that the total derivative is
equal to


dE[αn(s, ν(s), p̄)]


ds
=
γ


r
E
∑
l=2


(−1)l+1


l
〈R(p̄, Ql)〉s,ν −


γ


r
E
∑
l=1


(−1)l+1


l
(r − 1)p̄r


+ γ ln 2
(


1− 1


r


)
. (3.47)


We remark that the first sum over l in (3.47), starts from l = 2 instead
of l = 1. This is because E[〈R(p̄,m)〉s,ν ] from (3.46) gets canceled with
E[〈R(p̄, Q1)〉s,ν ] = E[〈R(p̄,m)〉s,ν ] in (3.45). Performing similar calculations


for dE[αn(s,0,p̄)]
ds


we get,


dE[αn(s, 0, p̄)]


ds
=
γ


r
E
∑
l=1


(−1)l+1


l
〈R(p̄, Ql)〉s −


γ


r
E
∑
l=1


(−1)l+1


l
(r − 1)p̄r


+ γ ln 2
(


1− 1


r


)
. (3.48)


Recall that in 〈−〉s, the term ν is set to zero. Thus, combining we get,


E[αn(t, ν(t), p̄)]− E[αn(t, 0, p̄)] = E[αn(0,
γ


r
, p̄)− E[αn(0, 0, p̄)]


+


∫ t


0


γ


r
E
∑
l=2


(−1)l+1


l
〈R(p̄, Ql)〉s,νds−


∫ t


0


γ


r
E
∑
l=1


(−1)l+1


l
〈R(p̄, Ql)〉s.


(3.49)


Since in the last term above, the parameter ν is set to zero, we use the channel
symmetry (Nishimori identities) to get (c.f. (2.44))∫ t


0


γ


r
E
∑
l=1


(−1)l+1


l
〈R(p̄, Ql)〉s =


∫ t


0


γ


r
E
∑
l=1


1


2l(2l − 1)
〈R(p̄, Q2l)〉s


If r is even, then the above expression is positive from convexity arguments
[29]. If r is odd then, recall that in the previous chapter, we showed that this
term is positive in the limit n → +∞. Note that the on(1) term in (3.14)
comes when r is odd. Hence the lemma.


3.C Proof of Lemma 3.6 and Lemma 3.7


In this appendix we prove Lemma 3.6 and Lemma 3.7. Let us denote the
Gibbs measure of ν = 0 system by µ(x) and the Gibbs measure of the ν 6= 0
system by µ(ν, x).
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Proof of the Lemma 3.6. Since 〈xi〉s = 1 we have∑
x∼i


µ(xi = −1, x∼i) = 0,


which implies that for any value of x∼i we find µ(xi = −1, x∼i) = 0. We
observe that we can write the Gibbs measure of the ν 6= 0 spin system as
µ(ν, x) = Z(s)µ(x)enνR(p̄,m)/Z(s, ν, p̄). Thus


µ(ν, xi = −1, x∼i) = Z(s)µ(xi = −1, x∼i)enνR(p̄,m)/Z(s, ν, p̄) = 0,


for any value of x∼i. This immediately implies the lemma.


Proof of the Lemma 3.7. Let 〈xi〉s,ν = −1 + ζ. Thus∑
x∼i


µ(ν, xi = 1, x∼i)−
∑
x∼i


µ(ν, xi = −1, x∼i) = −1 + ζ.


Since
∑


x∼i µ(ν, xi = 1, x∼i) = 1 −
∑


x∼i µ(ν, xi = −1, x∼i) and µ(ν, x) =


Z(s)µ(x)enνR(p̄,m)/Z(s, ν, p̄), we have∑
x∼i


µ(xi = 1, x∼i)eνnR(p̄,m) =
Z(s, ν, p̄)


Z(s)


ζ


2


It is easy to see that


Z(s, ν, p̄)


Z(s)
=
〈
enνR(p̄,m)


〉
s
≤ e2nνr


since |R(p̄,m)| ≤ 2r. Thus, we have∑
x∼i


µ(xi = 1, x∼i)e−νn|R(p̄,m)| ≤
∑
x∼i


µ(xi = 1, x∼i)e−νn|R(p̄,m)| ≤ eνn2r ζ


2
.


As a result, we have
∑


x∼i µ(xi = 1, x∼i) ≤ eνn4r ζ
2
. This implies 〈xi〉s =


2
∑


x∼i µ(xi = 1, x∼i)−1 ≤ eνn4rζ−1. From GKS inequality for the BEC (and


any code) we know that 〈xi〉s ≥ 0, which implies ζ ≥ e−νn4r.


3.D Proof of Lemma 3.10


We prove here Lemma 3.10. The Conjecture 3.1 implies that


R(t) =
γ


r


∑
l≥1


(−1)l+1


l
R(ql,Et[〈Ql〉t]) + on(1),


=
γ


r


∑
l≥1


(−1)l+1


l
R(ql,Et[〈xi〉lt]) + on(1).
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Proof. Choose a positive integer, L =
⌈


1
2


(
1 + 1


δ
1
4


)⌉
for any 0 < δ � 16. Since


|R(ql,E[〈xi〉2lt ])| ≤ 2r, we have


R(t) ≤ γ


r


L−1∑
l=1


1


2l(2l − 1)
R(q2l−1,E[〈xi〉2l−1


t ]) +
γ


r


∑
l≥L


2r


2l(2l − 1)


≤ γ


r


L−1∑
l=1


1


2l(2l − 1)
R(q2l−1,E[〈xi〉2l−1


t ]) + 2γδ
1
4 . (3.50)


where the last inequality follows from∑
l≥L


1


2l(2l − 1)
≤ 1


2L− 1
≤ δ


1
4 . (3.51)


Note that we use E to denote the expectation w.r.t. to randomness in both
code and noise realizations.


We now proceed to control the sum till L− 1. To do this we first develop
a sum-rule to relate E[〈xi〉2l−1


t ] and q2l−1. Remarkably, thanks to the channel
symmetry, we will see that the difference between the two terms is “almost”
the same for l ≥ 1. Consider a fixed code C. Consider the code-bit xi and
consider a neighborhood Nd(i), of depth d, around the spin. We “soften” any
hard parity-check node a belonging to the boundary N̊d(i) of the neighborhood
as follows. Associate a random variable la ∼ N (ta, ta) (symmetric gaussian)
to the parity-check node a, then we can write,


1 + xa
2


= lim
ta→+∞


ela(xa−1). (3.52)


Consider the modified Hamiltonian with every check node, a ∈ N̊d(1) repre-
sented by ela(xa−1). We remark that if ta = 0 for any check node a, then the
“interaction” between the code-bits present in the check node a vanishes. This
process of setting ta = 0 we call as “erasing” the check node from the graph.
With slight abuse of notation, l now denotes the random realization of the
channel noise as well as the random variables la associated to each check node.


We now provide a sum rule for estimating El[〈xmi 〉t] for any positive integer


m. Order the check nodes in the boundary, N̊d(i), of the neighborhood, in a
given arbitrary way and call 〈−〉t;≤k the Gibbs measure with tk = 0 for the first


k check nodes of N̊d(i). With this notation, 〈−〉t,≤0 implies that no check node
has been erased. For the first check node (call it 1) we use the fundamental
theorem of calculus to find,


El[〈xi〉mt ] = El[〈xi〉mt;≤1] +


∫ ∞
t1=0


dt1
dEl,l1 [〈xi〉mt ]


dt1
. (3.53)


6Here δ is a very small real number.
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We can now take the second check node (call it 2) and erase it from the first
term in the r.h.s of the above equation to get,


El[〈xi〉mt ] = El[〈xi〉mt;≤2] +
2∑
j=1


∫ +∞


tj=0


dtj
dEl[〈xi〉mt;≤j−1]


dtj
. (3.54)


We repeat this procedure for all check nodes in N̊d(i) to get,


El[〈xi〉mt ] = El[〈xi〉mt,Nd(i)] +
∑


j∈N̊d(i)


∫ ∞
tj=0


dtj
dEl[〈xi〉mt;≤j−1]


dtj
. (3.55)


The bracket, 〈−〉t,Nd(i) denotes the Gibbs measure w.r.t. the code with all the


check nodes in the boundary N̊d(i) erased, or in other words, it corresponds
to an average w.r.t. the neighborhood Nd(i).


Consider any code with one check node converted to a soft check node.
More precisely consider the Hamiltonian with the constraint elc(xc−1). Because
of the Gaussian identity and integration by parts formula (see 2.A.3) we have


dEl[〈xi〉mt ]


dtc
= El


[( d
dlc


+
1


2


d2


dlc


)
〈xi〉mt


]
. (3.56)


The first derivative equals


dEl〈xi〉mt
dlc


= mEl


[
〈xi〉m−1


t


(
〈xixc〉t − 〈xi〉t〈xc〉t


)]
. (3.57)


Taking now the derivative of the above expression we obtain the second deriva-
tive


1


2


[
d2El〈xi〉mt


dlc


]
=


1


2
m(m− 1)El


[
〈xi〉m−2


t


(
〈xixc〉t − 〈xi〉t〈xc〉t


)2
]


+
1


2
mEl


[
〈xi〉m−1


t


(
− 2〈xixc〉t〈xc〉t + 2〈xi〉t〈xc〉2t


)]
. (3.58)


Combining the above two we get the derivative w.r.t. tc to be


dEl[〈xi〉mt ]


dtc
= mEl


[
〈xi〉m−1


t


(
〈xixc〉t − 〈xi〉t〈xc〉t


)
(1− 〈xc〉t)


]
+


1


2
m(m− 1)El


[
〈xi〉m−2


t


(
〈xixc〉t − 〈xi〉t〈xc〉t


)2
]
. (3.59)


We apply Nishimori identities (see 2.A.2) to all the terms above and for the
case when m = 2l − 1 we get


dEl[〈xi〉2l−1
t ]


dtc
=


1


2
2l(2l − 1)El


[
〈xi〉2l−2


t


(
〈xixc〉t − 〈xi〉t〈xc〉t


)2
]
. (3.60)
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Using this in our sum rule for m = 2l − 1 we get


El[〈xi〉2l−1
t ] = El[〈xi〉2l−1


t,Nd(i)] +
1


2
2l(2l − 1)


∑
j∈N̊d(i)


∫ ∞
tj=0


dtj


× El,≤j−1


[
〈xi〉2l−2


t,≤j−1


(
〈xixj〉t,≤j−1 − 〈xi〉t,≤j−1〈xj〉t,≤j−1


)2
]
. (3.61)


Thus, taking expectation over the code ensemble we get


EC,l[〈xi〉2l−1
t ] = EC,l[〈xi〉2l−1


t,Nd(i)] +
1


2
2l(2l − 1)Corr(l), (3.62)


where


Corr(l) = EC
∑


j∈N̊d(i)


∫ ∞
tj=0


dtj


× El,≤j−1


[
〈xi〉2l−2


t,≤j−1


(
〈xixj〉t,≤j−1 − 〈xi〉t,≤j−1〈xj〉t,≤j−1


)2
]
.


(3.63)


We remark that since 〈xi〉2l−2
t,≤j−1 ≤ 1, we have the inequality Corr(l) ≤ Corr(1).


Since the probability of the event, T = Nd(i) is a tree is greater than 1−on(1),
for l = 1 we get


EC,l[〈xi〉t] = EC,l[〈xi〉t,Nd(i) | T] + Corr(1) + on(1). (3.64)


Without loss of generality assume that the q1 > 0. Choose d1 such that
|EC,l[〈xi〉t,Nd1 (i) | T] − q1| < δ/(2r(r − 1)). This is possible because of the
hypothesis of the lemma, which states that q1 is the BP fixed-point of DE.


Recall that R(a, b) = (r − 1)ar − rar−1b+ br. If b ≥ a, then we have


R(a, b) = (r − 1)ar − rar−1b+ br


= (b− a)[br−1 + · · ·+ ar−2b+ ar−1 − rar−1]


≥ (b− a)(ar−2b− ar−1) = (b− a)2ar−2. (3.65)


Using a = q1 − δ/(2r(r − 1)) and b = EC,l[〈xi〉t] in (3.65) we find


R


(
q1 −


δ


2r(r − 1)
, EC,l[〈xi〉t]


)
≥(


EC,l[〈xi〉t]−
(
q1 −


δ


2r(r − 1)


))2(
q1 −


δ


2r(r − 1)


)r−2


. (3.66)


Using EC,l[〈xi〉t,Nd1 (i) | T] > q1 − δ/(2r(r − 1)) in the r.h.s of (3.66) and using
(3.64) we obtain


R


(
q1 −


δ


2r(r − 1)
, EC,l[〈xi〉t]


)
≥ (Corr(1))2


(
q1 −


δ


2r(r − 1)


)r−2


+ on(1).


(3.67)
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Using the identities ar − br = (a− b)(ar−1 + ar−2b+ · · ·+ br−1) and |R(a, b)−
R(a+ δ′, b)| ≤ 2r(r − 1)|δ′| for |a|, |a+ δ′|, |b| all less than 1, we find


R(a, b) = R
(
a+ δ′, b


)
+R(a, b)−R


(
a+ δ′, b


)
≤ R


(
a+ δ′, b


)
+ 2r(r − 1)|δ′|. (3.68)


We remark that the above inequality holds even if δ′ is negative.
Thus, using 3.68 with a = q1 − δ


2r(r−1)
, b = EC,l[〈xi〉t] and δ′ = δ


2r(r−1)
, we


find


R


(
q1 −


δ


2r(r − 1)
, EC,l[〈xi〉t]


)
≤ R(q1,EC,l[〈xi〉t]) + δ. (3.69)


Combining (3.67) and (3.69) we get


(Corr(1))2
(
q1 −


δ


2r(r − 1)


)r−2


≤ R(q1,EC,l[〈xi〉t]) + δ + on(1). (3.70)


Again, the hypothesis of the theorem allows us to choose d2, n large enough
such that


∣∣EC,l[〈xi〉2l−1
t,Nd2 (i) | T]− q2l−1


∣∣ < δ
2r(r−1)


, for all 1 ≤ l ≤ L− 1. Finally,


choose d to be the larger of d1 and d2.
Using (3.68) for a = q2l−1, b = EC,l[〈xi〉2l−1


t ] and a+δ′ = EC,l[〈xi〉2l−1
t,Nd2 (i) | T]


we get


R
(
q2l−1,EC,l[〈xi〉2l−1


t ]
)
≤ R


(
EC,l[〈xi〉2l−1


t,Nd2 (i) | T] , EC,l[〈xi〉2l−1
t ]


)
+ δ.


Putting everything together we have


1


2l(2l − 1)


∫ 1


t=0


dtR(q2l−1,EC,l[〈xi〉2l−1
t )


≤
∫ 1


t=0


dtR
(
EC,l[〈xi〉2l−1


t,Nd2 (i) | T] , EC,l[〈xi〉2l−1
t


)
+ δ


R(a,b)≤|b−a|2r and (3.62)


≤ 2r


∫ 1


t=0


dt Corr(l) + δ + on(1)


remark after (3.63)


≤ 2r


∫ 1


t=0


dt Corr(1) + δ + on(1)


Cauchy-Schwartz


≤ 2r
(∫ 1


t=0


dt(Corr(1))2
)1/2


+ δ + on(1)


(3.70)


≤ 2r


(q1 − δ)
r−2
2


(∫ 1


t=0


dtR
(
q1,EC,l[〈xi〉t]


))1/2


+
2rδ1/2


(q1 − δ)
r−2
2


+ δ + on(1)


Hyp. of theorem


≤ 4r


(q1 − δ)
r−2
2


δ1/2 + δ + on(1).


Finally, summing over all l ≤ L− 1 and using L ≤ 2
δ1/4


we obtain∫ 1


0


dtR(t) ≤ 4γ


(q1 − δ)
r−2
2


δ1/4 +
2γ


r
δ3/4 + on(1).
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It will be useful in the next chapter to have the following lemma.


Lemma 3.11 (Erasing Checks). Consider transmission over any general BMS
channel using any fixed LDPC code C. Then we have, for any positive integer
p ≥ 1,


El


[
〈xi〉2p


]
≥ El


[
〈xi〉2pC\B


]
,


where xi is any code-bit and the average 〈−〉C\B is w.r.t. the Gibbs measure
obtained by removing a set of parity-check nodes B from the code C.


Proof. This follows immediately from the analysis in the previous proof, by
noticing that the derivative (or the remainder term) when we “erase” any check
node (see (3.53)) is always positive (see (3.60)).


3.E Derivation of (3.15)


Due to the continuity of ∆n(γ
r
, p̄) with respect to p̄, we can bound the difference


|∆n(
γ


r
, p̄− δ)−∆n(


γ


r
, p̄)| ≤ O(δ). (3.71)


Since δ can be made as small as wanted, it is sufficient to show that ∆n(γ
r
, p̄)


goes to zero in the limit n→ +∞, for p = pRS.
Computation of ∆n(., .) can be done exactly because it does not involve


any code constraints. From (3.15) we have


∆n(
γ


r
, p̄) =


1


n
E
[
lnZ(0,


γ


r
, p̄)− lnZ(0, 0, p̄)


]
=


1


n
E
[
ln
〈
e
γ
r
n(mr−rp̄r−1m+(r−1)p̄r)


〉
0


]
=
γ


r
(r − 1)p̄r +


1


n
E
[
ln
〈
e
γ
r
n(mr−rp̄r−1m)


〉
0


]
. (3.72)


Above, 〈−〉0 is the Gibbs average associated to the partition function Z(0, 0, p̄).
Note that 〈−〉0 has no parity-check constraints. Let us now compute the second
term in (3.72).


1


n
E ln〈e


γ
r
n(mr−rp̄r−1m)〉0 =


1


n
E ln


∑
x


en
γ
r
mr


n∏
i=1


 e(
li
2


+
Pei
a=1


uia
2
− γ
r
rp̄r−1)xi


2 cosh( li
2
)
∏ei


a=1 2 cosh(u
i
a


2
)



− 1


n
E ln


∑
x


n∏
i=1


 e(
li
2


+
Pei
a=1


uia
2


)xi


2 cosh( li
2
)
∏ei


a=1 2 cosh(u
i
a


2
)



=


1


n
E ln


∑
x


en
γ
r
mr+


Pn
i=1 Jixi − E ln


(
2 cosh


( li
2


+


ei∑
a=1


uia
2


))
.
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Where we used


1


n
E ln


∑
x


n∏
i=1


e(
li
2


+
Pei
a=1


uia
2


)xi = E ln
(


2 cosh
( li


2
+


ei∑
a=1


uia
2


))
.


We also introduce the notation Ji = li
2


+
∑ei


a=1
uia
2
− r γ


r
p̄r−1.


Thus, setting p = pRS, we finally obtain


∆n(
γ


r
, p̄RS) =


γ


r
(r − 1)p̄rRS +


1


n
E ln


∑
x


en
γ
r
mr+


Pn
i=1 Jixi − E ln 2 cosh(


li
2


+


ei∑
a=1


uia
2


).


(3.73)


All the spins have independent and identically distributed Ji’s. The spins
are coupled only through the term mr (r− body interactions) which appears
in R(x,m). The following lemma of [96] helps us to convert the r−body
interactions into 2−body interactions.


Lemma 3.12 (S. Korada, N. Macris [96]). For some 0 < θ < 1,


lim
n→∞


1


n
E ln


∑
x


en
γ
r
mr+


Pn
i=1 Jixi = lim


n→∞


1


n
E ln


∑
x


e
Pn
i=1 Jixi


∫ 1


−1


dze
−n1+θ


“
z−


P
xi
n


”2
+n γ


r
zr
.


(3.74)


The square term in the integral in the above lemma can be linearized using


the gaussian identity
√
πe
−n1+θ


“
z−


P
xi
n


”2


=
∫
dye


−y2−2in
1+θ
2


“
z−


P
xi
n


”
y
. With this,


there are only linear terms in the exponent7. As a result, the sum over the
spins, x, can be performed. Then the integral over z is estimated performing
saddle point computations [96]. Thus, combining (3.73) and (3.71), leads us
to the estimate


∆n


(γ
r
, p̄δ
)


=
γ


r
(r − 1)p̄rRS + max


z
f(z) +O(δ) + on(1).


7Note that there will be two integrals in the r.h.s. of (3.74). One over y (obtained via
the gaussian identity) and the one over z. But the integrals can be exchanged (see [96] for
details).







Decay of Correlations:
Low Signal-to-Noise Ratio 4
4.1 Introduction


The study of the behavior of correlations between spins is one of the central
aims of statistical physics [98], [99], [100]. The analysis of the correlations
gives an insight into whether there is a single Gibbs measure describing the
system in the thermodynamic limit or if the measure of the system is a convex
combination of many Gibbs measures (which signals a phase transition in the
system [99], [101], [102], [103]).


In this chapter we will show that a good deal can be learned by looking
at the correlations between code-bits (more precisely the covariance of the
MAP decoder), averaged over the channel outputs. Intuitively, studying the
correlations should tell us how much “information” one code-bit conveys about
another. As we will show, this has an immediate bearing on the performance
of the BP decoder. We will have much more to say about the methods we use,
but let us say at the outset that our aim is to cover a fairly general class of
BMS channels, including the BSC and BIAWGNC.


One of our main results in this chapter is that, for sufficiently high noise,
the correlations between two code-bits of an LDGM code and a class of LDPC
codes decay exponentially fast as a function of the graph distance between
these code-bits. Further the convergence is uniform in the block-length n. The
sparsity of the underlying graph then implies that, if furthermore the decay
rate beats the local expansion of the graph, the asymptotic average MAP-
GEXIT curve can be computed via density evolution. Another interpretation
of this result is that the solutions provided by the replica method of spin glass
theory are exact. For LDGM codes transmitted over the BSC, the decay of
correlations has another consequence. It implies that the limits d, n → +∞
can be exchanged for the computation of the asymptotic average BP-GEXIT
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curve.
For lattice spin systems (e.g. the Ising model) an important criterion that


ensures correlation decay is the Dobrushin’s criterion [104], [99], [62]. The
second most common method is based on suitable expansions in powers of “the
strength of interactions”. There exists a host of such expansions collectively
called “cluster expansions”. In the context of spin systems the historically
first and the simplest such expansion is the so-called “polymer expansion”
[98], [105].


The main rule of thumb is that all these methods work if the spins/code-
bits are weakly interacting. In the language of coding: the methods would
work only for bounded LLRs. However, when we consider transmission over
the BIAWGNC, the LLRs are unbounded. As a result, these methods are not
suitable for the analysis. It turns out that a cluster expansion of Dreifus, Klein
and Perez can be carried out for the case of transmission over the BIAWGNC.
This method was first developed in [101], in the context of lattice systems. We
adapt their expansion to our case of Tanner graphs and demonstrate decay of
correlations.


The rest of the chapter is organized as follows. In Section 4.2 we formulate
the channel models and the encoding schemes. In Section 4.3 we state our
main results for LDGM as well as LDPC codes. The main strategy of the
proofs is also explained there. Section 4.4 contains the proof of correlation
decay and its consequences: computing the asymptotic average MAP-GEXIT
curve via density evolution and exchanging limits of large block-length and
iteration number of computing the average BP-GEXIT. The proof of decay of
correlations for the special class of LDPC code ensemble is provided in Section
4.5. We conclude the chapter in Section 4.6 by some discussion and by pointing
out some open problems. Appendix 4.A derives the cluster expansion, in the
Tanner graph setting, which is used in our proofs.


4.2 Set-Up – Channels and Codes


In this section we introduce the channel models and the codes for which we
will state and prove our main results. We first describe a fairly general class of
BMS channels. This includes the important case of the BIAWGNC. We will
then describe the codes that we use for transmission, namely LDGM codes
and a special class of LDPC codes.


4.2.1 Low SNR Channel Models


Consider a BMS(ε) channel defined by a transition p.d.f. pY |X(y | x) with
inputs x ∈ {−1,+1} and outputs belonging to R̄. In this chapter, it will be
convenient to replace the channel LLR with the half-loglikelihood (1


2
LLR )


l =
1


2
ln


[
pY |X(y|+ 1)


pY |X(y| − 1)


]
, (4.1)







4.2. Set-Up – Channels and Codes 123


which, by abuse of notation, we also denote by l.
Also, we denote the p.d.f. of the 1


2
LLR , assuming that the all-one codeword


was transmitted, by c(l). Recall from Section 1.2 that, the noise parameter
varies in an interval [0, εmax] (εmax is possibly infinite). For example, we have,
εmax = 1


2
for the BSC, εmax = +∞ for the BIAWGNC and εmax = 1 for the


BEC. Note that ε → 0 corresponds to low noise and ε → εmax corresponds to
high noise. We now define the class of channels for which our main results
hold.


Definition 4.1 (Class of Channels – K). A channel belongs to the class K if
it satisfies:


1. The numbers T2p(ε) = d
dε


∫∞
−∞ dl c(l)(tanh l)2p are uniformly bounded with


respect to the positive integer p (p ≥ 1).


2. For any finite m > 0 we have E[em|l|] ≤ cm < +∞.


3. (High noise condition): Set δ(ε,H) = e4H − 1 + P(|l| > H). One can
find H(ε) ≥ 0 such that limε→εmax δ(ε,H(ε)) = 0, where P(·) is the c.d.f.
(associated to c(l)).


Let us give some examples of channels which belong to the class K.


Example 4.1 (BSC). Consider the BSC(ε) with ε ∈ (0, 1
2
). We have


pY |X(y|x) = (1− ε)δ(y − x) + εδ(y + x),


c(l) = (1− ε)δ


(
l − 1


2
ln
[1− ε


ε


])
+ εδ


(
(l − 1


2
ln
[ ε


1− ε


])
. (4.2)


From above we have, (tanh l)2p = (1 − 2ε)2p for all values of l. As a conse-
quence, we obtain


T2p(ε) =
d


dε
[(1− 2ε)2p] = −4p(1− 2ε)2p−1.


It is easy to see that, for any 0 < ε < 1
2
, one can find a constant, which depends


only on ε, which upper bounds T2p for every p ≥ 1. Since E[em|l|] = (1−ε
ε


)
m
2 , the


second condition is also met. Let us turn our attention to the last condition.
If we choose H(ε) = 1


2
ln 1−ε


ε
for ε ∈ (0, 1/2), we find from the distribution c(l)


that P(|l| > H) = 0. As a result, δ(ε,H) = e2 ln
[


1−ε
ε


]
−1, and limε→ 1


2
δ(ε,H) =


0. Let us say a few more words on the high noise condition. The high noise
condition states that we can make the term δ(ε,H) as small as we want, by
making the channel sufficiently bad (ε → εmax). The factor δ(ε,H) appears
in the analysis of the correlation between code-bits. By choosing the channel
noise large enough we gain control over its estimate.
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Example 4.2 (BIAWGNC). The most important example is the BIAWGNC.
Let us show that BIAWGNC ∈ K. We have


pY |X(y|x) =
1√
2πε


exp


(
−(y − x)2


2ε2


)
, c(l) =


ε√
2π


exp


(
−(l − ε−2)2


2ε−2


)
,


dc(l)


dε
=


1√
2π


exp


(
−(l − ε−2)2


2ε−2


)
+


ε√
2π


exp


(
−(l − ε−2)2


2ε−2


)
(ε−3 − εl2). (4.3)


Thus we have


|T2p| ≤
∫ +∞


−∞
dl
∣∣∣dc(l)
dε


∣∣∣
≤ ε−1


∫ +∞


−∞
dl


ε√
2π


exp


(
−(l − ε−2)2


2ε−2


)
+ ε−3


∫ +∞


−∞
dl


ε√
2π


exp


(
−(l − ε−2)2


2ε−2


)
+ ε


∫ +∞


−∞
dl


ε√
2π


exp


(
−(l − ε−2)2


2ε−2


)
l2


= 2(ε−1 + ε−3).


This implies a uniform bound on T2p with respect to p. Since E[em|l|] ≤ E[eml]+
E[e−ml], we use the characteristic function for the Gaussian distribution to get


E[em|l|] ≤ eε
−2(m+m2


2
) + eε


−2(−m+m2


2
) = cm < ∞. Let us test the high noise


condition. Choose H(ε) = ε−3/4. Clearly limε→+∞ e
4H(ε) − 1 = e4ε−3/4 − 1 = 0.


Using the definition of the Q−function, Q(α) = 1√
2π


∫ +∞
α


e−x
2/2dx and the


bound Q(x) ≤ 1
2
e−x


2/2, for x ≥ 0, we find,


P(|l| > H) =
ε√
2π


∫ H


−∞
e−


(l−ε−2)2


2ε−2 dl +
ε√
2π


∫ +∞


H


e−
(l−ε−2)2


2ε−2 dl


≤ 2ε√
2π


∫ +∞


H


e−
(l−ε−2)2


2ε−2 dl


=
2√
2π


∫ +∞


H−ε−2√
ε−2


e−
x2


2 dx


= 2Q
(H − ε−2


√
ε−2


)
≤ e−


(H−ε−2)2


2ε−2


= e−ε
1/2(1−ε−5/4)2/2.


From the above we conclude that limε→+∞ δ(ε,H) = 0.


The case of unbounded likelihoods turns out to be significantly more dif-
ficult than that of bounded ones. For channels, such as the BSC, we could
use the simpler polymer expansion or the Dobrushin theory [99], [62]. But
since we want to also cover the BIAWGNC, we directly use the more powerful
cluster expansion.


Note that the BEC is not contained in the class K. The BEC violates the
second condition. Nevertheless, due to the special nature of this channel our
methods can easily be adapted. We show this in Section 4.4.1.
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Figure 4.1: The variable nodes on the left represent the information bits and
the variable nodes on the right represent the code-bits. The information bits are
denoted by u1, u2, u3 and u4. The code-bits are denoted by x1, x2, x3, x4, x5, x6


and x7.


4.2.2 Codes


We consider transmission over channels belonging to the class K using two
types of codes: LDGM codes and a special class of LDPC codes.


Recall that LDGM codes are constructed from a fixed bipartite graph with
n + m variable nodes and n check nodes. Edges only connect variable and
check nodes. Refer to Figure 4.1 for an illustration. The information bits
u1, ..., um ∈ {−1,+1}m are represented by the variable nodes on the left. The
code-bits, x1, ..., xn are represented by the variable nodes on the right. The
check nodes are numbered in the same manner as the code-bits. Thus, code-bit
i and check node i are fungible. The code-bit xi is obtained by xi =


∏
a∈∂i ua ,


u∂i, i = 1, ..., n. Note that here ∂i denotes the neighborhood of information
bits of the check node i. The design rate of the code R = m


n
is kept fixed.


In the sequel, we will consider the Tanner graph without the variable nodes
on the right (representing the code-bits). See Section 4.4 for details. In this
modified Tanner graph, the check node i has only information bits, ua, as its
neighbors. Recall that the set of neighbors of a variable node a is denoted
by ∂a. Also, ∂i denotes the neighborhood (of information bits) of the check
node i, in the modified Tanner graph. We consider graphs with bounded node
degrees |∂a| ≤ lmax and |∂i| ≤ kmax. As usual, we use Λ(x) and P (x) to denote
the variable and check node degree distributions.


We also consider a special class of LDPC code ensembles, which we define
as follows.


Definition 4.2 (Class of Ensemble of LDPC Codes – K). The ensemble of
LDPC codes K is defined as follows. Consider a code from the standard en-
semble LDPC(n,Λ(x), P (x)) with design rate R = 1− Λ′(1)


P ′(1)
and bounded max-


imum variable and check node degrees. We denote the set of variable nodes
of this code by V. Denote the set of check nodes by C. To every check node
belonging to C, attach a degree-one variable node with probability p. Call the
set of new degree-one variable nodes V1. The set of check nodes which contain
a new degree-one variable node is C1 and the remaining ones are denoted by
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Figure 4.2: A code from the ensemble K is constructed from a standard LDPC
graph, with 7 variable nodes and 4 check nodes denoted by v1, v2, . . . , v7 and
c1, c2, c3, c4, respectively. To each check node in the underlying LDPC code, we
attach a degree-one variable node with probability p. In the figure, w1, w2 and w3


denote the degree-one variable nodes belonging to the set V1. The check nodes
c1, c2 and c4 form the set C1.


C0 = C \ C1. On an average the resulting Tanner graph has n + mp variable


nodes. The design rate of the code is R = 1−(1−R)(1−p)
1+p(1−R)


. See Figure 4.2 for an
illustration.


Note that this LDPC code construction has two kinds of randomness. We
denote by EC, the average with respect to the randomness in the underlying
code ensemble LDPC(Λ, P ). We denote by S = {S1, . . . , Sm} the vector of
Bernoulli(p) random variables. We associate Sa to each check node a where
the value Sa = 1 indicates that a ∈ C1 and Sa = 0 indicates that a ∈ C0. We
will denote the average w.r.t. to the ensemble K by EC,S , ECES.


Recall that we use the Gibbs bracket 〈−〉 to denote the averages with
respect to the a posteriori (MAP) measure when transmitting over a BMS
channel using any of the above codes.


4.3 Main Theorem on Correlation Decay


Before we set out to state our main theorems on the decay of correlations for
the two types of codes mentioned above, we define the notion of self-avoiding
random walks and the graph distance.


Definition 4.3 (Self-Avoiding Walk). Consider a Tanner graph (representing
either an LDGM code or an LDPC code). A self-avoiding walk w between
two variable nodes a and b, belonging to the Tanner graph, is a sequence
v1, c1, v2, c2, . . . , cl, vl+1 of variable nodes (denoted v1, v2, . . . , vl+1) and check
nodes (denoted c1, c2, . . . , cl), such that v1 = a, vl+1 = b, {vm, vm+1} ∈ ∂cm,
and vm 6= vn, cm 6= cn for m 6= n.
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Thus on a self-avoiding walk we do not repeat variable and check nodes. The
length of the walk, denoted by |w|, is the number of edges present in it. If
a = b then the self-avoiding walk from a to b is the trivial walk a. The length
of such a walk is zero.


Clearly, two variable nodes a and b are connected on the Tanner graph, if
and only if there exists a self-avoiding walk from a to b. Also, it is not hard to
see that from any general walk between a and b, we can extract a self-avoiding
walk w, between a and b, which has all its check nodes belonging to the parent
walk (this is done by chopping off all the loops of the general walk).


Definition 4.4 (Graph Distance – dist(A,B)). Consider two non-empty sets
of variable nodes A and B. Let Wab denote the set of all self-avoiding walks
between variable nodes a and b and let WAB = ∪a∈A,b∈BWab. We denote the
graph distance between A and B by dist(A,B) and set it to


dist(A,B) = min
w∈WAB


|w|.


Recall that El denotes the expectation w.r.t. the vector of 1
2
LLR realizations


l. Also, recall that 〈−〉 denotes the average w.r.t. the Gibbs (MAP) measure.


Theorem 4.1 (Decay of Correlations for the MAP Decoder and LDGM
Codes). Consider communication over a channel from the class K at high
enough noise, i.e. εg < ε < εmax, where εg > 0 depends only on lmax and kmax.
Consider transmission using a fixed LDGM code. Then


El


[
|〈xixj〉 − 〈xi〉〈xj〉|


]
≤ c1e


−dist(∂i,∂j)
ξ(ε) , (4.4)


where i and j are any two code-bits, c1 is a positive constant, and ξ(ε) is a
strictly positive constant depending only on ε, lmax and kmax.


Theorem 4.2 (Decay of Correlations for the MAP Decoder and the Ensemble
of Codes K). Consider communication over a channel from the class K. Con-
sider transmission using a code picked from the ensemble K of LDPC codes with
large enough fraction p of the extra degree-one variable nodes, 0 < p0 < p < 1.
Here p0 depends only on lmax and rmax. Let the channel noise ε be high enough,
i.e. εg < ε < εmax, where εg > 0 depends only on p0, lmax and kmax. Then for
i and j belonging to V (c.f. Definition 4.2)


ES,l


[
|〈xixj〉 − 〈xi〉〈xj〉|


]
≤ c1e


−dist(i,j)
ξ(ε) , (4.5)


where c1 is a positive constant and ξ(ε) is a strictly positive constant depending
only on ε, lmax, kmax and p. If i ∈ V1 and j /∈ V1 (j ∈ V1) (c.f. Definition
4.2), then we replace dist(i, j) by dist(∂i, j) (dist(∂i, ∂j)) in (4.5). If both i and
j belong to V1 then the theorem holds with dist(i, j) replaced by dist(∂i, ∂j).
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We first remark that in the above theorem, the “underlying” code from the
ensemble LDPC(Λ(x), P (x)) (c.f. Definition 4.2) remains the same. The ran-
domness is only in the noise realizations and the addition of the extra degree-
one variable nodes.


In the statement of Theorem 4.2, when i ∈ V1, then ∂i is the set of variable
nodes of the underlying LDPC code, which belong to the corresponding check
node. Also, notice that in the above theorem if either i ∈ V1 (j ∈ V1), then
the expectation in (4.5) should be replaced with ES∼i,l (ES∼j ,l), where S∼i


(S∼j) denotes the expectation w.r.t. all S except Si (Sj). If both i and j
belong to the set V1, then the expectation in (4.5) should be replaced with
ES∼ij ,l where S∼ij denotes the expectation w.r.t. all S except Si and Sj. We
also remark that ξ−1(ε) grows with ε→ εmax and also as p→ 1 for the case of
the ensemble K. We furnish the proofs of these theorems in Sections 4.4 and
4.5.


4.3.1 Consequences of Decay of Correlations


We first describe the BP decoder from the point of view of Gibbs measures.
Given a graph G defining a given LDGM or LDPC code with the block-length
n fixed (large), we choose a code-bit i. Construct the computation tree Td(i) of
depth d (even) [23]. This is the universal covering tree truncated at distance d
from node i. We label the variable/check nodes of this tree with labels denoted
by ν. Let π : Td(i)→ G be the projection from the covering tree to the original
graph. A node ν ∈ Td(i) has an image π(ν), and due to the loops in G this
projection is a many to one map: one may have π(ν) = π(ν ′) for ν 6= ν ′. Now,
consider a tree-code defined in the usual way on the tree-graph Td(i). One can
view the BP decoder (d− iterations) for node xi as a MAP decoder for this
tree-code. In other words the BP decoder uses the Gibbs measure on Td(i):
one crucial point is that for this Gibbs measure, the 1


2
LLR attached to the


nodes are no longer independent.
LDGM: Recall from Section 1.7 that the Gibbs measure for LDGM codes is
given by


pU |Y (u | y) =
1


Z


n∏
i=1


eliu∂i . (4.6)


For the LDGM case the measure on the computation tree, Td(i), is


1


ZTd(i)


∏
k∈Td(i)


elπ(k)u∂k , (4.7)


where ZTd(i) is the proper normalization factor. We call 〈−〉BPd the Gibbs
bracket with respect to this measure. The extrinsic BP soft estimate for the
code-bit i is 〈xi〉BP0,d . Recall that the average (with respect to the ensemble)
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MAP-GEXIT function is given by


gn(ε) = EC


[∫
dli
dc(li)


dε
El∼i ln


{
1 + 〈xi〉0 tanh li


1 + tanh li


}]
. (4.8)


Recall that 〈−〉0 denotes the (extrinsic) Gibbs average with li = 0. Also,
recall from (1.18) that we can write the average (with respect to the ensemble)
BP-GEXIT function, for LDGM case as


gBPn,d (ε) = EC


[∫
dli
dc(li)


dε
El∼i ln


{
1 + 〈xi〉BP0,d tanh li


1 + tanh li


}]
. (4.9)


Notice that we have abused the notation to denote the average BP-GEXIT
curve also by gBPn,d (ε). The soft code-bit estimate 〈xi〉BPd can be computed
exactly by summing the spins starting from the leaves of Td(i) all the way
up to the root i. This computation is left to the reader and yields the usual
message passing BP algorithm.


Example 4.3 (MAP-GEXIT for LDGM over BEC). Figure 4.3 shows the
asymptotic average (over code ensemble) MAP-GEXIT curve for the case of
transmission over the BEC using the ensemble LDGM(n,Λ(x) = x3, P (x) =
0.3x + 0.7x3). We also show the asymptotic average BP-GEXIT. Notice that
there is a jump (discontinuity) in the asymptotic average MAP-GEXIT curve
as well as in the asymptotic average BP-GEXIT curve. Away from the jumps
the two curves match.


One of the consequences of our main result on decay of correlations en-
ables us to compute the asymptotic average MAP-GEXIT curve via density
evolution, for large enough erasure fractions (see Corollary 4.1). This can be
seen form the figure, where for large erasure fractions the asymptotic average
MAP-GEXIT and BP-GEXIT match.


Codes from K: Consider now the Gibbs measure associated to a code in the
ensemble K. Under MAP decoding the a posteriori probability distribution of
the input to the channel X = (X1, . . . , XN) given the output Y = (Y1, . . . , YN)
(where N = |V ∪V1| is the block-length of the code) is


p(X|Y ) =
1


Z


∏
a∈C0


1


2
(1 + x∂a)


∏
a∈C1


1


2
(1 + x∂a)


∏
i∈V


elixi
∏
i∈V1


elixi ,


with


Z =
∑
x


∏
a∈C0


1


2
(1 + x∂a)


∏
a∈C1


1


2
(1 + x∂a)


∏
i∈V


elixi
∏
i∈V1


elixi .
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Figure 4.3: This figure illustrates the asymptotic average MAP-GEXIT curve
(dark curve) for the case of transmission over a BEC using the ensemble
LDGM(n,Λ(x) = x3, P (x) = 0.3x+0.7x3). We also show the asymptotic average
BP-GEXIT curve (gray curve). Note that away from the jumps, the curves match.


As usual, hN = 1
N
H(X | Y ). Recall from Section 1.5 that the MAP-GEXIT


is given by


dhN
dε


=
1


N


∑
i∈V


∫
dli
dc(li)


dε
El∼i ln


{
1 + 〈xi〉0 tanh li


1 + tanh li


}
+


1


N


∑
a∈V1


∫
dla


dc(la)


dε
El∼a ln


{
1 + 〈xa〉0 tanh la


1 + tanh la


}
.


Note that l = (l1, . . . , l|V∪V1|) is the vector of 1
2
LLR realizations.


For channels belonging to class K one can show that∫
dli


dc(li)
dε


El∼i ln
{1+〈xi〉0 tanh li


1+tanh li


}
and


∫
dla


dc(la)
dε


El∼a ln
{1+〈xa〉0 tanh la


1+tanh la


}
are bounded.


Taking the average w.r.t. the code ensemble EC,S, using the symmetry of sites
and tail bounds for the Binomial(m, p) distribution, one can show that for
channels belonging to the class K we have


d


dε
EC,S[hN ] =


1


(1 + (1− R)p)
EC,S


[∫
dli
dc(li)


dε
El∼i ln


{
1 + 〈xi〉0 tanh li


1 + tanh li


}]


+
(1− R)p


(1 + (1− R)p)
EC,S


[∫
dla


dc(la)


dε
El∼a ln


{
1 + 〈xa〉0 tanh la


1 + tanh la


}]
+ on(1).


(4.10)


Above, xi denotes a random variable node belonging to the set V and xa
denotes a random variable node in the set V1. Recall that 〈xi〉0(〈xa〉0) denotes
the (extrinsic) Gibbs average with li = 0(la = 0). Again, we get gBPn,d (ε) by
replacing the two soft bit-MAP estimates, 〈xi〉0 and 〈xa〉0 by 〈xi〉BP0,d and 〈xa〉BP0,d
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respectively. The Gibbs measure 〈xi〉BP0,d is obtained from the computation
tree, Td(i), of depth d around the code-bit i in the set V. Similarly, the Gibbs
measure 〈xa〉BP0,d is obtained from the computation tree Td(a) of depth d around
the code-bit a ∈ V1.


Example 4.4 (MAP-GEXIT for Ensemble K over BEC). As an illustra-
tion, Figure 4.4 shows the asymptotic average (over the code ensemble) MAP-
GEXIT curve for LDPC(n,Λ(x) = x3, P (x) = x15, p = 0.9) on the BEC.
The probability of attaching a degree-one variable node is set to p = 0.9. The
asymptotic average MAP-GEXIT curve has been sketched using the Maxwell’s
construction of [106] on the EBP-GEXIT curve given in the parametric form
by(
ε(x),


1


(1 + (1− R)p)
Λ
(
1−(1−ε(x)p)ρ(1−x)


)
+


(1− R)p


(1 + (1− R)p)


(
1−P (1−x)


))
,


where ε(x) is the unique positive real solution of the density evolution equation
(for the erasure fraction emanating from a variable node in the set V) given
by x = ε(1− (1− εp)(1− x)14)2.
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Figure 4.4: This figure illustrates the asymptotic average MAP-GEXIT curve for
the case of transmission over a BEC with LDPC(n,Λ(x) = x3, P (x) = x15, p =
0.9) code ensemble as defined in Section 4.2.2.


The following two corollaries say that the asymptotic average MAP-GEXIT
function can be computed by the density evolution equations in the high noise
regime. They also show that the replica expressions computed at the appro-
priate fixed-point are exact.


Corollary 4.1 (Density Evolution Allows to Compute the Asymptotic Aver-
age MAP-GEXIT for Ensemble of LDGM Codes). Consider communication
over a channel belonging to the class K at high enough noise, i.e. ε′g < ε < εmax


where ε′g depends only on lmax and kmax. Then for the LDGM(Λ, P ) ensemble
we have


lim
n→+∞


gn(ε) = lim
d→+∞


lim
n→+∞


gBPn,d (ε). (4.11)
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Corollary 4.2 (Density Evolution Allows to Compute the Asymptotic Av-
erage MAP-GEXIT for Ensemble K). Consider communication over a chan-
nel from the class K. Consider transmission using the ensemble K of LDPC
codes with large enough fraction p of the extra degree-one variable nodes,
0 < p0 < p < 1. Here p0 depends only on lmax and rmax. Let the channel
noise ε be high enough, i.e. ε′g < ε < εmax, where ε′g > 0 depends only on p0,
lmax and kmax. Then we have


lim
n→+∞


gn(ε) = lim
d→+∞


lim
n→+∞


gBPn,d (ε). (4.12)


The above corollaries extend the results previously known for the BEC [23],
[106], to the class of channels K. Note that the result applies irrespective
whether or not there is a phase transition (e.g a jump discontinuity in the
GEXIT curves): so it applies even in situations where the area theorem [36],
[107] does not allow to prove (4.12). The values obtained for ε′g are in general
worse than those εg obtained in Theorem 4.1. One reason for this is that in
our proof technique to show the exactness of the BP estimate we use the decay
of correlations. We obtain the result only if the decay (of correlations) is fast
enough to beat the expansion of the graph.


Finally, concerning the exchange of limits d, n→ +∞ for the BP algorithm
we prove


Corollary 4.3 (Exchange of Limits for Computing Average BP-GEXIT).
Consider transmission over the BSC(ε) using LDGM(Λ, P ) ensembles with
bounded degrees. For high enough noise, i.e. ε′′g < ε < εmax, with ε′′g depending
only on lmax, kmax, we have


lim
d→+∞


lim
n→+∞


gBPn,d (ε) = lim
n→+∞


lim sup
d→+∞


gBPn,d (ε) = lim
n→+∞


lim inf
d→+∞


gBPn,d (ε). (4.13)


The proof is a simple application of the decay of correlations. We present it
only for the BSC. But it can also be extended to cover any convex combination
of such channels. More generally, as long as c(l) has bounded support that
diminishes as the noise parameter increases (ε → εmax) the present result
applies. The present result complements the recent work [37] which concerns
the bit-error-rate of LDPC codes for message-passing decoders in the regime
where the error rate vanishes (low noise regime).


4.3.2 Proof Strategy


In this section we outline the strategy to prove the above statements. As ex-
plained in the introduction, for LDGM at high noise and for channels with
bounded LLR , (4.5) follows from Dobrushin’s criterion or from the polymer
expansion [98], [99], [62], [108]. These techniques however do not work when
the LLR are unbounded. This is because, roughly speaking, overlapping inter-
actions involve moments E[lm] which can spoil the convergence as m → +∞.
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More physically, what happens is that even in the high noise regime there
always exists, with positive probability, large portions of the graph that are
at low noise (or “low temperature”). This might result in large correlations
between the nodes.


Therefore, we use instead a cluster expansion of Dreifus, Klein and Perez
[101], developed first in the context of lattices, and adapt it to the Tanner
graph setting. This overcomes the “overlapping of moments” problem by or-
ganizing the expansion over self-avoiding random walks on the graph. Since
the walks are self-avoiding, the moment problem does not occur and we can
treat unbounded loglikelihoods.


For LDPC codes the situation is more subtle because of the hard parity-
check constraints. The hard parity-check constraints give an inherently “low
temperature” flavor to the problem. For the moment we have no approach for
dealing with general LDPC ensembles. But for codes in the ensemble K, the
addition of the extra degree-one variable nodes helps create a system which is
a mixture of LDPC type hard check nodes and LDGM type soft check nodes.
If there is a sufficiently large number of soft check nodes, then we can again
provide an estimate of the average correlation via the cluster expansion. We
will see in the concluding remarks of this chapter that this ensemble provides
a possible approach towards proving our results for a more general class of
LDPC codes.


4.4 Proof of Main Theorem for LDGM Codes


In this section we prove Theorem 4.1 and Corollary 4.1. Let us recall here the
Gibbs measure for LDGM codes. We have


pU |Y (u | y) =
1


Z


n∏
i=1


eliu∂i . (4.14)


The code-bit xi, which is transmitted over the channel, equals u∂i. Thus from
(4.14) we see that it will be convenient to think of the LDGM Tanner graph
as consisting of m variable nodes and n check nodes. The variable nodes, as
usual, correspond to the m information-bits u1, . . . , um. Check node i, has
the function eliu∂i associated to it, and corresponds to the code-bit i which is
transmitted over the channel. So in this modified Tanner graph, the variable
nodes corresponding to the code-bits are not present. Refer to Figure 4.5 for
an illustration.


It is convenient to set K = lmaxkmax.


Proof of Theorem 4.1, LDGM. Refer to the Tanner graph of the LDGM code
as described just above (c.f. Figure 4.5). Let Wab denote the set of all self-
avoiding walks between variable nodes a and b and let WAB = ∪a∈A,b∈BWab


(see Figure 4.6). In words, WAB is the set of all self-avoiding walks between
any variable node in A and any variable node in B. Fix some number H > 0.







134 Decay of Correlations: Low Signal-to-Noise Ratio


el7u∂7
el6u∂6
el5u∂5
el4u∂4
el3u∂3
el2u∂2
el1u∂1


u4


u3


u2


u1


Figure 4.5: The figure illustrates the modified LDGM Tanner graph with variable
nodes representing the information-bits, u1, u2, u3 and u4. The number of check
nodes is equal to the block-length. Each check node i has associated to it the
function eliu∂i . Here, li is the LLR value for the code-bit i.


A


B


Figure 4.6: The sets A and B each contain three variable nodes. The light
squares denote the code-bits or check nodes in the complement of B and the
dark squares denote the check nodes in B. The thick path is an example of a
self-avoiding path between A and B. The dashed path is an example of non-
self-avoiding path. As shown in Appendix 4.A, the self-avoiding walks contribute
towards estimating the correlation between the sets A and B.


Denote by B the set of all check nodes i, such that |li| > H. In words, the set
B consists of all check nodes, whose associated “code-bit” has 1


2
LLR greater


than the chosen number H. Recall that 〈−〉 denotes the average w.r.t. the
Gibbs (MAP) measure (c.f. (4.14)). The proof of the following lemma can be
found in Appendix 4.A.


Lemma 4.1 (Bound on the Correlation). Consider an LDGM code with bounded
left and right degree. Consider two sets of variable nodes A and B. We have∣∣∣∣〈∏


a∈A


ua
∏
b∈B


ub


〉
−
〈∏
a∈A


ua


〉〈∏
b∈B


ub


〉∣∣∣∣ ≤ 2
∑


w∈WAB


∏
i∈w


ρi, (4.15)
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where the product
∏


i∈w is over all the check nodes of the self-avoiding walk w.
Above,


ρi =


{
1, i ∈ B,
e4|li| − 1, i /∈ B.


Averaging over the noise realization in (4.15) we get


El


∣∣∣∣〈∏
a∈A


ua
∏
b∈B


ub


〉
−
〈∏
a∈A


ua


〉〈∏
b∈B


ub


〉∣∣∣∣ ≤ 2
∑


w∈WAB


∏
i∈w


Eli [ρi]. (4.16)


In the r.h.s. of the above inequality, we took the expectation inside the product
because each w ∈ WAB is a self-avoiding walk. As a result, all the check nodes
on the walk are distinct and hence all the corresponding 1


2
LLR are independent


random variables.
Now,


Eli [ρi] = Eli


[
ρi | i /∈ B


]
P
(
i /∈ B


)
+ Eli


[
ρi | i ∈ B


]
P
(
i ∈ B


)
≤ (e4H − 1) + P


(
|l| > H


)
= δ(ε,H). (4.17)


Since we consider transmission over a channel chosen from the class of
channels K, condition (3) of the Definition 4.1 implies that we can choose
H = H(ε) such that K(δ(ε,H(ε)))1/2 < 1.


As a consequence, we get


El


∣∣∣∣〈∏
a∈A


ua
∏
b∈B


ub


〉
−
〈∏
a∈A


ua


〉〈∏
b∈B


ub


〉∣∣∣∣ ≤ 2
∑


w∈WAB


(
δ(ε,H)


)|w|/2
≤ 2|A||B|


∞∑
d=dist(A,B)


(K(δ(ε,H))1/2)d


≤ 2|A||B|
1−K(δ(ε,H))1/2


(K(δ(ε,H))1/2)dist(A,B). (4.18)


The second inequality is obtained by noticing that the number of self-avoiding
random walks of length |w|, with the same initial node, is bounded by K |w|.
Also, we have that the factor δ(ε,H) is raised to a 1/2, because a walk of
length |w| (which is the number of edges present in the walk) has |w|/2 check
nodes. The factor |A||B| accounts for the number of initial and final vertices.
The correlation decay of the theorem is in fact a special case of this last bound
for the choice A = ∂i and B = ∂j for the check nodes i and j (associated to
code-bits i and j respectively).
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4.4.1 Exactness of BP Estimate


We now look at GEXIT functions of the MAP and BP decoders. For LDGM
codes recall from (1.17) that the average MAP-GEXIT function is given by


gn(ε) = EC


[∫
dli
dc(li)


dε
El∼i ln


{
1 + 〈xi〉0 tanh li


1 + tanh li


}]
. (4.19)


The average BP-GEXIT curve is given by the same function with 〈xi〉0
replaced by 〈xi〉BP0,d . Recall that 〈xi〉BP0,d corresponds to the estimate provided
by the BP decoder after d iterations. Consider Nd(i), the neighborhood of node
i of radius d, an even integer (all the vertices at graph distance less or equal
to d from i). As is well known for an LDGM(Λ, P ) ensemble with bounded
degrees, given d, if n is large enough, the probability that Nd(i) is a tree is


1 − O(γ
d


n
) (where γ depends only on lmax and kmax). Thus when d is fixed


and n → +∞ the computation tree Td(i) and the neighborhood Nd(i) match
with high probability. This implies that the asymptotic average BP-GEXIT
function is given by


lim
n→+∞


gBPn,d (ε) = EC


[∫
dli
dc(li)


dε
El∼i ln


{
1 + 〈xi〉0,Nd(i) tanh li


1 + tanh li


}
∣∣∣Nd(i) is a tree


]
, (4.20)


where 〈xi〉0,Nd(i) is the Gibbs bracket associated to the subgraph Nd(i). The
right hand side can computed exactly by performing the statistical mechanical
sums on a tree and it yields the density evolution formulas


lim
d→+∞


lim
n→+∞


gBPn,d (ε) = lim
d→∞


∫
dl
dc(l)


dε
E∆(d)


[
ln


{
1 + tanh ∆(d) tanh l


1 + tanh l


}]
,


(4.21)


where both limits exist and E∆(d) is expectation w.r.t. the random variable
∆(d), given by


∆(d) = tanh−1


( k∏
i=1


tanh v
(d)
i


)
. (4.22)


The v
(d)
i are i.i.d. random variables with distribution obtained from the itera-


tive system of density evolution equations


η(d)(v) =
∑
l


λl


∫ l−1∏
i=1


dui η̂
(d)(ui)δ(v −


l−1∑
i=1


ui), (4.23)


η̂(d)(u) =
∑
k


ρk


∫
dlc(l)


k−1∏
a=1


dva η
(d−1)(va)δ(u− tanh−1(tanh l


k−1∏
i=1


tanh va),


(4.24)
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with the initial condition η(0)(v) = δ(v). Note that the degree k in (4.22)
is random with distribution P (x). Recall that these equations are also an
iterative version of the stationary point equation of the replica solution.


Remark 4.1. Note that for a LDGM code the BP decoder fails to start and
is always stuck at the trivial fixed-point δ(v). But for an LDGM code with
an arbitrary small fraction of degree-one check nodes, the BP decoder goes to
a non-trivial fixed-point. Thus this corollary gives a non-trivial result when
the fraction of degree-one check nodes present in the LDGM code ensemble is
non-zero.


Proof of Corollary 4.1. We want to prove that


lim
n→+∞


gn(ε) = lim
d→+∞


lim
n→+∞


gBPn,d (ε).


Recall that the Gibbs bracket 〈−〉0 denotes the Gibbs average when the 1
2
LLR


li is not present. Since we are considering the limit n→ +∞, we have 〈xi〉BP0,d =
〈xi〉0,Nd(i) for any fixed d. Thus, in order to prove the corollary, we would like
to prove that 〈xi〉0 ≈ 〈xi〉0,Nd(i). The idea is to use the decay of correlations
to prove that


〈xi〉0 = 〈xi〉0,Nd(i) + od(1).


Taking the limit d→ +∞ allows us then to prove the corollary.
Let us make these informal statements more precise. Note that the MAP


estimate, 〈xi〉0 appears in the logarithm in the average MAP-GEXIT (c.f.
(4.19)). This makes it quite cumbersome to handle. So we first expand the
logarithm (in both the numerator and the denominator) using log(1 + z) =∑


p=1
(−1)p+1zp


p
for |z| ≤ 1 to find


gn(ε) = EC


[∫
dli
dc(li)


dε
El∼i


{∑
p=1


(−1)p+1


p


((
〈xi〉0 tanh li


)p
−
(


tanh li


)p}]


= EC


[∑
p=1


(−1)p+1


p


(∫
dli
dc(li)


dε


(
tanh li


)p)(
El∼i


[
〈xi〉p0


]
− 1


)]


where we used that the 1
2
LLR li does not appear in 〈−〉0.


We now use the following Nishimori identities (see 2.A.2)


El∼i
[
〈xi〉2p0


]
= El∼i


[
〈xi〉2p−1


0


]
Eli


[
(tanh li)


2p
]


= Eli


[
(tanh li)


2p−1
]
⇒


dEli


[
(tanh li)


2p
]


dε
=
dEli


[
(tanh li)


2p−1
]


dε
,


to combine the even and odd terms in the sum over p. Thus we obtain,


gn(ε) =
Λ′(1)


P ′(1)


+∞∑
p=1


T2p(ε)


2p(2p− 1)


(
EC,l∼i [〈xi〉


2p
0 ]− 1


)
, (4.25)
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for the MAP-GEXIT for any BMS channel. We recall that


T2p(ε) =
d


dε


∫ +∞


−∞
dl c(l)(tanh l)2p. (4.26)


Recall that for the class K that we consider here, the condition (1) in Definition
4.1 implies that T2p is uniformly bounded in p. Also, |EC,l∼i [〈xi〉


2p
0 ] − 1| < 2.


As a result, the series (4.25) behaves like the series
∑


p
1
p2


which is uniformly


convergent. Thus the series (4.25) is absolutely convergent, uniformly with
respect to n, for the class K. Thus by dominated convergence, the proof will
be complete if we show that for every p,


lim
n→+∞


EC,l∼i
[
〈xi〉2p0


]
= lim


d→+∞
lim


n→+∞
EC,l∼i


[
〈xi〉2p0,Nd(i)|Nd(i) is a tree


]
. (4.27)


Indeed one can then compute the n → +∞ limit term by term in (4.25) and
then resum the resulting series (which is again absolutely convergent, uniformly
with respect to d) to obtain (4.20). Since we consider codes with bounded
maximum degrees we have limn→+∞ EC,l∼i


[
〈xi〉2p0


]
= limn→+∞ EC,l∼i


[
〈xi〉2p0 |


Nd(i) is a tree
]
. Thus it is enough to show


lim
n→+∞


EC,l∼i
[
〈xi〉2p0 |Nd(i) is a tree


]
= lim


d→+∞
lim


n→+∞
EC,l∼i


[
〈xi〉2p0,Nd(i) | Nd(i) is a tree


]
. (4.28)


Notice that all paths connecting the node i with those outside Nd(i) have a
length at least equal to d, so because of Theorem 4.1 in the high noise regime
xi is very weakly correlated to the complement of Nd(i). Therefore we may
expect that (4.28) holds.


Let us formally prove (4.28). Recall that N̊d(i) is the boundary of checks
that are at distance d from i. We order the checks ∈ N̊d(i) in a given (arbitrary)
way, and call 〈−〉0;≤k the Gibbs average with lk = 0 for the k first checks of


N̊d(i) (and li = 0 for the root node). For the first one (call it 1) we use
el1x1 = (cosh l1 + x1 sinh l1) to get


〈xi〉0 = 〈xi〉0;≤1 +
tanh l1


(
〈xix1〉0;≤1 − 〈xi〉0;≤1〈x1〉0;≤1


)
1 + 〈x1〉0;≤1 tanh l1


. (4.29)


Therefore


|〈xi〉2p0 − 〈xi〉
2p
0;≤1| ≤ 2p|〈xi〉0 − 〈xi〉0;≤1|


≤ 2p t1|〈xix1〉0;≤1 − 〈xi〉0;≤1〈x1〉0;≤1|, (4.30)


where


tk =
| tanh lk|


1− | tanh lk|
. (4.31)
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We remark that when |lk| → +∞, the factor tk diverges.We can now take the
second check of N̊d(i) (call it 2) and show


|〈xi〉2p0;≤1 − 〈xi〉
2p
0;≤2| ≤ 2p t2|〈xix2〉0;≤2 − 〈xi〉0;≤2〈x2〉0;≤2|. (4.32)


We can repeat this argument for all nodes of N̊d(i) and use the triangle in-
equality to obtain


|〈xi〉2p0 − 〈xi〉
2p
0,Nd(i)| ≤ 2p


∑
k∈N̊d(i)


tk|〈xixk〉0;≤k − 〈xi〉0;≤k〈xk〉0;≤k|. (4.33)


Indeed the Gibbs average with all lk = 0 for all k ∈ N̊d(i) is equal to 〈xi〉0,Nd(i).
Now using the bound (4.18) in the proof of Theorem 4.1 for K(δ(ε))1/2 < 1,
the last inequality implies


EC,l∼i
[
|〈xi〉2p0 − 〈xi〉


2p
0,Nd(i)| | Nd(i) tree


]
≤ 4pr2


maxE[t]


1−K(δ(ε))1/2
Kd(K(δ(ε))1/2)d.


(4.34)


Note that since we are considering channels from the class K, we use the
condition (2) of Definition 4.1 to get


E[t] = E
[
| tanh l|


1− | tanh l|


]
≤ E[e2|l|] <∞. (4.35)


The right hand side of (4.34) does not depend on n, so it is immediate that
limd→+∞ limn→+∞ vanishes as long as the noise is high enough such that
K2δ(ε) < 1. This is again possible because of the condition (3) of Defini-
tion 4.1, which allows us to make δ(ε) as small as desired. This proves (4.27)
and the corollary.


To conclude, let us remark that, for the BIAWGNC the GEXIT formulas
simplify considerably and there is a clear relationship to the magnetization,


gn(ε) =
1


ε3
(
1− El[〈xi〉]


)
=


1


ε3
(1− El[tanh(l + tanh−1〈xi〉0)]), (4.36)


and our corollary gives


lim
d→+∞


lim
n→+∞


gBPn,d (ε) =
1


ε3
(
1− El,∆(d)


[
tanh(l + ∆(d))


])
. (4.37)


The proof of Corollary 1 for the BIAWGNC can thus proceed without expan-
sions and is slightly simpler. Next, we show that for the BEC there are similar
simplifications and this allows us to make a proof which avoids the second
condition in the class K.
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Example 4.5 (Computations for the BEC). For the BEC the factor δ(ε,H(ε)) =
e4H −1 +P(|l| > H), for any H > 0 equals e4H −1 + (1− ε). So we can choose
ε, H such that K(δ(ε,H))1/2 < 1 and we can argue exactly as in the proof of
Theorem 4.1 in Section 4.4 to prove the correlation decay in this case also. To
get a feel of the numbers H, εg, it is easy to check that for all ε > 1− 1


4K2 , εg


and for any H < 1
4


ln
(


1 + 1
4K2


)
, we have K(δ(ε,H))1/2 < 1.


To prove the exactness of the BP estimate for the case of BEC, we have from
(2.26),


gn(ε) = ln 2(1− EC,l[〈xi〉0])


= ln 2
(
1− EC,l


[
〈xi〉0 | Nd(i) is a tree


])
+ on(1).


We now proceed exactly as in (4.29), use the GKS inequality (〈x1〉0;≤k ≥ 0) to
bound


tanh lk
1 + 〈x1〉0;≤k tanh lk


≤ 1,


and conclude the Corollary 4.1 for the BEC as well.


4.4.2 Large Block Length Versus Large Number of
Iterations for Computing BP-GEXIT


In the LDGM case we prove the exchange of limits d, n → +∞ for the BSC
channel. As will become clear one needs the decay of correlations (or co-
variance) of the Gibbs measure on the computation tree for d � n. Hence
the likelihoods are not independent r.v.: the proof of Theorem 4.1 still goes
through in the case of the BSC when we consider the computation tree instead
of the Tanner graph. Indeed, in Lemma 4.1 we can take H > 1


2
ln 1−ε


ε
such


that B = ∅ and ρπ(j) = e4|lπ(j)| − 1 = 4|1−2ε|
(1−|1−2ε|)2 for all j ∈ Td(i).


Lemma 4.2 (Decay of Correlations for the BP decoder, LDGM on BSC). Con-
sider communication with a fixed LDGM code with block-length n and bounded
degrees lmax and kmax, over the BSC(ε). We can find c > 0, a small enough nu-
merical constant, such that for lmaxkmax|1−2ε| < c we have, for any realization
of the channel outputs,


|〈xixj〉BPd − 〈xi〉BPd 〈xj〉BPd | ≤ c1e
−c2(ε)dist(∂i,∂j), (4.38)


where i is the root code-bit of the computation tree, j and arbitrary code-bit,
c1 > 0 a numerical constant and c2(ε) > 0 depending only on ε, lmax, kmax.
Moreover, c2(ε) increases like ln |1− 2ε| as ε→ 1


2
.


We remark the Tanner graph in this case should also be thought of in the same
way as in Section 4.4 Basically, this result is contained in [62] where it is ob-
tained by Dobrushin’s criterion. Note that it is valid for fixed noise realizations
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and not only on average. The unbounded case would require to take averages
but then, on the computation tree one has to control moments E[ρπ(i)m] and
this requires more work. The following proof is a simple application of this
lemma.


Proof of Corollary 4.3. We consider d � n iterations of the BP decoder. We
consider the subtree of root i and depth d′ � n on the computation tree Td(i).
This subtree is a smaller computation tree Td′(i) ⊂ Td(i) and d′ � n� d. Let
T̊d′(i) be the boundary of check nodes k with dist(i, k) = d′ and order them
in an arbitrary way. Consider the Gibbs measure 〈−〉BPd;≤k where for the first k


checks of T̊d′(i) we set lπ(k) = 0 in (4.7). Proceeding as in Section 4.4 we get


|〈xi〉BPd − 〈xi〉BPd′ | ≤
∑


k∈T̊d′ (i)


tπ(k)|〈xixk〉BPd;≤k − 〈xi〉BPd;≤k〈xk〉BPd;≤k|. (4.39)


For the BSC, tπ(k) = |1−2ε|
1−|1−2ε| . From Lemma 4.2, for |1− 2ε| small enough (but


independent of n, d)


|〈xi〉BPd − 〈xi〉BPd′ | = O(Kd′e−c2(ε)d′). (4.40)


In this equation O(−) is uniformly bounded with respect to n and d (and the
noise realizations of course). Recall the GEXIT function of the BP decoder


gn,d(ε) =
Λ′(1)


P ′(1)


∫
dli
dc(li)


dε
EC,l∼i


[
ln


{
1 + 〈xi〉BP0,d tanh li


1 + tanh li


}]
. (4.41)


Since for |1 − 2ε| � 1 we have | tanh li| = 1
2
| ln 1−ε


ε
| � 1, one can easily show


(by following same arguments as in the proof of Corollary 4.1 done in the
previous section 4.4.1: by expanding the ln in powers of | tanh li| and estimate
the series term by term.)


gn,d(ε) = gn,d′(ε) +O(Kd′e−c2(ε)d′). (4.42)


Now since O(−) is uniformly bounded with respect to n, d, (4.42) implies for
d′ fixed


lim
n→+∞


lim inf
d→∞


gn,d(ε) = lim
n→+∞


gn,d′(ε) +O(Kd′e−c2(ε)d′). (4.43)


Now we take the limit d′ → +∞,


lim
n→+∞


lim inf
d→∞


gn,d(ε) = lim
d′→+∞


lim
n→+∞


gn,d′(ε). (4.44)


A similar result with lim sup replacing lim inf is derived in the same way.
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4.5 Proof of Main Theorem for the Ensemble K


of LDPC Codes


In this section we first prove Theorem 4.2 on the decay of correlations and
then its implication in the form of the Corollary 4.2. Recall that the partition
function for a code picked from the ensemble K is given by


Z =
∑
x


∏
a∈C0


1


2
(1 + x∂a)


∏
a∈C1


1


2
(1 + x∂a)


∏
i∈V


elixi
∏
i∈V1


elixi .


We make the following crucial observation. Consider a check node a ∈ C1 and
its associated degree-one variable node. Together their contribution to the
Gibbs measure is given by


(1+x1x∂a\1
2


)
el1x1 , where x1 denotes the degree-one


variable node ∈ V1. It is not hard to see that the effective contribution of this
combination is given by


el1x∂a\1 .


Indeed,
(1+x1x∂a\1


2


)
is non-zero if and only if x1 = x∂a\1. One more way to


see this is that, in deriving the cluster expansion (see Appendix 4.A), we
can sum out the degree-one variable nodes in V1, in both the numerator and
denominator of equation (4.64), in an independent manner. We thus obtain
the previous claim by noticing that


∑
x1


(1 + x1x∂a\1
2


)
el1x1 = el1x∂a\1 . (4.45)


Remark 4.2. With above observation, any code from our ensemble K, is ba-
sically a mixture of “LDGM-type” soft checks (those belonging to C1) and
“LDPC-type” hard checks (those belonging to C0).


Proof of Theorem 4.2, LDPC. We prove the main theorem for i and j both
belonging to V (c.f. Definition 4.2). We again refer to Section 4.4, and view
the Tanner graph for a code from ensemble K in a similar manner (each check
node a in C1 is associated with the function el1x∂a\1 (c.f. (4.45)) and the
variable nodes corresponding to the code-bits in V1 are not present in the
modified Tanner graph).


We make use of the bound on the correlation provided by the Lemma 4.1.
We choose the set B of check nodes as follows. We put all the check nodes
belonging to the set C0, in the set B. These are all the hard parity-check
constraints. We also include in the set B, all those check nodes a ∈ C1, for
which the absolute value of the associated LLR (c.f. (4.45)) is greater than some
constant H. With this, we find in the bound of Lemma 4.1, ρa = e|4la| − 1 ≤
e4H − 1 for a /∈ B and ρa = 1 for a ∈ B.
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Applying now the correlation decay Lemma 4.1, for A = i and B = j
(where i, j are any two code-bits belonging to V), we obtain


El


[
〈xixj〉 − 〈xi〉〈xj〉|] ≤ 2El


[ ∑
w∈Wij


∏
c∈w


(
(e4H − 1)11(c /∈ B) + 11(c ∈ B)


)]
,


where 11(·) is the indicator function. Using the definition of the set B in our
case, we write the indicator function explicitly as,


11(c ∈ B) = 11(c ∈ C1, |lc| > H) + 11(c ∈ C0),


= 11(|lc| > H) 11(c /∈ C0) + 11(c ∈ C0). (4.46)


Now since the walks are self-avoiding, all the check nodes in a given path
are independent and we can take the expectation w.r.t. the noise inside the
product yielding


El


[
|〈xixj〉 − 〈xi〉〈xj〉|


]
≤ 2


∑
w∈Wij


∏
c∈w


([
(e4H − 1) + P(|lc| > H)


]
11(c /∈ C0) + 11(c ∈ C0)


)
≤ 2


∑
w∈Wij


∏
c∈w


(
δ(ε,H)11(c /∈ C0) + 11(c ∈ C0)


)
(4.47)


≤ 2
∑
w∈Wij


∏
c∈w


(
δ(ε,H) + 11(c ∈ C0)


)
,


where we use δ(ε,H) , e4H − 1 + P(|lc| > H). In the first inequality we used
(4.46) coupled with the fact that since C0 ⊆ B, we have 11(c /∈ B) ≤ 11(c /∈ C0).
In words, if a check node does not belong to B, then it cannot belong to C0.
Now taking the average w.r.t. the randomness in S we find


ESEl


[
|〈xixj〉 − 〈xi〉〈xj〉|


]
≤ 2


∑
w∈Wij


∏
c∈w


(
δ(ε,H) + ES[11c∈C0(c)]


)
= 2


∑
w∈Wij


(
δ(ε,H) + 1− p


)|w|/2
≤ 2


∑
d≥dist(i,j)


(
K


[
δ(ε,H) + 1− p


]1/2)d
,


where we again upper bound the number of walks of length d with the same
initial node by Kd. In the first inequality we could take the expectation w.r.t.
S inside the product, because each check node has a degree-one variable node
attached to itself independent of any other check node. For our class K, we
can choose ε and p to be large enough such that K[δ(ε,H(ε)) + (1− p)]1/2 < 1
(c.f. the condition (3) of Definition 4.1). As a result, we get


ESEl


[
|〈xixj〉 − 〈xi〉〈xj〉|


]
=


2
(
K[δ(ε,H(ε)) + 1− p]1/2


)dist(i,j)


1−K[δ(ε,H(ε)) + 1− p]1/2
,
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proving the decay of correlation theorem.


4.5.1 Exactness of BP Estimate


Arguing on the same lines as in Section 4.4.1, we have the average BP-GEXIT,
for fixed d and in the limit n→ +∞, is given by,


lim
n→+∞


gBPn,d (ε) =


1


(1 + (1− R)p)
EC,S


[ ∫
dli
dc(li)


dε
El∼i


{
ln


(
1 + 〈xi〉0,Nd(i) tanh li


1 + tanh li


)}]
+


(1− R)p


(1 + (1− R)p)
EC,S


[ ∫
dla


dc(la)


dε
El∼a


{
ln


(
1 + 〈xa〉0,Nd(a) tanh la


1 + tanh la


)}]
.


(4.48)


From (4.48) and arguing on the same lines as in Section 4.4.1 we get


lim
d→+∞


lim
n→+∞


gBPn,d (ε) =


lim
d→+∞


{
1


(1 + (1− R)p)


∫
dl
dc(l)


dε
E


∆
(d)
0


[
ln


(
1 + tanh ∆


(d)
0 tanh l


1 + tanh l


)]


+
(1− R)p


(1 + (1− R)p)


∫
dl
dc(l)


dε
E


∆
(d)
1


[
ln


(
1 + tanh ∆


(d)
1 tanh l


1 + tanh l


)]}
, (4.49)


where E
∆


(d)
0


(E
∆


(d)
1


) denotes the expectation w.r.t. ∆
(d)
0 (∆


(d)
1 ), where the


random variables ∆
(d)
0 and ∆


(d)
1 are given by


∆
(d)
1 = tanh−1


( k∏
i=1


tanh v
(d)
i


)
,


∆
(d)
0 =


l∑
i=1


u
(d)
i . (4.50)


The v
(d)
i are i.i.d. random variables with distribution obtained from the itera-


tive system of density evolution equations


η̂(d)(u) =
∑
k


ρk


{
p


∫
dlc(l)


k−1∏
i=1


dviη
(d−1)(vi)


× δ
(
u− tanh−1


(
tanh l


k−1∏
i=1


tanh vi
))


+ (1− p)


×
∫ k−1∏


i=1


η(d−1)(vi)δ
(
u− tanh−1


( k−1∏
i=1


tanh vi
))}


, (4.51)


η(d)(v) =
∑
`


λ`


∫
dlc(l)


`−1∏
c=1


ducη̂
(d)(uc)δ(v − l −


l−1∑
c=1


uc), (4.52)
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where c(l) denotes the distribution of the 1
2
LLR assuming transmission of the


all zero codeword. The initial condition is η(0)(v) = c(v). Here η(d)(v) is the
density of messages from a variable node in V to a check node and η̂(d)(u) the
density of messages from a check node to a variable node in V. Note that
in (4.50), the degrees l and k are random with distributions Λ(x) and P (x)
respectively.


To prove our main theorem we utilize the following lemma. It is stated for
a variable node belonging to V but is also valid for a variable node belonging


to V1. Recall that K = lmaxrmax. Define α = ln (K−1)K−1


(1−p)pK−1KK we have,


Lemma 4.3 (Existence of Soft Boundary). Pick a code in the ensemble K


and a node i ∈ V u.a.r. Take an integer L > lnK
α


, a depth d and consider
the two neighborhoods Nd(i) and N(L+1)d(i). The integer L is to be considered
large enough but fixed and not depending on d and n. With high probability
1 − on,d(1) these two neighborhoods are trees and there exists a check node


boundary B̊S between N̊d(i) and N̊(L+1)d(i) such that all the check nodes in B̊S


belong to the set C1. Here on,d(1) is a function of d, n which goes to zero as
n→ +∞ followed by d→ +∞.


Proof. The fact that the neighborhoods are tree like with high probability
is well known for sparse graphs (see for example [23]). The existence of a
boundary B̊S of soft checks follows from the standard analysis of a Birth-Death
process and is presented in Appendix 4.B.


Let us denote the graph, enclosed by the boundary B̊S (which includes the
root variable node i), by BS.


Proof of Corollary 4.2. As in the proof of Corollary 4.1, we will be done if (c.f.
(4.10))


lim
n→+∞


EC,S,l∼i
[
〈xi〉2p0


]
= lim


d→+∞
lim


n→+∞
EC,S,l∼i


[
〈xi〉2p0,Nd(i)|Nd(i) is a tree


]
(4.53)


lim
n→+∞


EC,S,l∼a
[
〈xa〉2p0


]
= lim


d→+∞
lim


n→+∞
EC,S,l∼a


[
〈xa〉2p0,Nd(a)|Nd(a) is a tree


]
(4.54)


We provide the proof for the first term in (4.53) (estimate for variable nodes
in V), since for the other one all arguments are similar.


Consider a code-bit xi ∈ V and the neighborhoods Nd(i), N(L+1)d(i) around
it, where L is the same constant as in Lemma 4.3. Let us denote T the event
that N(L+1)d(i) is a tree. Since this is a high probability event for bounded
degree distributions we have,


EC,S,l∼i [〈xi〉
2p
0 ] = EC,S,l∼i [〈xi〉


2p
0 | T] + on(1).


Let S denote the set of all S such that there exists a boundary between N̊d(i)
and N̊(L+1)d(i) such that all the check nodes in the boundary belong to C1.
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From the previous lemma we know that P(S) ≥ 1− on,d(1). Thus we have


EC,S,l[〈xi〉2p0 ] = EC,S,l[〈xi〉2p0 | T,S] + on,d(1),


Let us now compute EC,S,l[〈xi〉2p0 | T,S]. For a S ∈ S, let us denote the


boundary1 which contains only check nodes belonging to C1, by B̊S. Recall
that for any check node c in the boundary B̊S the effective contribution of
1
2
(1 + x1x∂c\1)el1x1 to the Gibbs measure is given by el1x∂c\1 .


As in the proof in the case of LDGM codes in Section 4.4.1, we order the
checks belonging to B̊S in a given (arbitrary) way, and call 〈−〉0;≤k the Gibbs


average with lk = 0 for the k first checks of B̊S (and li = 0 for the root node).
For the first one (call it 1) we again use el1x1 = (cosh l1 + x1 sinh l1) to get


〈xi〉0 = 〈xi〉0;≤1 +
tanh l1


(
〈xix1〉0;≤1 − 〈xi〉0;≤1〈x1〉0;≤1


)
1 + 〈x1〉0;≤1 tanh l1


. (4.55)


We repeat this argument for all check nodes of B̊S to obtain


|〈xi〉2p0 − 〈xi〉
2p
0,BS
| ≤ 2p


∑
k∈B̊S


tk|〈xixk〉0;≤k − 〈xi〉0;≤k〈xk〉0;≤k|, (4.56)


where tk is defined in (4.31). Indeed the Gibbs average with all lk = 0 for all
k ∈ B̊S is equal to 〈xi〉0,BS .


Proceeding as in the proof of the correlation decay Theorem 4.2 (c.f. (4.47))
we get


El∼k |〈xixk〉0;≤k − 〈xi〉0;≤k〈xk〉0;≤k|


≤ 2
( ∑
w∈Wik


∏
c∈w


[
δ(ε,H)11(c /∈ C0) + 11(c ∈ C0)


])
, (4.57)


where B, δ(ε,H) are the same as defined in the proof of Theorem 4.2 on decay
of correlations.


Now we consider the average w.r.t. the randomness in S. Since we restrict
the random vector S to lie in S we “lose” the randomness in the region between
N̊d(i) and N̊(L+1)d(i) (but fortunately the number of such check nodes on any
self-avoiding path of any length l is upper bounded by Ld). Thus for check
nodes belonging to this intermediate region we bound [δ(ε,H)11(c /∈ C0)+11(c ∈
C0)] by 1. As a result, for any self-avoiding path w we have∏
c∈w


[
δ(ε,H)11(c /∈ C0) + 11(c ∈ C0)


]
≤


∏
c∈w


c/∈N(L+1)d(i)\Nd(i)


[
δ(ε,H)11(c /∈ C0) + 11(c ∈ C0)


]
.


1There can be many soft boundaries between Nd(i) and N(L+1)d(i). We choose any one
of them for the purpose of our analysis and call is B̊S .
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Now taking expectation, w.r.t. the randomness in S ∈ S, of the r.h.s. of
(4.57), we get


2ES


[ ∑
w∈Wik


∏
c∈w


c/∈N(L+1)d(i)\Nd(i)


(
δ(ε,H)11(c /∈ C0) + 11(c ∈ C0)


)
| S
]


(a)


≤ 2
∑
w∈Wik


∏
c∈w


c/∈N(L+1)d(i)\Nd(i)


(
δ(ε,H) + ES


[
11(c ∈ C0) | S


])


= 2
∑
w∈Wik


∏
c∈w


c/∈N(L+1)d(i)\Nd(i)


(
δ(ε,H) + 1− p


)


≤ 2
∑


l≥(L+1)d


K l
([
δ(ε,H) + 1− p


]1/2)l−Ld
+


(L+1)d∑
l=d


K l
([
δ(ε,H) + 1− p


]1/2)d
,


(4.58)


where in (a) we used the fact that any check node c /∈ N(L+1)d(i)\Nd(i) belongs
to C0 independent of any other check node, with the probability 1 − p. We
also utilize the fact that along any self-avoiding walk w we have distinct check
nodes. In the last inequality we did several things. Firstly, we upper bound the
total number of paths of length l with the same initial node by K l. Secondly,
for paths with length l ≥ (L+1)d we do not consider the check nodes belonging


to N(L+1)d(i) \Nd(i) which gives
(
[δ(ε,H) + 1− p]1/2


)l−Ld
as a contribution of


such paths. Finally, for paths with length l ≤ Ld we do not consider check


nodes outside Nd(i), which results in a contribution of
(
[δ(ε,H) + 1 − p]1/2


)d
by such paths. The power of 1/2 arises because the number of check nodes in
a path of length |l| is equal to |l|/2.


Choose p > 1− 1
2(K2)2(L+1) and ε such that δ(ε,H(ε)) < (1− p). This would


imply that
√


2(1− p)K2(L+1) < 1. Putting all together, from (4.56), we get


EC,S,l∼i [|〈xi〉
2p
0 − 〈xi〉


2p
0,BS
| | T,S] ≤ 4pE[t]


(
K2(L+1)


√
2(1− p)


)d
×
( 1


1− (K
√


2(1− p))
+ Ld


)
,


(4.59)


where we bound the number of check nodes in the boundary B̊S by K(L+1)d


and the second sum in (4.58) by LdK(L+1)d(
√


2(1− p))d. Since for the class
K, the term E[t] is bounded (c.f. condition (3) of Definition 4.1), we find that
the r.h.s in the above inequality is less than ζd for some ζ < 1.


We will be done if we can show that


lim
d→+∞


lim
n→+∞


EC,S,l∼i
[
〈xi〉2p0,BS | T,S


]
= lim


d→+∞
lim


n→+∞
EC,S,l∼i


[
〈xi〉2p0,Nd(i) | T,S


]
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To evaluate EC,S,l∼i
[
〈xi〉2p0,BS | T,S


]
, it is sufficient to compute EC,S,l∼i


[
〈xi〉2p0,BS |


T
]
. Indeed, since P(Sc) ≤ on,d(1) and |〈xi〉2pBS | ≤ 1 we have


EC,S,l∼i
[
〈xi〉2p0,BS | T


]
= EC,S,l∼i


[
〈xi〉2p0,BS | T,S


]
+ on,d(1).


Define


〈xi〉2p0,B =


{
〈xi〉2p0,N(L+1)d(i), S /∈ S,
〈xi〉2p0,BS , S ∈ S.


Arguing as above we also have
∣∣EC,S,l∼i [〈xi〉2p0,BS ]− EC,S,l∼i [〈xi〉


2p
0,B]
∣∣ ≤ on,d(1).


Applying Lemma 3.11 in Appendix 3.D of Chapter 3, we get


EC,S,l∼i
[
〈xi〉2p0,Nd(i) | T


]
≤ EC,S,l∼i


[
〈xi〉2p0,B | T


]
≤ EC,S,l∼i


[
〈xi〉2p0,N(L+1)d(i) | T


]
. (4.60)


Since L is a constant which depends only on code parameters, taking the
limit d→ +∞ in (4.60) we obtain the result.


For the BIAWGNC the average MAP-GEXIT formula simplifies to


d


dε
EC,S[hN ] =


1


ε−3(1 + (1− R)p)


(
1− EC,S


[
〈xi〉


])
+


(1− R)p


ε−3(1 + (1− R)p)


(
1− EC,S


[
〈xa〉


])
+ on(1),


Thus our corollary implies that, for high enough noise, the two soft code-bit
MAP estimates can be computed using the density evolution equations as


lim
n→+∞


EC,S,l
[
〈xi〉


]
= lim


d→+∞
E
l,∆


(d)
0


[
tanh


(
l + ∆


(d)
0


)]
,


lim
n→+∞


EC,S,l
[
〈xa〉


]
= lim


d→+∞
E
l,∆


(d)
1


[
tanh


(
l + ∆


(d)
1


)]
,


where ∆
(d)
0 and ∆


(d)
1 are defined in (4.50).


4.6 Discussion and Open Questions


In this chapter we have shown that cluster expansion techniques of statistical
mechanics are a valuable tool for the theory of error correcting codes on graphs.
We showed that for high enough noise regimes of a fairly general class of BMS
channels and the MAP decoder, the average correlation between any two code-
bits decays exponentially with their graph distance. We showed this result for
two class of codes, namely LDGM codes with bounded maximum degrees and
the ensemble of LDPC codes, K. As an important consequence we showed that
the asymptotic average MAP-GEXIT function can be computed via density
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evolution equations. In other words, we showed that the replica solution is
exact.


There are several open issues here. Firstly, it would be nice to extend our
results to a wider class of channels. Secondly, we were able to show decay
of correlations and consequently the exactness of the replica solution only for
small regimes of noise. We believe that the limitedness of the regime of noise
in which we could prove our results is an artifact of our techniques and that
the correlation should decay in a larger regime.


We have not investigated the regimes of low noise for LDGM codes. In
this regime there will be very large areas of “singularity” (equivalently the
set B will be very large). As a result, the cluster expansion technique we
use here would fail to give us any meaningful estimate. Nevertheless, we still
believe that the correlations should decay exponentially in the low noise regime
also. Indeed one can argue informally as follows. Consider transmission over
the BIAWGNC using any fixed LDGM code. For any noise variance of the
gaussian channel we can write, using our sum-rule technique, for the special
case of the BIAWGNC,


EC,l[〈xi〉] = EC,l[〈xi〉Nd(i)] + 2EC
∑


k∈N̊d(i)


∫ ∞
ε


dν


ν3
El[
(
〈xixk〉≤k − 〈xi〉≤k〈xk〉≤k


)2
].


Empirically2 for large block-lengths, we know that the BP estimate is equal
to the MAP estimate for some values of noise even in the low noise regime.
Combining this observation with the above sum-rule we conclude that the
correlations vanish. In fact the correlation decay is strong enough to even
kill the local graph expansion. It would be interesting to determine if the
BP threshold signals a change in the nature of decay of correlations (of the
MAP decoder). This would relate the BP decoder and the MAP decoder in
an intimate manner, different from the Maxwell’s construction of [36].


In the case of LDPC codes and high noise we are able to prove decay of
correlations for the special ensemble of LDPC codes defined by K. This is the
only example known to us for which such a rigorous derivation is made beyond
the BEC with non-combinatorial methods. In fact one can extend this result for
any LDPC code ensemble that contains a sufficient fraction of degree one vari-
able nodes. This would include the Poisson-LDPC code ensemble. We do not
present the result here as the computations are technically involved. The idea
behind the proof was to eliminate the degree-one nodes and convert the prob-
lem to a new graphical model containing a mixture of hard parity-check con-
straints and soft LDGM type weights. We then show the decay of correlations if
the density of soft check nodes is high enough. This method of “summing” out
the degree-one variable nodes to convert a low-temperature problem (LDPC)
to a high temperature problem (LDGM) resembles the renormalization-group


2For BEC we in fact can prove that the BP estimate is equal to the MAP estimate in
the large block-length limit for low noise regime [23], [18], [19], [106].
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technique of statistical mechanics. It would be interesting to see if the “sum-
ming” out technique can be applied to a larger class of LDPC codes. For
example, one could “sum out” the degree two variable nodes. A potential
hurdle in this approach is that the degrees of check nodes in the resulting
graph can increase unbounded. Dobrushin and Bassalygo [109] also developed
a technique to show uniqueness of Gibbs measure in a random spin-glass with
large values of the spin-spin interactions. In their technique one also “con-
verts” the low temperature system to a high temperature system at the price
of unbounded degrees.


One of the consequences of the decay of correlations was the proof of the
equivalence of limn→+∞ limd→+∞ and limd→+∞ limn→+∞ while evaluating the
average BP-GEXIT function, in the high noise regime for the case of transmis-
sion over the BSC channel. Firstly, it would be nice to extend this result to
the more general case of channels with unbounded LLR , like the BIAWGNC.
Recently it was shown in [37], that the limits of large block-length and iter-
ation number can be exchanged for computing the bit-error rate of the BP
decoder. This was shown for various message-passing algorithms for the case
of transmission over general BMS channels. Their result holds only in the
regime of noise where the bit-error rate vanishes, i.e. in the low noise regime.
We point out that although the BP-GEXIT function and the bit-error rate
of BP decoder are related, at the moment our techniques do not extend to
the case of bit-error rate. More precisely, the BP-GEXIT function is a “soft”
estimate and the bit-error rate is a “hard” estimate which makes its analysis
more complicated. Thus a second goal here would be to see if one could extend
our methods to prove the exchange of limits for computing the bit-error rate
of the BP decoder in the high noise regime.


We hope that the ideas and techniques investigated in the present work will
have other applications in coding theory and, more broadly, random graphical
models. We mentioned in Section 1.6 of Chapter 2, that decay of correlation
was crucially used in the investigation of the random k-SAT problem at low
constraint density in [58]. This has allowed the authors to prove that the
replica symmetric solution is exact at low constraint density. It is not hard
to show that the decay of correlations which we show is stronger than the
worst case decay of correlation used by Montanari and Shah in [58]. We
hope that this analysis can be extended to the random k-satisfiability problem
and counting the number of independent set problem, as mentioned in the
Section 1.6 of Chapter 1. More precisely, suppose we are able to associate
an appropriate Gibbs distribution to the above mentioned problems. And
suppose we consider an ensemble of graph/formulas from which we pick a
graph/formula uniformly at random. Then demonstrating that the correlations
of the form E


[
|〈xixj〉−〈xi〉〈xj〉|


]
decay exponentially with the graph distance,


could help improve the range of the parameters for which the results for the
above problems hold (see [58], [59]).


As mentioned in Section 1.6 of Chapter 1, in [55], [56] the authors derive
a new type of expansion called “loop expansion” in an attempt to compute
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corrections to BP equations. The link to traditional cluster expansions is
unclear, and also it would be interesting to develop rigorous methods to control
the loop expansions.
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4.A Cluster Expansion for LDGM Codes


Here we adapt the cluster expansion of Dreifus, Klein and Perez in [101] to
our setting of Tanner graphs. In the process we prove Lemma 4.1 stated in
Section 4.4. Using the notation u∂i =


∏
a∈∂i ua for i = 1, ..., n, we find that


the correlation (of Lemma 4.1) becomes


〈uAuB〉 − 〈uA〉〈uB〉. (4.61)


It is first necessary to rewrite the Gibbs measure (4.6) in a form such that the
exponent is positive


1


Z


m∏
i=1


elixi =
1


Z ′


m∏
i=1


eliu∂i+|li|, (4.62)


where Z ′ is the appropriately modified partition function. Notice that with
this modification we do not change any averages, since the added factors will
be canceled. We introduce the replicated measure, which is the product of two
identical and independent copies,


1


Z ′2


m∏
i=1


eli(u
(1)
∂i +u


(2)
∂i )+2|li|. (4.63)


Thus we now have two replicas of the information-bits u
(1)
1 , ..., u


(1)
m and u


(2)
1 , ..., u


(2)
m .


The Gibbs bracket for the replicated measure is denoted by 〈−〉12. It is not
hard to see that


〈uAuB〉 − 〈uA〉〈uB〉 =
1


2
〈(u(1)


A − u
(2)
A )(u


(1)
B − u


(2)
B )〉12. (4.64)


Indeed, expand the r.h.s. of (4.64) to obtain


1


2
〈(u(1)


A − u
(2)
A )(u


(1)
B − u


(2)
B )〉12 =


1


2
〈(u(1)


A u
(1)
B + u


(2)
A u


(2)
B − u


(1)
A u


(2)
B − u


(2)
A u


(1)
B )〉12


Using the linearity of the Gibbs bracket we get


1


2
〈(u(1)


A − u
(2)
A )(u


(1)
B − u


(2)
B )〉12 =


1


2


(〈
u


(1)
A u


(1)
B


〉
12


+
〈
u


(2)
A u


(2)
B


〉
12


)
− 1


2


(〈
u


(1)
A u


(2)
B


〉
12


+
〈
u


(2)
A u


(1)
B


〉
12


)
.


From (4.63) we see that〈
u


(1)
A u


(1)
B


〉
12


=
〈
u


(1)
A u


(1)
B


〉
1


=
〈
uAuB


〉
,〈


u
(2)
A u


(2)
B


〉
12


=
〈
u


(2)
A u


(2)
B


〉
2


=
〈
uAuB


〉
.


Note that we have dropped one of the replicas in the Gibbs averages in the
second equality above.
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Also, since the replicated measure is a product measure (c.f. (4.63)), we
have 〈


u
(1)
A u


(2)
B


〉
12


=
〈
u


(1)
A


〉
1


〈
u


(2)
B


〉
2


=
〈
uA
〉〈
uB
〉
,〈


u
(2)
A u


(1)
B


〉
12


=
〈
u


(2)
A


〉
2


〈
u


(1)
B


〉
1


=
〈
uA
〉〈
uB
〉
.


Thus combining all of the above we find (4.64).
Recall that B = {i | |li| > H} for some fixed number H, and set


eli(u
(1)
∂i +u


(2)
∂i )+2|li| − 1 = Ki. (4.65)


It will be important to keep in mind later that Ki ≥ 0. Expanding the product∏
i∈Bc(1 +Ki) we find


1


2
〈(u(1)


A − u
(2)
A )(u


(1)
B − u


(2)
B )〉12


=
1


2Z ′2


∑
u(1),u(2)


fAfB
∏
i∈B


eli(u
(1)
∂i +u


(2)
∂i )+2|li|


∏
i∈Bc


(1 +Ki)


=
1


2Z ′2


∑
u(1),u(2)


fAfB
∏
i∈B


eli(u
(1)
∂i +u


(2)
∂i )+2|li|


∑
G⊆Bc


∏
i∈G


Ki


=
1


2Z ′2


∑
G⊆Bc


∑
u(1),u(2)


fAfB
∏
i∈B


eli(u
(1)
∂i +u


(2)
∂i )+2|li|


∏
i∈G


Ki, (4.66)


where fX = u
(1)
X − u


(2)
X , X = A,B and G is any subset of distinct check nodes


of the set Bc.
Take a term with given G ⊆ Bc in the last sum. We say that “G connects A


and B” if and only if there exist a self-avoiding walk3 wab with initial variable
node a ∈ A, final variable node b ∈ B and such that all check nodes of wab
are in G∪B4. The crucial point is that: if a set G does not connect A and B,
then it gives a vanishing contribution to the sum. We defer the proof of this
fact to the end of this section. For the moment let us show that it implies the
bound in Lemma 4.1.


Consider a self-avoiding walk wab connecting A to B and lying entirely in
G ∪ B. Note that there can be many such self-avoiding walks. We split the
contribution of G ∪ B, for a given G, as follows∏


i∈B


eli(u
(1)
∂i +u


(2)
∂i )+2|li|


∏
i∈G


Ki =
∏
i∈B


eli(u
(1)
∂i +u


(2)
∂i )+2|li|


∏
i∈wab\B


Ki


∏
i∈G′


Ki,


3See Section 4.4 for the definition of these walks.
4Note that it is really G ∪ B that connects A and B. Since B is fixed our definition is


valid
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where it is easy to see that G′ ⊂ Bc \ wab. Thus using the positivity of Ki we
have


|〈uAuB〉 − 〈uA〉〈uB〉|


≤ 2


Z ′2


∑
G⊆Bc


G connects A and B


∑
u(1),u(2)


∏
i∈B


eli(u
(1)
∂i +u


(2)
∂i )+2|li|


∏
i∈G


Ki


≤ 2


Z ′2


∑
w∈WAB


∑
G′⊆Bc\w


∑
u(1),u(2)


∏
i∈B


eli(u
(1)
∂i +u


(2)
∂i )+2|li|


∏
i∈w\B


hi
∏
i∈G′


Ki, (4.67)


where in the first inequality we use the trivial bound |fX | ≤ 2 for both X =
A,B. In the second inequality we used Ki ≤ e4|li| − 1 ≡ hi for i ∈ w \ B. Now
resumming over G′ ⊆ Bc \ w we obtain


|〈uAuB〉 − 〈uA〉〈uB〉|


≤ 2


Z ′2


∑
w∈WAB


∏
i∈w\B


hi
∑


u(1),u(2)


∏
i∈B


eli(u
(1)
∂i +u


(2)
∂i )+2|li|


∏
i∈Bc\w


(1 +Ki). (4.68)


Inserting extra terms (1 +Ki) ≥ 1 for i ∈ w \ B we find


|〈uAuB〉 − 〈uA〉〈uB〉| (4.69)


≤ 2


Z ′2


∑
w∈WAB


∏
i∈w\B


hi
∑


u(1),u(2)


∏
i∈B


eli(u
(1)
∂i +u


(2)
∂i )+2|li|


∏
i∈w\B


(1 +Ki)
∏


i∈Bc\w


(1 +Ki)


= 2
∑


w∈WAB


∏
i∈w\B


hi. (4.70)


The last equality follows by reconstituting Z ′2 in the numerator. Indeed, for
any walk we have


∏
i∈B


eli(u
(1)
∂i +u


(2)
∂i )+2|li|


∏
i∈w\B


(1 +Ki)
∏


i∈Bc\w


(1 +Ki) =
n∏
i=1


eli(u
(1)
∂i +u


(2)
∂i )+2|li|.


Using


2
∑


w∈WAB


∏
i∈w\B


hi = 2
∑


w∈WAB


∏
i∈w


ρi,


where ρi = 1 for i ∈ B and ρi = hi for i /∈ B we get the bound (4.15).
It remains to explain why, if G does not connect A and B, the G-term does


not contribute to (4.66). Let ∂G ∪ ∂B be the set of variable nodes connected
to the check nodes G∪B. We define a partition ∂G∪∂B = VA∪VC ∪VB into
three sets of variable nodes. VA is the set of all variable nodes v ∈ ∂G ∪ ∂B
such that there exist a self-avoiding walk wav connecting some a ∈ A to v, and
such that all check nodes of wav are in G ∪ B. VB is similarly defined with B
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A


B


VC


VA


VB


Figure 4.7: In the figure we show a part of the graph representing a LDGM code.
The set B is depicted by the dark squares. The set G ⊆ Bc is depicted by the light
squares. A and B contain both three nodes and are demarcated by the continuous
curves. From the figure we see that there does not exist a self-avoiding walk that
connects A to B with all its check nodes in G ∪ B. The sets of variable nodes
VA, VB and VC are disjoint as well as the sets of check nodes GA, GB and GC :
these sets are enclosed in the dotted areas.


and b ∈ B instead of A. Finally VC = (∂G∪∂B)\(VA∪VB). By construction
VC ∩ VA = VC ∩ VB = ∅. The point is that if G does not connect A and
B, then VA ∩ VB = ∅. Indeed, otherwise there would be a u ∈ VA ∩ VB


with a walk wau and a walk wub both with all check nodes in G ∪ B, but this
would mean that G connects A and B through the walk wau ∪ wub. We also
define three sets of check nodes CA = (G ∪ B) ∩ ∂VA, CB = (G ∪ B) ∩ ∂VB


and CC = (G ∪ B) \ (GA ∪ GB). Again the three sets are disjoint when G
does not connect A and B: indeed if there exists c ∈ CA ∩ CB then ∂c has an
intersection with both VA and VB which would again imply that G connects
A and B. This situation is depicted in Figure 4.7.


Now we examine a term of (4.66) for a G that does not connect A and
B. Expanding the product fAfB and using linearity of the bracket, the term
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equals
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II =
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Because of the disjointness of the sets VA, VB and VC and the sets CA, CB
and CC (the areas enclosed in dotted lines, see Figure 4.7) one can, in I and
II, factor the sums


∑
u(1),u(2) in a product of three terms (in fact there is a


fourth trivial term which is a power of 2 coming from the bits outside the
dotted areas) as
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,


where for convenience we drop the dependence on u(1), u(2) of Hi. Then by
symmetry (1) ↔ (2) one recognizes that I = II. Thus I − II = 0 and this
proves that G does not contribute to (4.66) when it does not connect A and
B.


4.B Existence of Soft Boundary


In this appendix we prove Lemma 4.3. This lemma is crucial for us to apply
the sum-rule to relate the MAP and BP estimates. Let us point out that the
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(L + 1)d


d


xi


Nd(i)


N(L+1)d(i)


N̊(L+1)d(i)


N̊d(i)B̊0


B̊S


Figure 4.8: Figure shows the two tree neighborhoods Nd(i), N(L+1)d(i) as well


as their boundaries N̊d(0), N̊(L+1)d(i). Check nodes belonging to C1 are shaded
black and those belonging to C0 are white. We also show the irregular boundary
B̊S consisting of only “soft” check nodes belonging to C1 and lying between the
two neighborhoods.


notion of the boundary is to be thought of as a set of check nodes, which when
appropriately “removed” would separate the region “inside” the boundary from
the one “outside”.


Proof. Since we consider codes with bounded maximum degrees, from standard
arguments [23] the neighborhood N(L+1)d(i) is a tree with high probability.
Pick a code randomly from the ensemble K such that N(L+1)d(i) is a tree
and consider a variable node i in V. Consider the check nodes belonging to
N̊d(i). We define the following process of finding the required “soft” boundary
B̊S consisting only of check nodes belonging to the set C1. Initially we set
boundary B̊S = B̊0 , {c|c ∈ N̊d(i) and c ∈ C1}. In words, consider the check
nodes in the boundary N̊d(i), belonging to the set C1, as the initial constituents
of the soft boundary.


Next, pick a check node c ∈ N̊d(i) \ B̊0. Traverse down along all possi-
ble paths emanating from c till we hit a check node belonging to C1 on all
the possible paths. We include all these check nodes belonging to C1 in our
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boundary B̊S. Now pick another check node c ∈ N̊d(i)\ B̊0 and follow down all
the possible paths originating from this check node, till we encounter a “soft”
check node. Again include all these “soft” check nodes in B̊S. Continue this
process for all the check nodes in N̊d(i) \ B̊0. At the end we have our soft
boundary B̊S. The region enclosed by B̊S, containing the root variable node
i, is denoted by BS. Clearly, if we “remove” all the check nodes from B̊S we
would end up disconnecting BS from the rest of the graph.


We now associate the following Birth-Death (B-D) process, independently
to each check node in the set N̊d(i)\B̊0. This would model the above procedure
for finding the soft-boundary. We say that a check node is “alive” if it has no
degree-one variable node belonging to V1 attached to it and “dead” otherwise.
A check node is alive with probability 1 − p and dead with probability p.
At each time, an alive check node gives rise to the next generation of check
nodes and then dies. The number of check nodes fathered by any check node
is given by (l − 1)(r − 1), where l corresponds to the variable node degree
and r is the check node degree. Initially there is only one alive check node
(∈ N̊d(i) \ B̊0). It gives rise to a random number of check nodes and then dies.
The B-D process continues like this till the time becomes Ld + 1, at which
we stop the B-D process, irrespective of whether there are alive check nodes
at that time. If the B-D process stops before reaching time Ld + 1, then we
say that the B-D process dies naturally. Suppose that all the B-D processes,
running parallely for all check nodes in N̊d(i) \ B̊0, stop naturally. Then we
claim that we would have found our boundary of soft check nodes. Indeed,
the soft-boundary consists of all the dead check nodes from every B-D process.
Also, this soft-boundary would clearly lie between N̊d(i) and N̊(L+1)d(i). Also,
since the B-D processes are independent, we have the region enclosed by the
boundary to be a tree.


Let us give a bound on the probability that a single B-D process does not
stop naturally, i.e., the extinction time is strictly greater than Ld. Let Yt−1


denote the number of alive check nodes at time t−1. Let Zt denote the number
of alive check nodes generated at time t by one alive check node at time t− 1.
Thus the number of alive check nodes at time t is given by Yt = Yt−1 +Zt− 1.
Here Zt is distributed as Binomial


(
(r− 1)(l− 1), 1− p


)
. Thus from standard


arguments [110], [111], [112] we have


P(T > Ld) ≤ P(YLd > 0) = P(Z1 + Z2 + · · ·+ ZLd ≥ Ld).


From the Markov inequality and the independence of {Zi}, we have for
s ≥ 0,


P(Z1 + Z2 + · · ·+ ZLd ≥ Ld) ≤ E[es(Z1+Z2+···+ZLd)]e−sLd


= (E[esZ1 ])Lde−sLd


(a)
= El,r


[
(p + es(1− p))Ld(l−1)(r−1)


]
e−sLd


(b)


≤ (p + es(1− p))LdKe−sLd,
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where in (a) we used the characteristic function of a Binomial
(
(r−1)(l−1), 1−


p
)


distribution. In (b) we use s ≥ 0 to find p + es(1 − p) ≥ 1, which gives us
the inequality since (l−1)(r−1) ≤ K. Above, El,r denotes expectation w.r.t.
the degrees l and r which are distributed as Λ(x) and P (x) respectively.For
p > 1 − 1


K
the B-D process extincts in finite time. Also, it is not hard to see


that for p > 1− 1
K


, setting s = ln
(


p
(1−p)(K−1)


)
minimizes the above bound and


we get


P(T > Ld) ≤ e−Ldα,


where α = ln (K−1)K−1


(1−p)pK−1KK > 0.


Since |N̊d(i) \ B0| ≤ Kd, and each check node c ∈ N̊d(i) \ B0 gives rise to
an independent and identical B-D process, the probability that all the B-D
processes extinct within time Ld is lower bounded by


P(all birth-death processes are extinct within depth Ld)


=
[
1− P(T > Ld)


]|N̊d(i)\B0|


≥ (1− e−αLd)Kd


.


Note that since L > lnK
α


, the probability that all birth-death processes are
extinct within depth Ld is lower bounded by 1− od(1).











Decay of Correlations:
High Signal-to-Noise
Ratio 5
5.1 Introduction


In this chapter we study the correlations between code-bits of an LDPC code
when transmitting over general BMS channels in the low noise regime.


The Gibbs measures associated with the optimal decoder of LDPC codes
confront us with new challenges which invalidate the direct use of the standard
methods. For example it is easy to see that the standard Dobrushin type
methods [99], [62] fail due to the presence of hard parity-check constraints.
As seen in the last chapter, for the high noise regime we were able to convert
the problem, in the special case of LDPC code ensemble with large fraction
of degree one variable nodes, to a spin-glass containing a mixture of soft and
hard constraints for which appropriate cluster expansions can be applied to
show decay of correlations. The low noise regime which is our interest here is
a truly “low-temperature” spin-glass problem for which all the above methods
fail. Our method entails transforming LDPC codes to a dual one that involves
“negative weights”. As a result we cannot proceed by probabilistic methods
and we resort to cluster expansion techniques different from those employed
in the previous chapter.


The rest of the chapter is organized as follows. In the next section we set-up
our channel models and encoding schemes. In Section 5.3 we state our main
result on decay of correlation and its corollary for computing the asymptotic
average MAP-GEXIT via the density evolution equations. Before going on
to prove our main theorem, we present duality formulas for LDPC codes in
Section 5.4. The duality idea coupled with cluster expansion technique allows
us to prove our main theorem in Section 5.5. In Section 5.6 we sketch our main
application of our result to the asymptotic average MAP-GEXIT function.
We prove that in the low noise regime where the average correlation decays
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(fast enough) the asymptotic average MAP-GEXIT function can be exactly
computed from the density evolution analysis. These curves remain non-trivial
all the way down to zero noise as long as there are degree one variable nodes
(e.g Poisson LDPC codes). This proves that a non-trivial replica solution is
the exact expression for the conditional entropy of a class of LDPC codes
(containing a fraction of degree one variable nodes) on our class of general
channels. Previously the result was known only for the BEC [23], [18], [19],
[113], [114], [106], [115] and for a class of codes in the high noise regime as
shown in the previous chapter. We end the chapter with some discussion and
open problems. Appendix 5.D contains the derivation of the cluster expansion
for LDPC codes.


5.2 Set-Up – Channels and Codes


In this section we describe the high SNR channel models (low noise regime)
for which we will state and prove our results. The class of channels that we
define here is essentially the same as the one in Chapter 4, except for the
high noise condition. Consider a BMS(ε) channel defined by a transition p.d.f.
pY |X(y | x) with inputs x ∈ {−1,+1} and outputs belonging to R̄. As in the
previous chapter, we use the 1


2
LLR convention. The 1


2
LLR is given by


l =
1


2
ln


[
pY |X(y|+ 1)


pY |X(y| − 1)


]
, (5.1)


We denote the distribution of the 1
2
LLR , under the all-one codeword assump-


tion, by c(l). As usual the noise value varies in the interval [0, εmax] where
εmax = 1


2
for the BSC, εmax = +∞ for the BIAWGNC and εmax = 1 for the


BEC. We now define the general class of channels for which our main results
hold.


Definition 5.1 (Class of Channels – K). A channel belongs to the class K of
BMS channels if it satisfies:


1. The numbers T2p(ε) = d
dε


∫∞
−∞ dl c(l)(tanh l)2p are bounded uniformly with


respect to the positive integer p (p ≥ 1).


2. For any finite m > 0 we have E[em|l|] ≤ cm < +∞.


3. (Low noise condition) There exists s0 > 0 small enough such that for
0 < s ≤ s0 we have limε→0 E[e−sl] = 0.


Notice that the first and second condition are exactly the same as in the
definition of class of general BMS channels in the previous chapter. The only
change is the modification of the high noise condition to a low noise condition.


Let us provide some examples of the channels which belong to this class.
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Example 5.1 (BSC). Consider the BSC(ε) with ε ∈ (0, 1
2
). We recall from


the previous chapter that


pY |X(y|x) = (1− ε)δ(y − x) + εδ(y + x),


c(l) = (1− ε)δ


(
l − 1


2
ln
[1− ε


ε


])
+ εδ


(
l − 1


2
ln
[ ε


1− ε


])
. (5.2)


As seen from the Example 4.1 in Section 4.2, the first two conditions are met.
Let us turn our attention to the low noise condition. From the expression for
the 1


2
LLR distribution we get


E[e−sl] = ε
s
2 (1− ε)1− s


2 + (1− ε)
s
2 ε1−


s
2 .


As a consequence, as long as 0 < s < 2, we get limε→0 E[e−sl] = 0. Thus the
low noise condition is satisfied.


Example 5.2 (BIAWGNC). This example shows that our class of channels,
K, covers the BIAWGNC. Recall from Section 4.2 that the transition p.d.f,
pY |X(y | x), and the 1


2
LLR distribution c(l), assuming the all-one codeword


transmission are given by,


pY |X(y|x) =
1√
2πε


exp


(
−(y − x)2


2ε2


)
, c(l) =


ε√
2π


exp


(
−(l − ε−2)2


2ε−2


)
. (5.3)


Again the first two conditions are met as shown in Example 4.2. All that
remains is the low noise condition. Using the characteristic function formula
for the gaussian distribution we find


E[e−sl] = e−sε
−2+ s2ε−2


2


= e−sε
−2(1− s


2
).


Clearly, for any 0 < s < 2 we have limε→0 E[e−sl] = 0, thus satisfying the low
noise condition.


Note that the BEC is not contained in the class K because of the second
condition. Nevertheless, due to the special nature of this channel our methods
can easily be adapted.


Codes


We use for transmission a fixed LDPC code or a code picked u.a.r. from a
standard LDPC(Λ(x), P (x)) ensemble with bounded maximum degrees.


Recall the definition of graph distance dist(i, j) provided by Definition 4.4
in Chapter 4. Also, recall that El denotes the expectation w.r.t. the output
LLRs denote by the vector l. Further recall that El∼i denotes the expectation
w.r.t. all output LLRs except li. We are now ready to state our main theorem
on decay of correlations.
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5.3 Main Theorem on Correlation Decay


Theorem 5.1 (Decay of Correlations for the MAP Decoder and LDPC codes).
Consider transmission using a fixed LDPC code with bounded maximum degrees
lmax and rmax. Consider communication over a channel, from the class of
channels K, at low enough noise, i.e., 0 < ε < εg, where εg > 0 depends only
on lmax and rmax. Then for any two code-bits with dist(i, j) > 4lmax we have


El


[
|〈xixj〉 − 〈xi〉〈xj〉|


]
≤ c1e


−dist(i,j)
ξ(ε) , (5.4)


where c1 is a finite positive numerical constant and ξ(ε) is a strictly positive
constant depending only on ε, lmax and rmax.


We will find that ξ−1(ε) grows as ε → 0. Before we set out to prove this
theorem, let us look at an important consequence.


5.3.1 Consequence of Decay of Correlation


Recall from 1.7 that the average MAP-GEXIT for any standard LDPC(Λ(x), P (x))
code ensemble is given by


gn(ε) = EC


[∫
dli
dc(li)


dε
El∼i ln


{
1 + 〈xi〉0 tanh li


1 + tanh li


}]
.


As in Section 4.3.1 from Chapter 4, we define the soft code-bit estimate of the
BP decoder after d iterations as the Gibbs average on the computation tree,
Td(i) of depth d. Recall that the average with respect to this Gibbs measure
is denoted by 〈−〉BPd . Thus the BP-GEXIT function is given by


gBPn,d (ε) = EC


[∫
dli
dc(li)


dε
El∼i ln


{
1 + 〈xi〉BP0,d tanh li


1 + tanh li


}]
. (5.5)


The following corollary to the main theorem states that the asymptotic
average MAP-GEXIT function can be computed by using the density evolution
equation. Alternatively, the corollary proves that in the low noise regime, the
replica solution evaluated at the appropriate fixed-point is exact.


Corollary 5.1 (Density Evolution Allows to Compute MAP-GEXIT for En-
semble of LDPC Codes). Consider communication over a channel belonging
to the class K at low enough noise, i.e., 0 < ε < ε′g where ε′g depends only on
lmax, rmax. Then for LDPC(Λ, P ) ensemble we have


lim
n→+∞


gn(ε) = lim
d→+∞


lim
n→+∞


gBPn,d (ε). (5.6)


We point out that the above corollary is true even when there are jump dis-
continuities in the GEXIT functions, which would invalidate the use of area
theorem to prove such a statement as done in [36]. It is well known [23] that
with the presence of a non-zero fraction of degree one variable nodes, the es-
timates are non-zero and the corollary allows us to compute the asymptotic
average MAP-GEXIT function via density evolution.
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5.3.2 Strategy of Proof


The general idea of our strategy is to apply a duality transformation to the
Gibbs measure (MAP measure) of the LDPC code. It turns out that the dual
problem does not correspond to a well defined communications problem, and
in fact it does not even correspond to a well defined Gibbs measure because
the “weight” takes positive as well as negative values. Nevertheless, the dual
problem has the flavor of a high noise LDGM system (or high temperature
spin glass) and we are able to treat it through cluster expansions. There exist
a host of such expansions [105], but we wish to stress that the simplest ones
do not apply to the present situation for at least two reasons. The first is
that there exist arbitrarily large portions of the dual system which are in a
low noise (or low temperature) phase with positive probability. The second, is
that the weights of the dual problem are not positive. As a result the cluster
expansion method of the previous chapter as well as methods related to the
Dobrushin criterion are ruled out.


It turns out that a cluster expansion originally devised by Berretti [116]
is very well suited to overcome all these problems. We would like to point
out here that the duality idea was used in the context of BEC to show that
the asymptotic average MAP-GEXIT can be computed via density evolution in
some regimes of noise for some class of LDPC code ensembles in [115]. The case
of the BEC is special because under duality the Gibbs weight remains positive
and the communication problem using LDPC codes on BEC(ε) transforms to
a real communication problem using LDGM codes on the BEC(1 − ε) [38],
[115].


5.4 Duality Formulas


As explained in Section 5.3.2 we first transform the Gibbs measure of the
LDPC code to a dual measure. The duality transformation reviewed here is
an application of Poisson’s summation formula over commutative groups, and
has been thoroughly discussed in the context of codes on graphs in [117]. Here
we need to know how the correlations transform under the duality, a point
that does not seem to appear in the related literature.


Recall that for a linear code C with the codewords given by the n−tuples,
u ∈ {0, 1}n, the dual code, C⊥ is defined as the set of n−tuples v ∈ {0, 1}n
such that u · v> = 0. We use the mapping xi = 1 − 2ui and τi = 1 − 2vi for
1 ≤ i ≤ n to denote the corresponding codewords in the spin language.


For any function f : C → R, the Poisson summation formula gives


∑
x∈C


f(x) =
1


|C⊥|
∑
τ∈C⊥


f̂(τ), (5.7)
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where the Fourier (or Hadamard) transform is given by,


f̂(τ) =
∑


x∈{−1,+1}n
f(x)eiπ


4


Pn
j=1(1−τj)(1−xj). (5.8)


The dual code C⊥ is an LDGM code with codewords given by τ where


τi =
∏
a∈∂i


ua, (5.9)


and ua are the m information bits.
We now apply the Poisson formula to the partition function Z of the LDPC


code with f(x) =
∏n


i=1 e
lixi . This yields the extended form of the MacWilliams


identity,


Z =
1


|C⊥|
e
Pn
j=1 ljZ⊥, (5.10)


where


Z⊥ =
∑


u∈{−1,+1}m


n∏
i=1


(1 + e−2li
∏
a∈∂i


ua). (5.11)


For completeness, we provide a derivation of the Poisson summation formula
and (5.10) in Appendix 5.A. The expression (5.10) formally looks like the
partition function of an LDGM code with “channel half-loglikelihoods” gi such
that tanh gi = e−2li . Indeed, we can write (1 + e−2li


∏
a∈∂i ua) as egiu∂i (upto


a cosh gi factor) and compare it with 1.25. This is truly the case only for the
BEC(ε) where li = 0,+∞ and hence gi = +∞, 0 which still correspond to a
BEC(1 − ε) and one recovers (taking the ε derivative of the logarithm of the
partition functions) the well known duality relation between EXIT functions
of a code and its dual on the BEC [38], [23]. For other channels however this
is at best a formal (but still useful) analogy since the weights are negative for
li < 0 (and gi takes complex values). We introduce a bracket 〈−〉⊥ which is
not a true probabilistic expectation (but it is still linear)


〈f〉⊥ =
1


Z⊥


∑
u∈{−1,+1}m


f(u)
n∏
i=1


(1 + e−2li
∏
a∈i


ua). (5.12)


The denominator may vanish, but it can be shown that when this happens the
numerator also does so in a way that ensures the finiteness of the ratio (this
becomes clear in subsequent calculations). Taking logarithm of (5.10) we find


lnZ = − ln |C⊥|+
n∑
j=1


lj + lnZ⊥.


We now take the the derivative with respect to li of the above equation to find,


∂ lnZ


∂li
= 1 +


∂ lnZ⊥
∂li


. (5.13)
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We now show how to compute ∂ lnZ⊥
∂li


. For convenience we use τi to denote∏
a∈∂i ua (c.f. 5.9). From (5.11) we can write


∂ lnZ⊥
∂li


=
1


Z⊥


∑
τ


−2e−2liτi
∏
j 6=i


(1 + τje
−2lj)


=
1


Z⊥


∑
τ


−2e−2li


1 + τie−2li
τi


n∏
j=1


(1 + τje
−2lj)


=
1


Z⊥


∑
τ


−2e−2li(1− τie−2li)


1− e−4li
τi


n∏
j=1


(1 + τje
−2lj), (5.14)


where in the last equality we utilized τ 2
i = 1. Recall that 〈−〉 denotes the av-


erage with respect to the Gibbs measure corresponding to the LDPC partition
function Z. Using the notation (5.12) we find


〈xi〉 = 1− 2e−2li〈τi〉⊥
1− e−4li


+
2e−4li


1− e−4li


=
1


tanh 2li
− 〈τi〉⊥


sinh 2li
. (5.15)


Now differentiating once more with respect to lj, j 6= i


〈xixj〉 − 〈xi〉〈xj〉 =
〈τiτj〉⊥ − 〈τi〉⊥〈τj〉⊥


sinh 2li sinh 2lj
. (5.16)


The second derivative is evaluated in the same way as the first derivative, and
we defer its computation to the Appendix 5.B. We stress that in (5.15), (5.16),
τi and τj are given by products of information bits (5.9). The left hand side of
(5.15) is obviously bounded. It is less obvious to see this directly on the right
hand side and here we just note that the pole at li = 0 is harmless since, for
li = 0, the bracket has all its “weight“ on configurations with τi = 1. Similar
remarks apply to (5.16). In any case, we will beat the poles by using the
following trick. For any 0 < s < 1 and |a| ≤ 1 we have |a| ≤ |a|s. Also since
〈−〉 is a true Gibbs measure we must have |〈xixj〉 − 〈xi〉〈xj〉| ≤ 2. Combining
we get


El


[
|〈xixj〉 − 〈xi〉〈xj〉|


]
≤ 21−sEl


[
|〈xixj〉 − 〈xi〉〈xj〉|s


]
,


where recall that El is the expectation w.r.t. the channel LLR realizations, l.
We stress here that 〈−〉 are true averages as opposed to 〈−〉⊥. Using (5.16)
and Cauchy-Schwarz we find


El


[
|〈xixj〉 − 〈xi〉〈xj〉|


]
≤ 21−sE[(sinh 2l)−2s] El


[
|〈τiτj〉⊥ − 〈τi〉⊥〈τj〉⊥|2s


]1/2
.


(5.17)


In the above derivation we used the independence of the identically distributed
random variables li and lj and denote them simply by l. The prefactor is always
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finite for 0 < s < 1
2


for our class of channels K. For example for the BIAWGNC
one can show that


E[(sinh 2l)−2s] ≤ c


|1− 2s|
e−c


′ s(1−2s)


ε2 , (5.18)


for some positive constants c and c′ and for the BSC we have


E[(sinh 2l)−2s] ≤
(


2ε(1− ε)
1− 2ε


)2s


. (5.19)


5.5 Proof of Main Theorem on Decay of
Correlations


We will prove the decay of correlations by applying a high temperature cluster
expansion technique to estimate El


[
|〈τiτj〉⊥ − 〈τi〉⊥〈τj〉⊥|2s


]
. As explained in


Section 5.3.2 we need a technique that does not use the positivity of the Gibbs
weights. In Appendix 5.D we give a streamlined derivation of an adaptation
of Berretti’s expansion which gives us the following relation,


〈τiτj〉⊥ − 〈τi〉⊥〈τj〉⊥ =
1


2


∑
X̂


Ki,j(X̂)
(Z⊥(X̂c)


Z⊥


)2


, (5.20)


where


Ki,j(X̂) ≡
∑


u
(1)
a ,u


(2)
a


a∈X̂


∑
Γ compatible


withX̂


(τ
(1)
i − τ


(2)
i )(τ


(1)
j − τ


(2)
j )


∏
k∈Γ


Ek, (5.21)


and


Ek = τ
(1)
k e−2lk + τ


(2)
k e−2lk + τ


(1)
k τ


(2)
k e−4lk . (5.22)


Here u
(1)
a and u


(2)
a are two independent copies of the information bits (replicas)


and τ
(α)
k =


∏
a∈k u


(α)
a . Let us explain the various objects appearing in (5.20).


Even though the relation (5.20) is in language of the dual code, to explain
what are X̂ and Γ we will refer to the Tanner graph of the LDPC code. To
avoid confusion, we call the check nodes in the Tanner graph representing the
LDPC code a-nodes. Also, we call the variable nodes in the Tanner graph
representing the LDPC code i-nodes. In this language, i and j appearing in
(5.20) are i-nodes. Given a subset S of nodes of the graph we denote by ∂S,
the subset of neighboring nodes.


In (5.20), X̂ is a set of distinct a-nodes (subset of the entire set of a-nodes)
such that “X̂ is connected via hyperedges”: this means that


(a) X̂ = ∂X for some connected subset X of i-nodes,







5.5. Proof of Main Theorem on Decay of Correlations 169


(b) X is connected. Connected here means that any pair of i-nodes in X
can be joined by a path all of whose i-nodes lie in X and,


(c) X̂ contains both ∂i and ∂j.


We remark that X need not contain the i-nodes i and j. In the sequel we will
also refer to X̂ as a cluster of a-nodes.


In the sum (5.21), Γ is a set of i-nodes (all distinct). We say that “Γ is
compatible with X̂” if:


(i) ∂Γ ∪ ∂i ∪ ∂j = X̂,


(ii) ∂Γ ∩ ∂i 6= φ and ∂Γ ∩ ∂j 6= φ. In words, ∂Γ must intersect both ∂i and
∂j and,


(iii) there is a walk connecting ∂i and ∂j such that all its i-nodes are in Γ.


Finally we have,


Z⊥(X̂c) =
∑
ua


a∈X̂c


∏
all k s.t.
∂k∩X̂=φ


(1 + e−2lk
∏
a∈k


ua). (5.23)


In words, the sum in (5.23) is carried over all a-nodes which do not belong
to the set X̂. The product is over all i-nodes such that they do not have an
a-node (belonging to their neighborhood) in common with X̂. The Figure 5.1
illustrates an example for all the sets appearing above.


We are now ready to prove the theorem on decay of correlations.


Proof of Theorem 5.1. Because of (5.17) it suffices to prove that
El


[
|〈τiτj〉⊥ − 〈τi〉⊥〈τj〉⊥|2s


]
decays.


The first step is to prove ∣∣∣∣Z⊥(X̂c)


Z⊥


∣∣∣∣ ≤ 1. (5.24)


This ratio cannot be estimated directly because the weights in Z⊥ are not
positive. However we can use the duality transformation (5.10) backwards to
get a new ratio of partition functions (corresponding to LDPC codes) with
positive weights. More precisely, using the duality relation, we have


Z(X̂c) =
1


|C⊥(X̂c)|


( ∏
all k s.t.
∂k∩X̂=φ


elk
)(


Z⊥(X̂c)


)
,


where


Z(X̂c) =
∑
xk


∂k∩X̂=φ


∏
all k s.t
∂k∩X̂=φ


elkxk
∏
a∈X̂c


1


2
(1 +


∏
k∈a and
∂k∩X̂=φ


xk). (5.25)
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Figure 5.1: In this figure we explain the various sets appearing in the clus-
ter expansion (5.20). The Tanner graph represents the LDPC code with vari-
able nodes (i-nodes) denoted by circles and check nodes (a-nodes) denoted
by squares. In this example the set X̂ is the set of dark check nodes.
Let us verify that this choice of X̂ satisfies all our conditions. Let X =
{i, j, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12} be a set of i-nodes (these are de-
noted by dark circles in the figure). It is easy to check that the set of neighbors of
X is given by the dark check nodes which is equal to the set X̂. Hence X̂ = ∂X
and we satisfy condition (a). Secondly, any two variable nodes in X are connected
by a path all of whose variable nodes lie in X, thus condition (b) is met. Also
notice that X̂ contains both ∂i and ∂j, thus satisfying condition (c). Let us now
show an example of the set Γ which appears in (5.21). Consider the set of dis-
tinct i-nodes, Γ = {v2, v3, v4, v5, v6, v7, v8, v10, v11, v12}. In the figure, the set of
i-nodes belonging to Γ have a dotted circle around them. Let us verify that Γ is
compatible with X̂. We meet the first condition (i), since it is easy to check that
the set of a-nodes in the union ∂Γ ∪ ∂i ∪ ∂j equals X̂. To see that the condition
(ii) is satisfied, consider the i-nodes v12 and v11. Clearly, a1 ∈ (∂v12 ∩ ∂i) and
a7 ∈ (∂v11 ∩ ∂j). The walk {a1v12a2v2a3v3a4v6a5v8a6v11a7} connects ∂i and ∂j
and all its i-nodes lie in Γ, hence the condition (iii) is also satisfied. Another choice
for Γ would be the set {v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12}. In the definition of
Z⊥(X̂c), Z(X̂c) the light variable nodes, v13, v14, v15, v16, v17, v18, v19, v20, v21, are
not present because they have a non-empty intersection with X̂ (each of them has
a dark a-node is their neighborhood). All check nodes which are not dark belong
to X̂c.
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This is the partition function corresponding to the subgraph induced by a-
nodes of X̂c and i-nodes such that ∂i ∩ X̂ = φ. Moreover C⊥(X̂c) is the dual
of the code C(X̂c).


Then combining with (5.10) we find,


Z⊥(X̂c)


Z⊥
=


(
exp


∑
all k s.t
∂k∩X̂ 6=φ


lk


)(
|C⊥(X̂c)|
|C⊥|


)(
Z(X̂c)


Z


)
, (5.26)


To bound Z⊥(X̂c)
Z⊥


we first bound the ratio (of cardinality of the codes),
|C⊥(X̂c)|
|C⊥| . The rank, L, of the parity-check matrix of code C(X̂c), which is


obtained by removing rows (checks) and columns (variables) from the parity-
check matrix of the original LDPC code C, is smaller than the rank, T, of the
parity-check matrix of C. Also set the block-length of the code C(X̂c) to be
n′. We have |C| · |C⊥| = 2n and |C(X̂c)| · |C⊥(X̂c)| = 2n


′
. Dividing the two


and using |C(X̂c)| = 2n
′−L and |C| = 2n−T we get


|C⊥(X̂c)|
|C⊥|


=


(
2n
′


|C(X̂c)|


)(
|C|
2n


)
= 2n


′−n
(


2n−T


2n′−L


)
= 2L−T ≤ 1,


where in the last inequality we used that L ≤ T.
Moreover we claim (


exp
∑


all k s.t
∂k∩X̂ 6=φ


lk


)
Z(X̂c) ≤ Z. (5.27)


To see this one must recognize that the left hand side of the inequality is the
sum of terms of Z corresponding to x such that xk = +1 for ∂k ∩ X̂ 6= φ (and
all other terms are ≥ 0). These remarks imply (5.24).


Using |
∑


i ai|2s ≤
∑


i |ai|2s for 0 < 2s < 1, and (5.24) we find


El[|〈τiτj〉⊥ − 〈τi〉⊥〈τj〉⊥|2s] =
1


22s
El


∣∣∣∣∑
X̂


Ki,j(X̂)
(Z⊥(X̂c)


Z⊥


)2
∣∣∣∣2s


≤ 1


22s


∑
X̂


El


[
|Ki,j(X̂)|2s


]
. (5.28)


Let us now provide an estimate on r.h.s. of the last inequality. Recall that


Ki,j(X̂) ≡
∑


u
(1)
a ,u


(2)
a


a∈X̂


∑
Γ compatible


withX̂


(τ
(1)
i − τ


(2)
i )(τ


(1)
j − τ


(2)
j )


∏
k∈Γ


Ek,


Ek = τ
(1)
k e−2lk + τ


(2)
k e−2lk + τ


(1)
k τ


(2)
k e−4lk . (5.29)
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To proceed further, first trivially bound the term |(τ (1)
i − τ


(2)
i )(τ


(1)
j − τ


(2)
j )|


by 4 and |Ek| by |2e−2lk + e−4lk |. Thus we obtain∣∣∣Ki,j(X̂)
∣∣∣ ≤ 4


∑
u
(1)
a ,u


(2)
a


a∈X̂


∑
Γ compatible


withX̂


∏
k∈Γ


|2e−2lk + e−4lk |


= 4|X̂|+1
∑


Γ compatible


withX̂


∏
k∈Γ


|2e−2lk + e−4lk |,


where, to get the last equality, we first notice that there is no more dependence
on u


(1)
a , u


(2)
a in the expression and we then use


∑
u
(1)
a ,u


(2)
a


= 4|X̂| for a ∈ X̂.


Then, we again use the identity |2e−2lk + e−4lk |2s ≤ 22se−4slk + e−8slk for
2s < 1 to deduce


El


[
|Ki,j(X̂)|2s


]
≤ 4|X̂|+1


∑
Γ compatible


withX̂


(22sE[e−4sl] + E[e−8sl])|Γ|


≤ 4|X̂|+1
∑


Γ compatible


withX̂


(
∆(ε)


)|Γ|
, (5.30)


where in the first inequality we take the expectation inside the product because
all the k ∈ Γ are distinct and hence have independent lk. We use the notation


∆(ε) = 22sE[e−4sl] + E[e−8sl]. (5.31)


It only remains to bound the number of Γ in the sum (5.30) and the cardinatlity
of Γ which is equal to |Γ|. First we give a bound on |Γ|.


Remember that our final aim is to make the r.h.s. of (5.30) small. Recall
that the channel over which we are transmitting belongs to the class K. From
condition (3) of Definition 5.1 we can choose s and ε so that ∆(ε) is less than
one. To further estimate the bound in (5.30), we provide a lower bound on |Γ|.
We do this as follows.


Since Γ is compatible with X̂, we must have (from condition (i))


∂Γ ∪ ∂i ∪ ∂j = X̂.


As a consequence we obtain


|∂Γ| ≥ |X̂| − |∂i| − |∂j|. (5.32)


Since the maximum degree of i-nodes is lmax we have |∂Γ| ≤ |Γ|lmax, |∂i| ≤
lmax and |∂j| ≤ lmax. Thus combining with (5.32), we get


|Γ| ≥ (|X̂| − 2lmax)/lmax.


Let us now bound the number of Γ which are compatible with X̂. Clearly,
the maximum number of i-nodes which have an intersection with X̂ is |X̂|rmax.
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Thus there are at most 2|X̂|rmax possible choices for Γ. Combining all the above
we obtain


El


[
|Ki,j(X̂)|2s


]
≤ 4(|X̂|+1)2rmax|X̂|


(
∆(ε)


)(|X̂|−2lmax)/lmax


. (5.33)


From (5.28) and (5.33) we get


El


[
|〈τiτj〉⊥ − 〈τi〉⊥〈τj〉⊥|2s


]
≤ 1


22s


∑
X̂


4(|X̂|+1)2rmax|X̂|∆(ε)(|X̂|−2lmax)/lmax .


(5.34)
The clusters X̂ connect ∂i and ∂j and thus have sizes |X̂| ≥ 1


2
dist(i, j).


Moreover we claim


Lemma 5.1. The number of clusters of a given size, |X̂|, which satisfies condi-


tions (a), (b), (c), is upper bounded by rmax|X̂|(3Krmax|X̂|) where K = lmaxrmax


is fixed for a given LDPC code.


We prove this claim in the Appendix 5.C. Combining with Lemma 5.1 we can
arrange the sum in (5.34) as


El


[
|〈τiτj〉⊥ − 〈τi〉⊥〈τj〉⊥|2s


]
≤ 1


22s


∑
|X̂|≥dist(i,j)/2


rmax|X̂|(3Krmax|X̂|)4(|X̂|+1)2rmax|X̂|


×∆(ε)(|X̂|−2lmax)/lmax


≤
rmax


(
∆(ε)


)−2


22s


∑
|X̂|≥dist(i,j)/2


exp


{
|X̂|
(
rmaxK ln 3 + ln 4 + rmax ln 2


+
ln
(


∆(ε)
)


lmax


+ 1
)}


(5.35)


For channels belonging to the classK we have, for s small enough, E[e−sl]→
0 as ε → 0. As a consequence we chose ε small enough to make ∆(ε) small
enough. Thus we can make the exponent negative and we conclude the proof.


5.6 Density Evolution Equals MAP for Low
Noise


By the same arguments than in Section 4.4.1 we have for LDPC codes, the
average MAP-GEXIT function,


gn(ε) = EC


[∫
dli
dc(li)


dε
El∼i ln


{
1 + 〈xi〉0 tanh li


1 + tanh li


}]
. (5.36)
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For fixed d number of iterations, the average BP-GEXIT function in the limit
n→ +∞ is given by


lim
n→+∞


gBPn,d (ε) = EC


[∫
dli
dc(li)


dε
El∼i ln


{
1 + 〈xi〉0,Nd(i) tanh li


1 + tanh li


}
∣∣∣Nd(i) is a tree


]
. (5.37)


Above, 〈xi〉0,Nd(i) is the Gibbs bracket associated to the graph Nd(i). When
Nd(i) is a tree, the set of leaves in the boundary of Nd(i) are variable nodes.
Thus the boundary conditions of Nd(i) are given by the channel outputs. In
the sequel, we will call such a boundary condition also as “free” or “natural”
boundary. We will also abuse the notation introduced in Section 1.1.3 of
Chapter and denote N̊d(i) as the variable nodes at a distance d from the root
node. Thus N̊d(i) denotes the boundary of variable nodes (leaves) of Nd(i).
On the tree we evaluate 〈xi〉0,Nd(i) using density evolution equations to get


lim
d→+∞


lim
n→+∞


gBPn,d (ε) = lim
d→∞


∫
dl
dc(l)


dε
E∆(d)


[
ln


{
1 + tanh ∆(d) tanh l


1 + tanh l


}]
,


(5.38)


where both limits exist and


∆(d) =
k∑
a=1


u(d)
a . (5.39)


The u
(d)
a are i.i.d. random variables with distribution obtained from the itera-


tive system of DE equations


η̂(d)(u) =
∑
l


λl


∫ l−1∏
j=1


dvj η
(d)(vj) δ(u− tanh−1


( l−1∏
j=1


tanh vj
)
),


η(d)(v) =
∑
k


ρk


∫
dl c(l)


k−1∏
a=1


dua η̂
(d−1)(ua) δ(v − l −


k−1∑
a=1


u(d)
a ).


The initial condition is given by η(0)(v) = c(v). Recall that these equations
are an iterative version of the replica fixed point equation [66], [67].


Proof of Corollary 5.1. The first few steps are the same as in the proof for
LDGM. First, we expand the logarithm in (5.36) and use Nishimori identities
to obtain a series expansion like (4.25). Second, we notice that since the
resulting series expansion is uniformly absolutely convergent it is again enough
to show that


lim
n→+∞


EC,l∼i [〈xi〉
2p
0 | Nd(i) tree] = lim


d→+∞
lim


n→+∞
EC,l∼i [〈xi〉


2p
0,Nd(i)| | Nd(i) tree].


(5.40)
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Again, because of |b2p−a2p| ≤ 2p|b−a| it is enough to show the last equation for
2p replaced by 1. Unfortunately, one cannot proceed as simply as in the LDGM
case. We prove (5.40) as a consequence of the next two lemmas stated below.
Let 〈−〉∞0;Nd(i) be the bracket defined on the subgraph Nd(i) with lk = +∞ for


k ∈ N̊d(i) and li = 0. This in fact is formally equivalent to fixing xk = +1
boundary conditions on the leaves of the tree k ∈ N̊d(i). The first lemma says
that the bit estimate can be computed locally.


Lemma 5.2. Under the same conditions as in Corollary 5.1,


lim
n→+∞


EC,l∼i
[
〈xi〉0 | Nd(i) tree


]
= lim


d→+∞
lim


n→+∞
EC,l∼i


[
〈xi〉∞0,Nd(i) | Nd(i) tree


]
.


(5.41)


The second lemma says that at low enough noise, free and +1 boundary
conditions are equivalent


Lemma 5.3. Under the same conditions as in Corollary 5.1,


lim
d→+∞


lim
n→+∞


EC,l∼i
[
〈xi〉∞0,Nd(i) | Nd(i) tree


]
(5.42)


= lim
d→+∞


lim
n→+∞


EC,l∼i
[
〈xi〉0,Nd(i) | Nd(i) tree


]
.


(5.43)


We prove the first lemma. It will then be clear that the proof of the second
one is essentially the same except that the original full graph is replaced by
Nd(i), and thus it will be spared.


Proof of Lemma 5.2: In (5.41) (and (5.42)) the root node i has li = 0 which
turns out to be technically cumbersome. For this reason we use the identities


〈xi〉 =
〈xi〉0 + tanh li


1 + 〈xi〉0 tanh li
, 〈xi〉∞Nd(i) =


〈xi〉∞0,Nd(i) + tanh li


1 + 〈xi〉∞0,Nd(i) tanh li
, (5.44)


to deduce


〈xi〉0 − 〈xi〉∞0,Nd(i) =
(1− (tanh li)


2)(〈xi〉 − 〈xi〉∞Nd(i))


(1− 〈xi〉 tanh li)(1− 〈xi〉∞Nd(i) tanh li)
. (5.45)


This implies


|〈xi〉0 − 〈xi〉∞0;Nd(i)| ≤
1 + | tanh li|
1− | tanh li|


|〈xi〉 − 〈xi〉∞Nd(i)|. (5.46)


Averaging over the noise and using Cauchy-Schwartz,


El∼i
[
|〈xi〉0 − 〈xi〉∞0;Nd(i)|


]
≤ 2E[e4|l|]1/2El


[
|〈xi〉 − 〈xi〉∞Nd(i)|2


]1/2
≤ 2
√


2 E[e4|l|]1/2 El


[
|〈xi〉 − 〈xi〉∞Nd(i)|


]1/2
. (5.47)
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Notice that we have removed the square in the second expectation above and
have a multiplicative factor of 2 in front. This is easy to see because |〈xi〉 −
〈xi〉∞Nd(i)| ≤ 2. Let us now prove


lim
d→+∞


lim
n→+∞


EC,l
[
|〈xi〉 − 〈xi〉∞Nd(i)| | Nd(i) tree


]
= 0. (5.48)


We order the variable nodes at the boundary N̊d(i). Let l̊d denote the vector
of LLR with components ∈ N̊d(i). We write 〈−〉∞≤k−1 to denote the average


when the first k− 1 components of l̊d are set as l1 = ... = lk−1 = +∞, the k-th
component is l′k, and the remaining ones are i.i.d. and are distributed as c(l)
(in other words they are “free”). From the fundamental theorem of calculus,
it is not difficult to see that


〈xi〉−〈xi〉∞Nd(i) = −
∑


k∈N̊d(i)


∫ +∞


lk


dl′k
d〈xi〉∞≤k−1


dl′k


= −
∑


k∈N̊d(i)


∫ +∞


lk


dl′k (〈xixk〉∞≤k−1 − 〈xi〉∞≤k−1〈xk〉∞≤k−1). (5.49)


Using |a| ≤ |a|s, for any 0 < s < 1 and |a| ≤ 1, for a = 1
2
(|〈xixk〉∞≤k−1 −


〈xi〉∞≤k−1〈xk〉∞≤k−1|) we get


|〈xi〉−〈xi〉∞Nd(i)|


≤ 21−s
∑


k∈N̊d(i)


∫ +∞


lk


dl′k |〈xixk〉∞≤k−1 − 〈xi〉∞≤k−1〈xk〉∞≤k−1|s. (5.50)


Let 〈−〉∞,⊥≤k−1 be the Gibbs bracket corresponding to the dual code (with the first


k components of N̊d(i) set as l1 = ... = lk−1 = +∞ and the k-th component
equal to l′k). Because of (5.16) we have


|〈xi〉−〈xi〉∞Nd(i)|


≤ 21−s
∑


k∈N̊d(i)


∫ +∞


lk


dl′k
|〈τiτk〉∞,⊥≤k−1 − 〈τi〉


∞,⊥
≤k−1〈τk〉


∞,⊥
≤k−1|s


(| sinh 2li|| sinh 2l′k|)s
. (5.51)


Note that the denominator in the integral is important to make the integral
convergent for l′k →∞. Moreover at li and l′k = 0 the hyperbolic sin terms are
harmless as long as for s < 1. The next step is to use the cluster expansion to
estimate


El


[∫ +∞


lk


dl′k
|〈τiτk〉∞,⊥≤k−1 − 〈τi〉


∞,⊥
≤k−1〈τk〉


∞,⊥
≤k−1|s


(| sinh 2li|| sinh 2l′k|)s


]
. (5.52)


By following similar steps than in the proof of Theorem 5.1 one obtains an
upper bound similar to (5.33) except that the likelihoods of the end points are
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weighted differently. More precisely, we get


El


[∫ +∞


lk


dl′k
|〈τiτk〉∞,⊥≤k−1 − 〈τi〉


∞,⊥
≤k−1〈τk〉


∞,⊥
≤k−1|s


(| sinh 2li|| sinh 2l′k|)s


]


≤ El


[∫ +∞


lk


dl′k


∑
X̂ 4|X̂|+1


∑
Γ compatible


withX̂


∏
j∈Γ(2se−2slj + e−4slj)


(| sinh 2li|| sinh 2l′k|)s


]
.


Now we separate out the terms corresponding to li and lk (using their inde-
pendence) to further upper bound the last expression above by


TiTk El∼ik


[∑
X̂


4|x̂|+1
∑


Γ compatible


withX̂


∏
j∈Γ\(li,lk)


(2se−2slj + e−4slj)


]
, (5.53)


where


Ti = max
{


Eli


[
2se−2sli + e−4sli


| sinh 2li|s


]
,Eli


[
1


| sinh 2li|s


]}
,


Tk = max
{


Elk


[∫ +∞


lk


dl′k
(2se−2slk + e−4slk)


| sinh 2l′k|s


]
,Elk


[∫ +∞


lk


dl′k
1


| sinh 2l′k|s


]}
.


Recall that El∼ik denotes the expectation w.r.t. all the LLRs except li and lk.
The terms Ti, Tk arise because any particular Γ may or may not include the
nodes i and/or k.


Since the i-nodes in Γ are distinct, we can again take the expectation inside
the product for the third term in (5.53). Thus we proceed along the same lines
as in (5.33) and (5.34) to finally get an upper bound for this term similar to
(5.35). Again, all the previous manipulations are possible because our channel
belongs to class K.


Also for our class K we can show


E
[


2se−2sl + e−4sl


| sinh 2l|s


]
<∞ and E


[∫ +∞


l


dl′
2se−2sl′ + e−4sl′


| sinh 2l′|s


]
<∞.


(5.54)
which implies that the terms Ti and Tk are finite and depend only on the value
of ε. Putting everything together we find


El


[
|〈xi〉−〈xi〉∞Nd(i)|


]
≤ 21−s


∑
k∈N̊d(i)


c1e
− d
ξ(ε) ≤ c121−sKde−


d
ξ(ε) . (5.55)


We obtain the final inequality by upper bounding the number of i-nodes in
the boundary N̊d(i) by Kd. But for our class of channels K we can choose ε


small enough so that Ke−
1
ξ(ε) < 1. This immediately implies (5.48) and the


Corollary 5.1 follows.
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5.7 Discussion


In this chapter we use duality to convert the LDPC coded system to a system
which has the flavor of an LDGM (or equivalently “high temperature”) coded
system. A natural question would be whether one could use similar techniques
to show decay of correlations for LDGM coded system at low noise. Unfortu-
nately, using duality in this case, will give us an LDPC coded system, which
is inherently at “low temperature”. This would render the cluster expansion
technique useless.


Of course, the biggest issue here would be to widen the regime of noise
for which the correlations decay. We do not attempt to optimize the esti-
mates/counting arguments. This would clearly be one way to increase the
noise regime. We know in few instances, like regular LDPC code ensembles,
that below εBP, both the asymptotic average MAP and BP-GEXIT curves are
zero. This leads us to believe that the correlations should decay exponentially
(in fact faster than the local graph expansion) till εBP.


We saw in the previous chapter, that in the special case of LDGM codes
transmitted over the BSC, one could exchange the limits d→ +∞, n→ +∞,
while computing the average BP-GEXIT function. It would nice to have such
a statement for the case of LDPC codes. A final aim would be to provide such
an exchange of limit result for the bit error rate of the BP decoder.
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5.A Poisson Summation Formula and its
Application


We re-state the Poisson summation rule here. Let C be a linear code of block-
length n and let C⊥ denote the dual code. We use xi = 1− 2ui (τi = 1− 2vi)
to map codewords u (v) of C (C⊥) belonging to the space {0, 1}n to the space
{+1,−1}n. Abusing notation, we let C also denote the set of codewords after
being mapped to the space {+1,−1}n. For any f : C → R we have∑


x∈C


f(x) =
1


|C⊥|
∑
τ∈C⊥


f̂(τ), (5.56)


where the Fourier transform, f̂(·), is given by,


f̂(τ) =
∑


x∈{−1,+1}n
f(x)eiπ


4


Pn
j=1(1−τj)(1−xj). (5.57)


Note that i2 = −1. Let us start with the r.h.s. of (5.56). Using (5.57) we get


1


|C⊥|
∑
τ∈C⊥


f̂(τ) =
1


|C⊥|
∑
τ∈C⊥


∑
x∈{−1,+1}n


f(x)eiπ
4


Pn
j=1(1−τj)(1−xj)


=
1


|C⊥|
∑


x∈{−1,+1}n
f(x)


∑
τ∈C⊥


eiπ
4


Pn
j=1(1−τj)(1−xj). (5.58)


We claim that


∑
τ∈C⊥


eiπ
4


Pn
j=1(1−τj)(1−xj) =


{
|C⊥|, x ∈ C,
0, x /∈ C.


If we assume the above claim to be true then we immediately obtain the Poisson
summation rule. Let us now prove the claim. First assume that x ∈ C. From
the definition of duality we have


u · v> = 0⇒
n∑
i=1


(1− xi)
2


(1− τi)
2


= even.


The sum in the expression above is carried over R. Consequently we must
have eiπ


4


Pn
j=1(1−τj)(1−xj) = 1 for each τ ∈ C⊥. Thus we get the contribution of


|C⊥| when x ∈ C. Now assume that x /∈ C. This implies there must exist a


dual codeword τ ′ such that
∑n


i=1
(1−xi)


2
(1−τi)


2
= odd. We claim that∑


τ∈C⊥
eiπ


4


(Pn
j=1(1−τj)(1−xj)+(1−τ ′j)(1−xj)


)
=
∑
τ∈C⊥


eiπ
4


Pn
j=1(1−τj)(1−xj). (5.59)
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If we assume for the moment that this claim is true then using,
eiπ


4


Pn
j=1(1−τ ′j)(1−xj) = eiπ (odd number) = −1, we obtain


−
∑
τ∈C⊥


eiπ
4


Pn
j=1(1−τj)(1−xj) =


∑
τ∈C⊥


eiπ
4


Pn
j=1(1−τj)(1−xj),


which implies that
∑


τ∈C⊥ e
iπ
4


Pn
j=1(1−τj)(1−xj) = 0 for any x /∈ C.


It remains now to prove (5.59). Notice that the term
1−τj


2
+


1−τ ′j
2


equals 0


or 2 when τj = τ ′j and equals 1 when τj 6= τ ′j. Whenever
1−τj


2
+


1−τ ′j
2


= 2, we
can replace it by a 0 (since both 2 and 0 are even) and it would not make a
difference to the sum


∑
τ∈C⊥ e


iπ
4


Pn
j=1(1−xj)[(1−τj)+(1−τ ′j)]. Thus we can write∑


τ∈C⊥
eiπ


4


(Pn
j=1(1−τj)(1−xj)+(1−τ ′j)(1−xj)


)
=
∑
τ∈C⊥


eiπ
4


Pn
j=1(1−xj)[(1−τj)+(1−τ ′j)]


=
∑
τ∈C⊥


eiπ
4


Pn
j=1(1−xj)[(1−τjτ ′j)]


=
∑
τ ′′∈C⊥


eiπ
4


Pn
j=1(1−xj)[(1−τ ′′j )].


The second equality above follows because
(


1−τj
2


+
1−τ ′j


2


)
mod 2 =


1−τjτ ′j
2


. The


last equality follows because τ ′′j , τjτ
′
j =


∏
a∈∂j uau


′
a implies that τ ′′ ∈ C⊥.


Hence the claim.
Is is easy to see that the partition function Z, of an LDPC code C, can


be written as
∑


x∈C f(x) with f(x) =
∏n


i=1 e
lixi . Thus applying the Poisson


summation rule we get


Z =
1


C⊥


∑
τ∈C⊥


∑
x∈{+1,−1}n


n∏
j=1


eljxj
n∏
j=1


eiπ
4


(1−τj)(1−xj)


=
1


C⊥


∑
τ∈C⊥


∑
x∈{+1,−1}n


n∏
j=1


eljxj+iπ
4


(1−τj)(1−xj).


Exchanging the sum over x ∈ {+1,−1}n and the product over j and using
eiπ


2
(1−τj) = τj we obtain


Z =
1


C⊥


∑
τ∈C⊥


n∏
j=1


(
elj + e−lj+iπ


2
(1−τj)


)
=


1


C⊥
e
Pn
j=1 lj


∑
τ∈C⊥


n∏
j=1


(1 + e−2ljτj)


=
1


C⊥
e
Pn
j=1 lj


∑
u∈{+1,−1}m


n∏
j=1


(1 + e−2lj
∏
a∈j


ua),


where u is the vector of m information bits.
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5.B Second Derivative Computation


Here we provide a quick derivation of (5.16). Taking the derivative of 〈τi〉⊥
with respect to lj we find


∂〈τi〉⊥
∂lj


=
1


Z⊥


∂


∂lj


(∑
τ


τi


n∏
k=1


(1 + τke
−2lk)


)
+


(∑
τ


τi


n∏
k=1


(1 + τke
−2lk)


)
∂


∂lj


(
1


Z⊥


)
.


(5.60)


For the first term on the r.h.s. of (5.60), we proceed as (5.14) to get


∂


∂lj


(∑
τ


τi


n∏
k=1


(1 + τke
−2lk)


)
=
∑
τ


−2τje
−2lj(1− τje−2lj)


1− e−4lj
τi


n∏
k=1


(1 + τke
−2lk).


Combining with 1/Z⊥, we find the first term to be equal to


− 〈τiτj〉⊥
sinh 2lj


+
2e−4lj〈τi〉⊥
1− e−4lj


. (5.61)


The second term in (5.60) is equal to


−1


Z2
⊥


(
∂Z⊥
∂lj


)
=
−1


Z2
⊥


∑
τ


−2e−2ljτj
∏
k 6=j


(1 + τke
−2lk)


=
−1


Z2
⊥


∑
τ


−2τje
−2lj(1− τje−2lj)


1− e−4lj


n∏
k=1


(1 + τke
−2lk)


=
1


Z⊥


(
〈τj〉⊥


sinh 2lj


)
+
−1


Z⊥


(
2e−4lj


1− e−4lj


)
.


Combining with
(∑


τ τi
∏n


k=1(1 + τke
−2lk)


)
, the second term is equal to


〈τi〉⊥〈τj〉⊥
sinh 2lj


− 2e−4lj〈τi〉⊥
1− e−4lj


. (5.62)


Thus putting (5.61) and (5.62) together we obtain (5.16).


5.C Proof of Lemma 5.1


Before we commence, let us recall that a-nodes and i-nodes are the check
nodes and variable nodes, respectively, of the Tanner graph of the LDPC code.
Recall that lmax denotes the maximum degree of i-nodes and rmax denotes the
maximum degree of a-nodes.


Let L be a positive integer. Our aim is to count the number of X̂ such that
|X̂| = L and the conditions (a), (b) and (c) given in Section 5.5 are satisfied.
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Instead, we will count the number of X̂ such that |X̂| = L and which satisfy
conditions (a) and (b). But we only require that it contains ∂i. It may or may
not contain ∂j. Clearly, this will be an upper bound to our required number.


We know that the required X̂ corresponds to some set of i-nodes X such
that ∂X = X̂ (condition (a) in Section 5.5). Also X is connected, i.e., there is
a walk between any two i-nodes contained in X. Note that X may or may not
contain the i-node i. Let us modify this X to include the i-node (if it is not
already present). Let us denote this set by X̊. We point out two properties of
the set X̊: (i) It is connected. Indeed, any two i-nodes, neither of which is i,
are connected (follows from previous connectivity in X). Let ∂2i denote the
neighborhood of the set ∂i. It is clear that ∂2i is a set of i-nodes. Since X̂
includes ∂i, it must be that X contains at least one i-node which belongs to
∂2i. But i is already present in ∂2i. Consequently, i is connected to any other
i-node in X̊ and (ii) The size of X̊ is bounded as, L


lmax
≤ |X̊| ≤ Lrmax.


Thus for each X̂ we have constructed an X̊, such that ∂X̊ = X̂, i ∈ X̊, X̊


is connected and |X̊| ∈
[


L
lmax


, Lrmax


]
. Suppose that X̂1 6= X̂2 are two sets


with size equal to L and both satisfy our requirements. Then it is clear that
the corresponding X̊1 and X̊2 are also different. As a result, counting such X̊
will provide us with an upper bound on the number of required X̂ of given
size L.


Without loss of generality we consider the following graph, G, to count the
number of X̊. The nodes in G consists of the i-nodes in the original graph.
We attach an edge between two nodes in G, if there is a-node containing the
corresponding i-nodes in the original graph.


We simplify our analysis as follows. Instead of counting on G, we perform
our counting on the computation tree, denoted by CG rooted at the node i. It
is not hard to see that by counting X̊ on CG we will over-estimate the same
on G. We further simplify by considering the degree of the root node in CG to
be K and the degree of every other node to be K + 1. Denote this last graph
by TG.


With the above simplifications, let us now count the number of sets X̊ on
the graph TG. We first provide a crude upper bound which is sufficient for the
purpose.


We will now provide a finger-print for any set X̊. Given a set X̊, generate
the following sequence of numbers. Start from the root node and number every
edge coming out of the root node as follows. Mark an edge e coming out of the
root node by 0, if the node (other than the root node) is not contained in the
set X̊. If the node is contained in X̊ but not further extended (by extended
we mean we include any of the node below the current node in the set X̊) then
mark the edge by 1. If the node is further extended below, then mark the edge
by 2.


Consider the following generation of the finger-print of the set X̊. Perform
Breadth-First-Search (BFS) type labelling of edges according to previous rules.
First consider the K-tuple (∈ {0, 1, 2}) corresponding to the edges emanating
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Figure 5.2: The finger-print corresponding to the set X̊ shown by dark circles
is given by F = {(0, 2, 2)(2, 1, 0)(2, 1, 2)(0, 1, 0)(1, 1, 0)(0, 1, 0)}. It is easy to
see that given the finger-print F we can reconstruct the set X̊ uniquely in BFS
manner.


from the root node. Observe that the set X̊ grows only along edges labeled
as 2. Thus write down the K-tuple corresponding to the end-node of all edges
marked as 2. Proceed to build up the sequence of numbers in a BFS manner.
At the end we have a sequence of K-tuples each containing either 0, 1, or 2. It
is easy to see that there is one-to-one correspondence between the finger-print
and the set X̊. Indeed, from a given finger-print sequence one can uniquely
generate a set X̊ in a BFS manner. Note that we have written down a K-tuple
only when we have added a node to the set X̊. Clearly the number of K-tuples
in the finger-print is upper bounded by L. As a result, the number of possible
sets, X̊, is upper bounded by (3K)|X̊|.


Putting everything together we get that the number of sets X̂, with a given
size L is upper bounded by


rmaxL∑
|X̊|= L


lmax


(3K|X̊|) ≤ Lrmax(3KrmaxL),


proving the lemma. Figure 5.2 illustrates a BFS labeling.


5.D Cluster Expansion for LDPC Codes


Here we adapt the Berretti cluster expansion to our setting of Tanner graphs.
For more details we refer to [116], [118]. Consider the replicated partition
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function


Z2
⊥ =


∑
u(1),u(2)∈{−1,+1}m


n∏
k=1


(1 + τ
(1)
k e−2lk)(1 + τ


(2)
k e−2lk). (5.63)


Recall that Z⊥ corresponds to the dual code. To avoid confusion we will
always have in mind the Tanner graph corresponding to the original LDPC
code. Furthermore, we will refer to the variable nodes of the Tanner graph (of
the LDPC code) as i-nodes and refer to the check nodes as a-nodes.


Above u(1) = u
(1)
1 , . . . , u


(1)
m and u(2) = u


(2)
1 , . . . , u


(2)
m are two replicas of the


a-nodes. Also we have τ
(1)
k =


∏
a∈k u


(1)
a and τ


(2)
k =


∏
a∈k u


(2)
a . Arguing on


the same lines as in Appendix 4.A of the previous chapter, we can write the
correlation function as


〈τiτj〉⊥ − 〈τi〉⊥〈τj〉⊥ =
1


2
〈(τ (1)


i − τ
(2)
i )(τ


(1)
j − τ


(2)
j )〉⊥,12, (5.64)


where 〈−〉⊥,12 corresponds to the replicated system. In the above language,
i and j are i-nodes. Note that in obtaining a similar expression in Appendix
4.A, we only relied on the linearity of the Gibbs bracket and the fact the
replicated system is a product of two copies. To lighten the notation we use
fi = τ


(1)
i − τ


(2)
i , fj = τ


(1)
j − τ


(2)
j . Then we have


〈fifj〉⊥,12 =
1


Z2
⊥


∑
u(1),u(2)


fifj


n∏
k=1


(1 + Ek). (5.65)


Recall that Ek (c.f. (5.22)) is given by


Ek = τ
(1)
k e−2lk + τ


(2)
k e−2lk + τ


(1)
k τ


(2)
k e−4lk . (5.66)


Expanding the product
∏n


k=1(1 + Ek) we get,


〈fifj〉⊥,12 =
1


Z2
⊥


∑
u(1),u(2)


fifj
∑
V⊂V


∏
k∈V


Ek


=
1


Z2
⊥


∑
V⊂V


∑
u(1),u(2)


fifj
∏
k∈V


Ek, (5.67)


where V denotes the set of all variable nodes of the original Tanner graph for
the LDPC code and V is any subset of distinct variable nodes.


We will now reason that those V (in the sum in (5.67)) which do not
“connect” i and j do not contribute to the above sum. Let us argue more
formally. Suppose V ⊂ V is such that one cannot create a walk (i.e., a sequence
of alternating i-nodes and a-nodes) connecting any a-node in ∂i, to any a-
node in ∂j such that all its i-nodes are contained entirely in V . Then we can
partition V into three mutually disjoint sets of variable nodes, V1, V2, V3 such
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that i ∈ V1, j ∈ V2 and V3 = V \(V1∪V2). Note also that ∂V1, ∂V2, ∂V3 are also
mutually disjoint otherwise we can create a walk between ∂i and ∂j. Thus we
can write


∑
u(1),u(2)


fifj
∏
k∈V


Ek =


( ∑
u
(1)
a ,u


(2)
a


all a/∈∂V


1


)( ∑
u
(1)
a ,u


(2)
a


all a∈∂V1


fi
∏
k∈V1


Ek


)( ∑
u
(1)
a ,u


(2)
a


all a∈∂V2


fj
∏
k∈V2


Ek


)


×


( ∑
u(1),u(2)


u
(1)
a ,u


(2)
a ∈∂V3


∏
k∈V3


Ek


)
.


(5.68)


We point out that the pre-factor in the r.h.s. above comes from the sum over
all a-nodes which do not belong to ∂V . We observe that under the exchange
(1)↔ (2), fi (or fj) is “antisymmetric” and Ek is “symmetric”. More precisely,
we have∑
u
(1)
a ,u


(2)
a


all a∈∂V1


(τ
(1)
i − τ


(2)
i )


∏
k∈V1


(
τ


(1)
k e−2lk + τ


(2)
k e−2lk + τ


(1)
k τ


(2)
k e−4lk


)
=


∑
u
(1)
a ,u


(2)
a


all a∈∂V1


(τ
(2)
i − τ


(1)
i )


∏
k∈V1


(
τ


(2)
k e−2lk + τ


(1)
k e−2lk + τ


(2)
k τ


(1)
k e−4lk


)
.


where we exchanged the replica indices (1) and (2). Thus we obtain that (5.68)
vanished. Thus only those V which contain a walk with all its i-nodes in V
and which intersects both ∂i and ∂j contributes to the sum in (5.67).


For a given V (contributing to the sum (5.67)), we construct the set of
i-nodes ΓV as follows. ΓV is the union of all maximal connected clusters of
distinct i-nodes in V , such that each of those connected clusters intersects the
union ∂i ∪ ∂j. Let ΓcV = V \ ΓV . From the definition of ΓV , it is clear that
no i-node ∈ ΓcV shares an a-node in common with any node ∈ ΓV . It is not
hard to see that there exists such a set, ΓV . Indeed, the walk which connects
∂i and ∂j, is a candidate set. It is clear that the set ΓV is unique.


Let X̂V = ∂ΓV ∪ ∂i∪ ∂j be a set of a-nodes. Since ΓV is unique, it implies
that X̂V is also unique. It is not difficult to see that X̂V satisfies all the
requirements of the set X̂ in the sum (5.20). Indeed, consider XV = ΓV ∪ i∪ j.
By construction, ∂XV = X̂V ; any two i-nodes in XV are connected by a walk
with all its i-nodes in XV ; X̂V contains both ∂i and ∂j. Also note that ΓV is
compatible with X̂V as is required in the sum (5.21). Indeed, by construction
∂ΓV ∪ ∂i ∪ ∂j = X̂V ; ∂ΓV ∩ ∂i 6= φ and ∂ΓV ∩ ∂j 6= φ; there exists a walk
between ∂i and ∂j with all its i-nodes in ΓV . An important point to keep
in mind is that ∂ΓcV does not intersect X̂V . Because if it did, then it must
intersect either ∂i ∪ ∂j or ∂ΓV , which would be impossible.
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With this we can write (5.67) as


〈fifj〉⊥,12 =
1


Z2
⊥


∑
V⊂V



∑


u
(1)
a ,u


(2)
a


a∈∂ΓV ∪∂i∪∂j=X̂V


fifj
∏
k∈ΓV


Ek






∑
u
(1)
a ,u


(2)
a


remaining a


∏
k∈ΓcV


Ek



=


1


Z2
⊥


∑
X̂


∑
V⊂V :
X̂V =X̂



∑


u
(1)
a ,u


(2)
a


a∈X̂


fifj
∏
k∈ΓV


Ek






∑
u
(1)
a ,u


(2)
a


remaining a


∏
k∈ΓcV


Ek


 .


(5.69)


In the second equality we first sum over all X̂ which satisfies all the three
conditions (a), (b) and (c) of Section 5.5. Then we sum over all the sets of
i-nodes, V , such that X̂V = X̂. We are able to perform the above exchange of
sums because, for each V there is a unique X̂V . Note that there can be many
V which have the same X̂V as seen from the Figure 5.1 in Section 5.5. Also,
in the second sum in (5.69), by “remaining a” we mean sum over all a-nodes
which are not contained in V .


Recall that ∂ΓcV does not intersect X̂. And ΓV is compatible with X̂ and
is unique for a given V . As a result we re-sum over the sets V . This re-
summation consist of Γ compatible with X̂ and the rest G which does not
intersect X̂. Thus we have


〈fifj〉⊥,12 =
1


Z2
⊥


∑
X̂


{ ∑
u
(1)
a ,u


(2)
a


a∈X̂


∑
Γcompatible


withX̂


fifj
∏
k∈Γ


Ek


}{ ∑
u
(1)
a ,u


(2)
a


a∈X̂c


∑
G⊆V


∂G∩X̂=φ


∏
k∈G


Ek


}


=
1


Z2
⊥


∑
X̂


{ ∑
u
(1)
a ,u


(2)
a


a∈X̂


∑
Γcompatible


withX̂


fifj
∏
k∈Γ


Ek


}{ ∑
u
(1)
a ,u


(2)
a


a∈X̂c


∏
all k s.t.
∂k∩X̂=φ


(1 + Ek)


}
.


(5.70)


The last bracket is equal to (5.23) and we recognize Berretti’s expansion. Fig-
ure 5.3 shows a sample set V and ΓV which give a non-vanishing contribution.
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Figure 5.3: The dark circles (i-nodes) form the set V = {v1, . . . , v16}.
The walk a1v12a2v2a3v3a4v6a5v9a6v11a7 connects ∂i to ∂j and hence V
has a non-vanishing contribution to the sum (5.67). The set ΓV =
{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13}, is union of the two maximal con-
nected clusters: {v1, v13} and {v12, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}. Both of
these clusters have an intersection with ∂i ∪ ∂j. Also, ΓcV = {v14, v15, v16}.
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[81] M. Mézard and G. Parisi, “Mean field equations for the matching and
the travelling salesman problems,” Europhys. Lett., vol. 2, p. 913, 1986.


[82] E. Maneva, E. Mossel, and M. J. Wainwright, “A new look at sur-
vey propagation and its generalizations,” in SODA, Vancouver, Canada,
2005, conference.


[83] R. Monasson and R. Zecchina, “Statistical mechanics of the random k-
satisfiability model,” Phys. Rev. E, vol. 56, pp. 1357–1370, 1997.


[84] N. Macris, “Griffiths-Kelly-Sherman correlation inequalities: a useful
tool in the theory of LDPC codes,” IEEE Trans. Inform. Theory, vol.
IT–53, no. 2, pp. 664–683, 2007.


[85] M. Talagrand, “The high temperature case of the k-sat problem,” Prob-
ability Theory and Related Fields, vol. 119, pp. 187–212, 2001.


[86] F. Guerra, “Replica broken bounds in the mean field spin glass model,”
Comm. Math. Phys., vol. 233, pp. 1–12, 2003.


[87] M. Talagrand, Spin Glasses: A Challenge for Mathematicians: Cavity
and Mean Field Models. New York, NY, USA: Springer, 2003.


[88] D. Pachenko and M. Talagrand, “Bounds for diluted mean-fields spin
glass models,” Prob. Theory. Relat. Fields, vol. 130, pp. 319–336, 2004.


[89] A. Montanari, “Estimating random variables from random sparse obser-
vations,” Eur. Trans. Telecom., 2007.


[90] M. S. Pinsker, “Information and information stability of random vari-
ables and processes,” 1964.


[91] N. Macris, “Sharp bounds on generalized exit functions,” IEEE Trans.
Inform. Theory, vol. IT–53, no. 2, pp. 2365–2375, 2007.


[92] S. Franz, M. Leone, and F. L. Toninelli, “Replica bounds for diluted
non-Poissonian spin systems,” J. Phys. A, vol. 36, pp. 10 967–10 985,
2003.







196 Bibliography


[93] J. Lebowitz, “Ghs and other inequalities,” Comm. Math. Phys., vol. 35,
no. 2, pp. 87–92, 1974.


[94] R. B. Griffiths, Phase Transitions and Critical Phenomena. New York:
Academic, 1972, vol. 1.


[95] S. Morita, H. Nishimori, and P. Contucci, “Griffiths inequalities for gaus-
sian spin glasses,” J. Phys. A, vol. 37, p. 203, 2004.


[96] S. Korada and N. Macris, “Exact solution of a p-spin model and its
relationship to error correcting codes,” in Proc. of the IEEE Int. Sympo-
sium on Inform. Theory, Seattle, USA, July 2006, submitted to Journal
of Statistical Physics (2009).


[97] S. Korada, S. Kudekar, and N. Macris, “Concentration of magnetization
for linear block codes,” in Proc. of the IEEE Int. Symposium on Inform.
Theory, Toronto, Canada, Sept. 2008.


[98] A. Bovier, Statistical Mechanics of Disordered Systems: A Mathematical
Perspective. Cambridge University Press, 2006.


[99] H. O. Georgii, “de gruyter studies in mathematics,” in Gibbs Measures
and Phase Transitions. Walter de Gruyter & Co., Berlin, 1988.


[100] D. Ruelle, Statistical Mechanics: Rigorous Results. New York, NY,
USA: Imperial College Press, 2003.


[101] H. Dreifus, A. Klein, and J. Perez, “Taming griffiths’ singularities: Infi-
nite differentiability of quenched correlation functions,” Communications
in Mathematical Physics, vol. 170, pp. 21–39.


[102] A. Klein, “Who is afraid of griffith’s singularities?” On Three Levels.
Micro, Meso and Macroscopic Approaches in Physics, pp. 253–258, 1994.


[103] G. Gielis and C. Maes, “The uniqueness regime of gibbs fields with un-
bounded disorder,” JSTAT, vol. 81, 1995.


[104] R. L. Dobrushin, “Description of a random field by means of its condi-
tional probabilities and conditions of its regularity,” Theory Prob. Appl.,
vol. 13, pp. 197–224, 1968.


[105] D. Brydges, A Short Course on Cluster Expansions. Les Houches session
XLIII, 1984.
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